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Abstract
Aquifer-stream interactions affect thewater quality inMediterranean areas; therefore, the coupling of
surfacewater and groundwatermodels is generally used to solvewater-planning and pollution
problems in river basins.However, their use is limited becausemodel inputs and outputs are not
spatially and temporally linked, and the data update andfitting are laborious tasks.Machine learning
models have shown great potential inwater quality simulation, as they can identify the statistical
relationship between input and output datawithout the explicit requirement of knowing the physical
processes. This allows the ecological, hydrological, and environmental variables that influencewater
quality to be analysedwith a holistic approach. In this research, feature selection (FS)methods and
algorithms of artificial intelligence—random forest (RF) and eXtremeGradient Boosting (XGBoost)
trees—are used to simulate nitrate concentration and determine themain drivers related to nitrate
pollution inMediterranean streams. The developedmodels included 19 inputs and sampling of nitrate
concentration in 159 surfacewater quality-gauging stations as explanatory variables. Themodels were
trained on 70 percent data, with 30 percent used to validate the predictions. Results showed that the
combination of FSmethodwith local knowledge about the dataset is the best option to improve the
model’s performance, while RF andXGBoost simulate the nitrate concentrationwith high
performance (r= 0.93 and r= 0.92, respectively). Thefinal ranking, based on the relative importance
of the variables in the RF andXGBoostmodels, showed that, regarding nitrogen and phosphorus
concentration, the location explained 87 percent of the nitrate variability. RF andXGBoost predicted
nitrate concentration in surface water with high accuracywithout using conditions or parameters of
entry and enabled the observation of different relationships between drivers. Thus, it is possible to
identify and delimit zones with a spatial risk of pollution and approaches to implementing solutions.

1. Introduction

Nitrate is an important component in the environment. Its availability influences food supply, water and habitat
quality, while toxic effects on streambiota and humanhealth can occurwith high concentrations of nitrate
(Singh et al 2022). Itsmain source in Europe is diffuse pollution (Grinsven et al 2015, Alcon et al 2022), whereby
nitrogen leacheswhen transformed into nitrate form. Themain issue, then, with nitrates is theirmobility in soil,
and the fact that they can persist in surface water (SW) and groundwater (GW) (Defterdarović et al 2021),
contributing to poorwater quality and eutrophication (Pang et al 2022). Currently, the ecological status ofmore
than half thewater bodies in the EU is assessed as poor (Poikane et al 2019), contrary to the requirements of the
Water FrameworkDirective (WFD) andNitrates Directive (Directive 91/676/EEC). Decreasing nitrate
concentration is already a challenge in several areas of Europe (Grizzetti et al 2021, Tzilivakis et al 2021)with
approximately 40 percent of water bodies in Spain assessed as having poorwater quality (Ministerio para la
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transción ecológica y el retoDemográfico 2020). A similar situation occurred in the Júcar River Basin (RB) (the
fourthmost populated region in Spain), where 61 percent of the 124water bodies have been assigned poor
quality status, according to the local hydrological plans (ConfederaciónHidrográfica del Júcar 2022a).

The usualmethods for the assessment of nitrate concentrations consist of numericalmodelling of pollutant
transport, which is an efficient tool for understanding the physical, chemical and biological processes of nitrate
transport (Singh andCraswell 2021). Complete reviews ofmodels used in pollution estimationwere conducted
by Bouraoui andGrizzetti 2014 andYuan et al 2020, however,mostmodels simulate rather simplified scenarios,
such as a single soil type, and layered soil types in a two-dimensional vertical domain, or river–aquifer
interactions are not represented. As a result of the above, the coupling of the twomodels PATRICAL (Pérez-
Martín et al 2014) andRREA (Paredes-Arquiola 2021)was employed to simulate the nitrate concentration in the
Júcar RB, with the combination of themodels representing river-aquifer interactions, the hydrological cycle
altered by humans, irrigation returns, and lateral transfer among aquifers. According to the result reported by
Dorado-Guerra et al 2021, this coupling found 58 percent of lineal correlation between simulated and observed
nitrate concentration. The heterogeneity of the study area, availability of data, and complexity of integrated SW-
GWmodellingmeans other techniques are needed to improve the accuracy and computational cost of the
nitrate concentration predictions.

Recently, artificial intelligence algorithms have been applied in hydrological studies of nitrate pollutionwith
good results. These algorithms can efficiently solve complex non-linear problems, as they learn from the dataset
and therefore do not require pre-defined rules based on expert criteria (Zhu et al 2022). Furthermore, artificial
intelligence algorithms have been found to increase predictive performance across awide range of
environmental processes (Tyralis et al 2019). Presently, ensemble learning such as random forest (RF) and
eXtremeGradient Boosting (XGBoost) are widely adopted inwater science; however, previous investigations
indicated limited application of RF andXGBoost algorithms to predict SWnitrate concentrations (Zhu et al
2022). Furthermore, no such studies were found looking at the Júcar RB. RF’s advantages include the ability to
capture non-linear dependencies and interactions of variables, computational speed, parsimonious
parameterisation, and the use of variable importancemetrics (Tyralis et al 2019). Various studies have been
conducted to predict nitrate distribution patterns inGWusing the RF algorithm (Rodriguez-Galiano et al 2014,
Bao et al 2022,He et al 2022). According toCastrillo and López 2020, RF is suitable for representing the
concentration of nutrients in either a rural or urban catchment. On the other hand, XGBoost can improve the
model’s robustness and running speed by introducing terms for regularisation, column sampling and the
decision tree’s ability to choose the split point (Ma et al 2021, Gervasi et al 2022). In appliedwater quality studies,
XGBoost performed better against other algorithms such as LogiBoost, RF, AdaBoost, and support-vector
machines (Garabaghi 2022, Izzuan et al 2022, Li et al 2022,Nasir et al 2022).

In terms of the prediction of nitrates,many factors have been reported in research studies as influential and
playing a crucial role, including location, nitrogen, ammonium, phosphate, pH level, ambient andwater
temperature, dissolved oxygen, biological oxygen demand, suspended solids, and streamflow (Wu et al 2017,
Bagherzadeh et al 2021). In order to select themost informative variables for dealingwith the problem, feature
selection (FS)methods need to be applied. FS removes irrelevant and noisy features while keeping thosewith
minimum redundancy andmaximum relevance to the target variable, and its application results inmore cost-
effectivemodels and improves algorithmperformance (Effrosynidis andArampatzis 2021). Although there are
many FSmethods,most studies use correlationmethods only, such as Pearson’s correlation. Therefore, a
comparative assessment of the effect of FS on improving the accuracy of simulating nitrate concentration in
surfacewater is still needed.

