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Abstract

Biological growth and remodeling processes are necessarily time dependent due to the finite periods needed for the
material to be synthesized, deposited, degraded, and/or reorganized and, hence, so have been predominantly modeled
for the past 20+ years. However, a full-spectrum examination of the timescales present in these processes reveals the
need to explore a new class of models for which time-dependent effects are negligible. These mechanobiologically (quasi-)
equilibrated formulations not only appear to apply well in many cases but provide the modeler with those additional
pieces of information, and intuition, always needed when modeling complex time-dependent responses. Material model
determination, optimization involving long-term adaptations, and mechanobiological stability analyses could be leveraged
by the simplicity and computational efficiency of time-independent models. Although this concept is general, we address
it by means of two particular theories for which we also highlight crucial differences entailed by their diametrically
different material memory and heterogeneity descriptions.
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1. Introduction

Because of their inherently heterogeneous nature, the
mechanics of biological materials are frequently studied
from two viewpoints: as a mixture of material constituents
or as a homogenized material. A theory of mixtures ex-
amines the individual properties and interactions of con-
stituents to determine their effects on overall properties,
which allows an essential understanding. In a homogenized
material, the effects of the constituents are detected only
as averaged macroscopic properties, which allows compu-
tationally more tractable analyses though less detail.

This distinction is particularly relevant for biological
growth and remodeling (G&R), where internal distribu-
tions and mechanical properties, but also masses, of the
constituents, hence the mixture, may evolve. Two repre-
sentative approaches are a theory of constrained mixtures
(CM) and a theory of finite kinematic growth (FG). In
this brief review, we highlight specific salient features of
and differences between both approaches regarding evo-
lution equations for mass/volume growth and stress that
aim to stimulate future work on both sides. We also iden-
tify promising new modeling areas based on a naturally
introduced concept of a stimulus function for mass growth
and its different physical interpretations and mathematical
treatments in mechanobiology.
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2. Balance Laws for Open Systems: Still Open

One key difference between conventional and biological
materials is the ability of the latter to grow (i.e., change
mass) in response to diverse stimuli, which one typically
describes with a mass balance relation ρ̇ + ρ div v = m̄,
where ρ is the spatial mass density, ρ̇ its material time
derivative, v the velocity, and m̄ 6= 0 a net rate of mass
density production or removal. Let m̄ = m− n be defined
in terms of true rates of mass density production m >
0 and removal n > 0. Then, define a stimulus function
Υ := m/n > 0. Finally, div v = J̇/J , with J = det F the
Jacobian determinant of a deformation gradient F that
describes deformations between associated reference and
current configurations, thus leading to an equivalent form

ρ̇

ρ
+
J̇

J
=
n

ρ
(Υ− 1) , (1)

whereupon Υ enhances (> 1), reduces (< 1), or balances
(= 1) mass production with respect to removal. Hence, the
task of modeling mass growth reduces to correlate n and
Υ with specific stimuli; whether one uses stress, stretch,
or their rates is a controversial matter from a mechanobi-
ological perspective [1], with other factors possible too [2].

Besides exchanging mass, biological materials also ex-
change momenta, energy, and entropy with their surround-
ing. Thus, additional terms need to be considered in bal-
ance relations extended for open systems [3–7], which have
found extensive application to G&R of biological tissues.
However, because the intent of the second law of thermo-
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dynamics is not to enforce restrictions on processes associ-
ated with open systems [8], it is not surprising that the spe-
cific form and nature of the extra terms, whether sources
or fluxes, reversible or irreversible, are subject to contro-
versy as well. Indeed, the fact that the current “thermody-
namic approach fails to restrict universally the functional
form of evolution laws for growth” [9] encourages addi-
tional theoretical work on the thermodynamic foundations
of mechanobiology.

In what follows, we will refer to the linear momentum
balance relation, which, for slow growth processes, adopts
the classical form

ρv̇ = divσ + ρb , (2)

with Cauchy stress σ and body force b.

