

Dealing with Uncertainty – Experiencing Real Life in Class

Daniela Zehetmeier1, Axel Böttcher2

1Lufthansa Aviation Training GmbH, Südallee 15, D-85356 München-Flughafen, Germany,
2HM Munich University of Applied Sciences, Department of Computer Science and

Mathematics, Lothstraße 64, D-80335 München, Germany.

Abstract

It is likely that our Computer Science graduates will be confronted with

software which has been growing over a long period of time. In order to master

resulting challenges in their later professional lives, students need to be able

to deal with the inherent uncertainty of legacy software systems. Observations

show that many students are bad at dealing with uncertainty. Therefore, it is

important to address the competence of dealing with uncertainty in teaching.

In this article, we describe our experiences with addressing this important

competence in teaching of a module on Software Archaeology.

The basis is to establish a teaching and learning environment that creates

uncertainty within lab sessions. We achieved this by using a project from

industrial practice. This, however, also induces uncertainties regarding the

teaching and assessment processes.

We conclude that further methods need to be developed to address this

competence with respect to teaching and assessment.

Keywords: Higher cognitive abilities; uncertainty, software maintenance and

evolution; sustainable software.

8th International Conference on Higher Education Advances (HEAd’22)
Universitat Politècnica de València, València, 2022

DOI: http://dx.doi.org/10.4995/HEAd22.2022.14672

This work is licensed under a Creative Commons License CC BY-NC-ND 4.0
Editorial Universitat Politècnica de València 865

Dealing with Uncertainty – Experiencing Real Life in Class

1. Motivation

The training of our students in software development and software engineering requires

dealing with a large number of abstract concepts and formal language constructs that can be

combined with each other in almost any way. We have observed that we tend to focus

strongly on the competence levels of understanding and application of constructs. Although

we usually formulate learning objectives for our courses also at higher competence levels

according to Bloom's revised taxonomy of learning objectives (Anderson et al., 2001),

important learnings related to higher levels of competency are often neglected.

An example of such a neglected skill is the ability to deal with uncertainty. Many of our

teaching examples and practical tasks in the first semesters are based on crystal-clear

requirements, so as not to allow uncertainties to arise. This results from large freshmen

cohorts where feedback has to be produced in an efficient manner. We also try not to make

ourselves vulnerable in the evaluation by keeping the space for discussions as small as

possible. This leads to a stronger schoolification which is not the goal of higher education.

Also in practice, software developers are often faced with unclear requirements and old

undocumented legacy software. Such environments bring up uncertainties, they have to deal

with.

2. Objectives

Based on these findings, we want to adapt our teaching and address the deficits mentioned in

advanced courses. The above points can be integrated into teaching by providing the students

with an extensive existing codebase. The less such a project is in compliance with the

classical quality standards, the more we have to work like archaeologists would put it: “To

draw knowledge from what has been created by humans in ancient times” (Sinn, 2000).

Starting from such a metaphorical allusion, Hunt and Thomas raised the term software

archaeology already in 2002 (Hunt & Thomas, 2002).

In this article, we use the example of a module on software archaeology to describe our

experience with these important topics in the field of software engineering.

3. Literature

Software maintenance is definitely mentioned in standard curricula. It is often considered as

a sub-discipline of software engineering but rarely seen as a separate module; see e. g. (ACM,

2016).

In 2003, van Deursen et al. state in a workshop contribution for Program Comprehension:

“Students learn how to write new programs but they are not taught how to read and change

existing and large ones” (Deursen et al., 2003).

866

Daniela Zehetmeier, Axel Böttcher

Both Smith and Pinto follow the approach to teach maintenance and evolution by using

existing open source projects (Smith et al., 2014, Pinto, 2017). We extend this field to

software archaeology by a retrospective architecture and requirements analysis.

Overoye and Storm (Overoye & Storm, 2015) collected evidence that students can benefit

from experiencing uncertainty and from having the opportunity to overcome it. They claim,

however, that “it is the process underlying the change from uncertainty to certainty that leads

to deeper understanding and better memory for the to-be-learned information“.