This study aims to investigate the effect of FSmethods and two artificial intelligence algorithms in terms of
enhancing the prediction performance of SWnitrate concentration inwater bodies of the Júcar RB. The specific
objectives of this paper are fourfold: (1). Defining groups of variables according to the FS result; (2). creating AI
models using algorithms such as RF andXGBoost; (3).finding the best nitrate concentration forecastingmodel;
and (4). finding the features thatmost influence nitrate concentration in the Júcar RB. A total of 19 features were
adopted for application of FSmethods and to construct the proposedmodels: air temperature (Ta),
precipitation, distance from the river source (DRS), streamflow, piezometric level (PL), water temperature (Tw),
pH level, nitrogen (N), nitrite (NO2), ammonium (NH4), biochemical oxygen demand overfive days (BOD5),
suspended solids (SS), dissolved oxygen (DO), total phosphorus (TP), nitrate GW, the Specific Pollution
Sensitivity Index (IPS, in Spanish), the Iberian BiologicalMonitoringWorking Party (IBMWP), the quality
riparian index (QBR, in Spanish), and load of diffuse pollution (DP). The novelty of this study is its inclusion of
ecological indicators and the relationship between river and aquifer with the PL and nitrate in theGW. In areas
withwater scarcity and high river-aquifer connectivity, such as the Júcar RB, where conjunctive use ofGWand
SW is typical, the contribution of theGWcomponent to SWpollution is important.

2

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al



2.Material andmethods

2.1. Case study
The Júcar RB is locatedwithin the Júcar River BasinDistrict in the east of the Iberian Peninsula (Spain) on the
Mediterranean side, with an area of 22,208Km2 (figure 1). The Júcar River has the largest catchment area and the
greatest flow contribution of the Júcar RBDistrict, with 36 surface water bodies and a length of 509 kmon the
main axis, which empties into theMediterranean Sea. In the geomorphological context, themain characteristics
of the basin can be grouped into twomain zones: amountainous interior, with peaks between 1,500 and
2,028 m, butwhich develops below 1,000 mand a second coastal zone,made up of coastal plains. This plain is an
alluvial platform that provides nutrient-rich soil that supportsmost of the irrigated agricultural production, and
is home tomore than 80%of the basin’s total population (ConfederaciónHidrográfica del Júcar 2022b).

Average temperatures range from less than 10 °C inland to 18 °C in the coastal zone (figure 1). The climate
varies fromhumid to semi-arid, with the presence of droughts and a concentration of approximately 42 percent
of the annual rainfall in autumnon the coastal strip. The average annual rainfall is 504 mmyear−1, with a spatial
range of 797 mmyear−1 in the headwater, 368 mmyear−1 in themidstream and 679 mmyear−1 at themouth of
the river at theMediterranean Sea. The contribution to themain river network in the Júcar RB is 1245 hm3

year−1 with 23.9 hm3 year−1 discharging into theMediterranean Sea. The great hydrological variability and the
scarcity of resources in the basin hasmeant that, in order tomeet the demand, especially for irrigationwater, a
large number of hydraulic infrastructures have been built with a total water storage capacity of 2,846 hm3

(ConfederaciónHidrográfica del Júcar 2022b).
According to the dominant lithology of theGWbodies (IGME-DGA2012), the outcrop can be classified as

25 percent detrital and 29 percent carbonate, with the rest being ofmixed origin frombothmaterials. Thewater
bodies on themain axis of the river are classified as gaining stream (64 percent receiving discharges from the
GW), losers (14 percent of the river infiltrating resources into theGW), and variable (22 percent representing
one situation or another depending on the time of the year). The nitrate concentration of 25 percent of the
aquifer is above the good status threshold, located in themidstream and downstream sections (Confederación
Hidrográfica del Júcar 2022a).

The land use in the Júcar RB (EEA 2021) roughly breaks down into forest areas and open spaces (49 percent),
agriculture (49 percent), and artificial surfaces (2 percent). Agriculture is the activity with the highest water

Figure 1. Location of the Júcar River Basin, water sampling network,mean annual precipitation, andmean temperature (1980–2020).
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resource requirement (85 percent of total demand), and the dry season (July andAugust) coincides with the
mostwater demanding period (Ortega-Reig et al 2017). Thewater demand is 1338 hm3 year−1, of which 55
percent is supplied by rivers, and 41 percent by aquifers. The total rainfall area is 209,773 ha, 38 percent of which
corresponds to citrus crops, located in the downstreamof the basin, the area with the highest nitrate
concentration in rivers and aquifers. The second and thirdmost important groups arewinter cereals for grain
and the grape crop, each covering 11 percent of the area. However, net water demand is higher for rice crops
(8011m3 ha−1 year−1), while citrus requires 3890m3 ha−1 year−1 (ConfederaciónHidrográfica del Júcar 2022c).
Citrus orchards and rice cropswith irrigation are themain sources of diffuse pollution in the basin. The largest
cities in the basin are Albacete (385,000 inhabitants) andCuenca (198.842 inhabitants). The discharge
wastewater produced by domestic and industrial uses amounts to 20 hm3 year−1 in the two cities. The greatest
load of nitrate pollution comes from agriculture rather than frompoint sources (Dorado-Guerra et al 2021).

2.2.Observed data
The variable target nitrate concentration, water quality, water quantity and ecological parameters in SW, PL, and
nitrate concentration inGWweremeasured by the Júcar RBDistrict authority and the dataset is available on the
Water Information System for the Júcar RBDistrict report (‘SIA Júcar’ in Spanish: aps.chj.es/siajucar/, accessed
onMarch 26 2021). The different sampling networks are shown infigure 1.

Tw, pH,N,NO2,NH4,BOD5, SS,DO, andTPhave recently been factors used to forecast nitrate concentration
usingmachine learningmodels (Latif et al2020). The variable target nitrate concentration andprevious parameters
have beenmeasured at surfacewater quality gauging stations at 159points since 1990.

Some studies have revealed the dependent relationship between hydrological factors and nitrate
concentration in SWbodies with precipitation and streamflowplaying an important role in the fluctuations
across different temporal scales (Gu et al 2020). Precipitation andTawere acquired fromAEMET (the State
Meteorological Agency in Spain), which has a high-resolution (0.05 degrees) daily gridded precipitation dataset
for Peninsular Spain and the Balearic Islands (version 2) (Peral García et al 2021). The point nearest to the surface
water bodywas taken as the reference for precipitation in each of the river reaches, where the streamflowhas
beenmeasured at 20 points since 1970. GWand SW interactions can be significant whenmodelling nitrate
concentration in rivers in the regionwhere piezometric levels and nitrate concentration in theGWare high
(Rafiei et al 2022). The PL has beenmeasured in 19wells since 1990.

