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Abstract: Grapefruit is a cold-sensitive citrus fruit, and freezing can spoil the harvest when the
fruit is still on the tree and even later during manufacturing and transport due to inappropriate
postharvest management. This study performed a specific Electric Impedance Spectroscopy (EIS)
analysis and statistical data treatment to obtain an EIS and Artificial Neural Networks (ANN)-based
model for early freeze-damage detection in grapefruit showing a Correct Correlation Rate of 100%.
Additionally, Cryo-Field Emission Scanning Electron Microscopy observations were conducted on
both fresh and frozen/thawed samples, analyzing the different impedance responses in order to
understand the biological changes in the tissue. Finally, a modified Hayden electric equivalent model
was parameterized to simulate the impedance response electrically and link the electric behavior of
biological tissue to the change in its properties due to freezing. The developed technique is introduced
as an alternative to the traditional ones, as it is fast, economic, and easy to carry out.

Keywords: grapefruit; freeze-damage; monitoring; electrical bioimpedance spectroscopy; electric
equivalent circuit

1. Introduction

Grapefruit (Citrus paradisi) is a citrus fruit of commercial interest due to its highly
appreciated organoleptic and functional properties [1–3], with more than 9 million tons
produced annually around the world. The Mediterranean region is of strategic importance
for this product, as it is the third in terms of production, with a total of 613,956 tons,
representing 6.61% of global production, and the first in terms of exports with 310,619 tons,
50.59% of Mediterranean production and 26.18% of the world’s grapefruit trade [4,5].

However, freezing temperatures are problematic for grapefruit [6], as it is a cold-
sensitive fruit (in fact, it is the second-most cold-sensitive citrus fruit after lemon) [7,8],
with slight tolerance variations depending on the cultivar. It has been reported that white
cultivars are more sensitive to freezing temperatures than red ones [9,10]. This problem
appears both in the maturation phase on the tree and later during manufacture, trans-
port, and storage, as well as in quarantine to control pests such as the Mediterranean
fly (Ceratitis capitata) [11–13]. Although some authors affirm that refrigerated storage of
grapefruit and quarantine have minimal effects on fruit quality [14], inappropriate posthar-
vest treatment, and freezing when the fruit is still on the tree, do have a noteworthy
affect [15–17].

In fact, grapefruit freezing injuries have been reported in ordinary transport and
quarantine processes, affecting not only the skin but altering the commercial value of the
product. This damage is usually color change and rind pitting that do not necessarily
affect the sensory characteristics of the fruit if the storage conditions are appropriate.
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However, Biolatto et al. [14] also reported primary alterations such as cell membrane
rupture and other secondary ones such as ethylene production, increased respiration
and decreased photosynthetic rate, increased concentration of toxic compounds, and cell
disruption in controlled transport processes and quarantine for the variety “Rouge la Toma”
in Salta (Argentina).

Regarding the fruit still on the tree, the most common freezing injuries are internal
discoloration, browning of the flavedo and albedo, rind pitting and lesions, and water-
soaked tissues [18]. These occur when, due to an intense freezing phenomenon, the
critical freezing temperature is reached. Then, water in the fruit begins to freeze, both
the interstitial water and that inside the cells. Depending on the speed and intensity of
the freezing phenomenon, the intracellular liquid will permit the cells to recover when
thawing or if the phenomenon is sufficiently intense, larger ice crystals will provoke the
rupture of the cell wall and the death of the cell without any chance of recovery [19].
As for other citrus fruit, when this occurs, and depending on the intensity and duration
of the phenomenon and other factors, the consequences can range from a small loss in
productivity to a complete loss of the harvest [15].

Today, there is a wide range of methods to identify freeze-damage in citrus fruit [20],
and advances have been reported in observation methods [21–23] and laboratory techniques
such as near infrared spectroscopy (NIR), nuclear magnetic resonance (NMR), fluorescence,
gas chromatography/mass spectroscopy (GC/MS), and ethanol detection [24,25]. Never-
theless, the majority of these techniques need specialized laboratories and personnel, as
they are expensive, complex, and time-consuming.

