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ABSTRACT 

According to Eurocode 0 structural durability is next to ultimate and serviceability one of the basic criteria in 
the structural design process. This article discusses the subject of concrete cracks observation in bridge 
structures, as one of the factors determining their durability. The durability of bridge structures is important due 
to both social, economic aspects and also the defense aspects of countries. Cracking of the reinforced concrete 
structures is a natural effect in concrete. The aim in the design and construction of structures is not to prevent 
the formation of cracks, but to limit their width to acceptable values. At the same time, there is a need for 
structure tests that allow for non-contact, fast measurements and algorithms that allow for efficient analysis of 
large amounts of measurement data. Deep machine learning algorithms can be used here. They can be used to 
analyse data which are acquired by means of photogrammetric methods (especially helpful during construction 
to inventory concealed works). Moreover, they can also be applied to standard data acquisition methods, 
consisting in photographing objects damage during works acceptance or periodic inspections. This paper 
discusses the application of deep machine learning to assess the condition of bridge structures based on 
photographs of object damage. The use of this method makes it possible to observe the rate and extent of 
damage development. Consequently, this method makes it possible to predict the development of damage in 
time and space in order to prevent failures and take structures out of service. 

 
I. INTRODUCTION 

According to Eurocode 0, structural durability is one 
of the basic criteria in the process of designing 
buildings, in addition to ultimate and serviceability. It 
has a significant influence on the adopted structural 
and material solutions. This paper concentrates on the 
subject of bridge structures damage observation, the 
reliability of which is crucial due to social and economic 
aspects as an element of transport and transit 
infrastructure. These objects also play an important 
role due to the aspects of national defense. 

The cracks are occurring when the force in a given 
point in the structure exceeds concrete maximum 
tensile strength. The phenomenon of cracking in 
reinforced concrete structures is a natural 
phenomenon of concrete. The aim in the design and 
construction of structures is not to prevent the 
formation of cracks, but to limit their expansion to the 
values specified in national standards. 

Identifying the location of the crack line in a concrete 
member is an equally important aspect that can give 
knowledge about the nature of the factor causing the 
crack in the structure. The progression of the crack over 
time must also be considered. Some cracks occurring on 
the surface of a structure do not increase in dilation 
over time and remain present on the surface of the 
structure throughout its life cycle. The conclusion is that 
not every crack may be a potential threat to the 

durability of the structure. However, expert knowledge 
is needed to clearly and responsibly identify potentially 
dangerous locations. 

The phenomenon of concrete cracking can be caused 
by many factors, which makes the problem complicated 
(Zhang, 2018). The problem of cracking concerns in 
particular the massive elements of the bridge such as 
foundations, abutments, pillars and pylons. Cracking 
occurs due to the increase of thermal-shrinkage 
stresses in the concrete of these elements. Under the 
influence of loads it may lead to the propagation of 
cracks through the entire thickness of the element, and 
as a consequence to the loss of monolithicity of the 
element and changes in the static scheme, or to the 
development of corrosion processes under the 
influence of water penetrating through cracks into the 
element. 

At each stage of the life cycle of the structure, a 
number of factors can be listed that affect its durability 
(Germaniuk et al., 2016; Zhang, 2018). It requires close 
cooperation between the designer, contractor, 
concrete technologist, inspector, and the investor or 
user of the facility to ensure durability. Examples of 
factors at different stages of the structural life cycle that 
influence the possibility of cracking are presented in 
Figure 1. All this makes the aspect of crack identification 
seem to be crucial for the durability of the structure. 

 

405



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
 

2022, Editorial Universitat Politècnica de València    

 
Figure 1. Examples of factors at different stages of the structural life cycle that influence the possibility of cracking. 

 
The inspection, condition assessment and 

maintenance procedures for bridges are different in 
each country. Helmerich et al. (2008) describe bridge 
infrastructure maintenance requirements, inspection 
and condition assessment procedures, and ongoing 
testing programs. A review of bridge management 
system (BMS) and bridge inspection practices in China, 
Japan, Korea, and the US are presented in (Jeong et al., 
2018). 

Currently, the still popular method for collecting data 
on concrete surface cracks is to obtain them from the 
results of an inspector's inspection. However, this 
process has many limitations (Kim et al., 2015). Among 
other things, we can point out the costliness of this 
process, the time-consuming nature of the inspections 
performed, and the labor-intensive nature of the report 
preparation. Moreover, this process requires the use of 
specialized equipment to inspect surfaces located at 
height or in difficult terrain, thus posing a danger to the 
person performing the inspection. In addition, the 
process is dependent on the experience and subjective 
judgment of the inspector (Xu et al., 2021). 