3. Kinematics and Constitutive Relations

Because of its intricate nature, biological G&R admits
multiple mechanobiological interpretations and modeling
approaches. Naturally, many have extended successful
kinematic relations and evolution equations from allied
fields.

3.1. Theory of finite growth

Rodriguez et al. [10] proposed the multiplicative de-
composition of the deformation gradient F = FeFg for
FG, with Fg the inelastic part of the deformation that
represents the addition or subtraction of mass to a local
volume element and Fe the elastic part that generates me-
chanical stresses.

3.1.1. Rate-dependent, viscous-type evolution

Even though F = FeFg is often related to the Bilby–
Kröner–Lee multiplicative decomposition for elastoplastic-
ity, evolution equations for Fg of viscous type are ubiqui-
tous in the literature. To illustrate, consider the concep-
tual form ϑ̇/ϑ = kKσσ/σo, with ϑ a growth multiplier, σ a
given stress measure, σo a reference value, k a rate param-
eter, and Kσ a gain. When compared to Eq. (1) with, for
example, ρ constant (for a soft tissue that tends to preserve
its overall mass density), n = kρ (first-order kinetics for
removal), and ϑ = Jg = J (incompressible elastic behav-
ior), yields a stimulus function Υ = 1 +Kσσ/σo. Further
refinements have been proposed in [11] to prevent unlim-
ited growth at non-zero stress, in [12] to let the growth re-
sponse be activated beyond physiological threshold levels,
and, more recently, in [13] to endow the reference configu-
ration with residual stresses.

Consistent with Cannon’s idea of homeostasis [14], ob-
servations of the mechanobiology suggest that both mass
production and removal are governed by feedback mech-
anisms that depend on perturbations from physiological
targets [15], which many FG models fail to incorporate.
Attempts in this direction have consisted in deriving rate-
dependent evolution equations for growth depending on an

overstress in terms of an Eshelby-like tensor [16] or addi-
tional internal variables of elastic nature [17].

3.1.2. Rate-independent, plastic-type evolution

In contrast to previous models, a formulation for FG
extended from rate-independent plasticity was presented
in [18]. Even though numerical simulations appear to agree
well with results documented in the literature, this ap-
proach has been less popular in the field, perhaps, among
other reasons, because soft tissue G&R requires consider-
ation of rate-dependent effects (e.g., one expects a tissue
to grow gradually, not instantaneously, after a step change
in external loading). A reconsideration of the timescales
involved in G&R adaptations, as explained below, could
confer more relevance to rate-independent models, either
path-dependent or -independent.

3.1.3. Extended evolution equations

As put forward in [19] after deriving a CM formula-
tion in rate form, additional strain- or stress-like internal
variables could be incorporated in multiplicative models
to extend, and test, their predictive capabilities. In this
sense, Soleimani [20] models finite strain viscoelastic (nu-
trient diffusion-driven) growth for biofilms through an ad-
ditional linear evolution equation for a stress-like internal
variable. After recognizing that viscoelasticity alone may
be insufficient to account for irreversible deformations in
some tissues (e.g., stress-driven rearrangements of cells and
their adhesion network in tumors), Grillo et al. [21] bor-
row concepts from strain-gradient plasticity and propose
an extended multiplicative decomposition F = FeFpFg,
with Fp an additional internal deformation gradient de-
scribing distortional plasticity-like remodeling processes.

3.2. Theory of constrained mixtures

Alternatively, Humphrey and Rajagopal [22] let the
mass supply and free energy of different load-bearing con-
stituents be expressed through heredity integrals to for-
malize a conceptually different CM theory. This approach
allows consideration of constituent-specific rates of pro-
duction and removal, with constituents α, deposited with
pre-stretch Gα from evolving natural configurations at de-
position time τ , constrained to deform with the mixture
through Fαn(τ) (s) = F (s) F−1 (τ) Gα (τ) at G&R time
s ≥ τ . Evolution equations for mass growth are motivated
by Fung’s call for mass-stress relations and afford tensional
homeostasis by means of the pre-stresses generated by the
pre-stretches.