Changes are expected in the community structure after stress levels or pollutant agents and provide an early
indication of possible adverse effects within the ecosystem. The Specific Pollution Sensitivity Index (IPS)
measures the relative abundance of diatom species, and, with a score range from0 to 20, the reacheswith values
above 18 are classified as good quality, while values close to 0 are classified as poor quality (Cemagref 1982). The
Iberian BiologicalMonitoringWorking Party (IBMWP) index is determined by the numbers of
macroinvertebrate families (Alba-Tercedor et al 2002). Index scores range from0 to 235 points, and reaches with
values above 100 are classified as good quality, while values close to 0 are classified as poor quality. The quality
riparian index (QBR) is used to assess the quality of the riparian vegetation, providing a rapid assessment of the
overall condition of the riparian zone using four aspects (total riparian vegetation cover, cover structure, and
quality and degree of naturalness of the stream channel). TheQBR index scores range from0 to 100, with
reaches attaining values above 95 classified as good quality, and values close to 0 as poor (Munné et al 2003).
Ecological indicators have beenmeasured every year since 2009.

Anthropogenic effects have been taken into account when dealingwithDP, which corresponds to 99 percent
of the nitrate load in the Júcar RBDistrict. DP comes from the PATRICALmodel using themethodology
detailed inDorado-Guerra et al 2021.

Once the time series were obtained for each SWbody, themedian of all parameters was calculated on a
quarterly scale, with the exception of temperature and precipitation, whichwere entered into themodel as
cumulative. The analysis was performed for the period between 2009 and 2019, due to ecological indicator data
being available since 2009. Table 1 shows the independent parameters, including data sources and timescale
(Dorado-Guerra et al 2022).

2.3.Methodology
In total, 19 parameters, including climatic, hydrological, hydrogeological, ecological, water quality and
anthropogenic, were used as inputs formodelling the SWnitrate concentration using RF andXGBoostmodels.
Themodels were calibrated and validatedwith 70 and 30 percent of the dataset, respectively, which consisted of
the target value and prediction factors at the location of each SWbody from2009 to 2019. Records withmissing
valueswere excluded from training and test datasets. As a result, some features with only few samples were
excluded and the cross-validation (CV)methodwas applied, which allowed the algorithm to learn from the
totality of the data, so that the data was unbiased. In order to identify the best input combination for nitrate
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estimation, a comprehensive feature selection analysis was carried out using Pearson correlation,mutual
information (MI) and the BorutaShap algorithm. The appliedmethodology is depicted infigure 2.

2.3.1. Feature selection
When the number of inputs is high, selecting the best inputs has an important impact on themodel accuracy and
computational cost (Rodriguez-Galiano et al 2018, Effrosynidis andArampatzis 2021). Therefore, to recognise

Figure 2. Steps for simulating nitrate concentration in surface water using random forest regression andXGBoostmodels. The
abbreviations used are defined in table 1.

Table 1. Summary of the parameters and data sources.

Parameters Abbreviation Monitoring Points Source

Weather StateMeteorological Agency in Spain

(https://aemet.es)
Air temperature (°C) Ta 36

Precipitation (mm) 36

Hydrological—Hydrogeologial SIA Júcar (https://aps.chj.es/siajucar/)
Distance from the river source (Km) DRS

Streamflow (hm3 year−1) 20

Piezometric level (m.a.s.l) PL 19

WaterQuality SIA Júcar (https://aps.chj.es/siajucar/)
Nitrate SW (mgNO3/L) 159

Water temperature (°C) Tw 159

pH pH 159

Nitrogen (mgN/L) N 159

Nitrite (mgNO2/L) NO2 159

Ammonium (mgNH4/L) NH4 159

Biochemical oxygen demand over five days BOD5 159

Suspended solids (mg l−1) SS 159

Dissolved oxygen (mgO2/L) DO 159

Total phosphorus (mgP/L) TP 159

Nitrate GW (mgNO3/L)
Ecological indicators SIA Júcar (https://aps.chj.es/siajucar/)
Specific Pollution Sensitivity Index IPS 36

Iberian BiologicalMonitoringWorking Party

index

IBMWP 36

Quality riparian index QBR 36

Anthropogenic Dorado-Guerra et al 2021

Diffuse pollution DP 36
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the best input combination for estimating nitrate concentration, a feature selection analysis was carried out
using Pearson correlation,MI and the BorutaShap algorithm as a random forest-basedwrapper process.

MI is ameasure of the quantity of information that a randomvariable shares with another variable. The
mathematical definition ofMI is described inCover andThomas 2006, andVergara and Estévez 2014. It is
related linearly to the entropies of variables: a nonlinearmeasure that can be a useful tool to determine the
dominant inputs among large numbers of parameters, thereby supporting the information obtainedwith
Pearson’s coefficient. Features are ranked from largest to smallestMI values in terms of the target.

BorutaShap is awrapper-feature selectionmethodology thatmerges the Boruta algorithmwith the SHAP
(Shapley Additive Explanations) framework for feature importance and ranking, and the sampling procedure
uses smaller sub-samples of the available data at each iteration of the algorithm. Boruta andBorutaShap are
based on aRF algorithm,which is faster than other algorithms, can usually be runwithout parameters tuning,
can capture non-linear dependencies between predictor and dependent variables and provides a numerical score
of feature importance (Kursa andRudnicki 2010). The BorutaShap algorithmuses the following process
(Keany 2021): (1). create shadow features (new copies of all the features in the dataset), and add the shadow
features back to the dataset; (2). estimate the feature importancemetrics of original and shadow features; (3).
generate a threshold using themaximum importance score of the shadow features, and assign a hit to any
features that are above the threshold; (4). carry out a two-sided t-test of equality for each unassigned feature; (5).
classify the features into three groups— features with an importance significantly above the threshold
(‘important’), those that outperform at a less than the threshold (‘tentative’), and features with an importance
significantly below the threshold (‘unimportant’), which are removed from the process; and 6. delete all shadow
features and repeat the procedure until an importance has been assigned to each feature. The Boruta-SHAP
library for Pythonwas then applied to the feature selection (Keany 2020).

2.3.2.Machine learningmodels
Supervised learning algorithms, such asRF, are increasingly beingused in SWpollutionmodelling (e.g., Thornhill
et al2017, Jamei et al2022). RF is an assemblage of a largenumberof classificationor regression trees,whichuses a
sampleof thedata tobuild amodel. For regression targets, RFgenerates several decision trees and aggregates the
predictionsusingbootstrapping, thereby averaging thepredictions to construct amodel usingonly a proportionof
thepredictors (Breiman2001). The correlationbetweendecision trees decreases, thereby improving thepredictive
power and reducing the computational complexity of the algorithm (Tyralis et al2019).