It should be noted that current methods require the 
person performing the inspection to manually create an 
inspection map and mark damage locations. This 
further increases the labor intensity and cost of 
performing the inspection. Currently, in connection 
with the digitalization of construction, solutions have 
already been created to support the construction 
engineer and supervisor in their daily work. Kim et al. 
(2018) present an approach in which they use deep 
learning to simultaneously classify and locate cracks 
acquired with UAVs. In addition, they create a model of 
the bridge structure based on the point cloud and 
create a map of the structure on which the cracks 
identified by the network are marked. This makes it 
possible to link the results to the bridge management 
system (BMS) and process them automatically over 
time. Visualization of the detected damage on a 3D 
model based on photographs is also used by (Wu et al., 
2019). 

Nowadays there is a need to use such construction 
surveys that allow for non-contact, quick 
measurements and algorithms that allow for efficient 
analysis of large amounts of measurement data. The 
algorithms of deep machine learning used to analyze 
data acquired by means of photogrammetric methods 
(especially helpful in the course of construction for 
inventory of disappearing works) as well as standard 
methods consisting in taking pictures of object damages 
with the use of cameras during works acceptance or 
periodic inspections are applicable here. 

The aim of this work is to verify the possibility of using 
deep machine learning algorithms to assess the 
condition of structures on the basis of images of object 
damage taken with the camera, without prior 
preparation. The aim of the research is to show the 
possibilities of using this method to detect and locate 
cracks and to observe the rate and extent of processes 
causing damage. The goal is to be able to predict the 
development of cracks in time and space on the basis of 
damage images in order to prevent failures. 

The use of machine learning algorithms can be a tool 
that will support the engineer in his daily work. 
Moreover, it can be particularly helpful for hard-to-
reach sites, especially when combined with 
photogrammetric data acquisition methods. Well-
crafted machine learning algorithms can help detect 
cracks at an early stage of their formation, where the 
human eye does not always perceive the danger 
anymore. 

 

II. PROBLEM DESCRIPTION 

The use of deep machine learning including transfer 
learning for structural condition assessment from 
images of object damage is a rising trend. The 
possibilities arising from using transfer learning and 
comparing the performance of several proposed deep 
convolutional neural networks in the problem of image-
based automatic detection of concrete surface cracks 
on a small dataset are discussed in (Słoński, 2019). A 
comparison of the performance of pre-trained 
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networks on datasets of different sizes is presented in 
(Ali et al., 2021). Network architecture selection in the 
context of limited computational resources is 
mentioned by Su et al. (2020). The impact of model 
parameter selection and network learning rate is 
presented in (Li and Zhao, 2019). 

Classifying damage images as cracked and non-
cracked is a binary problem. Solving the problem based 
on convolutional neural networks requires selecting the 
neural network architecture and model parameters 
such that the measures used to evaluate model 
accuracy are satisfactory. Convolutional networks are 
typically trained using a back propagation algorithm to 
compute the gradient of the loss function to iteratively 
update the model weights. 

Based on the proposed network architecture and 
model parameters using a training dataset, which is 
part of the whole dataset, the network model is trained. 
Based on another validation subset extracted from the 
whole dataset, the solution is verified. The purpose of 
this activity is to validate the performance of the 
network against data that the model has not seen 
before. The testing and validation process is an iterative 
process until such an architecture and model 
parameters are selected that produce stable and 
satisfactory classification results. The network thus 
trained is tested on test sets that are either a subset of 
the dataset on which we have been working, or is a 
completely independent dataset. 

The problem that occurs in deep machine learning is 
the need for very large datasets on which the neural 
network is trained. Moreover, the stage of architecture 
selection, model parameter tuning, as well as the 
network learning process itself are complicated, labor-
intensive and costly issues. A frequently used practice 
in this case is transfer learning. It consists in using the 
neural network model, which was previously learned on 
a large dataset, to solve a new problem. This makes it 
possible to solve problems for which we have a 
relatively small amount of data. 

