
5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
DOI: http://doi.org/10.4995/JISDM2022.2022.13872 

 

  2022, Editorial Universitat Politècnica de València 

Terrestrial Laser Scanning based deformation monitoring for masonry 
buildings subjected to ground movements induced by underground 

construction 
 

Yiyan Liu, Sinan Acikgoz, Harvey Burd 
 

Department of Engineering Science, University of Oxford, 15 Parks Road, OX1 3PJ Oxford, United Kingdom, 

(yiyan.liu@eng.ox.ac.uk; sinan.acikgoz@eng.ox.ac.uk; harvey.burd@eng.ox.ac.uk) 
 
Key words: Terrestrial Laser Scanning; ground movement; masonry; monitoring; non-rigid iterative closest 
point (N-ICP) 
 
 
ABSTRACT 

Tunnelling and deep excavation activities cause ground movements. Monitoring the influence of these ground 
movements on nearby surface assets is a major component of urban underground construction projects. Such 
projects often require large-scale and comprehensive monitoring of nearby buildings to track displacements and 
identify structural damage. Masonry assets are particularly vulnerable to ground movements due to the low 
tensile strength of the material; these structures may experience unsightly cracking and structural stability 
issues. Current monitoring practice for these buildings is labour intensive and cannot fully characterise the 
response of the assets due to the limited number of measurement points. This paper presents a non-contact 
monitoring solution using terrestrial laser scan (TLS) data, which develops a modified non-rigid iterative closest 
point (N-ICP) algorithm. This algorithm optimises the displacement fields by establishing point to point 
correspondences that penalise non-smooth deformations and deviations from landmarks (i.e. feature points 
where displacements are known). The algorithm outputs rich 3D displacement fields that can be used in 
established assessment and decision-making procedures. To demonstrate this algorithm's ability to estimate 3D 
displacement fields from point clouds, several synthetic datasets are processed in this study. The results 
demonstrate the algorithm's potential for recovering underlying deformations with the help of landmarks and 
optimisation weightings. 

 
I. INTRODUCTION 

Urban underground construction requires rigorous 
and comprehensive monitoring and survey schemes on 
nearby buildings. For example, Crossrail and High Speed 
Two require all buildings in risk category 3 (moderate) 
and above to be monitored from one year prior to 
construction until the ground movement has ceased 
(Crossrail Limited, 2008; High Speed Two Limited, 
2017). During Crossrail alone, according to Lazarus and 
Jung (2018), there were approximately 4000 affected 
buildings along the route, including 300 listed buildings. 
Instrumenting and monitoring these buildings required 
expenditure in excess of £60 million (VINCI 
Construction, 2014). 

In underground construction, the monitoring of 
surface properties forms part of the ground movement 
control and asset management strategy (British 
Tunnelling Society, 2011). The monitoring data are used 
to assess the impact of the ground movements, verify 
design parameters and models, and inform 
construction control procedures. The monitoring 
results are often used as performance indicators for the 
asset. It is common practice for the main contractor to 
operate a "traffic light" system so that appropriate 
actions can be undertaken when "trigger values" are 
exceeded (Crossrail Limited, 2008; High Speed Two 

Limited, 2017). Such systems are often at the core of 
the contractor risk management strategy. Therefore, 
the reliability and timeliness of the monitoring data are 
of great importance. 

As evidenced in the Jubilee Line Extension (see 
Burland et al., 2001) and the more recent Crossrail 
projects, the monitoring of surface assets mainly 
comprises manual monitoring of studs and invar 
calibrated scales using precise levels and "automatic" 
monitoring of prisms using total stations. According to 
Burland et al. (2001) and the Tunnel Lining Design Guide 
published by the British Tunnelling Society (2004), the 
practical measurement errors of total stations and 
precise levels can be as high as 0.5 mm. However, the 
use of precise levels and total stations require the 
installation of "targets" on the façade. Hence only 
isolated points can be monitored for movements, and 
these points may not reflect the response of the 
building. According to Lazarus and Jung (2018), 
although extensive monitoring was carried out along 
tunnel alignments in Crossrail, data collected were 
often insufficient to understand the behaviour and 
response of individual buildings to ground movements. 
Moreover, surveying using precise levels is considered 
labour intensive. 