XGBoost is an enhancement of the gradient-boostingdecision tree algorithm (ChenandGuestrin 2016)with the
mainobjective to improve the accuracy and speedof themodel. Eachupdate in the algorithm is basedon the
prediction results of the previousone; by adding anew tree to adjust the residual error between theprediction results
of the previous tree and the true value, a newmodelwas formed andused as the basis for thenextmodel learning (J Li
et al2022). XGBoost increases theweight of training sampleswithhigh error rates andprocesses themmultiple times
with the aimof reducing the error rate (Kiangala andWang2021, Singha et al2021). Therefore, this algorithm is
insensitive tooutliers and consistent against overfitting,which simplifiesmodel selection (Shahhosseini et al2019).
For themathematical details of the algorithm, seeChen andGuestrin2016.

TheML library packages within Python, scikit-learn andXGBoost, were used to carry out the RF and
XGBoost algorithms andCV. Eachmodel was validated using aK–fold CVwith 10 repeats. To conduct RF and
XGBoost analysis, a grid search formodel performance optimisationwas carried outwith theCV; the
hyperparameter ranges and optimised values detected are shown in table 2.

2.3.3. Prediction performance assessment
Model performancewas evaluatedusing themodified versionof theKling-GuptaEfficiency (KGEM) and its three
components (equation1): r represents the correlation coefficient between the simulated andobserved time series; b
(bias) is the ratio between the simulated andobservedmeans (μ) (equation2); andγ is the ratio of the coefficients of
variation forboth time series (equation3). Theoptimal value of theKGEMand for eachof the three components is 1.
TheKGEMindicator provides a useful assessment ofmodelperformancedue to its decomposition into correlation
(r), bias (b), and variability (γ). In thisway, themodel’s ability to reproduce the temporal dynamics anddistribution
of nitrate concentration canbemeasured (Gupta et al2009,Kling et al2012).

KGEM r1 1 1 1 12 2 2( ) ( ) ( ) ( )b g= - - + - + -

2sim

obs

( )b
m
m

=

Coefficient of variation

Coefficient of variation
3sim

obs

( )g =
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3. Results and discussion

3.1. Feature selection
Pearson’s coefficient demonstrated the linear correlation between all candidate input parameters with the
output parameter (table 3). TheN (rp= 0.92), nitrate-GW (rp= 0.70), DRS (rp= 0.61), and PL (rp= 0.58) values
showing higher Pearson correlation and the Tw (rp=−0.07) andTa (rp= 0.05) valueswith the lowest Pearson
correlationwere identified as themost and the least influential parameters, respectively, when estimating the
nitrate values. Regarding the predictor variables, a strong correlation ofDRSwas foundwith the PL (−0.95).

Table 3 shows the sensitivity analysis of appliedMI for selecting dominant inputs. The highestMI scores
were obtainedwith theN (1.15), PL (0.90), DRS (0.85), and nitrate-GW (0.68), and the lowest withDBO5 (0.00),
SS (0.06), andDO (0.08). BorutaShapwas applied to verify the Pearson andMI analysis, and the relative
importance of features according to BorutaShap (table 3) indicated thatN,DRS, piezometric level, IBMWP,TP
and pHwere themost important features for predicting nitrate concentration. The tentative features wereDP
and precipitation; the otherswere considered unimportant, and they should be omitted from themodelling
process. The Pearson’s coefficient,MI andBorutaShap values agreed on the threemost influential parameters
(N, PL andDRS), while the less influential parameters changed depending on the FSmethod.

The output of the FSmethodswas used to choose the input groups for the algorithms (table 4). Group 1was
composed of 19 features, andGroup 2 of the 10 features with the highest value of theMI and Pearson correlation
coefficient. Group 3was similar toGroup 2 but one variable (QBR)was excluded to increase the number of data;
Group 4was composed of the features selected using BorutaShap, andGroup 5was amixture of the results
foundwithMI, Pearson’s coefficient (Group 3) andBorutaShap (Group 4). InGroup 5, PLwas excluded due to

Table 2.Hyperparameter ranges and optimised values detectedwith grid search.

Algorithms Parameter Range Optimumvalue

Random forest regression n_estimators 100 to 1000 500

max_depth 80, 90, 100, 110 110

min_samples_leaf 2–10 3

min_samples_split 2–12 10

Bootstrap True, False False

XGBoost regressor learning_rate 0.01, 0.05, 0.1, 0.2, 1 0.1

max_depth 1–10 3

Gamma 0–5 0

min_child_weigh 1–10 4

Table 3.Variable importance information obtained after the analysis ofmutual information and Pearson’s coefficient and running the
BorutaShap algorithm.

Features Mutual Information Pearson’s Coefficient
BorutaShap

Mean Importance Decision

Nitrogen (N) 1.18 0.94 4.53 Accepted

Piezometric level (PL) 0.87 0.48 −0.11 Accepted

Distance from river source (DRS) 0.81 0.58 −0.19 Accepted

Nitrates groundwater 0.68 0.71 −0.23 Rejected

Riparian forest quality (QBR) 0.68 0.50 −0.21 Rejected

Specific pollution sensitivity index (IPS) 0.64 0.53 −0.20 Rejected

Benthonic fauna of invertebrates (IBMWP index) 0.52 0.46 −0.17 Accepted

Nitrites (NO2) 0.46 0.31 −0.21 Rejected

Total phosphorus (TP) 0.40 0.28 −0.09 Accepted

pH 0.30 −0.51 −0.10 Accepted

Ammonium (NH4) 0.25 0.34 −0.19 Rejected

Streamflow 0.20 0.30 −0.18 Rejected

Water temperature (Tw) 0.18 0.07 −0.17 Rejected

Diffuse pollution (DP) 0.14 0.16 −0.19 Tentative

Precipitation 0.13 0.17 −0.22 Tentative

Air temperature (Ta) 0.13 −0.06 −0.18 Rejected

Dissolved oxygen (DO) 0.08 −0.26 −0.19 Rejected

Suspended solids (SS) 0.06 0.15 −0.23 Rejected

Biochemical oxygen demand over five days (BOD5) 0.00 0.18 −0.23 Rejected
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data availability and because it demonstrated a significant correlationwithDRS, which could present
collinearity. NO2was excluded due to data availability and because it did not show a strong relationshipwith
nitrate concentration.