4. Course Design

The module on Software Archaeology is designed as an elective subject with five ECTS for

the bachelor's degree programs in Computer Science as well as Information Systems and

Management. It is designed for two hours per week each: lecturing and lab time. Assessment

is done in two-parts: a graded study paper and a graded oral exam.

Due to Covid-19, the course had to take place completely online in the summer semester

2021. We had the opportunity to teach the module in pair-teaching mode (Zehetmeier et al.,

2018).

4.1. Learning objectives

We formulated the following learning objectives based on the competencies that are required

for the given tasks:

• You analyze existing code to understand it and

− to draw conclusions about the intention of the original developers

− to identify requirements so that they can be used as a basis for refactorings

or a re-implementation

• You document the knowledge gained using suitable tools.

• You apply reverse engineering techniques systematically and purposefully.

• You apply refactoring techniques systematically and purposefully.

• You analyze control flow theoretically and based on existing initial data.

• You will design, implement and execute tests for legacy code.

• You discuss procedures and results in your lab group and in plenary.

867

Dealing with Uncertainty – Experiencing Real Life in Class

4.2. Project used within the module

The focus of the course should be an existing project that serves as a guideline for a

substantial discussion within a semester. According to Smith et al. (Smith et al., 2014) we

formulated criteria for such a project in advance:

• The project must be sufficiently large and complex so that no group of students tries

to carry out a complete re-implementation on a single weekend.

• The project must have technical debts.

• The project must deal with various external systems and interfaces.

• The project should not come from an academic context.

In this respect, projects from the open source environment could be considered, as well as

projects from practice. Unlike described in (Pinto et al., 2017) we just didn't want an Open

Source community, that could be contacted as a fallback in case of difficulties. The change

of one of the authors to industry opened up the possibility of working on several projects

from the professional context that meet the requirements. We chose a historically grown,

approximately twelve-year-old project realized in ColdFusion. The software is still in

productive use. The scope is about 30,000 lines of code. The software deals with several

external systems and interfaces, is largely undocumented, has no tests, and brings various

more technical debts with it.

4.3. Topics and Tasks

The existing software should be analyzed in the first two thirds of the semester with the goal

of creating an architecture documentation based on the arc42 template (Starke et al., 2019).

This includes a description of the requirements that can be extracted ex-post from the

software. In addition to a support for maintenance work, the documentation can provide a

basis for the upcoming reimplementation of the system. Finally, a modern user interface

should be designed so that the benefits of archaeological work become visible.

The module is comprised of the following thematic blocks:

Glossary In addition to setting up the project, the first block included creation of a glossary.

The task was to continuously expand the glossary with knowledge gained over time.

Extraction of an API documentation This task required the creation of a documentation of

the project’s (pre-REST) HTTP-API including a description of the chosen approach to this

task in a wiki. The concrete design of this documentation was left to the students.

Interface description and cross-cutting concerns Creating the arc42 template and to fill it

with glossary and API documentation was the third task. Additionally, stakeholders,

boundary conditions and context had to be identified, as well as any cross-cutting concerns

and external interfaces of the system ”as far as possible”.

868

Daniela Zehetmeier, Axel Böttcher

Documentation of the database In this step, the relationships between the existing database

tables had to be analyzed and documented by reverse engineering.

Runtime view After having thoroughly dealt with the static view of the application, the

students should determine dynamic views. Individual API backend functions had to be

described on an adequate high level of abstraction.

Documentation of requirements An ex-post extraction of the requirements was considered

as the basis for a later re-implementation of the application.

GUI At the end of the semester, students should propose a redesign based on the knowledge

acquired during the semester.

5. Observations and Reflection

When designing the course, it was important to us that the project contains many

uncertainties. The historically grown software also confronted us lecturers with a

considerable amount of uncertainty. The complete range of functionality and structure had

not fully opened up to us either.

During the preparation of the individual lectures as well as in the retrospective, we repeatedly

discussed various statements, work results, and also the behavior of students. Two findings

appear worth a special discussion at this point: assignments that appear vague, simply

because they do not state volume of work required, and how to deal with the resulting

uncertainty.