Point cloud data is a collection of 3D points that 
represent the external and visible surfaces of 3D 
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objects, which can be obtained using laser scans or 
images. The efficient, remote, and contactless data 
acquisition process generates a dense point cloud that 
is rich in geometric information. An example of point 
cloud data of a building façade is shown in Figure 1. 
Depending on the setup and external factors, the point 
accuracy of the point cloud obtained from laser 
scanners or reconstructed from Structure from Motion 
(SfM) and MultiView Stereo (MVS) techniques is in the 
order of millimetres. The point accuracy can be as high 
as one to two millimetres for terrestrial laser scans (TLS) 
when in the appropriate range (Kersten et al., 2021). 

In the construction industry, it is common practice to 
use 3D point cloud data, particularly from laser scans, 
to create an as-built BIM model upon completion of 
construction (Wang and Kim, 2019). The data have also 
been widely used for geometric inspection and 
construction progress tracking. However, using point 
cloud data for displacement monitoring is still in its 
infancy (Mukupa et al., 2017). To the best of the 
authors’ knowledge, there is no current standard, 
specification or guidance on using point cloud data for 
displacement monitoring. To this end, this paper will 
first review existing methodologies for displacement 
analysis using point cloud data before presenting and 
evaluating their performance with synthetic data. 

 

II. REVIEW OF DISPLACEMENT ANALYSIS USING POINT 

CLOUD DATA 

Due to the advantages of point cloud data mentioned 
above, various cloud comparison methods have been 
developed for displacement analysis, including Cloud-to 
-Cloud (C2C) comparison, Cloud-to-Mesh (C2M) 

comparison and Multiscale Model to Model Cloud 
Comparison (M3C2), which have been comprehensively 
reviewed in Lague et al. (2013). The displacement 
models and characteristics of these methods are 
summarised below. 

 
A. Cloud-to-Cloud comparison (C2C) 

C2C method establishes point correspondence 
between two-point clouds based on the Euclidean 
distance between points. The same idea was used in the 
popular iterative closest point algorithm proposed by 
Besl and McKay (1992). The point in the deformed point 
cloud, which has the closest distance to a point in the 
undeformed point cloud, is chosen as its corresponding 
point. The displacement is calculated as the difference 
in coordinates between these corresponding point 
pairs. 

This method is the simplest and fastest method for 
cloud comparison as it does not require calculating 
surface normals or meshing. However, the method is 
sensitive to measurement noise (Lague et al., 2013) and 
point density (Mukupa et al., 2017). More importantly, 
when used for relatively complex geometries, e.g. a 
curved surface, the correspondence established by the 
closest point method is influenced significantly by point 
cloud and deformation geometry. In such cases, the 
closest distances between point clouds are not 
representative of deformations and can result in 
erroneous displacement interpretations (Acikgoz et al., 
2017). Examples of the use of the C2C method for 
displacement analysis include Jafari et al. (2017) and 
Gawronek et al. (2019). 

 
 

 
Figure 1. Acquisition of point cloud data of the building façade at Mansion House using a laser scanner. The details of façade 

ornaments are preserved in the point cloud. Two scans obtained at two different states shown as red and blue point clouds 
aligned together. For illustration purposes, only part of the red point cloud is shown. The image of Mansion House east façade 
was extracted from Google Street View. The image of the Faro X330 laser scanner was extracted from image.bing.com under a 

creative commons license. 
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B. Cloud-to-Mesh comparison (C2M) 

C2M method defines the point displacement as the 
distance between a point in the undeformed point 
cloud and the nearest element of the mesh of the 
deformed point cloud along its surface normal. This 
method requires meshing of the deformed cloud and 
searching for the nearest mesh element, which is 
computationally expensive. The method works well on 
out-of-plane displacements of flat surfaces (Lague et 
al., 2013), but since the true correspondence between 
points and mesh vertices is not established, the in-plane 
displacements are challenging to identify. Examples of 
the use of the C2M method for displacement analysis 
include Caudal et al. (2017) and Mugnai et al. (2019). 