In the search for alternatives to the existing methods and their limitations, electro-
chemical impedance spectroscopy (EIS) is an emerging technology that provides promising
results in the agri-food industry [26,27], where it is used for a wide range of quality con-
trol applications such as sorting and assessing vegetables [28,29], fruit [30,31], meat [32],
fish [33,34], honey [35], and processed products [36], as well as for pesticide detection [37]
and agri-food waste valorization [38,39].

These applications are based on the ability of EIS-based techniques to send an electrical
signal to a sample and analyze the received electrical response, linking changes in the signal
to one or several specific properties of the analyzed food. It can be carried out easily with a
specific EIS device and a sensor, using a PC and a designed software to manage the process.
Once the technique is sufficiently implemented and checked, the tests can be carried out
immediately, directly on-site, both in the field and in the agri-food industry, with no need
for complex specialization and laboratory requirements [40].

Due to the considerable amount of data provided by EIS analyses, a computer-based
statistical data treatment is required [41]. Thus, specific software [42] allows us to check
the correlation between electric bioimpedance responses and freeze-damage in the fruit by
conducting preliminary nonsupervised statistical analyses (PCA) [43] and more complex
supervised analyses (PLS-DA) [44,45]. Additionally, artificial neural networks (ANN) can
be used to complete the data analyses [46] and later modeling [47], as they are flexible,
adaptable, and easily fit nonlinear systems [48]. Comparatively, ANNs have a huge
potential for this type of application [49,50], as they are able to provide simpler models
that are self-corrective, self-adaptive, and statistically reliable and robust [51]. Additionally,
ANNs are easier to implement in microprocessors to be used in portable devices due to
their lower computational requirements [52,53]. Additionally, ANNs have been applied in
other citrus fruit studies with promising results [54].

Beyond the statistical treatment and ANN model design, changes in the EIS responses
due to freezing can be characterized by electric equivalent circuits thus giving an electrical
“explanation” to the biological side of the problem. These circuits consist of several electric
components such as resistors and capacitors that simulate the cell structure of the biological
tissue and its electric behavior [55,56]. They are diverse in complexity, ranging from simple
ones such as those introduced by Cole [57] to more complex ones as suggested by Hayden
and later evolutions [58]. Some of these models use a specific element called a constant
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phase element (CPE) [56] to better fit the EIS data to the model and differentiate resistive and
capacitive elements in the biological tissue structure as a CPE keeps its phase constant across
the entire analyzed frequency range [31]; thus, it is able to explain certain inhomogeneities
in tissular electric behavior due to complex biological responses to EIS [59,60].

Finally, the introduced method is able to detect variations in grapefruit bioimpedance,
biologically explain these changes, and link them to freeze-damage in the fruit. Thus, it is
possible to create a robust, reliable prediction system to detect freeze-damage in grapefruit,
identifying those affected in a rapid, easy, low-cost way.

2. Materials and Methods
2.1. Sample Preparation

“Star Ruby” Grapefruit (Citrus paradisi) were selected for this study. The fruit, pur-
chased in a local market (Valencia, Spain), was selected prioritizing the homogeneity of the
sample: same size, cultivar, origin and batch, ripeness and physical aspect, and absence of
external damage [24].

Once in the laboratory, the fruit were washed and stored at room temperature for at
least 12 h prior to the assays. For the assays with frozen fruit, the selected set of grapefruit
were placed in a freezer (LG-GBB530PZCFB, LG Electronics Inc ©, Seoul, Korea) controlling
the temperature to simulate a freezing night. The evolution of the inner temperature of
the fruit in the freezer was measured with a multimeter (FLUKE 16 Multimeter, FLUKE,
Everett, WA, USA). The grapefruit were kept in the freezer at −9 ◦C for 6–7 h until the
temperature was in the range −0.9 ◦C to −1.2 ◦C exactly in the place where the EIS sensor
had to be introduced to carry out the electrochemical measurements (1.5 cm inside the
fruit). Then, the set was allowed to thaw at room temperature for at least 12 h. Finally, a
couple of fresh and frozen/thawed fruit were separated from the rest of the set and used
for microscope observations.

