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Abstract: Differential matrix models provide an elementary blueprint for the adequate and efficient
treatment of many important applications in science and engineering. In the present work, we suggest
a procedure, extending our previous research results, to represent the solutions of nonlinear matrix
differential problems of fourth order given in the form Y(4)(x) = f (x, Y(x)) in terms of higher-order
matrix splines. The corresponding algorithm is explained, and some numerical examples for the
illustration of the method are included.
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1. Introduction

Scalar spline methods have a long and successful tradition for obtaining smooth
approximations for solutions of a wide range of applications in engineering, mathematics,
data and computer science [1,2]. On the other hand, reformulating an engineering problem
in terms of matrix-valued physical quantities nowadays is a common approach, leading to
a compact description of the problem and allowing for more efficient computations. Thus,
combining spline methods with matrix models is a logical path to follow.

In the present work, we elaborate a spline method for the approximation of a special
class of fourth-order matrix differential equations which take the form

Y(4)(x) = f (x, Y(x)), x ∈ [a, b] ⊂ R, (1)

where Y(x) is a complex matrix—not necessarily a square matrix—depending on the real
parameter x, with the initial conditions Y(a) = ya, Y′(a) = Y′

a, Y′′(a) = Y′′
a , and Y′′′(a) = Y′′′

a .
Note that in Equation (1) the first, second, and third derivatives of matrix Y do not appear
explicitly. In particular, this type of fourth-order problem can be found in diverse fields of
the applied sciences and engineering, e.g., beam theory [3,4], fluid dynamics [5], neural
networks [6], and electric circuits [7]. In practice, for ordinary differential equations, it is
customary to convert fourth-order equations to a system of first-order equations, so that
standard numerical methods and software can be used. However, with the increase in the
number of equations, this technique inevitably also produces an increase in computational
cost and numerical instabilities.

Given this hindsight, direct integration methods (without increasing the dimension-
ality of a problem) have attracted considerable attention in recent years. Several authors
that have solved higher-order problems of scalar type have, therefore, used direct methods
which have demonstrated exquisite features in accuracy and speed, see Refs. [8–12] and
references therein.
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The aim of this paper is to generalize the proposed method for problems given in
Refs. [13,14] by developing an extended algorithm to deal with nonlinear matrix differential
equations of the fourth order and of type Equation (1), thereby broadening the approach and
allowing to tackle a wider class of significant applications. Apart from allowing significantly
new applications of interest, we stress that it is not evident that our previous approach
will work for nonlinear fourth-order matrix problems, therefore, requiring a detailed error
analysis with adequate test examples and carrying out the necessary benchmarking, which
we will pursue in this work.

Throughout the work, we will take up the notation for matrix splines and norms
as previously used [15,16], which is frequently employed in matrix calculus. Adopting
this nomenclature, we recall that for a rectangular r × s matrix, A ∈ Cr×s, its 2-norm is
expressed as

∥A∥ = sup
z≠0

∥Az∥∥z∥ ,

where for a vector z ∈ Cs, the Euclidean norm is ∥z∥ = (ztz) 1
2 . Similarly, the 1-norm is

defined by ∥z∥1 = s∑
i=1

∣zi∣.
The Kronecker product A ⊗ B of A = (aij) ∈ Cm×n and B ∈ Cr×s is a block matrix

given by

A⊗ B = ⎛⎜⎝
a11B . . . a1nB⋮ ⋮
am1B . . . amnB

⎞⎟⎠.

The column-vector operator, vec, acting on matrix A ∈ Cm×n, yields

vec(A) = ⎛⎜⎝
A●1⋮
A●n

⎞⎟⎠, where A●k = ⎛⎜⎝
a1k⋮
amk

⎞⎟⎠.

Here and in the remainder of the text, we use bold-face letters for vectors and vector-valued
functions.

Given Y = (yij) ∈ Cp×q and X = (xij) ∈ Cm×n, the derivative of matrix Y with respect to
matrix X is defined by [17] (pp. 62, 81):

∂Y
∂X

=
⎛⎜⎜⎜⎜⎜⎝

∂Y
∂x11

. . .
∂Y

∂x1n⋮ ⋮
∂Y

∂xm1
. . .

∂Y
∂xmn

⎞⎟⎟⎟⎟⎟⎠
, where

∂Y
∂xrs

=
⎛⎜⎜⎜⎜⎜⎝

∂y11

∂xrs
. . .

∂y1q

∂xrs⋮ ⋮
∂yp1

∂xrs
. . .

∂ypq

∂xrs

⎞⎟⎟⎟⎟⎟⎠
.

If X ∈ Cm×n, Y ∈ Cn×v, and Z ∈ Cp×q, then the following rule for the derivative of a
matrix product with respect to another matrix applies [17] (p. 84):

∂XY
∂Z

= ∂X
∂Z

[Iq ⊗Y] + [Ip ⊗X]∂Y
∂Z

, (2)

where Iq and Ip denote the identity matrices of dimensions q and p, respectively. For the
above matrices, X, Y, and Z, the following chain rule [17] (p. 88) is valid:

∂Z
∂X

= [∂[vec(Y)]t

∂X
⊗ Ip][In ⊗ ∂Z

∂[vec(Y)]]. (3)

After this brief introduction, Section 2 gives a description of the proposed method
outlining its algorithmic details. Section 3 provides programs in MATLAB [18] for solving
the target equation. Section 4 then continues the discussion by implementing numeri-
cal examples for the scalar, vector, and matrix cases. Lastly, Section 5 summarizes the
obtained results.
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2. Description of the Method

Let us consider the following fourth-order matrix problem

Y(4)(x) = f (x, Y(x))
Y(a) = Ya, Y′(a) = Y′

a

Y′′(a) = Y′′
a , Y′′′(a) = Y′′′

a

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, a ≤ x ≤ b, (4)

where the unknown matrix is Y(x) ∈ Cr×q with initial conditions Ya, Y′
a, Y′′

a , Y′′′
a ∈ Cr×q.