 
C. Multiscale Model to Model Cloud Comparison 

(M3C2) 

M3C2 method involves selecting core points in the 
deformed cloud, constructing a cylinder through each 
core point in a specified direction and calculating the 
average distance between points in both point clouds in 
the cylinder along the predefined direction. The M3C2 
method is useful for determining displacements of flat 
surfaces and minimising the influence of measurement 
noise on displacement estimations. However, like C2C 
and C2M methods, the arbitrary nature of determining 
correspondences in M3C2 may lead to inaccurate 
deformation estimates (Acikgoz et al., 2017). While the 
method provides reasonable estimates for out of plane 
deformations of flat surfaces (Acikgoz et al., 2021), it 
can struggle with complex geometries and in-plane 
displacements. Examples of the use of the M3C2 
method for displacement analysis include Jafari et al. 
(2017) and Acikgoz et al. (2017). 

 

III. OPTIMAL STEP NON-RIGID ICP (N-ICP) ALGORITHM 

The optimal step N-ICP algorithm was proposed by 
Amberg et al. (2007). It is a point cloud registration 
algorithm which aims to find the optimal affine 
transformation for each vertex of a point cloud that 
deforms it to corresponding points in another point 
cloud subject to stiffness and landmark constraints. The 
N-ICP algorithm, and its predecessor proposed by Allen 
et al. (2003), were originally intended to register 
templates to human face or body scans while allowing 
the template to deform. 

The N-ICP algorithm is a popular point cloud 
registration algorithm in the computer vision 
community and is capable of registering point clouds of 
complex geometry with small reconstruction errors. To 
the best of our knowledge, the algorithm has not been 
used for displacement analysis in structural health 
monitoring. It has the potential to address issues with 
existing cloud comparison methods reviewed in Section 
II because: (i) the displacement of each vertex can be 
recovered by the non-rigid registration of two point 
clouds; (ii) the number of degree-of-freedom for each 
vertex and the use of stiffness constraints are 

compatible with the physics of deformation; (iii) with 
the additional landmark constraints, the algorithm has 
a mechanism to control the optimisation path and 
capture true point correspondences. A schematic of the 
N-ICP algorithm is shown in Figure 2 below. 

The N-ICP algorithm, in essence, solves the 
optimisation problem for the cost function (Eq. 1): 

 
𝐸 𝑋 𝐸 𝑋 𝛼 𝐸 𝑋   𝛽 𝐸 𝑋  (1) 

 
where 𝐸 𝑋  is the cost function; 𝐸 𝑋   is the distance 
term;  𝐸 𝑋  is the stiffness term;  𝐸 𝑋  is the 
landmark term; 𝛼, 𝛽 are stiffness and landmark 
weightings, respectively; X is the transformation matrix 
for the source cloud. Through minimising the cost 
function with the optimal transformation X, the best 
affine transformation for each vertex can be obtained 
under fixed stiffness and landmark weightings. At each 
step, a new correspondence is determined through the 
closest point search. 

 

 
Figure 2. A schematic of the N-ICP algorithm. 

Displacements are recovered by registering the undeformed 
point cloud (blue point cloud) to the deformed point cloud 
(red point cloud). Landmark points are marked with grey 
infill in both undeformed and deformed point clouds. The 
registered point cloud after N-ICP is shown in dark blue in 

the bottom. Registration errors (the difference between dark 
blue points and red points) are exaggerated for illustration 

purposes. 
 