3.2.Modelling assessment
The nitrate concentration in the Júcar RBwas predicted using RF andXGBoost algorithmswithfive groups of
predictors. TheKGEM indicator and its three parameters were calculated to evaluate the prediction accuracy of
thesemodels, and the values obtained in the validation stage are shown infigures 3(a) and (b). In allmodels with
the RF algorithm the lineal correlation between simulated and observed is greater than 0.88, the bias was smaller
than 10 percent and errors in the simulated variability less than 9 percent. TheKGEMvalue ranged between 0.85
and 0.90, whichmeans that there were no significant changes in themodel’s performancewithin the different
groups. The difference in each of the parameters turned out to be only a few percent of the overall achievable
range.However, a 4-percent increase in linear correlationwas foundwithGroup 3when compared toGroup 1.
The best KGEM indexwas foundwithinGroup 5, which decreased the bias and increased lineal correlation.
Meanwhile, the probability density function (PDF) of the residuals in validation shows (figure 3(c)) that all
groupswith RF algorithmwerewell-proportionedwith lowermean and standard deviation values with high
accumulation of errors in zero values. The differences observed between groupswith theKGEM index are
supported by the PDF.

In themodels with XGBoost algorithm in the validation stage, the KGEM index rangewas between 0.77 and
0.87, the lineal correlation greater than 0.86, the bias smaller than 6 percent, and the variability smaller than 16
percent (figure 3(b)). In general, the XGBoost algorithm showed a systematic tendency to slightly underestimate
the nitrate concentration in the validation. Group 5 showed the best result, decreasing the bias in simulated to 4
percent (figure 3(b)), and improving themodel performance by 2 percent comparedwithGroup 1. The PDF
shows that the errors of Group 5werewell-proportionedwith lowermean and high accumulation in zero values,
whereas the other groups showed a higher standard deviation of errors (figure 3(d)). However, after using CV,
the predictive performance of themodels withXGBoost improved and reached a behavior similar to RF
(figure 3(f)).

Group 5, which consisted of the variables with the bestMI andBoruraShap scores, was identified as the
optimal input combination for the two algorithms. It provided high lineal correlation, was unbiased (RF) or
slightly biased (XGBoost), and the variability was smaller.Moreover,mean and standard deviation of errors had
high accumulation in zero values. Likewise, theweakest performances in the validationwith the two algorithms
were related toGroup 2, which consisted of the 10 variables with the bestMI scores. It demonstrated high lineal
correlation, and small bias; however, errors in the simulated variability are widespread (38 percent). After
applyingCV,Groups 1, 2, 3 and 4 displayed a similar behavior (figures 3(e) and (f)), andGroup 5 still produced
the best performance.

The plots simulated and observed nitrate values are shown infigure 4, comparing the performance of the two
predictive algorithms applyingCVwithGroup 5. Themodels showed a pattern of nitrate distribution along the
river similar to the observed data, with differences existingmainly downstreamof thewatershed, where the
models slightly underestimated the nitrate concentration (figures 4(a) and (b)). In general, the probability of
identifying high nitrate concentrations increased in themiddle and downstreamof thewatershed. Themodels
fit the temporal variability of nitrate concentrations along the river. There had been a slight decrease in recent
years, and this behavior is represented in themodels.Moreover, the seasonal variability was in accordance with
the observed values, with nitrate concentration higher in autumn andwinter, and decreasing in summer.
However, there was a slight underfitting in the values simulated in autumn andwinter with the two algorithms
downstreamof the basin (figures 4(c) and (d)).

Table 4. Input combinations based onPearson’s coefficient,mutual information and the BorutaShap algorithm to estimate nitrate
concentration.

Models Input Combinations Input number Data quantity

Group 1 N, PL, DRS, nitrate-GW,QBR, IPS, IBMWP,NO2, TP, pH,NH4, streamflow, TW,DP, pre-

cipitation, Ta, DO, SS, BOD5

19 240

Group 2 N, PL,DRS, nitrate-GW,QBR, IPS, IBMWP,NO2, TP, pH 10 265

Group 3 N, PL,DRS, nitrate-GW, IPS, IBMWP,NO2, TP, pH 9 420

Group 4 N, PL, DRS, IBMWP, TP, pH,DP, precipitation 8 427

Group 5 N,DRS, nitrate-GW, IPS, IBMWP, TP, pH,DP, precipitation 9 648
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3.3. Importance of conditioning factors
The importance of the driving features in themodelling process is shown infigure 5.Nwas themost important
feature in the prediction of nitrate concentration using RF andXGBoost algorithms. This result agrees with the
MI, Pearson’s coefficient and BorutaShap; however, therewere differences between groups and algorithms in
terms of ranking the features.Most important among the other features for the prediction of nitrate
concentration are the following: DRS inGroup 5withRF, andGroups 4 and 5withXGBoost; nitrate-GW in
Groups 3 and 5with both algorithms; precipitation inGroups 4 and 5with both algorithms; PL in all groups in
both algorithms (with the exception ofGroup 5); and pH and total P in all groups in both algorithms. Group 2,
which performedwith less accuracy using the two algorithms, gave a high importance (88 percent RF—90
percent XGBoost) toN, while inGroup 5withRF, the importance ofN is 57 percent. Of all the variables used in
the prediction of nitrate concentration, the least contributing variables wereNO2,NH4,DO, SS, BOD5, Tw, Ta,
streamflow andQBR.

4.Discussion

4.1. Comparison ofmodels and feature selection approaches
Themodels usedwith theRF andXGBoost algorithms are reliable when estimating the nitrate concentration in
the Júcar RB.However, the difference in the calculation procedures of feature selectionmethods and algorithms

Figure 3.TheKGEMcomponents for assessing the prediction of nitrate concentration usingRF (a) andXGBoost (b) algorithms.
Probability density function of residuals for the prediction of nitrate concentration using RF (c) andXGBoost (d) algorithms in the
validation stage and after apply K–fold cross validationwith 10 repeats (e and f). r= correlation coefficient;β= bias ratio; γ= ratio of
the coefficients of variation; KGEM=ModifiedKling-Gupta Efficiency.