The matrix-valued function f ∶ [a, b]×Cr×q → Cr×q is of the differentiability class f ∈ Cs(T),
s ≥ 1, with

T = {(x, Y); a ≤ x ≤ b, Y ∈ Cr×q}. (5)

In order to ensure the existence and uniqueness of the continuously differentiable
solution Y(x) for problem (4), let function f fulfill the global Lipschitz’s condition with
constant L > 0, such that [19] (p. 99)

∥ f (x, Y1)− f (x, Y2)∥ ≤ L∥Y1 −Y2∥, a ≤ x ≤ b, Y1, Y2 ∈ Cr×q. (6)

Next, the partition of the interval [a, b] shall be given by

∆[a,b] = {a = x0 < x1 < . . . < xn = b}, xk = a + kh, k = 0, 1, . . . , n, (7)

where n ∈ N, and the corresponding stepsize is h = (b− a)/n. For the individual subintervals[a + kh, a + (k + 1)h], we will construct matrix spline S(x) of order m ∈ N, where 4 ≤ m ≤ s.
The order of the differentiability for function f is denoted by s. The approximated spline
solution for problem (4) will then be S(x) ∈ C4([a, b]).

For the first interval [a, a + h], we assume that the matrix spline takes the form

S∣
[a,a+h]

(x) = Y(a)+Y′(a)(x − a)+ 1
2!

Y′′(a)(x − a)2 + 1
3!

Y′′′(a)(x − a)3

+ ⋯+ 1(m − 1)!
Y(m−1)(a)(x − a)m−1 + 1

m!
A0(x − a)m, (8)

where A0 ∈ Cr×q is an unknown matrix parameter still to be computed. It is straightforward
to verify that

S∣
[a,a+h]

(a) = Y(a) , S′∣
[a,a+h]

(a) = Y′(a) = Y′
a,

S′′∣
[a,a+h]

(a) = Y′′(a) = Y′′
a , S′′′∣

[a,a+h]
(a) = Y′′′(a) = Y′′′

a ,

and
S(4)∣

[a,a+h]
(a) = f (a,Y(a)) = f (a,S∣

[a,a+h]
(a)).

Therefore, the spline S(x) for the subinterval [a, a + h] will satisfy the differential
equation, Equation (4), at x = a by construction.

In order to fully determine the matrix spline of Equation (8), we still require the values
of Y(5)(a), Y(6)(a), . . . , Y(m−1)(a), and of A0. First, to determine the fifth-order derivative
Y(5)(x), one follows the method described in Ref. [16], adopting the notation already
summarized in the introduction. Accordingly, we obtain

Y(5)(x) = ∂ f (x, Y(x))
∂x

+ [[vec f (x, Y(x))]t ⊗ Ir]∂ f (x, Y(x))
∂ vec Y(x)= g1(x, Y(x), Y′(x)), (9)

where g1 ∈ Cs−1(T). Subsequently, by using Equation (9), we are able to evaluate
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Y(5)(a) = g1(a, Y(a), Y′(a)) = g1(a, Ya, Y′
a).

Similarly, next we may suppose that f ∈ Cs(T) for s ≥ 2. Thus, the second partial
derivatives of f exist and are continuous. Now, one obtains the sixth derivative for matrix
Y(x) according to

Y(6)(x) = ∂2 f (x, Y(x))
∂x2 + ([vec f (x, Y(x))]t ⊗ Ir) ∂

∂x
(∂ f (x, Y(x))

∂ vec Y(x) )
+⎛⎝∂[vec f (x, Y(x))]t

∂x
⊗ Ir

⎞⎠∂ f (x, Y(x))
∂ vec Y(x)

+ ([vec f (x, Y(x))]t ⊗ Ir) ∂

∂ vec Y(x)(∂ f (x, Y(x))
∂x

)
+ ([vec f (x, Y(x))]t ⊗ Ir)⎛⎝∂[vec f (x, Y(x))]t

∂ vec Y(x) ⊗ Ir
⎞⎠∂ f (x, Y(x))

∂ vec Y(x)
+ ([vec f (x, Y(x))]t ⊗ Ir)([vec f (x, Y(x))]t ⊗ Ir2q) ∂2 f (x, Y(x))

(∂ vec Y(x))2

= g2(x, Y(x), Y′(x), Y′′(x)) ∈ Cs−2(T). (10)

Evaluating Equation (10) at x = a, we conclude Y(6)(a) = g2(a, Y(a), Y′(a), Y′′(a)) =
g2(a, Ya, Y′

a, Y′′
a ). For all higher-order derivatives Y(7)(x), . . . , Y(m−1)(x), we proceed in a

similar manner and calculate
Y(7)(x) = g3(x, Y(x), Y′(x), Y′′(x), Y′′′(x)) ∈ Cs−3(T)⋮

Y(m−1)(x) = gm−5(x, Y(x), Y′(x), . . . , Y(m−5)(x)) ∈ Cs−(m−5)(T)
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (11)

An exhaustive list of all symbolic derivatives may easily be established by employ-
ing standard computer algebra systems. Substituting again x = a in Equation (11), one
accomplishes Y(7)(a), . . . , Y(m−1)(a). Therefore, as yet, all essential matrix parameters of
the spline are known, except for parameter A0. Finally, to determine A0, we suppose that
Equation (8) will be a solution of problem (4) at x = a + h, which entails

S(4)∣
[a,a+h]

(a + h) = f(a + h, S∣
[a,a+h]

(a + h)). (12)

Then, we obtain from Equation (12) the implicit matrix equation with only one un-
known A0:

A0 = (m−4)!
hm−4 [ f(a + h, Y(a)+Y′(a)h +⋯+ hm−1(m−1)! Y

(m−1)(a)+ hm

m! A0)
−Y(4)(a)−Y(5)(a)h −⋯− 1(m−5)! Y

(m−1)(a)hm−5]. (13)

Assuming that the implicit matrix equation, Equation (13), has a unique solution A0,
matrix spline (8) is now completely determined within subinterval [a, a + h].

For the subsequent interval [a + h, a + 2h], the matrix spline may be expressed as

S∣
[a+h,a+2h]

(x) = 3∑
i=0

S(i)∣
[a,a+h]

(a + h)
i!

(x − (a + h))i + m−1∑
j=4

Y(j)(a + h)
j!

(x − (a + h))j

+ A1

m!
(x − (a + h))m. (14)

Here, the expressions

Y(4)(a + h) = f(a + h, S∣
[a,a+h]

(a + h)), (15)
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and Y(5)(a + h), . . . , Y(m−1)(a + h) are the analogous results obtained after evaluating the
respective derivatives of Y(x) using S∣

[a,a+h]
(a + h) in Equations (9)–(11). We may put this

in a more compact form:

Y(5)(a + h) = g1(a + h, S∣
[a,a+h]

(a + h), S′∣
[a,a+h]

(a + h)),

⋮
Y(m−1)(a + h) = gm−5(a + h, S∣

[a,a+h]
(a + h), . . . , S(m−5)∣

[a,a+h]
(a + h)).