3.2.1. Heredity-integral, viscous-type evolution

To review salient features of this model associated with
its integrals, let us consider a homogenized mixture in
what follows (see [23] for a wider discussion). With ρR =
Jρ the mass density per unit reference volume and n/ρ =
k, Eq. (1) yields ρ̇R + kρR = mR, where mR = kρRΥ =
nRΥ. Mass balance is thus integrable and yields ρR (s) =
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∫ s
−∞mR (τ) q (τ, s) dτ based on a survival function q (τ, s).

A strain energy per unit reference volume of soft tissue
WR (s) = 1

ρ

∫ s
−∞mR (τ) q (τ, s) Ŵ (Fn(τ) (s))dτ is addition-

ally postulated, with Ŵ the energy function defined from
the evolving natural configuration.

3.3. A comparison in rate form

By homogenizing the material in the CM formulation,
one can elucidate key differences with a theory of FG as-
sociated exclusively with their postulated multiplicative
decompositions and strain energies. Let the strain energy
per unit current volume for the conventional FG model
depend on Fe. Its material time derivative, for an iso-
choric elastic response without additional internal vari-
ables, yields Ẇ = σx : d, with σx the part of the stress
that derives from the strain energy and d the rate of de-
formation tensor. For the heredity integral model, one
obtains Ẇ = σx : d − kΥ(W −Wdep), with the second
term naturally providing a self-stabilizing, relaxation-like
contribution for W towards its homeostatic value (i.e.,
W → Wdep) associated with the fact that the energy

Wdep = Ŵ (G) of the newly deposited mass is different
from the current (average) energy W of the tissue. Hence,
because a full CM theory is currently considered to pro-
vide a much richer mechanobiological interpretation of the
intricate G&R processes in biological tissues [9], but at the
same time becomes computationally expensive for complex
cases, there is a need for enhanced kinematic decomposi-
tions [13, 20, 21, 24] that provide closer descriptions to
the more general evolution equations for mass and stress
provided by associated theories of CM, as well as, in paral-
lel, a need for computationally more efficient and tractable
formulations for the latter [25, 26], currently afforded only
by its temporally homogenized variants [27, 28].

4. Stimulus Functions for (mal)adaptive G&R

Cannon’s concept of homeostasis seems to work rea-
sonably well for normal adaptations of mature tissues with
constant “set points” (or homeostatic stresses), but may
not apply in other developmental or pathological processes.
For example, Taber [15] assumed that homeostatic stresses
increase with blood pressure during development to even-
tually reach preferred values in maturity. Conceptually,
Υ(s) = 1 +Kσ(σ(s)− σh(s))/σh(s) in Eq. (1) with home-
ostatic stresses σh(s) evolving during development, con-
sistent with a redefined concept of “adaptive homeostasis”
[29].

Homeostatic mechanisms may be highly dysregulated
in diseases where inflammation plays a crucial role [30].
For example, Bersi et al. correlated increased inflamma-
tion with failed restoration of wall stresses to normal values
in the descending thoracic aorta (DTA) of wild-type [31]
and Apoe-/- [32] mice rendered hypertensive via infusion
of AngII. This maladaptation for target stresses may be
accounted for by considering both mechanobiological and

immunobiological contributors to aortic wall G&R. Con-
ceptually, Υ (s) = 1 + Kσ(σ (s) − σo)/σo + Kϕ∆%ϕ (s) in
Eq. (1). Once the inflammatory response has achieved its
protective goal, for which ∆%ϕ = 1 is maximum, a new
equilibrium state Υ = 1 is reached, which leads to a new
homeostatic stress σh = σo(1−Kϕ/Kσ) lower than σo for
Kϕ ∈ (0,Kσ), consistent with experimental observations
in [31, 32] and model predictions in [33, 34]. The cou-
pling between stress and inflammatory stimuli, however,
remains largely unexplored and not even simple functional
forms have been proposed. Network models are a promis-
ing venue in this regard.