2.2. Cryo-Field Emission Scanning Electron Microscopy (Cryo-FESEM)

A ZEISS ULTRA 5 microscope 5 (Oxford Instruments, Abingdon, UK) from the Elec-
tron Microscopy Service at the UPV was used to study microstructural and morphological
tissular/cellular changes due to the freezing/thawing process. To do so, samples were
mounted on a sample-holder and instantly frozen in slush nitrogen. Then they were placed
in the preparation chamber to be fractured and sublimated to show the inner structure
(7 min at −90 ◦C for flavedo and albedo samples and 20 min at −90 ◦C for pulp) and then
were platinum-coated for 15 s. Samples were finally transferred to the microscope chamber
to be observed using specific imaging conditions (2 kV acceleration voltage and 4.9 mm to
7.7 mm working distances) [61].

2.3. EIS Measurement System

Electrical impedance spectroscopy measurements of the analyzed biological tissues
(grapefruit flavedo, albedo, and pulp) were carried out using a device [62] designed by the
Group of Electronic Devices and Printed Sensors (GED + PS) of the Interuniversity Research
Institute of Molecular Recognition and Technology Development (IDM) at the Universitat
Politècnica de València [24,63]. The bespoke system consists of four interconnected parts: a
sensor, a signal generator device, a personal computer as hardware parts, and specifically
programmed software to control the whole system (Figure 1).

The bespoke sensor is a double-needle electrode in a parallel-cylinder architecture
made of stainless-steel and fixed in a plastic cylindrical structure to hold the different
elements of the sensor in a single solid piece. The parallel needles are 1.5 cm in length and
1 mm in diameter, with 1 cm separation, and the plastic structure of the sensor is 3 cm high
and 2 cm in diameter. The sensor is connected to the signal generator device by a wire.

The EIS signal generator device was specifically designed to generate alternate sinu-
soidal voltage signals in the frequency range 1 Hz to 1 MHz and a maximum of 1 Vpp in
amplitude. It was also able to receive the electrical responses to the applied pulses in the
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analyzed samples in the form of current and voltage data. A later impedance calculation
using the Discrete Fourier Transform allowed the device to provide up to 100 impedance
data results per assay (50 modules and 50 phases).
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This device consisted of a series of electronic components: a couple of complex pro-
grammable logic devices (CPLD, Altera EPM7160SLC84), a 10-bit digital–analog converter
(DAC), two 8-bit analog–digital converters (ADC), and a static 2 KB random access memory
(RAM). The first CPLD was associated with the DAC and the RAM memory in order
to receive specific instructions from the PC and generate the electric signal on demand.
The second CPLD was programmed to receive and sample the signal responses (voltage
and current) from the sensor and was associated with the ADC and several analog signal
adaption circuits and a modulable current sensor. This device was connected to the PC via
a USB port.

A PC consisting of a CPU (Tacens Stella mATX, TACENS EUROPE, Vitoria-Gasteiz,
Spain) and an LCD Screen (SDM-S51R, SONY, Tokyo, Japan) is the final part of the hardware
for which specific software was designed and installed to control the whole system. The
software was conceived to be intuitive and easy to configure by the operator. A series of
buttons and selection menus help the user to define the signal (frequencies and amplitude)
to be sent to the signal generator and, thus, to the sensor. The software is also designed
to receive the voltage and current responses from the analyzed sample and use a Discrete
Fourier Transform to calculate the electrical impedance spectroscopy response of the sample
in terms of module and phase. Finally, up to 100 data points per assay (50 modules and
50 phases) are stored in the PC memory for further analysis and data treatment.