9

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al



Figure 4. Linear regression for simulated and observed values ofGroup 5 (bestmodel) applying RF (a) andXGBoost (b) algorithms. (c)
Monthly nitratemean concentration observed (box squares without including outliers), simulated (continuous line, first and third
lower and upper shaded quartiles, respectively) and (d) seasonal nitrate concentration along the Júcar river Basin applying RF and
XGBoost algorithms.
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resulted in differentmodel performances.Models inGroup 2, consisting of the 10 features with the bestMI
score, performed theworst with the two algorithms. This could be becauseMI assesses the features
independently without considering their context, and the features were selected in a univariate way. Therefore,

Figure 5. Feature importance results of the RF andXGBoost algorithmswith different groups of variables.
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MIwas not able to deal directly with the problemof redundant inputs (Nourani et al 2017, Effrosynidis and
Arampatzis 2021).Models inGroup 3were similar toGroup 2, but the removal of a featurewith only few data
improved themodel performance by 2 percent.Models inGroup 4, consisting of the BorutaShap results
(selection of 8 out of 19 features) improved themodel performance fromGroup 2 by 2 percent. Although
BorutaShap is a new algorithm, it has recently been used in different fields, performingwell in terms of feature
reduction and predictive accuracy (Kleiman et al 2021, Ghosh andChaudhuri 2022, Peiró-Signes et al 2022). It
reduces the number of features by including only the relevant oneswithout compromising themodel
performance, and the Shap value embedded in the algorithm adds an important explanatory capacity that
reduces the overfitting problem (Ghosh andChaudhuri 2022).

The highest performancewas foundwithGroup 5 (mergingGroups 3 and 4)with the two algorithms.
Combining the results of the two selectionmethods and knowledge of the data allowed variables that were highly
correlated and those that provided few data to be excluded. PL depends onDRS, and removing PL from the
predictors reduced themodel complexity and the cost of prediction and increased the sample size of the dataset.
Sample size had a significant impact onmodelling and prediction performance in this study, and the increase of
training data and smaller set of features decreased the variance among the residuals. In this way, the performance
of themodel was improved. Similar results were found by Shahhosseini et al 2019, Zamani Joharestani et al 2019
and Effrosynidis andArampatzis 2021.

Comparing the twoalgorithms in the validation stage forGroup5, theRF resulted in a slightly better performance
(3percent) in respect tobias andvariance.However, after applyingCVtheperformanceofXGBoost improved (4
percent), whileRF remained the same.Therefore, either algorithmcouldbeused fornitrate prediction, as the
difference between the twoalgorithmswas 1percent.The improvementwithCV for theXGBoost algorithmwas
possibly due to the fact that successive trees gave extraweight topoints incorrectly predictedduring theprevious
analysis andfinally aweighted votewas taken for theprediction (Fan et al2018). After usingCV, bothmodelswere
able to recognise the complex interactionsbetween conditioning factors, andTomperi et al2017 reported an increase
in the accuracyof thepredictionofAImodels after applying theCVmethod.

On the other hand, the results revealed how sensitive XGBoost is to thewrong features being selected. In
Groups 2, 3, and 4, theXGBoostmetrics decreased for the validation dataset. In contrast, RF showed amore
robustmodel, and introducingwrong features to RF did not change themodel performance considerably, as it
maintained a similar performance level. In other research using RF andXGBoost algorithms, the authors
reported that they obtained the best performancewith XGBoost, although the difference with RFwas small (Fan
et al 2018, Zhong et al 2019, Kiangala andWang 2021, Peiró-Signes et al 2022). XGBoost andRF are ensemble
algorithms; therefore, it is difficult to explain their predictions, and each one has different limitations. The
performance of RF depends on the amount of data used in the training dataset (Ghimire et al 2022), while
XGBoost presents less accurate results when dealingwith imbalanced data (Kiangala andWang 2021).

Themodels usedwithXGBoost andRF algorithms are substantially higher than the traditional hydrological
models applied in the Júcar RB. The coupling of hydrological andwater qualitymodels in the Júcar RB found 58
percent of lineal correlation, a bias smaller than 20 percent, and the variability was 25 percent (Dorado-Guerra
et al 2021).ML algorithms improved the correlation, bias and variabilitymeasures reachedwith the coupling of
hydrologicalmodels in the Júcar RB by 40 and 37 percent with RF andXGBoost algorithms, respectively, with
the lineal correlation the parameter that improved themost. Similar results were found byWu et al 2017, who
reported that AI algorithms are statistically better than hydrologicmodels.

4.2. Use of extrinsic features of surfacewater bodies and their effect on nitrate pollution
It can be inferred that it is possible tomodel the nitrate concentration in SW in the Júcar RBusingN,DRS, P, IPS
pH, nitrate-GW, precipitation, DP and IBMWP, the features representative of weather, location, ecological
status, water quality and anthropogenic effects. This approach could be considered as amethodology to predict
nitrate concentration, especially in data-scarce areas, but itmust be validated in the other catchments of the
region.Other studies showed that location and precipitationwere important driving factors affectingwater
quality in rivers and aquifers (Ha et al 2020,He et al 2022,Wang et al 2022).

The results show that the high nitrate concentration in the Júcar RB is linked to high nitrogen zones
(figure 6), and that the relationship between these two variables is lineal as shown by Pearson’s correlation.Other
studies showed similar results, inwhich nitrogenwas themain predictor of nitrates (Oehler and Elliott 2011).
Nitrogen leacheswhen transformed into nitrate form, and themain issue thenwith nitrates is theirmobility in
the soil and the fact that they can persist in SWandGW (Defterdarović et al 2021). Agricultural activity is the
main source of nitrogen in thewatershed (Dorado-Guerra et al 2021); therefore, DP is themost probable cause
for the higher nitrate probabilities and the increase of the nitrate concentrations in the river.

TheDRS exhibited a positive effect on nitrate concentration in SW in the Júcar river (figure 6), and a similar
result inGWwas found byRodriguez-Galiano et al 2014 andHe et al 2022. Thismay be because the nitrate
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pollution is associatedwith agricultural zones located in the downstreamof thewatershed, while in the upstream
the land use is forest (Dorado-Guerra et al 2021). Therefore, DRS contributed significant information to help
identify polluted areas.

Precipitationwas themost influentialmeteorological variable with relative importance, though aweak
positive effect of precipitation on SWnitrate was detected by the two algorithms used. In this study, precipitation
above 500 mm/trimester was associatedwith high nitrate concentration in SW (figure 6); as nitrate inputs were
mainly fromdiffuse sources, rise of nitrate concentration takes placemainly inwinter and springwhen
precipitation is high (figures 4(c) and (d)). However, the influence of precipitation on the SWnitrate
concentration is complex, as shown infigure 6. For example, high rainfall increases the streamflow resulting in
the dilution of SWchemical components (Romero et al 2007; Temino-Boes et al 2021), which can also promote
crops to uptake nitrogen (Sieling andKage 2006). The precipitationwould then have positive and negative
effects on nitrate concentration in SW.