However, it is not possible to know the optimal 
stiffness 𝛼 beforehand. A high value of 𝛼 leads to a 
globally affine transformation, which may be suitable 
for early algorithm steps to capture gross rigid body 
movements. A small value of 𝛼 leads to non-rigid 
deformations, which may be suitable for consecutive 
steps to minimise the distance between point clouds. 
Following this logic, Amberg et al. (2007) introduced 
iterative steps to find a globally optimal solution. 

With this setup, a list of stiffness values is used over a 
for-loop. The stiffness values start from high value to 
ensure global registration and gradually reduce to allow 
more localised deformation. For each stiffness value, 
the best affine transformation is determined by 
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minimising the cost function in Equation 1. The solution 
is then used to update the undeformed point cloud 
before undertaking the closest point search again. 
Based on the new correspondence, another 
minimisation is conducted. This iteration is repeated 
until the Frobenius norm of the difference between the 
two most recent transformation matrices is below a 
threshold, i.e., the change in deformation is too small, 
and no new correspondences are found. 

Similar to stiffness weights, Amberg et al. (2007) 
recommended the use of a series of decreasing 
landmark weights to account for inaccuracies 
associated with landmark correspondence. However, it 
is not clear from the paper how the initial landmark 
weight is determined. In the implementation and 
evaluation below, an additional dynamic mechanism to 
determine the landmark weighting 𝛽 based on the ratio 
of landmark term and distance terms in Equation 1 is 
introduced. This is used to prioritise landmark 
registration at the beginning of the iteration as (Eq. 2): 

 

𝛽   1.5  
𝐸 𝑋  
𝐸 𝑋

 (2) 

 
where 𝐸 𝑋  is determined by the original point 
coordinates of the undeformed cloud and 
corresponding points in the deformed point cloud; 
𝐸 𝑋  is determined by the original coordinates of 
selected landmark points in the deformed and 
undeformed point clouds. Before registration, there is 
no deformation, the stiffness term is zero, therefore, 
not included in the above determination. 

 

IV. EXPERIMENT SETUP 

The façade under consideration here is 2 m long and 
1 m wide, as shown in Figure 3a. Two point clouds of 
the main plane of the façade are simulated by two sets 
of 20,000 randomly generated points (through the 
generation of 20,000 uniformly distributed float 
numbers between 0 and 1, and scaled by the length and 
width, respectively), which are used to account for the 
correspondence uncertainty. The measurement errors 
associated with point positions due to laser scan single 
point accuracy is referred to as measurement noise and 
is simulated by a random number between 0 to 0.002 
(uniformly distributed) in metre unit. This random 
number describes each point's z coordinate. Four 
"extrusions" that have a size of 0.25  0.2  0.1 m and 
are of the same point density as the main plane are 
added to simulate common features, i.e., exterior 
elements, ornaments and finishes on the building 
facades. 

This study considers “in-plane” deformation and 
“out-of-plane” deformation as two basic deformation 
patterns, which are commonly observed in field 
monitoring. "In-plane" and "out-of-plane" 
deformations are defined in relation to the main plane 
of the façade in the xy plane. The displacement field is 

added to one of the point clouds while another point 
cloud is used as the undeformed cloud. By taking these 
two point clouds as inputs, the results from the N-ICP 
algorithm, C2C, C2M and M3C2, are compared to the 
known displacement field to assess their relative 
performance. Benchmark C2C, C2M and M3C2 cloud 
comparison methods are performed using the software 
CloudCompare. Bespoke software was written in 
Python to implement N-ICP. For N-ICP, unless otherwise 
stated, a list of 10 stiffness weighting ranging from 
10000 to 1 is used. Landmarks are used for some 
examples. When in use, the landmark weighting is 
determined in accordance with Equation 2. 

 

 
a) 

 
b) 

Figure 3. a) Synthetic façade considered in this study; b) 
Deformed point cloud subjected to “out-of-plane” 

deformation (Deformation exaggerated for illustration 
purpose) (Red, green, blue arrows indicate x, y, z directions 

respectively). 
 