2.4. EIS Laboratory Analyses and Data Treatment

Once a set of ten samples was selected and prepared, EIS analyses were carried out
following a previously defined laboratory protocol and a strict schedule. Each analyzed
sample was studied both fresh and frozen/thawed with three different tests: (a) puncturing
the sensor directly into the peel, (b) without the peel in just one segment, and (c) without
the peel puncturing the sensor between two segments (Figure 1).

Firstly, the EIS system was switched on and checked. Next, the sample to be analyzed
was placed on a support and examined, annotating any observations on the corresponding
laboratory notebook sheet. The sample had to be in the laboratory at room temperature at
least 12 h for tempering. Then, the sample’s temperature was measured with the multimeter
and punctured with the sensor. The assay was started by clicking the corresponding button
of the software on the PC screen, and the preliminarily defined electric wave was generated
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by the EIS device and sent to the sample via the puncturing sensor. The test finished
when the PC received the EIS response from the sample, which was transformed into
module and phase data and stored. The analysis was repeated three times at each puncture
point without removing the sensor for statistical purposes. Once finished, the sensor was
removed and punctured into another part of the fruit to repeat the assay in at least three
different places. When the tests in the fruit were finished (three test punctures with three
repetitions each), the sensor was removed from the sample and washed with distilled water
and a tissue. The fruit was then stored in the freezer for the freezing/thawing process
(6–7 h) and 12 h at room temperature for retempering before repetition 24 h later. Once the
protocol was completed, the process could be repeated for the next fruit.

The assay provides a large amount of data for treatment, as the complete analysis for
the set of samples (10 fruit) punctured in three places with three repetitions and analyzed
twice (fresh and after freezing/thawing) means working with a set of 18,000 data points.

First, Exponential Smoothing was used as a noise filter [64] in the preliminary data
preprocessing stage, as shown in Equation (1).

zt = αxt + (1− α)zt−1 (1)

Next, a statistical analysis of the data was performed using a double multivariate
study (a) a nonsupervised analysis via Principal Component Analysis (PCA) and (b) a
supervised one using a Partial Least Squares-Discriminant Analysis (PLS-DA). A PCA
was conducted to detect any natural grouping of the raw data indicating a correlation
with the samples’ characteristics. PLS-DA was carried out to classify the samples into two
categories (fresh vs. frozen/thawed) depending on the studied numerical independent
variables [63,65]. To do so, the data were randomly divided into a calibration dataset (67%
of the data) and a test dataset (the remaining 33% of the data) [66]. Standardization and
mean centering by autoscale were used for preprocessing, and “Venetian blinds” were
used for cross-validation. Statistical validity of the models was studied by the coefficient
of determination (R2) and the corresponding root mean square errors of cross-validation
(RMSCV) and prediction (RMSEP) [67]. Additionally, an ANN-based data treatment was
conducted in order to better understand the multivariable dependence of the EIS samples
responses and, thus, create simpler and adaptive models suitable for implementation in a
microprocessor [48,49]. To do so, a specific ANN-dataset was used. This dataset consisted
of 20 values (10 modules and 10 phases) per assay corresponding to those obtained in
the frequency range 99.6 Hz–542.56 Hz. Next, it was divided into three different datasets
for training (70%), validation (15%), and testing (15%). A preliminary auto-search of the
ideal net architecture helped to define the type and structure of the ANN. Further studies
permitted the inner definition of the network by fixing layers, number of neurons, neuron
functions, and functions within the layers. The risk of overfitting was solved by the propor-
tionality of the net structure, cross-validation, and early stopping [68]. Finally, validation
of the obtained neural model was tested by studying the correct classification rate (CCR%)
and the confusion matrix [24]. The commercial software SOLO© Eigenvector Research, Ind.,
Manson, WA, USA) and Alyuda Neurointelligence 2.2.© (Alyuda Research Inc., Cupertino,
CA, USA) were respectively used for statistical analyses and ANN modeling.