(16)

Observe that the matrix spline S(x), defined by Equations (8) and (14), is of differen-
tiability class C4([a, a + h]∪ [a + h, a + 2h]). Again, by construction, the spline of the form
given in Equation (14) satisfies the differential equation, Equation (4), at point x = a + h. In
Equation (14), all coefficients are known except for A1 ∈ Rr×q.

The exact value of A1 may be determined by considering the spline provided in
Equation (14) as being a solution at point x = a + 2h of the problem, viz. Equation (4):

S(4)∣
[a+h,a+2h]

(a + 2h) = f(a + 2h, S∣
[a+h,a+2h]

(a + 2h)).

Expanding the last expression produces a matrix equation for A1:

A1 = (m − 4)!
hm−4

⎡⎢⎢⎢⎢⎢⎢⎣
f
⎛⎜⎜⎝a + 2h,

3∑
i=0

S(i)∣
[a,a+h]

(a + h)
i!

hi + m−1∑
j=4

Y(j)(a + h)
j!

hj

+ A1hm

m!
) − Y(4)(a+h) − Y(5)(a+h)h − ⋯ − hm−5

(m−5)!
Y(m−5)(a+h)]. (17)

Let us assume that the matrix equation, Equation (17), has the unique solution A1.
This way, the matrix spline now is completely known for the interval [a + h, a + 2h].

By repeating this procedure, we can establish the matrix–spline
approximation for the subinterval [a + (k − 1)h, a + kh]. Then, in the following interval[a + kh, a + (k + 1)h], we define the corresponding matrix spline as

S∣
[a+kh,a+(k+1)h]

(x) = 3∑
i=0

S(i)∣
[a+(k−1)h,a+kh]

(a + kh)
i!

(x − (a + kh))i

+ m−1∑
j=4

Y(j)(a + kh)
j!

(x − (a + kh))j

+ Ak
m!

(x − (a + kh))m, (18)

where
Y(4)(a + kh) = f(a + kh, S∣

[a+(k−1)h,a+kh]
(a + kh)), (19)

and similarly, we may find

Y(5)(a + kh) = g1(a + kh, S∣
[a+(k−1)h,a+kh]

(a + kh), S′∣
[a+(k−1)h,a+kh]

(a + kh)),

⋮
Y(m−1)(a + kh) = gm−5(a+kh, S∣

[a+(k−1)h,a+kh]
(a+kh),. . . ,S(m−5)∣

[a+(k−1)h,a+kh]
(a+kh)).

(20)
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For this definition, the matrix spline S(x) ∈ C4⎛⎝
k⋃

j=0
[a + jh, a + (j + 1)h]⎞⎠ satisfies the

differential equation, Equation (4), at point x = a + kh. Additionally, we require that
S∣

[a+kh,a+(k+1)h]
(x) also is a solution of problem (4) at point x = a + (k + 1)h, such that

S(4)∣
[a+kh,a+(k+1)h]

(a + (k + 1)h) = f(a + (k + 1)h, S∣
[a+kh,a+(k+1)h]

(a + (k + 1)h)).

An expansion of this expression produces

Ak = (m − 4)!
hm−4

⎡⎢⎢⎢⎢⎢⎢⎣
f
⎛⎜⎜⎝a+(k + 1)h,

3∑
i=0

S(i)∣
[a+(k−1)h,a+kh]

(a+kh)
i!

hi + m−1∑
j=4

Y(j)(a+kh)
j!

hj

+ Ak
m!

hm)−Y(4)(a+kh)−⋯− hm−5

(m − 5)!
Y(m−1)(a + kh)]. (21)

Observe that the final result in Equation (21) relates directly to Equations (13) and (17),
when setting k = 0 and k = 1.

By using a fixed-point argument, we will now demonstrate that Equation (21) will
have unique solutions for k = 0, 1, . . . , n − 1. For fixed values of h and k, the matrix function
g ∶ Cr×q → Cr×q is

g(S) = (m−4)!
hm−4

⎡⎢⎢⎢⎢⎢⎢⎣
f
⎛⎜⎜⎝a+(k + 1)h,

3∑
i=0

S(i)∣
[a+(k−1)h,a+kh]

(a+kh)
i!

hi+m−1∑
j=4

Y(j)(a+kh)
j!

hj

+ S
m!

hm)−Y(4)(a + kh)−⋯− hm−5

(m − 5)!
Y(m−1)(a + kh)]. (22)

If Ak = g(Ak), i.e., Ak is a fixed point for function g(S), then Equation (21) is satisfied.
Using the global Lipschitz’s condition for f , Equation (6), and the previous definition for g,
Equation (22), now implies immediately:

∥g(S1)− g(S2)∥ ≤ Lh4

m(m − 1)(m − 2)(m − 3)∥S1 − S2∥.

Choosing h < 4
√

m(m − 1)(m − 2)(m − 3)/L, the matrix function g is contractive. There-
fore, Equation (21) has unique solutions Ak for k = 0, 1, . . . , n − 1, and the matrix spline is
finally computed. Summing up, the following theorem has been demonstrated:

Theorem 1. Consider the fourth-order matrix differential system given by Equation (4), and let
L > 0 be the corresponding Lipschitz constant defined by Equation (6). Further, let us take the
partition ∆[a,b] over the interval [a, b], following Equation (7) and having stepsize

h < 4
√

m(m − 1)(m − 2)(m − 3)/L.

Then, as shown by the previous procedure, the matrix spline S(x) of order m, with 4 ≤ m ≤ s,
exists in each subinterval [a + kh, a + (k + 1)h], k = 0, 1, . . . , n − 1, and is of class C4[a, b].