In the following discussion, the point normal refers to 
the surface normal of a local region represented by that 
point and its neighbouring points. The points that form 
the sidewall of the extrusions on the façade, as shown 
in Figure 3a, have their point normal significantly 
different to the point normal of the main plane of the 
façade. These points are referred to as feature points. 

 

V. DISCUSSION OF RESULTS 

A. Façade subjected to out-of-plane displacement 

A sine displacement is added to the z direction (as 
indicated by the blue arrow shown in Figure 3a) of the 
point cloud as a function of the x coordinate (coordinate 
direction along the façade as indicated by the red arrow 
in Figure 3a). The out-of-plane displacement 𝑑  has a 
maximum value of 5mm and is defined as (Eq. 3): 

 
𝑑 0.005 𝑠𝑖𝑛 𝜋𝑥  (3) 

 
For the simple out-of-plane displacement case, C2C, 

C2M, M3C2 and N-ICP all capture the small 
displacement reasonably well, as shown in Figure 4a. 
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The relative performance of C2C, C2M, M3C2 and N-ICP 
can be further assessed by computing their standard 
deviations from true values using (Eq. 4): 

 

𝜎 
1
𝑛

 𝑑  – 𝑑  
  

 (4) 

 
where 𝜎 is the standard deviation from true values and 
referred to as the error index in the text below, and its 
units (m) are omitted for brevity; 𝑑  is the measured 

displacement; 𝑑 
  is the true displacement from the 

displacement field in Equation 3; n is the number of 
measurements. 

 

 
a) 

 
b) 

Figure 4. Comparison of out-of-plane displacement 
analysis of a façade using N-ICP with benchmark methods 
C2C, C2M and M3C2. (a: all points used in the analysis; b: 

feature points removed). 
 

The error indices of C2C, C2M, M3C2 and N-ICP are 
𝜎   2.23  10 , 𝜎   2.04  10 , 𝜎  
 3.78  10 ,  𝜎 

   0.52  10  respectively, 

as illustrated in Figure 4a. N-ICP has a considerably 
smaller error index compared to other methods. 

The majority of errors associated with C2C, C2M and 
M3C2 are due to the feature points, whose point 
normals are not along the z direction. The feature 
points are either in the xz or yz plane; therefore, the 
displacement along the z direction is, in fact, "in-plane" 
displacement. The C2C, C2M and M3C2 algorithms 
struggle with such displacements. If the feature points 
are filtered out by setting a normal threshold, the errors 
reduce considerably, as shown in Figure 4b. The error 
indices of C2C, C2M, M3C2 and N-ICP become 𝜎  
 1.42  10 ,  𝜎   1.58  10 ,  𝜎  
2.79  10 ,  𝜎 

   0.26  10  respectively. 

The uniformly distributed measurement noise in z 
direction is bounded by 0 and 0.002. The standard 
deviation of the noise is 0.58  10 . For out-of-plane 
displacements, the N-ICP algorithm manages to reduce 
the error index below the standard deviation of the 
measurement noise. If a locally estimated scatterplot 
smoothing is applied to the N-ICP results, as shown in 
Figure 5a, the performance can be further improved to 
𝜎 _

   6.70  10 . 

 

 
a) 

 
b) 

Figure 5. a) Assumed displacement 𝑑 0.005 𝑠𝑖𝑛 𝜋𝑥  
– Performance of N-ICP further enhanced by using locally 

estimated scatterplot smoothing(out-of-plane displacement 
only); b) Assumed displacement 𝑑 0.001 𝑠𝑖𝑛 𝜋𝑥  - 
Comparison of out-of-plane displacement analysis of a 

façade using N-ICP with benchmark methods C2C, C2M and 
M3C2. 

 

When the introduced out-of-plane displacement is 
within the range of measurement noise, i.e., 𝑑
0.001 𝑠𝑖𝑛 𝜋𝑥  as shown in Figure 5b, N-ICP 
continues to perform well. The error indices of N-ICP 
and N-ICP smoothed are 0.51  10  and 8.03 
 10 , compared to 1.73  10  for C2C, 1.67 
 10  for C2M and 2.41  10  for M3C2. The error 
indices of M3C2, C2C and C2M are all substantially 
greater than the introduced maximum displacement, 
while the error index for N-ICP remains less than the 
standard deviation of the measurement noise. 