In this paper, transfer learning was used. It is based 
on learning a convolutional base and retraining the 
classifier. The convolutional base was frozen, i.e., for 
the layers included in the convolutional base, the 
weights adopted in the model were not updated in 
subsequent training steps. The images of concrete 
surface cracks were passed through the selected 
network, and by retraining the proposed classifier, it 
was possible to adapt the network to the dedicated 
crack detection problem. The model thus trained was 
validated on the test set and showed satisfactory 
prediction results. 

 

III. METHODOLOGY AND COMPUTATIONAL 

IMPLEMENTATION 

A. Training, validation and test datasets 

The dataset used to train, validate and test the 
convolutional neural network model is the publicly 

available dataset “Concrete Crack Images for 
Classification“ (Özgenel, 2019). The dataset contains 
40,000 images with 227 x 227 pixels with RGB channels. 
The dataset was based on 458 high-resolution images. 
These images have variance in terms of illumination 
conditions and surface finish. The images were divided 
into 2 classes: "Positive", containing images of cracked 
concrete surfaces, and "Negative", which is a dataset of 
images of non-cracked surfaces. Each class contains 
20,000 images. Examples of images from this collection 
are shown in Figure 2 and Figure 3. This images were 
randomly divided into 3 subsets: train, validation, test. 
The images were divided in a percentage ratio of 
60:20:20 (i.e. 24000, 8000, 8000 images). Each subset 
was equally divided into "Positive" and "Negative". 

 

 
 

 
Figure 2. Examples of cracked surfaces ("Positive") 

(Özgenel, 2019). 
 

  
 

 
Figure 3. Examples of non-cracked surfaces ("Negative") 

(Özgenel, 2019). 
 

The second dataset is the authors' own collection. 
The photographs of the damaged concrete surfaces 
were taken using a camera and a mobile phone camera 
and were taken without prior conditioning. The 
purpose of this form of data acquisition was to verify 
the possibility of using images taken without paying 
attention to the parameters and settings of the 
equipment used to acquire the image. This is 
particularly important because under construction 
conditions it is not always possible to have full access to 
the study area and to focus carefully on cropping and 
sharpening the image. Hence, one aspect of this work is 
to verify the feasibility of using deep machine learning 
for crack detection regardless of the quality of the 
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concrete surface image taken, the lighting conditions, 
and the type and parameter of the equipment used to 
capture the image. 

The authors' own dataset was built from images of 
16 bridge structure elements (abutments, pillars) that 
were segmented into 4665 sub-images with 227 x 227 
pixels. The images were manually classified and labeled 
as "Positive" if there was a crack in the image or 
"Negative" if there was no crack - to maintain analogy 
with the dataset described above (Özgenel, 2019). 
Finally, 309 images of the cracked concrete surface (i.e., 
"Positive") and 4356 images of the non-cracked surface 
(i.e., "Negative") were obtained. The authors' own 
dataset consists of cracks of various dilation. It contains 
images with various obstructions including shadows, 
varying illumination, surface roughness, holes, and 
background contamination. Examples of images from 
the authors' dataset are shown in Figures 4 and 5. 

 

  
   

  
Figure 4. Examples of cracked surfaces ("Positive") - 

authors' own dataset. 
 

  
   

  
Figure 5. Examples of non-cracked surfaces (“Negative”) – 

authors’ own dataset. 
 

B. Architecture of convolutional neural network 

The computer implementation was programmed in 
Python using the open-source Keras library. This library 
runs on the open-source TensorFlow machine learning 
library developed by Google. 

This paper uses transfer learning using the VGG-16 
network proposed by (Simonyan and Zisserman, 2015), 
trained on the ImageNet dataset. The VGG-16 model 
consists of 16 layers, including 13 convolutional layers 
for feature extraction and a classifier composed of 
three fully connected layers with a filter size of 3 × 3. 

In the approach used in this study, the frozen 
convolutional basis of the VGG-16 model was used for 
feature extraction and a custom classifier was 
proposed. This procedure was intended to adapt the 
network to the dedicated problem of concrete surface 
crack detection. The overall architecture of the 
proposed CNN is shown in Figure 6. 

 

 
Figure 6. Proposed architecture of a convolutional neural 

network. 
 

The image size at the output of the VGG16 network 
was (512, 7, 7), and the total number of network 
parameters at this stage was 14 714 688. 