Loscalzo and Talbot demonstrated that in the scalar case, the global error of the
splines is of O(hm−1), see Ref. [20]. Note that an analogous analysis applies for the present
matrix–spline case.
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3. MATLAB Program

Consider the following fourth-order ordinary differential equation for a matrix Y(x):

Y(4)(x) = f (x, Y(x))
Y(xk) = Y0, Y′(xk) = Y1, Y′′(xk) = Y2, Y′′′(xk) = Y3

⎫⎪⎪⎪⎬⎪⎪⎪⎭, xk ≤ x ≤ xk + h, (23)

where h is the stepsize, such that xk = a + kh. Further, Y0, Y1, Y2, and Y3 are the matrices Y,
Y′, Y′′, and Y′′′ calculated in the previous step at xk. Denoting by Yk(x) the spline of order
m in the subinterval [xk, xk + h], we have

Yk(xk + h) = m−1∑
i=0

Y(i)(xk)hi

i!
+ hm

m!
Ak ≡ B(1)

k + hm

m!
Ak, (24)

Y′
k(xk + h) = m−1∑

i=1

Y(i)(xk)hi−1

(i − 1)!
+ hm−1

(m − 1)!
Ak ≡ B(2)

k + hm−1

(m − 1)!
Ak, (25)

Y′′
k(xk + h) = m−1∑

i=2

Y(i)(xk)hi−2

(i − 2)!
+ hm−2

(m − 2)!
Ak,≡ B′′′k + hm−2

(m − 2)!
Ak (26)

Y′′′
k(xk + h) = m−1∑

i=3

Y(i)(xk)hi−3

(i − 3)!
+ hm−3

(m − 3)!
Ak,≡ B(4)

k + hm−3

(m − 3)!
Ak (27)

Y(4)
k (xk + h) = m−1∑

i=4

Y(i)(xk)hi−4

(i − 4)!
+ hm−4

(m − 4)!
Ak ≡ B(5)

k + hm−4

(m − 4)!
Ak, (28)

where Ak still must be computed.
If we substitute expressions of Equations (24) and (28) into differential Equation (23),

we obtain

B(5)
k + hm−4

(m − 4)!
Ak = f(x, B(1)

k + hm

m!
Ak).

Then, the matrix Ak can be determined by using the following fixed-point iteration:

Ak = (m − 4)!
hm−4 [ f(x, B(1)

k + hm

m!
Ak)− B(5)

k ]. (29)

Hence, the approximated values for Y, Y′, Y′′ and Y′′′ at xk + h can be computed by
substituting Ak into Equations (24)–(27).

Figure 1 lists the MATLAB code for approximately computing the solution matrices
Y(b), Y′(b), Y′′(b), and Y′′′(b) of the fourth-order ordinary differential equation given in
Equation (4). This code uses the cell-array data type for storing sets of matrices. In line 36,
the values for Y(i)(xk), i = 0, 1,⋯, m, are obtained and stored in the cell-array variable Ym by
invoking the f MATLAB function to return the matrices which appear in the expressions
given by Equations (24)–(28). In lines 37–42, the expressions B′k, B′′k , B′′′k , B(4)

k , and B(5)
k from

Equations (24)–(28) are computed. In lines 45–52, the matrix Ak is worked out by using
fixed-point iteration. Finally, in lines 53–55, the matrices Y(xk + h), Y′(xk + h), Y′′(xk + h),
and Y′′′(xk + h) are computed.

The memory requirements for this function are (m + 12) matrices, i.e., m matrices for
the cell-array variable ym, five matrices for the cell array variable Bk, three matrices for the
variables Ak, Ak1, and Skm, furthermore, four matrices for the cell-array variable y.

Figure 2 reproduces the MATLAB code of the function create_problem, which au-
tomatically generates an output file, such as the one shown in Figure 3, containing all
symbolical derivatives required for the main program, viz. Figure 1. The symbolical results
in this file are then readily accessible as a function for computing the spline approximation
with function spline4order. Note that for the computer algebra, the MATLAB interface to
MuPAD is called [21,22]. All the essential codes, including future developments, will be
made available for public use [23].
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1 function [x,Y]=spline4order(f,Y,a,b,h,m)
2 % This function computes the solution of a fourth−order matrix
3 % differential equation y^(4)=f(x,y) for x∈[a,b], with the
4 % initial conditions Y{1}=y(a), Y{2}=y'(a), Y{3}=y''(a), and
5 % Y{4}=y'''(a).
6 %
7 % Input:
8 % − f is the filename, previously generated by the function
9 % create_problem, which returns y and its derivatives y',

10 % y'', y''', ... y^(m).
11 % − Y is the cell array of four elements with the initial
12 % conditions at the point x=a, in the form of Y{1}=y(a),
13 % Y{2}=y'(a), Y{3}=y''(a), and Y{4}=y'''(a).
14 % − a and b determine the integration interval [a,b].
15 % − h is the stepsize.
16 % − m is the spline order.
17 %
18 % Output:
19 % − x stores a value close to b where the solution is computed.
20 % − Y is a cell array of four elements with the solution y, y',
21 % y'' and y''' at the previous point x in the form Y{1}=y(x),
22 % Y{2}=y'(x), Y{3}=y''(x), and Y{4}=y'''(x).
23 %
24 % Usage:
25 % Y{1}=0; Y{2}=1; Y{3}=0; Y{4}=−1;
26 % [x,Y]=spline4order(@f,Y,0,1,0.01,9);
27
28 [n1,n2]=size(Y{1});
29 ph(1)=h;
30 for k=2:m
31 ph(k)=ph(k−1)*h;
32 end
33 nt=round((b−a)/h);
34 x=a;
35 for k=1:nt
36 Ym=f(x,Y,1);
37 for j=1:5
38 Bk{j}=Ym{j};
39 for i=j+1:m
40 Bk{j}=Bk{j}+Ym{i}*ph(i−j)/factorial(i−j);
41 end
42 end
43 x=x+h;
44 aux=factorial(m−4)/ph(m−4);
45 Ak=ones(n1,n2);
46 ea=1;
47 while ea>eps/2
48 Skm{1}=Bk{1}+Ak*ph(m)/factorial(m);
49 Ak1=aux*(f(x,Skm,0)−Bk{5});
50 ea=norm(Ak−Ak1);
51 Ak=Ak1;
52 end
53 for j=1:4
54 Y{j}=Bk{j}+Ak*ph(m−j+1)/factorial(m−j+1);
55 end
56 end

Figure 1. MATLAB code for computing approximate solutions of the problem in Equation (4) by
means of m-th order splines.