This example demonstrates that for the analysis of a 
façade subjected to out-of-plane displacement: (i) N-
ICP outperforms C2C, C2M and M3C2; (ii) for small 
displacements, the relatively large error indices of C2C, 
C2M and M3C2 may invalidate displacement 
estimations whereas N-ICP can recover accurate 
displacement fields after smoothing when the 
measurement noise is uniformly distributed. 
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The ability of N-ICP to recover small displacements 
within the range of measurement noise is an important 
property as it puts less stringent requirements on laser 
scan single point accuracy. 

 
B. Façade subjected to in-plane displacement 

For in-plane displacement analysis, a quadratic 
displacement is added to the y direction of the point 
cloud (as indicated by the green arrow shown in 
Figure 6a) as a function of the x coordinate (Eq. 5): 

 
𝑑 0.01 𝑥  (5) 

 
Without using any landmarks, N-ICP successfully 

captures the trend of the displacements (see Figure 6b). 
However, at both ends of the façade, the displacement 
diverges from the true values. For x values between 0 
m to 0.2 m and 1.8 m to 2 m, there are no features, and 
N-ICP finds an "optimum" solution primarily based on 
closest point correspondence; this yields erroneous 
displacement estimates. On the other hand, C2C cannot 
detect meaningful in-plane displacement along the y 
direction except for some points at the extrusions. 
M3C2 also picks up some displacement at the features 
but, overall, fails to capture the displacement pattern. 

 

 
a) 

 
b) 

Figure 6. a) Point cloud subjected to “in-plane” 
deformation along the y direction (Deformation exaggerated 
for illustration purpose; Red, green, blue arrows indicate x, y, 

z directions respectively); b) Comparison of in-plane 
displacement analysis of the façade using N-ICP with C2C and 

M3C2. 
 

The error index of N-ICP in Figure 6b is 4.8  10 , 
which is significantly greater than the out-of-plane case. 
However, the performance of N-ICP is still much better 
than C2C and M3C2, whose error indices are in excess 
of 1.70  10 . 

To understand the increased error index of N-ICP, 
analyses of two point clouds of the 2m by 1m façade 
subjected to no displacement field are conducted. For 
the 2 m by 1 m façade, two sets of 20,000 (Case 1) or 
200,000 (Case 2) uniformly distributed random points 
were generated, and the differences of the x 
coordinates of closest points between the two sets of 
points were determined as shown in Figure 7. The 
normalised count numbers in Figure 7 are the raw 
counts of points within a specific interval divided by the 
total point number and the width of the selected 
interval so that the total area under the histogram is 
unity. The analyses in Figure 7 were undertaken using 
the x coordinate, but the y coordinate could also have 
been used. This difference in x coordinates of the two 
closest points is seen as a potential source of error for 
displacement analysis, which is intrinsic to the point 
density of the point cloud. With 200,000 points over the 
same façade, the error index (standard deviation of the 
difference in x coordinates) has reduced from 4 
 10  in Figure 7a to 1.3  10  in Figure 7b. 

 

 
a) 

 
b) 

Figure 7. Distributions of x coordinate differences between 
closest points: a) Case 1 – 20,000 points; b) Case 2 – 200,000 

points. 
 

By comparing the error indices associated with N-ICP 
data in Figure 6b (4.8  10  ) and Figure 7a 
(4  10  ), it is noted that the error index of N-ICP for 
in-plane displacement is similar to the error index that 

380



5th Joint International Symposium on Deformation Monitoring (JISDM), 20-22 June 2022, Valencia, Spain 
 

  2022, Editorial Universitat Politècnica de València 

is obtained when the displacements of undeformed 
point clouds are evaluated. This indicates that the error 
index of N-ICP is significantly influenced by the point 
density, e.g. the x coordinate differences of closest 
point sets. 