The proposed classifier consisted of a deep layer with 
ReLu activation function. Before entering the data into 
this layer, the vector was flattened to a one-
dimensional form, because this is the form of data 
required by the Dense layer. Additionally, Dropout layer 
with probability 0,4 was used for regularization. This 
technique, which involves random freezing of individual 
neurons in the network during the learning process, 
allows for more accurate matching of the model to the 
data. In particular, this is useful for small data sets that 
tend to over-fit, and using dropout allows the network 
to be taught in a more generalized way. The second 
deep layer uses the Sigmoid activation function to 
determine the probability that the analyzed image is 
outlined. 

As described earlier, the network learning process 
used a frozen convolutional base, i.e., the parameters 
included in it were not subject to the learning process. 
The weights obtained for the network learned on the 
ImageNet dataset were adopted. Only the parameters 
included in the proposed classifier were trained. As part 
of the classifier selection, the performance of the 
network was tested as a function of the number of 
filters used in the first Dense layer, and thus the number 
of parameters learned in training the network. The use 
of 16, 32 and 64 filters in this dense layer was verified. 

The total number of parameters depending on the 
number of dense layer filters is shown in Table 1. In 
addition, the table shows the number of trainable and 
non- trainable parameters. 

 
Table 1. The number of model parameters 

 
 

Filters 

Number 16 32 64 
Total 15 116 129 15 517 569 16 320 449
Trainable 401 441 802 881 1 605 761 
Non-trainable 14 714 688 
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Results showed that using a Dense layer with 64 
filters produces satisfactory results. In the following 
section we present results for a classifier consisting of 
this Dense layer with 64 filters. 

 
C. Network training, validation and testing 

Calculations were performed on a laptop with a GPU. 
The computations were performed on a platform with 
the parameters: CPU - Intel(R) Core(TM) i7-8750H, GPU 
- NVIDIA Quadro P1000, 16GB RAM. The use of such 
hardware has shown that it is not necessary to use 
specialized hardware to perform such analysis. 
Therefore, such analyses are within the range of 
equipment available to all the engineers. 

Due to the binary nature of the problem, a binary 
cross-entropy loss function was used. The use of 
different optimizers in the training process was 
considered. Results show that the highest accuracy was 
obtained using the Adam type optimizer. Finally the 
Adam optimizer was used for parameter updates. A 
validation set was used to monitor during learning the 
accuracy of the model on data that the network had 
never seen before. This consisted of images previously 
extracted from the output set (Özgenel, 2019), as 
described in paragraph III.A The performance of the 
network was tested by prediction on two datasets. The 
first consisted of samples separated from the output set 
(Özgenel, 2019). The second consisted only of samples 
from the authors' own dataset. 

Various metrics were used to evaluate the network, 
such as accuracy, precision, sensitivity and specificity 
(König et al., 2022). This metrics are explained in more 
detail below. The symbols in the formulas denote 
elements of the confusion matrix, where: TP - True 
Positive - number of true cracked images correctly 
predicted as cracked, FP - False Positive - number of 
true non-cracked images predicted as cracked, TN - 
True Negative - number of true non-cracked images 
predicted as non-cracked, FN - False Negative - number 
of true cracked images predicted as non-cracked. 

Accuracy can be defined as the ratio of correct model 
predictions to the total number of tested images, as 
shown in Equation 1: 

 

accuracy  
TP TN

TP FP TN FN
 (1) 

 
Precision (Eq. 2) defines how many of the images 

predicted as positive were predicted by the model 
correctly: 

 

precision  
TP

TP FP
 (2) 

 
Sensitivity, shown in Equation 3, defines how many of 

all true positive images were correctly predicted by the 
model: 

 

sensitivity  
TP

TP FN
 (3) 

 
Specificity (Eq. 4) defines how many of all true 

negative images were correctly predicted by the model: 
 

specificity  
TN

TN FP
 (4) 

 
F1 score can be defined as the harmonic mean of 

precision and recall, as shown in Equation 5: 
 

F1 score 
2 precision recall

precision recall
 (5) 

 
Because the authors' test dataset is imbalanced, a 

balanced accuracy metric (Eq. 6) was used to evaluate 
the model for this dataset. This metric is defined as the 
arithmetic mean of sensitivity and specificity: 

 

balanced accuracy
sensitivity specificity

2
 (6) 

 
The values of each metric for both test datasets are 

presented in the following section. 
 