Figure 1. MATLAB code for computing approximate solutions of the problem in Equation (4) by
means of m-th order splines.
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1 function create_problem(F,fn,m)
2 % This function symbolically calculates all necessary derivatives
3 % for the intermediate steps required for solving the matrix
4 % differential equation of fourth order:
5 % y^(4)=f(x,y), x∈[a,b],
6 % with the initial conditions y(a), y'(a), y''(a), and y'''(a).
7 % The results are directly written as a Matlab function into a file.
8 %
9 % Input:

10 % − F is the function expressed in symbolical form.
11 % − fn is the filename which will contain the calculated derivatives.
12 % − m is the desired order of the splines which use F (m ≥ 4), i.e.,
13 % the highest order of derivative to compute.
14 %
15 % Output:
16 % − All symbolical derivatives up to order m are written into file fn
17 % as a function ready for computing the spline approximation with
18 % function spline4order.
19 %
20 % Usage:
21 % syms x y(x); F=y(x)^2+cos(x)^2+sin(x)−1; create_problem(F,'f',9)
22
23 Y=GetDeriv(F,m−4);
24 fnm=strcat(fn,'.m');
25 file = fopen(fnm, 'w');
26 fprintf(file,'function Y = %s(x,Y,flagout)\n',fn);
27 fprintf(file,'if flagout\n');
28 for i=5:m
29 fprintf(file,'\tY{%d}=%s;\n',i,Y{i−4});
30 end
31 fprintf(file,'else\n');
32 fprintf(file,'\tY=%s;\n',Y{1});
33 fprintf(file,'end\nend\n');
34 fclose(file);
35 end
36
37 function Y=GetDeriv(F,nd)
38 for i=1:nd
39 Y{i}=char(diff(F,i−1));
40 for j=1:i−1
41 pat='diff(y(x)';
42 for k=1:j
43 pat=[pat ', x'];
44 end
45 pat=[pat ')'];
46 new=sprintf('Y{%d}',j+1);
47 Y{i}=replace(Y{i},pat,new);
48 end
49 Y{i}=replace(Y{i},'y(x)','Y{1}');
50 end
51 end

Figure 2. MATLAB function create_problem for automatically generating all symbolical derivatives
required by the main code in Figure 1.

Figure 2. MATLAB function create_problem for automatically generating all symbolical derivatives
required by the main code in Figure 1.
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1 function Y = f(x,Y,flagout)
2 if flagout
3 Y{5}=sin(x) + cos(x)^2 + Y{1}^2 − 1;
4 Y{6}=cos(x) + 2*Y{1}*Y{2} − 2*cos(x)*sin(x);
5 Y{7}=2*Y{2}^2 − sin(x) − 2*cos(x)^2 + 2*sin(x)^2 + 2*Y{1}*Y{3};
6 Y{8}=2*Y{1}*Y{4} − cos(x) + 8*cos(x)*sin(x) + 6*Y{2}*Y{3};
7 Y{9}=sin(x) + 8*cos(x)^2 − 8*sin(x)^2 + 2*Y{1}*Y{5} + 6*Y{3}^2 + 8*Y{2}*Y{4};
8 else
9 Y=sin(x) + cos(x)^2 + Y{1}^2 − 1;

10 end
11 end

Figure 3. MATLAB function f.m generated by the code of Figure 2 for the problem given in
Equation (31), using m = 9 for the highest spline order. All relevant analytical derivatives have
been set up automatically.

4. Numerical Examples
4.1. A Scalar Test Problem

As a starting point, we consider the problem of type Equation (4) for Y(x) ∈ Cr×q with
r = q = 1, and apply our proposed method to the following scalar problem:

y(4)(x) = (x4 − 6x2 + 3)y(x)
y(0) = 1, y′(0) = 0

y′′(0) = −1, y′′′(0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, 0 ≤ x ≤ 1. (30)

This is a simple test problem and is recognized as an ideal benchmark test in the
literature [9]. Its exact solution is known as y(x) = e−x2/2.

Since maxx∈[0,1]{x4 − 6x2 + 3} = 3, we have a Lipschitz constant given by L = 3. For
splines of the seventh order (m = 7), according to Theorem 1, we have h < 4.09062 and
take n = 10 partitions with stepsize h = 0.1. Computer algebra systems are most suitable
to algebraically solve the equations arising from the algorithm. In this case, we employ
Mathematica. All analytical results for the approximate splines are recorded in Table 1.

Table 1. Spline approximations for the scalar problem given in Equation (30).

Interval Spline Approximations

[0, 0.1] 1− 0.5x2 + 0.125x4 − 0.0208333x6 + 0.000519274x7

[0.1, 0.2] 1+ 1.05916× 10−8x − 0.5x2 + 3.47838× 10−6x3 + 0.124965x4 + 0.000244182x5 − 0.0218871x6 + 0.00253921x7

[0.2, 0.3] 1+ 4.48369 ∗ 10−7x − 0.500007x2 + 0.0000645975x3 + 0.124627x4 + 0.00138989x5 − 0.0240704x6 + 0.00433397x7

[0.3, 0.4] 1+ 4.84951 ∗ 10−6x − 0.500054x2 + 0.000344851x3 + 0.123613x4 + 0.00360634x5 − 0.0267723x6 + 0.00574896x7

[0.4, 0.5] 1.00004− 0.000641764x − 0.495489x2 − 0.0174827x3 + 0.165188x4 − 0.054248x5 + 0.0176658x6 − 0.00876821x7

[0.5, 0.6] 0.999995+ 0.0000593981x − 0.500383x2 + 0.00157178x3 + 0.120685x4 + 0.00792015x5 − 0.0303493x6 + 0.00703515x7

[0.6, 0.7] 1− 1.66127× 10−6x − 0.500075x2 + 0.000708329x3 + 0.122137x4 + 0.00645505x5 − 0.0295281x6 + 0.00683787x7

[0.7, 0.8] 1.00005− 0.000496956x − 0.497896x2 − 0.0046218x3 + 0.129965x4 − 0.000447737x5 − 0.0261447x6 + 0.0061268x7

[0.8, 0.9] 1.00024− 0.00225309x − 0.491134x2 − 0.0190941x3 + 0.148561x4 − 0.0147911x5 − 0.0199957x6 + 0.00499666x7

[0.9, 1.0] 1.00081− 0.00677476x − 0.475679x2 − 0.0484533x3 + 0.182039x4 − 0.0377048x5 − 0.0112802x6 + 0.00357551x7

In Table 2, we specify the difference between the estimates of our numerical approach
and the exact solution. The maximums of these errors are indicated for each subinter-
val. Obviously, the error for each subinterval is lower than the predicted global error of

Figure 3. MATLAB function f.m generated by the code of Figure 2 for the problem given in
Equation (31), using m = 9 for the highest spline order. All relevant analytical derivatives have
been set up automatically.