It is worth noting that the sensitivity of the error index 
due to point density can be mitigated by smoothing if 
the point cloud is of even density. For the case where 
the façade is subjected to 𝑑 0.01 𝑥 , the error 

index of smoothed N-ICP results become 2.33  10  
(see Figure 6b). 

How the measurement error indices vary with the 
amplitude of the displacement field can also be 
investigated. Suppose the façade is subjected to 𝑑

0.001 𝑥  and 𝑑 0.005 𝑥 . The corresponding 

error indices of N-ICP become 3.70  10  and 4.24
 10 , respectively. In the above examples, the error 
indices remain in the same order of magnitude despite 
an increase in the maximum displacement from 4 mm 
to 20 mm. As such, for in-plane displacements smaller 
than the point spacing, it would be difficult to 
distinguish displacement from the background noise. 

The performance of N-ICP can be further enhanced by 
using landmark terms. Four corner points of the 
rectangular façade are selected as landmarks (as 
indicated in Figure 3a), and passed in as inputs. As a 
consequence, the error index of N-ICP reduces from 
4.82  10  in Figure 6b (where landmarks were not 
used) to 4.44  10  in Figure 8b. It can be seen that 
sections between features, i.e., the section between 
0.20 to 0.45 m and 0.65 m to 0.90 m in x direction, as 
shown in Figure 8, have the largest errors. Points where 
features are located and whose normal is along the 
displacement direction (Figure 8a) have the most 
reliable results. 

In summary, we have shown that for the examined in-
plane deformation: (i) C2C and M3C2 cannot capture 
displacements except at specific locations, (ii) without 
the landmark term, N-ICP can recover the displacement 
of the entire façade using available features; (iii) in the 
absence of features or landmarks, N-ICP primarily uses 
closest points to establish the correspondence and this 
may lead to erroneous results; (iii) N-ICP’s performance 
can be enhanced by using the landmark term; (iv) the 
in-plane measurement accuracy of N-ICP depends on 
the point density and this can be mitigated using 
smoothing. 

 

VI. SUMMARY 

This paper evaluated the performance of several 
point cloud comparison techniques previously used to 
estimate deformations. Synthetic point clouds of 
predominantly planar surfaces, inspired by façades, 
were generated and deformed in a non-rigid manner. 
The known deformation fields were compared to 
deformations estimated by four different algorithms, 
including a modified version of the non-rigid iterative 
point cloud algorithm, N-ICP. This algorithm 

outperforms the other examined techniques (C2C, C2M 
and M3C2 algorithms). Sources of errors for the N-ICP 
algorithm are analysed for different deformation 
scenarios, and the accuracy of the algorithm is 
quantified using simple statistical measures. The results 
demonstrate that this algorithm can achieve 
deformation estimates with smaller errors than the 
single point measurement accuracy of the point cloud, 
particularly for displacements in the out-of-plane 
direction. Compared to out-of-plane displacements, the 
proposed method predicts in-plane displacements with 
a greater error margin. The errors are particularly 
influenced by the point density of the point cloud. 
However, the algorithm is able to accurately estimate 
in-plane displacements when landmarks are used, and 
feature points constrain the registration. 

 

 
a) 

 
b) 

Figure 8. N-ICP performance for in-plane displacement 
analysis with the use of landmarks: (a) displacement of 
points in the xz plane; b) all points used in the analysis. 

 

Deformations of buildings subjected to ground 
movements due to underground construction works 
include both in-plane and out-of-plane displacements. 
To obtain accurate displacement results using the 
proposed N-ICP algorithm in field applications would 
require establishing reliable landmark correspondence. 
Furthermore, stiffness weightings used in the current 
N-ICP algorithm are not based on material properties 
and are determined somewhat arbitrarily. Further 
research by the authors will aim to address these issues 
to support the use of point cloud monitoring in future 
applications. 
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