5.1. Dealing with tasks that are vague with respect to quantity

The tasks were vague with respect to volume as even we lecturers had to build hypotheses

and verify them in a critical discussion.

Example: ”Describe external interfaces as far as possible”. Already the lack of a quantitative

statement created a feeling of uncertainty. Therefore, the students repeatedly demanded

quantitative statements, such as how much they have to do to pass the module. We couldn't

determine the exact number of external interfaces ourselves. Thus, we explained that we put

emphasis on the students’ solution approach in the final grading.

During the semester we kept asking ourselves the question whether we needed to know the

project better, in order to make such quantitative statements. However, we repeatedly came

to the conclusion that it is precisely the lack of knowledge that brings the project close to a

real situation enabling all possibilities of learning by uncertainty (Overoye & Storm, 2015).

The evaluation at the end of the semester revealed a very heterogeneous picture among the

students with regard to their ability to deal with the occurring uncertainties:

869

Dealing with Uncertainty – Experiencing Real Life in Class

”The course is very realistic, which in my opinion increases the relevance of its content.

That's exactly why I personally think the course is very interesting.”

“The tasks were not posed well and there was a lot of discussion about what exactly had to

be done.”

How do we create sufficient certainty for the students despite the naturally vague work

assignments, so that they are not in a constant state of vagueness with regard to their

grades?

5.2. Impact of uncertainty on quality of results

A comparison of a task’s level of uncertainty and the quality of results confirms our

hypothesis that the quality of results decreases with increasing uncertainty:

Task Glossary: high degree of uncertainty, poor overall rating. At the beginning of the

semester, the assignment to create a glossary offered a high degree of certainty to the

students: Some terms from the context of the project have been addressed in the course. But

we rapidly reduced the number of explicit hints towards which terms to add to the glossary.

Students underestimated the importance of terms from the technical context of the application

and neglected expanding the glossary. Overall, the resulting glossaries were of inferior

quality. Students did not sufficiently differentiate which terms are important and which are

not. Many glossaries were merely lists of acronyms.

Task API documentation: low level of uncertainty, good overall rating. Students did not

face a high amount of uncertainty during the creation of the API documentation. The task

could also be solved through diligence. The students' results were consistently rated very

well.

Task Interfaces: medium degree of uncertainty, medium overall rating. One task

towards the arc42 documentation was the identification and description of the external

interfaces. Here we did not make a quantitative statement on how many interfaces exist and

thus need to be identified. The students faced a degree of uncertainty since they had to decide

for themselves when to finish their research. The rating of this task is mediocre. We suspect

that the positive trend results from the good search mechanisms and the use of standardized

interfaces (e.g. HTTP requests).

Requirements: high degree of uncertainty, poor overall rating. Students had major

problems with a description of the requirements for the software functions they had to

analyze. To imagine which requirements are the basis for the functions and to describe them

in the context of the system was difficult for all groups. The number of questions were also

at a peak during this exercise. Despite numerous discussions, the task could only be

completed with a rather poor overall result.

870

Daniela Zehetmeier, Axel Böttcher

The evaluation results show the existing uncertainty among students:

”Project from reality, even if it's not nice to work with ColdFusion”

”[...] the project with Lufthansa was somehow only suitable to a limited extent, since many

challenges/tasks could only be solved by guesswork”

“The confusing code and bad coding style make analyzing the project laborious. This may

be an accurate representation of reality, but it is motivating not to work out the lab

assignments beyond the minimum.”

There was a very heterogeneous mix of students, independent of their semester. Some can

deal with the uncertainty of the task – others can not. As a result, we lecturers have to

specifically teach how to deal with uncertainties.

If you teach how to deal with uncertainties, you should assess these competences according

to the principle of constructive alignment (Biggs, 1996). But how do we assess the

competence of dealing with uncertainties? What are the criteria for objectively measuring the

competence and how to communicate the assessment criteria transparently?

6. Discussion and Outlook

In this article we presented our observations on dealing with uncertainties in class on

Software Archaeology. An important experience is that a grown extensive external project

that was developed without clear quality standards, offers good conditions for this approach.