4. Numerical Examples
4.1. A Scalar Test Problem

As a starting point, we consider the problem of type Equation (4) for Y(x) ∈ Cr×q with
r = q = 1, and apply our proposed method to the following scalar problem:

y(4)(x) = (x4 − 6x2 + 3)y(x)
y(0) = 1, y′(0) = 0

y′′(0) = −1, y′′′(0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, 0 ≤ x ≤ 1. (30)

This is a simple test problem and is recognized as an ideal benchmark test in the
literature [9]. Its exact solution is known as y(x) = e−x2/2.

Since maxx∈[0,1]{x4 − 6x2 + 3} = 3, we have a Lipschitz constant given by L = 3. For
splines of the seventh order (m = 7), according to Theorem 1, we have h < 4.09062 and
take n = 10 partitions with stepsize h = 0.1. Computer algebra systems are most suitable
to algebraically solve the equations arising from the algorithm. In this case, we employ
Mathematica. All analytical results for the approximate splines are recorded in Table 1.

Table 1. Spline approximations for the scalar problem given in Equation (30).

Interval Spline Approximations

[0, 0.1] 1− 0.5x2 + 0.125x4 − 0.0208333x6 + 0.000519274x7

[0.1, 0.2] 1+ 1.05916× 10−8x − 0.5x2 + 3.47838× 10−6x3 + 0.124965x4 + 0.000244182x5 − 0.0218871x6 + 0.00253921x7

[0.2, 0.3] 1+ 4.48369× 10−7x − 0.500007x2 + 0.0000645975x3 + 0.124627x4 + 0.00138989x5 − 0.0240704x6 + 0.00433397x7

[0.3, 0.4] 1+ 4.84951× 10−6x − 0.500054x2 + 0.000344851x3 + 0.123613x4 + 0.00360634x5 − 0.0267723x6 + 0.00574896x7

[0.4, 0.5] 1.00004− 0.000641764x − 0.495489x2 − 0.0174827x3 + 0.165188x4 − 0.054248x5 + 0.0176658x6 − 0.00876821x7

[0.5, 0.6] 0.999995+ 0.0000593981x − 0.500383x2 + 0.00157178x3 + 0.120685x4 + 0.00792015x5 − 0.0303493x6 + 0.00703515x7

[0.6, 0.7] 1− 1.66127× 10−6x − 0.500075x2 + 0.000708329x3 + 0.122137x4 + 0.00645505x5 − 0.0295281x6 + 0.00683787x7

[0.7, 0.8] 1.00005− 0.000496956x − 0.497896x2 − 0.0046218x3 + 0.129965x4 − 0.000447737x5 − 0.0261447x6 + 0.0061268x7

[0.8, 0.9] 1.00024− 0.00225309x − 0.491134x2 − 0.0190941x3 + 0.148561x4 − 0.0147911x5 − 0.0199957x6 + 0.00499666x7

[0.9, 1.0] 1.00081− 0.00677476x − 0.475679x2 − 0.0484533x3 + 0.182039x4 − 0.0377048x5 − 0.0112802x6 + 0.00357551x7

In Table 2, we specify the difference between the estimates of our numerical approach
and the exact solution. The maximums of these errors are indicated for each subinter-
val. Obviously, the error for each subinterval is lower than the predicted global error of



Mathematics 2022, 10, 2826 11 of 18

O(10−6), but each local error is necessarily increasing while iterating from the first to the
last subinterval.

Table 2. Approximation errors for the scalar problem given in Equation (30).

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]
Max. error 2.59117× 10−11 9.30152× 10−10 5.54498× 10−9 1.85921× 10−8 4.83612×10−8

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]
Max. error 1.48407× 10−7 4.29331× 10−7 1.00674× 10−6 1.99556× 10−6 3.50949× 10−6

4.2. A Nonlinear Scalar Test Problem

This problem appears in Refs. [24] (p. 1003), [25], although for different intervals of
the form [0, b]:

y(4)(x) = y2(x)+ cos2(x)+ sin(x)− 1, 0 < x ≤ b, (31)

y(0) = 0, y′(0) = 1, y′′(0) = 0, y′′′(0) = −1.

Its exact solution is y(x) = sin (x).
Note that for this particular test problem, the usage example in Figure 2 shows how to

automatically produce the corresponding derivatives in the form of a MATLAB function
f.m as required by the function spline4order. The output is shown in Figure 3. Afterwards,
the execution of the usage example in Figure 1 computes all spline approximations for
this test.

Figure 4 displays four graphics for the relative errors at b = 1, taking as stepsizes
h = 10−1, h = 10−2, h = 10−3 and h = 10−4, by also varying spline order m. In general, the
error committed decreases by increasing the spline order. Similarly, the error generally
reduces as we decrease the stepsize. However, for m = 10, the error acquired for h = 10−3 is
less than the error for h = 10−4. This is due to the increase in the number of floating point
operations. Table 3 lists the corresponding relative errors.

5 6 7 8 9

Spline order
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Figure 4. Relative errors at b = 1 for the problem given in Equation (31), for several stepsizes
(h = 10−1, 10−2, 10−3, 10−4), and varying spline orders (m = 5, 6, 7, 8, 9).
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Table 3. Relative errors at b = 1 for the problem given in Equation (31) with varying spline orders m
and stepsizes h.

m 5 6 7 8 9

h = 10−1 1.99× 10−2 2.24× 10−3 2.55× 10−4 2.93× 10−5 8.09× 10−5

h = 10−2 2.08× 10−4 2.23× 10−6 2.47× 10−8 2.76× 10−10 6.57× 10−9

h = 10−3 2.08× 10−6 2.22× 10−9 2.48× 10−12 4.88× 10−15 6.27× 10−13

h = 10−4 2.08× 10−8 2.44× 10−12 2.27× 10−13 2.28× 10−13 2.27× 10−13

Figure 5 provides five graphics with the relative errors for spline orders m = 5, 6, 7, 8,
and 9, varying the final point of the interval (b = 1, 2, 3, 4, and 5). A fixed stepsize h = 10−3

is considered. Obviously, the error increases as the value b grows. Similarly, the error
improves when the stepsize decreases. Clearly, the highest precision is obtained for m = 8.
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Figure 5. Relative errors for the problem given in Equation (31), for several spline orders
(m = 5, 6, 7, 8, 9). We discretely vary the value for b = 1, 2, 3, 4, and 5, with a fixed stepsize h = 10−3.