TPwas another important factor for predicting nitrates in SW,with similar results found byOehler and
Elliott 2011. TP above 0.1 mg l−1 was associatedwith high nitrate concentration in the Júcar RB (figure 6), which
might be an indicator of theN:P ratio controlling importantN speciation processes through temporary plant
uptake and decay (Ensign andDoyle 2006). As for pH, therewas a negative relationshipwith nitrate
concentration, perhaps due to the fact that increasing pH affectsmicrobial activity and decreases the nitrification
process (Chen et al 2006), and pH levels above 8.25 and below 7.4were associatedwith the lowest nitrate

Figure 6. Scatter plot overlaid on a density contour plot to show a correlation between predictor features of group 5withRF algorithm
and the target variable.
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concentration (figure 6). The relationship between the high nitrate concentration inGWwas not clearly related
to the high nitrate levels in SW, because this relationship depends on the river-aquifer interaction. However, in a
previous study, it was shown that there is a high linear correlation between nitrate content in bothGWand SW
when river and aquifer are connected (Dorado-Guerra et al 2021).

Nitrate is an important predictor of diatoms index IPS andmacroinvertebrates index IBMWP (Valerio et al
2021), and several studies have shown that diatomdistribution is highly dependent on nitrates, which have fast
growth rates that allow them to react faster to chemical changes and detect the first step of degradation (Doung
et al 2007, Tan et al 2017, Karaouzas et al 2019). The relationship between nitrate and IPS and IBMWP indices
was negative in this study (figure 6); IPS values above 16were relatedwith the lowest nitrate concentration, while
IBMWPvalues above 80were relatedwith the lowest nitrate concentration (figure 6).

5. Conclusions

This paper explores thepotential of feature selection andartificial intelligence algorithms tomodel nitrate
concentration in surfacewater bodies in areaswithwater scarcity andhigh interactionbetween rivers and aquifers.RF
andXGBoost successfullymodelled thenitrate concentration in the JúcarRBand enabled recognitionof the complex
interactions between conditioning factors. FSmethods areuseful tools, but theyneed tobe combinedwith local
knowledgeof thedataset, as the amount of data available andhigh correlationbetweenpredictor features affect the
performanceof themodels.Nitrogen, total phosphorus and locationwere the strongest predictor factors for nitrate
concentration in surfacewater bodies in the JúcarRB, because they accounted for approximately 88percent of the
nitrate variation.On theother hand,RFandXGBoostmodels obtainedbetter performance thanhydrologicalmodels
in thepredictionof nitrate concentration in surfacewater bodies of JúcarRB.

Acknowledgments

Weappreciate the help provided by the Júcar River BasinDistrict Authority (CHJ), who gatheredfield data. The
first author’s research is partially funded by a PhD scholarship from the food research streamof the program
‘Colombia Científica—Pasaporte a la Ciencia’, granted by theColombian Institute for Educational Technical
Studies Abroad (InstitutoColombiano deCrédito Educativo y Estudios Técnicos en el Exterior, ICETEX). The
authors thank the Spanish ResearchAgency (AEI) for thefinancial support to RESPHIRAproject (PID2019-
106322RB-100)/AEI/10.13039/501100011033.

Data availability statement

The data that support thefindings of this study are openly available at the followingURL/DOI: https://doi.org/
https://aps.chj.es/siajucar/.

Conflict of interest

The authors declare no conflicts of interest.

ORCID iDs

Diana YaritzaDorado-Guerra https://orcid.org/0000-0001-8662-0160
GeraldCorzo-Pérez https://orcid.org/0000-0002-2773-7817
Javier Paredes-Arquiola https://orcid.org/0000-0003-3198-2169
Miguel Ángel Pérez-Martín https://orcid.org/0000-0002-4733-0862

References

Alba-Tercedor J et al 2002Caracterización del estado ecológico de ríosmediterráneos ibéricosmediante el índice IBMWP (antes BMWP’)
Limnetica 21 175–85

Alcon F, Zabala A andMartínez-Paz J 2022Assessment of social demand heterogeneity to inform agricultural diffuse pollutionmitigation
policies Ecol. Econ. 191

Bagherzadeh F,MehraniM, BasirifardMandRoostaei J 2021 Journal of water process engineering comparative study on total nitrogen
prediction inwastewater treatment plant and effect of various feature selectionmethods onmachine learning algorithms
performance . J.Water Process Eng. 41 102033

14

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al

https://doi.org/https://aps.chj.es/siajucar/
https://doi.org/https://aps.chj.es/siajucar/
https://orcid.org/0000-0001-8662-0160
https://orcid.org/0000-0001-8662-0160
https://orcid.org/0000-0001-8662-0160
https://orcid.org/0000-0001-8662-0160
https://orcid.org/0000-0002-2773-7817
https://orcid.org/0000-0002-2773-7817
https://orcid.org/0000-0002-2773-7817
https://orcid.org/0000-0002-2773-7817
https://orcid.org/0000-0003-3198-2169
https://orcid.org/0000-0003-3198-2169
https://orcid.org/0000-0003-3198-2169
https://orcid.org/0000-0003-3198-2169
https://orcid.org/0000-0002-4733-0862
https://orcid.org/0000-0002-4733-0862
https://orcid.org/0000-0002-4733-0862
https://orcid.org/0000-0002-4733-0862
https://doi.org/10.23818/limn.21.24
https://doi.org/10.23818/limn.21.24
https://doi.org/10.23818/limn.21.24
https://doi.org/10.1016/j.ecolecon.2021.107216
https://doi.org/10.1016/j.jwpe.2021.102033


BaoQ, AnD, ThangN, RezaA and IslamT 2022Random forest and nature-inspired algorithms formapping groundwater nitrate
concentration in a coastalmulti-layer aquifer system J. Clean. Prod. 343 130900

Bouraoui F andGrizzetti B 2014Modellingmitigation options to reduce diffuse nitrogenwater pollution from agriculture Sci. Total Environ.
468–469 1267–77

Breiman L 2001Random forestsMach. Learn. 45 5–32
CastrilloM and LópezA 2020 Estimation of high frequency nutrient concentrations fromwater quality surrogates usingmachine learning

methodsWater Res. 172
Cemagref 1982 Etude desméthodes biologiques d’appréciation quantitative de la qualité des eaux. rapport qe lyon&mdash agence de l’eau

rhone-méditerranée- corse
Chen S, Ling J and Blancheton J 2006Nitrification kinetics of biofilm as affected bywater quality factorsAquac. Eng. 34 179–97
ChenT andGuestrin C 2016XGBoost: a Scalable tree boosting system Preprints, the 22ndACMSIGKDD Int. Conf. 19
ConfederaciónHidrográfica del Júcar 2022a Plan hidrológico de la demarcación hidrográfica del Júcar.Memoria -anejo 12. Evaluación del

estado de lasmasas de agua superficial y subterránea. Ciclo de planificación hidrológica 2022-2027.(https://chj.es/Descargas/
ProyectosOPH/Consulta%20publica/PHC-2021-2027/PHJ/PHJ2227_CP_Anejo12_Estado.pdf) (accessed on 10March 2022)