2.5. Electric Equivalent Circuits and Modeling

As for the preliminary statistical treatment, the data were preprocessed using exponen-
tial smoothing in order to reduce noise [19]. Next, these data were used to study their fit
with a modified Hyden electric equivalent circuit (Figure 2). This was the selected electric
model, as there have been several changes in the interpretation of the electric behavior
of biological tissues since the first equivalent circuit proposed by Fricke–Morse in 1925.
The selected modified Hayden electric equivalent circuit tests the goodness of fit with this
kind of tissue and is more complex than other models, but not so much that it makes the
simulation processes too difficult [58]. Modified Hayden fitness with biological tissues is
better than other models because of the inclusion of a constant phase element (CPE) in



Horticulturae 2022, 8, 218 6 of 15

the circuit able to assume the dielectric tissular relaxation due to the inhomogeneous cell
distribution in the sample tissue [28].
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Figure 2. The selected modified Hayden electric equivalent circuit for biological tissues composed
of three components: an extracellular resistance (Re) related to extracellular fluid, an intracellular
resistance (Ri) related to intracellular fluid, and a constant phase element (CPE) related to cell
membrane and inhomogeneous cell distribution.

Equations (2) and (3) were used to fit the equivalent model (Zeq), and its statistic
validity was studied by R2 and root mean square error (RMSE):

Zeq = RE||(Ri + ZCPE) =
Re·(Ri + ZCPE)

Re + (Ri + ZCPE)
(2)

ZCPE = 1
CPE·(jw)α (3)

where w is the angular frequency and α is a dimensionless constant in the range [0,1] related
to the nonstrictly capacitive behavior of the CPE.

The software Proteus© (Labcenter Electronics, North Yorkshire, England) was used for
the design and parameter determination of the equivalent circuit, and a Generalized Reduced
Gradient (GRG) nonlinear algorithm (Excel Solver) was used for model optimization.

3. Results
3.1. Cryo-FESEM Observations

Microscopy pictures were taken at different magnification levels in the range
100×–5000× for the studied grapefruit, both fresh and frozen/thawed, focusing on three
different tissues: flavedo (exocarp), albedo (mesocarp), and pulp (juice sacs in a seg-
ment) [69]. Figure 3 shows a comparison between fresh and frozen/thawed tissues in the
abovementioned parts of the sample to visually explain the structural and inner changes
caused by freezing in the cellular tissue.

Fresh flavedo (Figure 3a) is well-structured and organized with joint cells and small
intercellular spaces. It is possible to observe the external waxy cuticle, the quality of the cel-
lular walls, and internal organelles such as nuclei and vacuoles. Opposite, frozen/thawed
flavedo (Figure 3b) is not so well-structured, with more distant cells and larger intercellular
spaces. The cell wall is not as evident, and inner organelles cannot be seen, probably
because the cells have been affected by freezing, breaking inner organelles and even cell
walls and letting intracellular liquid flow toward the outer interstices.

The differences in the mesocarp are notable, as fresh albedo (Figure 3c) shows its
typical “spongy” filamentous structure with huge interstitial spaces full of air. However,
frozen/thawed albedo (Figure 3d) appears with a diffused structure in a liquid sea filling
all the interstitial spaces. This liquid is probably juice from the segments. Thus, its isolation
function has completely disappeared.
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Figure 3e,f show the limits of a juice sac in the pulp of a segment, in which we can
identify the stalks and the cells inside the sacs containing the juice. Fresh pulp (Figure 3e)
seems to be well-structured with no evident vascular bundles among sacs, joint cells with
clearly defined cell walls containing the cytoplasm, and very small interstices. In contrast,
frozen/thawed pulp (Figure 3f) is not well-organized, except the outer cells in the stalk
where a linear organization of the cells is obvious, and the septal vascular bundle is clearly
shown, separating the sacs. Inside the sac, the cells have been broken, the cell walls
are diffused, or they have disappeared, and the tissue has a smashed appearance. This is
probably due to the presence of inner-cell liquid (juice) in the intercellular spaces generating
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this diffuse texture in the microscope picture. Obviously, frozen/thawed sacs are no longer
inner parallel structures in a segment but a pulp amalgam.