4.3. A Matrix Differential Equation

The next example focuses on a type of matrix problem involving complex square
matrices Y(t) ∈ Cr×r, satisfying the general differential equation

Y(4)(t)+ P(t)Y′′′(t)+Q(t)Y′′(t)+ R(t)Y′(t)+ S(t)Y(t) = 0, (32)

where P(t), Q(t), R(t) and S(t) are continuous Cr×r-valued functions on an interval J ⊂ R.
Later on, we will choose these functions to be compatible with Equation (4).

In agreement with Ref. [26], we introduce the concept of a fundamental set of solutions
for Equation (32). Its definition is as follows:
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Definition 1. Consider Equation (32). We say that a set of solutions {Y1, Y2, Y3, Y4} is a funda-
mental set of solutions of Equation (32); in the interval J, if any solution Z of Equation (32) defined
in J, the matrices A, B, C, D ∈ Cr×r exist, uniquely determined by Z, such that

Z(t) = Y1(t)A +Y2(t)B +Y3(t)C +Y4(t)D, t ∈ J. (33)

The following result provides a useful characterization of a fundamental set of solu-
tions for Equation (32), and it may be regarded as a matrix analogue of Liouville’s formula
for the scalar case [26].

Lemma 1. Let {Y1, Y2, Y3, Y4} be a set of solutions of Equation (32) defined on the interval J of the
real line, and let W(t) be the block matrix function

W(t) = ⎛⎜⎜⎜⎝
Y1(t) Y2(t) Y3(t) Y4(t)
Y′

1(t) Y′
2(t) Y′

3(t) Y′
4(t)

Y′′
1 (t) Y′′

2 (t) Y′′
3 (t) Y′′

4 (t)
Y′′′

1 (t) Y′′′
2 (t) Y′′′

3 (t) Y′′′
4 (t)

⎞⎟⎟⎟⎠ ∈ C4r×4r. (34)

Then, the set {Y1, Y2, Y3, Y4} is a fundamental set solutions of Equation (34) on J if there exists
a point t1 ∈ J, such that W(t1) is non-singular in C4r×4r. In this case, W(t) is non-singular for all
t ∈ J.

Proof of Lemma 1. Since {Y1, Y2, Y3, Y4} are solutions of Equation (32), it follows that W(t)
defined by Equation (34) satisfies

W′(t) = ⎛⎜⎜⎜⎝
0 I 0 0
0 0 I 0
0 0 0 I−S(t) −R(t) −Q(t) −P(t)

⎞⎟⎟⎟⎠W(t) , t ∈ J, (35)

where I denotes the identity matrix of Cr×r. Thus, if G(t, s) is the transition-state matrix of
Equation (35), such that G(t, t) = I, see [27] (p. 598), it follows that W(t) = G(t, t1)W(t1) for
all t ∈ J. Hence, the result is established because G(t, s) is invertible for all t, s ∈ J.

Returning to our specific matrix problem at hand, we consider for our test case an
invertible matrix A ∈ Cr×r and the differential equation

Y(4)(x)− A4 Y(x) = 0, 0 ≤ x ≤ 1, (36)

where Y(x) ∈ Cr×r. This equation is a special case of Equation (32) with P(t) = Q(t) =
R(t) = 0 and S(t) = A4. Thus, all coefficients are continuous Cr×r-valued functions on
interval [0, 1]. For the solutions, it is easy to check that the matrix functions

{X1(x) = e(−Ax), X2(x) = e(Ax), X3(x) = cos (Ax), X4(x) = sin (Ax)}
satisfy Equation (36). To show that this set is also a fundamental set of solutions of
Equation (36), we will use Lemma 1. In this case, one obtains

W(x) = ⎛⎜⎜⎜⎝
X1(x) X2(x) X3(x) X4(x)
X′

1(x) X′
2(x) X′

3(x) X′
4(x)

X′′
1 (x) X′′

2 (x) X′′
3 (x) X′′

4 (x)
X′′′

1 (x) X′′′
2 (x) X′′′

3 (x) X′′′
4 (x)

⎞⎟⎟⎟⎠

=
⎛⎜⎜⎜⎜⎝

e(−Ax) e(Ax) cos (Ax) sin (Ax)−Ae(−Ax) Ae(Ax) −A sin (Ax) A cos (Ax)
A2e(−Ax) A2e(Ax) −A2 cos (Ax) −A2 sin (Ax)−A3e(−Ax) A3e(Ax) A3 sin (Ax) −A3 cos (Ax)

⎞⎟⎟⎟⎟⎠
,
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and still needs to confirm that W(x0) is non-singular for some value x0 ∈ [0, 1]. To show
this, we consider x0 = 0 and the matrix block W(0) = M such that

M =
⎛⎜⎜⎜⎜⎝

I I I 0−A A 0 A
A2 A2 −A2 0−A3 A3 0 −A3

⎞⎟⎟⎟⎟⎠
,

where I denotes the identity matrix of Cr×r, and whose determinant ∣M∣ is exactly ∣W(0)∣.
It is straightforward to verify that

⎛⎜⎜⎜⎜⎝
I 0 0 0
0 I 0 0−A2 0 I 0
0 −A2 0 I

⎞⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
N

M =
⎛⎜⎜⎜⎜⎝

I I I 0−A A 0 A
0 0 −2A2 0
0 0 0 −2A3

⎞⎟⎟⎟⎟⎠´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
S

, (37)

where the block matrices N and S are invertible, with results

N−1 =
⎛⎜⎜⎜⎜⎝

I 0 0 0
0 I 0 0

A2 0 I 0
0 A2 0 I

⎞⎟⎟⎟⎟⎠
, S−1 = 1

4

⎛⎜⎜⎜⎜⎝
2I −2A−1 A−2 −A−3

2I 2A−1 A−2 A−3

0 0 −2A−2 0
0 0 0 −2A−3

⎞⎟⎟⎟⎟⎠
.