The company cooperation has proven to be helpful in this context: the industrial project does

not come from the professor’s ”weird world of thoughts”, which makes the students perceive

legitimacy, credibility and authenticity. With this project we were able to provide a task with

a large space of possible solutions.

Nevertheless, our students tend to push for clear answers or process descriptions that they

can internalize for the exam or use in their study paper. If we resist to provide this, they feel

great uncertainty. Here a dilemma arises for the lecturers: if they give too much and too

detailed feedback too early, students adapt work results to a solution, lecturers have in mind –

a result that is to be avoided. From the student's point of view the lack of early feedback takes

away their opportunity to improve grades during the semester, even though we were willing

to accept any reasonable solution with well argumented derivation.

Encouragement to continue on the approach chosen, appreciation for work results, and

discussing the pros and cons of approaches and artifacts, help dealing with uncertainty in the

project. On the other hand, artificially creating certainty does not foster the ability to last

uncertainties now and in future professional life.

871

Dealing with Uncertainty – Experiencing Real Life in Class

Supporting students in such a course where higher cognitive skills are addressed exceeds the

usual time budget for a course significantly. We are missing efficient forms of supporting our

students. This should be the next step in research about this competence.

In summary, several questions arise from this article: Which other methods are suitable for

integrating uncertainty into teaching? And how can we objectively assess these skills so that

the assessment criteria can be communicated? This could be a factor to lower the uncertainty

regarding the exam performance. The students could then focus on the uncertainty the project

context brings with it.

References

ACM (2016). Computer Engineering Curricula 2016 – Curriculum Guidelines for

Undergraduate Degree Programs in Computer Engineering. Tech. Rep., Assoc. for Comp.

Machinery (ACM)/ IEEE Comp. Society

Anderson, Lorin W.; Krathwohl, David R.; Airasian, Peter W.; Cruikshank, Kathleen A.;

Mayer, Richard E.; Pintrich, Paul R.; Raths, James; Wittrock, Merlin C., Hrsg. (2001). A

Taxonomy for Learning, Teaching, and Assessing. A Revision of Bloom’s Taxonomy of

Educational Objectives. Longman, New York, 1. ed.

Biggs, Jhn (1996). Enhancing teaching through constructive alignment. Higher education,

32(3):347–364.

van Deursen, A.; Favre, J.-M.; Koschke, R.; Rilling, J. (2003). Experiences in teaching

software evolution and program comprehension. In: 11th IEEE International Workshop

on Program Comprehension, 2003. S. 283–284.

Hunt, Andy; Thomas, Dave (2002). Software Archaeology. IEEE Software, 19(2): 20–22.

Overoye, A. L., Storm, B. C. (2015). Harnessing the Power of Uncertainty to enhance

Learning. Translational Issues in Psychological Sciences, 1(2), 140-148. doi:

10.1037/tp20000022.

Pinto, Gustavo Henrique Lima; Filho, Fernando Figueira; Steinmacher, Igor; Gerosa, Marco

Aurelio (2017). Training Software Engineers Using Open-Source Software: The

Professors’ Perspective. In: 2017 IEEE 30th Conference on Software Engineering

Education and Training (CSEE&T). S. 117–121.

Starke, Gernot; Simons, Michael; Zorner, Stefan; Müller, Ralf D. (2019). arc42 by Example:

Software architecture documentation in practice. Packt Publishing, Birmingham.

Sinn, Ulrich (2000). Einführung in die klassische Archäologie. C. H. Beck.

Smith, Thérèse Mary; McCartney, Robert; Gokhale, Swapna S.; Kaczmarczyk, Lisa C.

(2014). Selecting Open Source Software Projects to Teach Software Engineering. In:

Proceedings of the 45th ACM Technical Symposium on Computer Science Education.

SIGCSE ’14, Association for Computing Machinery, New York, NY, USA, S. 397–402.

Zehetmeier, Daniela; Böttcher, Axel; Brüggemann-Klein, Anne. (2018). Designing Lectures

as a Team and Teaching in Pairs. in Proc. 4th International Conference on Higher

Education Advances (HEAd’18), Valencia. 873—880

872