3.2. EIS Laboratory and Data Treatment Results

Sampling, treatment, and visualization of the obtained data from the EIS analyses per-
mitted study of the electrical behavior of the samples. EIS datasets consisted of 100 values
(50 modules and 50 phases) per assay showing the evolution of the response over the stud-
ied frequency range 100 Hz–1 MHz. As laboratory assays were conducted in three different
ways: puncturing the fruit (a) directly on the peel, (b) without the peel, and (c) without the
peel and between two sections (Figure 1), authors compared the results, observed that all
of the three datasets showed clear differences between fresh and frozen/thawed samples,
and decided to carry out further data treatment, statistical analyses, and modeling with the
whole fruit directly punctured on the peel.

As a result, it was possible to observe clear differences in behavior between fresh
and frozen/thawed samples. These differences were particularly evident in the module
values for the lower frequencies, showing fresh sample modules up to 8 kΩ at 100 Hz and
frozen/thawed sample modules of 1 kΩ at the same frequency (Figure 4a). On the other
hand, the phase data were also different, being particularly obvious from the middle of the
studied range to the highest frequency (1–100 kHz) showing lower phases for fresh samples
and moderate phases for frozen/thawed samples with differences of up to 20 degrees
(Figure 4b).
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Statistical treatment of the data allowed us to identify a clear nonsupervised trend
to sample classification by type, as stated by the corresponding PCA analysis (Figure 5).
The PCA results were obtained using autoscale preprocessing and Venetian blinds cross-
validation. Four principal components were needed to explain up to 97.98% of the cumu-
lative variance. Table 1 shows the percentages of variance explained by each principal
component.

Table 1. PCA results for grapefruit EIS analyses directly punctured on the peel for 1 to 4 principal
components.

PCA Analysis

N◦ of PC 1 2 3 4

Variance (%) 63.84% 22.83% 8.11% 3.20%
Σ of variance (%) 63.84% 86.67% 94.78% 97.98%
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Next, a supervised discriminant analysis by PLS-DA was performed using the same
autoscale and cross-validation options. It is possible to correctly classify 100% of the studied
samples (Figure 6), as the obtained model showed the greatest sensitivity and specificity
for the three modeling steps (training, validation, and test).
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Finally, an ANN model was designed based in a 20-3-1 network architecture as sug-
gested by the preliminary design architecture assays. The designed network has 3 layers
including the following node distribution: 20 input nodes in the first one, 3 intermediate
nodes in the hidden layer and just 1 node in the output layer. In the nodes, cross-entropy
was used as the output error function, hyperbolic tangent as the input activation function,
and logistic as the output activation function. As a result, a Correct Correlation Rate (CCR)
of 100% was obtained, and the confusion matrix was as shown in Figure 7.
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3.3. Electric Equivalent Circuit Results

As a result of the electric parameterization, the values of the different elements for the
modified Hayden electric equivalent circuit were obtained. Figure 8 shows the results for
the specific case of grapefruit n◦10. As observed, the equivalent model (Zeq) completely
fits with the obtained data for the EIS module for fresh (R2 = 0.9997 and RMSE = 50.40 Ω)
and frozen/thawed sample (R2 = 0.9931 and RMSE = 28.46 Ω), while fitting for the EIS
phase data is excellent for the fresh sample (R2 = 0.97 and RMSE = 2.16◦), and the central
frequency range 1 kHz to 100 kHz for the fresh/thawed sample is not as exact at the
extremes of the plot (R2 = 0.858 and RMSE = 3.27◦).
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The parameterized electric circuit demonstrates that it is possible to model the electric
behavior of grapefruit tissues in a relatively simple way with just three main electric
elements representing the resistance of the extracellular liquid (Re) in the biologic tissue, the
resistance of the inner cell liquids and organelles (Ri), and a constant phase element (CPE)
electrically simulating certain inhomogeneities in the tissular behavior due to complex
(both capacitive and resistive) biological responses at different frequencies.