5. Loading and Adaptation Timescales Revisited

In a seminal review [35], Cowin recognized two time-
scales in living tissue mechanics that differ by many orders
of magnitude: a short timescale for (typically fast) loading
and a long timescale for (typically slow) adaptations.

The adaptation timescale in biological tissue is inher-
ently related to the turnover, or combined deposition and
degradation, of its constituents [36]. It ranges from min-
utes (e.g., for certain cells) to days to months (e.g., for
constituents within the extracellular matrix). Recently, a
thermodynamically inspired, intrinsic timescale associated
with growth, termed “internal time” was determined [37].
Consistent with a shorter loading timescale, G&R mod-
els have included rate-dependent, relaxation-like effects for
the growth response (e.g., Fg in FG models) but also the
stress response (e.g., W in CM models). However, because
an adaptation process is not necessarily driven by exter-
nal loads, the concept of “short loading timescale” could
be broadened. There exist, in fact, situations for which the
period over which the stimulus that drives G&R varies is
comparable to, or even longer than, the response timescale:
slowly evolving aneurysms stimulated by slow degrada-
tion of elastin laminae, or slow neovessel formation and
adaptation stimulated by slow degradation of the polymer
within tissue-engineered vascular grafts (TEVG). One can
also think of a slow arterial wall thickening in hyperten-
sion stimulated by a gradual increase in (perhaps systolic)
blood pressure. Because pressure represents an external
load, but elastin or polymer degradation do not, we sub-
mit that a “stimulation timescale” could be a broader term
to define the characteristic “external” time that is to be
compared to an “internal” time to allow for more precise
modeling.

Therefore, contrary to the observation in [35] that mo-
tivated the enhancement of rate-dependent theories of adap-
tive elasticity, the present observation about comparable
timescales in other problems of interest aims to stimulate
further development on rate-independent G&R theories.
In this regard, if the tissue adapts rapidly (relative to
the stimulation timescale), the growth evolution becomes
quasi-equilibrated and requires Υ ' 1 in Eq. (1), which
can be solved quasi-statically with mechanical equilibrium
(Eq. (2) with v ' 0), constitutive, and compatibility
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equations subject to boundary conditions [38]. Since G&R
time is absent, a generalization of this formulation for CM
models well-suited for computational implementation in fi-
nite element solvers would signify a significant reduction
in computational time and memory needs and enable (so
far impractical) complex non-linear finite element simula-
tions for a host of soft tissues. Of course, a comparison
between the involved timescales should dictate the appro-
priate formulation to use for each application [38].

6. Mechanobiological Equilibrium

Cells attempt to establish, maintain, or restore a home-
ostatic mechanical state and eventually reach a biologi-
cal equilibrium under stable physiological conditions [36].
Very few researchers have addressed how to determine
mechanobiological equilibrium states following a direct ap-
proach. Among them, Rachev was the first in studying,
theoretically, the final adaptation of an artery under sus-
tained hypertension [39]. Recently, a CM model for cylin-
drical arteries was pre-integrated to yield a system of al-
gebraic equations which solution, consistent with Υ = 1 in
Eq. (1) and v = 0 in Eq. (2), is equivalent to the long-
term solution of its respective heredity integral model [40].
If “G&R models represent a fundamentally new capability
to predict the single thing that matters most to doctors
and patients: long-term outcomes” [41], a formalization
of these, and others that may emerge, formulations that
give rise to efficient and reliable computational methods
for parameter sensitivity, uncertainty quantification, and
optimization of material parameters or geometries, sub-
ject to complex loads and boundary conditions, should be
pursued.

The formulation in [40] gives a path-independent, re-
versible solution for given blood pressure, flow rate, and
axial stretch, which is consistent with the conceptual anal-
ysis performed in [42] for a hypertensive adaptation. It
seems also consistent with recent experimental evidence
on common carotid arteries of Wistar rats [43]. Similar to
rate-independent plasticity, however, an actual mechanobi-
ologically equilibrated evolution might be path-dependent
and require to account for irreversible deformations of the
tissue, as in [18, 21]. There is a need, thus, for more
experimental evidence to elucidate the (ir)reversibility of
biological G&R within different environments. Extended
CM models that incorporate possible irreversible effects for
specific constituents promise to provide additional insight.