Next, taking the determinants on both sides of Equation (37), one concludes that∣M∣ ≠ 0, and thus, W(x) is non-singular by Lemma 1. Furthermore, the set

{X1(x) = e(−Ax), X2(x) = e(Ax), X3(x) = cos (Ax), X4(x) = sin (Ax)}
is a fundamental set of solutions for Equation (36).

To carry out the numerics, we now select the initial value problem

Y(4)(x) = A4 Y(x)
Y(0) = I, Y′(0) = 0

Y′′(0) = −A2, Y′′′(0) = 0

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, 0 ≤ x ≤ 1, (38)

which has the unique and exact solution Y(x) = cos (Ax). We choose A = ( 1 1
0 1

). Thus,

the exact solution of Equation (38) is cos (Ax) = ( cos (x) −x sin (x)
0 cos (x) ). In this case,

f (x, Y) = A4 Y in Equation (4), and the corresponding Lipschitz constant is L = 4.23607.
For our example, we consider splines of the seventh order (m = 7). Then, according

to Theorem 1, we obtain the condition h < 3.75257. Therefore, we choose n = 10 partitions
with stepsize h = 0.1.

Table 4 shows the maximum of the difference between the numerical estimates of
our approach and the exact solution by taking the Fröbenius norm of this difference for
each subinterval. Figure 6 analyzes the relative errors for this problem with varying
stepsizes h = 0.1, 0.01, and 0.001. As can be seen, the spline approximation considerably
improves with smaller stepsizes. Apparently, the relative errors accumulate with each
new subinterval as it of course propagates from one to the next subinterval. However, the
approximations are well below the expected global error of O(10−6) for h = 0.1. For h = 0.01,
the local error also remains nearly of the order O(10−12). However, for h = 0.001 and
working in practice with double-precision arithmetic (2−53 ≈ 1.1102 ⋅ 10−16), the truncation
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and rounding errors lastly determine the error margins. Nevertheless, the observed error
of approximately O(10−14) is fully satisfactory in almost all relevant applications.

Table 4. Approximation error for the matrix problem presented in Equation (36), with stepsize h = 0.1.

Interval [0, 0.1] [0.1, 0.2] [0.2, 0.3] [0.3, 0.4] [0.4, 0.5]
Max. error 2.0135× 10−12 7.2457× 10−11 4.3608× 10−10 1.4836× 10−9 3.7673×10−9

Interval [0.5, 0.6] [0.6, 0.7] [0.7, 0.8] [0.8, 0.9] [0.9, 1.0]
Max. error 7.9945× 10−9 1.5020× 10−8 2.5835× 10−8 4.1559× 10−8 6.3425× 10−8
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Figure 6. Relative errors for the matrix problem given in Equation (36), with seventh-order splines
(m = 7) and various stepsizes (h = 0.1, 0.01, and 0.001).

4.4. A Nonlinear Matrix Problem

The following problem is similar to the Problem 4.7 from Ref. [14], but now applied to
a fourth-order equation:

Y(4) = Y2

Y(0) = 0n
Y′(0) = 10−2 In

Y′′(0) = 10−31n
Y′′′(0) = 10−41n

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎪⎭
, x ∈ [0, b], (39)

where 0n, In and 1n are the null, the identity, and all-ones matrices of dimension n, respectively.
We have used the vpa function from the MATLAB Symbolic Math Toolbox for ob-

taining the “exact solution” with 256 digits of precision. All computations have IEEE
double-precision arithmetic with unit round-off u = 2−53 ≈ 1.11 × 10−16. The “exact” so-
lution is obtained whenever two consecutive spline orders (for fixed stepsize) present a
relative error lower than the unit round-off for this accuracy.

Figure 7 shows four graphics of the relative errors at b = 2 corresponding to the
stepsizes h = 0.5, h = 0.1, h = 0.05 and h = 0.01, varying spline order m. As we can see, in
general, the error committed becomes smaller and smaller with the increasing spline order.
Similarly, the error gets smaller as we decrease the stepsize. However, for m = 9, the error
made for h = 0.05 is less than the error made for h = 0.01. Again, this is due to the resulting
increase in the number of arithmetic operations. Table 5 gives the relative errors.
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The five graphics of Figure 8 correspond to the relative errors for the spline orders
m = 5, m = 6, m = 7, m = 8 and m = 9, varying the final points (b = 2, 4, 6, 8, 10), for a fixed
stepsize h = 0.05. As can be seen, the error increases when the value of b grows. Similarly,
the error drops as we decrease the stepsize. The most accurate results are obtained when
m = 9.
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Figure 7. Relative errors at b = 2 for the problem given in Equation (39), for various stepsizes
(h = 0.5, 0.1, 0.05, and 0.01), varying the spline orders.
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Figure 8. Relative errors for the problem given in Equation (39), for various spline orders (m =
5, 6, 7, 8, 9), varying b = 2, 4, 6, 8, 10 and with a fixed stepsize h = 0.05.
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Table 5. Relative errors at b = 2 for the problem given in Equation (39), for various stepsizes
(h = 0.5, 0.1, 0.05, and 0.01), varying the spline orders.

m 5 6 7 8 9

h = 0.5 1.87× 10−4 2.18× 10−5 1.30× 10−6 2.38× 10−8 3.86× 10−10

h = 0.1 7.25× 10−6 1.96× 10−7 2.48× 10−9 9.63× 10−12 4.19× 10−14

h = 0.05 1.81× 10−6 2.48× 10−8 1.58× 10−10 3.09× 10−13 5.24× 10−16

h = 0.01 7.24× 10−8 2.01× 10−10 2.52× 10−13 4.54× 10−15 4.54× 10−15

5. Conclusions

This work describes a numerical procedure for solving fourth-order matrix differential
equations of the type Y(4)(x) = f (x, Y(x)), where Y(x) is a complex matrix—not necessarily
a square matrix—and x is the parameter ranging over a real interval. In an iterative
procedure, step by step, the solutions for all successive subintervals of the full interval are
approximated in terms of matrix splines. This algorithm is straightforward to implement on
a computer, consisting of the symbolical computation for the necessary derivatives and the
subsequent numerical evaluation. The MATLAB code will be available to download [23].

Four standard benchmark tests, two scalar and two matrix cases, demonstrate that
our numerical scheme produces spline approximations with suitable accuracy and is easy
to implement. Moreover, with an appropriately chosen stepsize—provided by the theory
and well adapted to the problem—an ever increasing improvement of the accuracy of the
approximation can be reached up to the very limits of machine precision.
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