D. Results 

Verification of damage classification shown in images 
of cracked and non-cracked concrete surfaces for a test 
dataset extracted from (Özgenel, 2019) showed a 99% 
accuracy. The confusion matrix for this set is shown in 
Table 2. Using the network to classify cracks on the 
authors' own dataset showed a accuracy of over 91%, 
but because the authors' own dataset is an imbalanced 
dataset the balanced accuracy metric was used as more 
adequate. The value of balanced accuracy for the 
authors' own dataset is over 55%. The confusion matrix 
for this set is shown in Table 3. The metrics for both test 
datasets are shown in Table 4. 

 
Table 2. Confusion matrix for publicly available dataset 

(Özgenel, 2019) 

 
 

Predicted  
non-cracked  

Predicted 
cracked  

True non-cracked 3996 4 
True cracked 6 3994 

 
Table 3. Confusion matrix for authors' own dataset 

 
 

Predicted  
non-cracked  

Predicted 
cracked  

True non-cracked 4315 41 
True cracked 295 14 

 
The analysis showed that the presented network 

architecture allows for high accuracy, but the 
architecture is not very universal. For the test dataset 
of images with crack character corresponding to the 
cracks on which the model was trained, high precision 
is obtained (over 99%). This is shown by the analysis 

409



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
 

2022, Editorial Universitat Politècnica de València    

performed using the test set extracted from the public 
data (Özgenel, 2019). However, as the analysis 
performed on the authors' own data set shows, the 
network is able to detect mainly such cracks whose 
nature is similar to that of the images that were used to 
train the model. This is confirmed by an analysis of 
classification results examples for cracked images from 
the authors' own dataset which is shown in Figure 7. 

 
Table 4. Metrics for test datasets [%] 

 
 

Publicly available 
dataset  

(Özgenel, 2019) 

Authors' own 
dataset 

Accuracy 99,88 91,55 
Balanced accuracy - 57,44 
Precision 99,90 28,43 
Sensitivity 99,85 18,12 
Specificity 99,90 96,76 
F1 score 99,88 22,13 

 
The analyzed network correctly classifies images with 

similar crack types, but is limited in its ability to detect 
damage of a different nature. To obtain higher levels of 
accuracy, the type of damage shown in the analyzed 
image must belong to the hypothesis space of the 
model. 

 

 

 

 
Figure 7. Examples of classification results for cracked 

images from the authors' own dataset. 
 

IV. CONCLUSION 

The crack detection is critical in the diagnosis of 
bridge structures. Early detection of defects allows for 
faster response to damage and planning of necessary 
repair work. This is expected to lead to a situation 
where the bridge structure does not need to be taken 
out of service. There is a need for research that allows 
for non-contact, high-speed measurements of objects 
and algorithms that allow for efficient analysis of large 
amounts of measurement data. It is also important to 
be able to store this data in a single facility management 
system so that you have a complete database and can 
observe the development of damage over time. 

The application of deep machine learning to assess 
the condition of bridge structures based on images of 
structure damage is a response to these needs and one 
of the better developing trends today. This paper 
presents an example of using transfer learning to train 
a network based on publicly available data. The model 
trained on these data was used to predict damage on 
the authors' own dataset. The result of the research is 
one of the stages of work aimed at presenting a solution 
that would make it possible not only to detect the 
presence of cracks, but also to distinguish those cracks 
that constitute an excess of permissible norms based on 
their dilation value. 

The results of the authors' research confirm the 
feasibility of using deep machine learning for cracks 
detection from photos. Importantly, as the results 
show, it is also possible to use photos that were taken 
with a camera or phone camera without configuring its 
settings or preparing the shot. This is extremely 
important in construction conditions or during the 
inspection of the object, where it is not always possible 
to have full access to photograph the element of 
interest and the possibility to take an accurate shot. 

As the analysis for the applied network architecture 
shows it can be concluded that despite obtaining high 
accuracy this architecture is not very universal and the 
obtained results depend on whether the analyzed crack 
belongs to the model hypothesis space. In future steps, 
the authors plan to use the proposed model 
architecture to identify pavement cracks as having a 
crack character similar in size to that presented in the 
used publicly available dataset. In addition, other 
architectures will be tested to verify the possibility of 
finding a more universal architecture. It should allow 
the use of transfer learning to classify cracks regardless 
of their nature. 

The aim of all works is to create such a tool which will 
be helpful for civil engineer in everyday work and will 
not require him/her to train network, special 
preparation of data. This solution will allow real-time 
assessment of the tested concrete surfaces with 
indication of the location of those damages which, in 
accordance with the regulations in force in a given 
country, are beyond the serviceability limit state and 
are a danger to the structure. 
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