7. Mechanobiological Stability

When studying mechanobiological equilibrium, there
are two properties that stand out, namely, existence and
uniqueness of solutions. Regarding G&R evolutions, an-
other property should be assessed, namely, dynamical sta-
bility. These three properties can be analyzed from initial-
boundary value problems involving Eqs. (1) and (2) com-
plemented with a constitutive equation for stress.

Dynamic stability analyses of G&R were first performed
in [44, 45] using CM models and in [46] using FG. The con-
cept was formalized mathematically in [47] based on an en-
hanced theory of “small on large” [48]. Further insight was
given in [19] based on a full CM model in rate-form well-
suited for stability analyses. In particular, derivations in
[19] showed a natural separation of, e.g., the Truesdell rate
of the Cauchy stress into elastic, growth, and remodeling
parts, the last reading, conceptually, σ̊r = −kΥ(σ−σdep),
which, consistent with the one for W , is a self-stabilizing,
relaxation-like contribution for σ towards its homeostatic,
pre-stress value (i.e., σ → σdep) absent in the conventional
FG theory. In fact, an “active stress recovery” of this type
was originally derived in [24] based on constituent-specific
decompositions F = FαeFαrFαg meant to rely on microme-
chanical ideas from CM models. Since mass and stress
evolutions are necessarily coupled for materials subjected
to stress-driven turnover, this contribution could be criti-
cal in analyzing their mechanobiological stability.

Besides analyzing the dynamic stability of perturbed
responses around equilibrium states (see [23]), the study
[19] also brought up the importance of analyzing the static
stability of equilibrium states themselves, that is, assess-
ing their existence and uniqueness under mechanobiolog-
ically quasi-equilibrated evolutions. In this respect, non-
existence of an equilibrium state could associate with an
asymptotic growth response, whereas non-uniqueness could
associate with mechanobiological (i.e., not just mechani-
cal) limit point instabilities or bifurcations. Other model
parameters could similarly give rise to static instabilities
of this kind [49].

This is an emerging field where much work needs to be
done, particularly on distinguishing static from dynamic
instabilities in complex pathologies (e.g., in unstable ex-
pansions of aneurysms) and neutral from asymptotic sta-
bility in different adaptations, nonlinear stability analyses
(with possible vanishing real eigenvalues or limit cycles),
as well as experimental, theoretical, and computational
stability studies for formed neovessels after graft implan-
tation [50, 51].

8. Conclusions

Since early pioneering works by Skalak, Fung, and col-
leagues, many advanced formulations to model G&R of
living tissues have been proposed. We have briefly exam-
ined a few particular features of two remarkably different
theories: finite growth based on time and material ho-
mogenizations and constrained mixtures based on hered-
ity integrals. However, precisely because of their intrin-
sic differences, we submit that both formulations present
complementary modeling assets that make them natural
companions to progress on the continuum modeling of bi-
ological G&R.

We suggested the need to systematically incorporate
additional internal variables in future implementations of
a (computationally favorable) theory of finite growth to
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reproduce responses otherwise predicted by a constrained
mixture model (even if materially homogenized). On other
hand, noting that with a theory of mixtures one gains
an understanding for why and how biological materials
grow and remodel, full modeling power will be demon-
strated when its computational performance additionally
improves. This may indeed be attainable, as a starting
point, by rate-independent theories that may find a place
in G&R applications after a reconsideration of the time-
scales involved in practical cases. Further advancement
should bring robust and efficient, mechanobiologically in-
spired, computational models that will be essential to an-
alyze mechanobiological equilibrium and stability proper-
ties of living tissues, which mechanoadapt, or not, to the
myriad stimuli that drive their G&R.
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