4. Discussion

Cryo-FESEM observations show clear biological damage in all the analyzed tissue
samples (skin, spongy tissue, and pulp) for frozen/thawed grapefruit, demonstrating the
occurrence of the monitored phenomenon. Since freeze-damage is not apparent immedi-
ately but takes time to appear visually, the objective of this study is to identify it in a rapid,
easy, and economical way to facilitate decision making.

In this regard, the use of EIS in the frequency range 100 Hz to 1 MHz allows us to
work in the range corresponding to the end of the α-dispersion and a wide spectrum of the
β-dispersion and, therefore, effectively identify bioimpedance differences in the samples in
the studied range: (a) at lower frequencies, the capacitance of the cell membranes allows
the current to flow through the extracellular fluid since the components of the layers in the
cell and organelle membranes (protein, macromolecules, and other constituents) have time
to polarize and thus prevent the flux of electric current through them, acting as capacitive
components, an, (b) in the higher frequency range, capacitive impedance decreases, since
current through the cells (tissues in intracellular fluid) improves as frequency increases,
therefore diminishing the electrical resistance of the tissue [70,71].

Consequently, the obtained results in EIS analyses (modules and phases) are in ac-
cordance with what was explained above, being able to discriminate fresh and frozen
thawed grapefruit samples. It can be observed that the module of the impedance is in-
versely proportional to the frequency and much higher for fresh grapefruit samples than for
frozen/thawed ones (Figure 4). This makes sense considering the biological consequences
of freezing: rupture of intracellular and extracellular membranes, leakage of intracellular
fluid to the extracellular interstices, amalgamated-like tissue, increased conductivity, and
loss of the electrical isolation typical of cell membranes in healthy tissue. As expected, phase
values of the impedance are higher for fresh grapefruit samples with intact membranes
(capacitive elements) and lower for frozen/thawed ones, as can be seen in the midrange of
frequencies. Therefore, the designed ANN is able to discriminate fresh and frozen/thawed
grapefruit samples in a robust and reliable way (CRR = 100%), reinforcing the increasing
use of these techniques in agri-food applications [72,73].

Finally, the electrical simulation responds to the abovementioned phenomena, show-
ing a slight decrease in the alpha value when freezing is observed. Additionally, Re and Ri
values are notably higher for the fresh simulation than for the frozen/thawed model, estab-
lishing the Re/Ri relationship as an indicator of cell membrane healthiness. However, the
CPE value increases for the frozen/thawed sample simulation as CPE does not represent
only the capacitive component of the sample but a complex interaction that corresponds to
the nonhomogeneous behavior of the biological tissue. Thus, there is a resistive component
which is compensating for the significant decrease in the Ri value on freezing.

5. Conclusions

EIS analyses with fresh and frozen/thawed grapefruit were conducted revealing
a clearly differentiated impedance response (both for module and phase) for fresh and
frozen/thawed samples. The obtained data were statistically analyzed using PCA to obtain
an explanation of 97.98% of the variance with just four principal components and also by
PLS-DA being able to correctly classify 100% of the studied samples. The designed ANN
model showed that CCR = 100% with no classification mistake in the confusion matrix, thus
creating a robust and reliable ANN-based prediction model and reinforcing the increasing
use of these techniques in agri-food applications.
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The electrical behavior of the analyzed samples was modeled using a modified Hayden
electric equivalent model. Parameterization showed an excellent theoretical/experimental
fit (the obtained R2 were in the range (0.858–0.999)), biologically corresponding to the
observed microscopic characteristics of the fresh tissue and its degradation on freezing.

Thus, it is possible to monitor freeze-damage in grapefruit by means of EIS and
ANN-based models as well as by electric equivalent models with sufficient accuracy and
robustness. Consequently, the authors present the technique as an alternative to the ones
existing today for freeze-damage detection, as it is economic, rapid, and easy, and there is
no need for specialized laboratories or personnel.
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