ConfederaciónHidrográfica del Júcar 2022b Plan hidrológico de la demarcación hidrográfica del JúcarMemoria. Ciclo de planificación
hidrológica 2022-2027. (https://chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-
2021-2027/PHC/Documentos/PHJ2227_Memoria_20220329.pdf) (accessed on 12May 2022)

ConfederaciónHidrográfica del Júcar 2022c Plan hidrológico de la demarcación hidrográfica del Júcar.Memoria -anejo 7. Evaluación de las
presiones, impacto y riesgo de lasmasas de agua. Ciclo de planificación hidrológica 2022-2027. (https://chj.es/es-es/
medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Secretaria%20General%
20Tecnica/PHJ2227_SGT_Anejo07_InvPresiones.pdf) (accessed on 22 September 2022)

Cover TMandThomas J A 2006 Elements of information theory second edition solutions to problems. (https://cpb-us-w2.wpmucdn.
com/sites.gatech.edu/dist/c/565/files/2017/01/solutions2.pdf). (accessed on 15October 2021)

Defterdarović J et al 2021Determination of soil hydraulic parameters and evaluation ofwater dynamics and nitrate leaching in the
unsaturated layered zone: amodeling case study in central croatia Sustain. 13 1–20

Dorado-GuerraDY, Corzo-PerezG, Paredes-Arquiola J and Perez-MartinMA2022Dataset on surfacewater features of the Júcar River
BasinValencia (Spain) to Predict Nitrate Concentration. 4TU. ResearchData. Dataset.

Dorado-GuerraDY, Paredes-Arquiola J, Pérez-MartínMÁ andHermannHT2021 Integrated surface-groundwatermodelling of nitrate
concentration inmediterranean rivers, the júcar river basin district, Spain Sustain. 13

DoungT, Feurtet-Mazel A, CosteM,DamKandBoudouA 2007Dynamics of diatom colonization process in some rivers influenced by
urban pollution (Hanoi , Vietnam )Ecol. Indic. 7 839–51

Effrosynidis D andArampatzis A 2021An evaluation of feature selectionmethods for environmental data Ecol. Inform. 61 101224
Ensign SH andDoyleMW2006Nutrient spiraling in streams and river networks J. Geophysical Research: Biogeosciences 111 1–13
European Environmental Agency (EEA) 2021CorineLandCover. 2021. Available online: https://eea.europa.eu/publications/COR0-

landcover (accessed on 30March2021)
Fan J, YueW,WuL, Zhang F, CaiH,WangX, LuX andXiang Y 2018Evaluation of SVM, ELMand four tree-based ensemblemodels for

predicting daily reference evapotranspiration using limitedmeteorological data in different climates of ChinaAgric. For.Meteorol. 263
225–41

Garabaghi FH2022 Performance Evaluation ofMachine LearningModels with Ensemble Learning Approach inClassi cation ofWater
Quality Indices Based onDifferent Subset of FeaturesResearch Square 1–36

Gervasi O,Murgante B,Misra S,Maria A andGoosG 2022Computational Science and Its Applications—ICCSA 13379, 1–733
Ghimire S, DeoRC,Casillas-PérezD and Salcedo-Sanz S 2022 Boosting solar radiation predictionswith global climatemodels,

observational predictors and hybrid deep-machine learning algorithmsAppl. Energy 316 119063
Ghosh I andChaudhuri TD2022 Integrating navier–stokes equation and neoteric iforest-borutashap-facebook prophet framework for

stockmarket prediction: an application in indian context Expert Syst. Appl. 210
GrinsvenH JMV, Bouwman L, CassmanKG, EsHM,Van,MccrackinML andBeusenAHW2015 Losses of ammonia and nitrate from

agriculture and their effect on nitrogen recovery in the european union and the united states between 1900 and 2050 J. Environ. Qual.
44 356–67

Grizzetti B, VigiakO,Udias A, AloeA, ZanniM, Bouraoui F and Pistocchi A 2021HowEUpolicies could reduce nutrient pollution in
European inland and coastal watersGlob. Environ. Chang. 69 102281

GuX, SunH, TickGR, LuY, Zhang Y, Zhang Y and SchillingK 2020 Identification and scaling behavior assessment of the dominant
hydrological factors of nitrate concentrations in streamflow J. Hydrol. Eng. 25 06020002

GuptaHV,KlingH, YilmazKK andMartinezGF 2009Decomposition of themean squared error andNSE performance criteria:
Implications for improving hydrologicalmodelling J. Hydrol. 377 80–91

HaN,NguyenHQandCungN2020 Estimation of nitrogen and phosphorus concentrations fromwater quality surrogates usingmachine
learning in the Tri AnReservoir, Vietnam EnvironMonit Assess 192

He S,Wu J,WangD andHeX2022 Predictivemodeling of groundwater nitrate pollution and evaluating itsmain impact factors using
random forestChemosphere 290 133388

IGME-DGA2012Trabajos de la Actividad 4 ‘Identificación y caracterización de la interrelación que se presenta entre aguas subterráneas,
cursosfluviales, descargas pormanantiales, zonas húmedas y otros ecosistemas naturales de especial interés hídricoDHJ. Institut. 1-
141 (https://chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/ReferenciasBibliograficas/
AguasSubterraneas/IGME-DGA,2009.Act04_RelacSuperf_SubtMEMORIA%20RESUMEN.pdf) (accessed on 20October 2021)

IzzuanH, Yusri H, AfhzanA, RahimA, Lailatul S,HassanM, Shairah I,HalimA andAbdullahNE 2022WaterQuality ClassificationUsing
SVMAndXGBoostMethod. IEEE 13thControl Syst. Grad. Res. Colloq. 231–6

JameiM,KarbasiM andMalik A 2022Developing hybrid data-intelligentmethod using Boruta-random forest optimizer for simulation of
nitrate distribution patternAgriculturalWaterManagement 270 107715

Karaouzas I, Smeti E, Kalogianni E and SkoulikidisNT2019 Ecological statusmonitoring and assessment inGreek rivers : Do
macroinvertebrate and diatom indices indicate same responses to anthropogenic pressures ? Ecol. Indic. 101 126–32

Keany E 2020 BorutaShap : Awrapper feature selectionmethodwhich combines the Boruta feature selection algorithmwith Shapley values
(https://doi.org/10.5281/ZENODO.4247618) (https://zenodo.org/record/4247618#.Y6HbjnbMLIU)(accessed on 9May 2022)

Keany E 2021 BorutaShap 1.0.16 [WWWDocument]. URL (https://pypi.org/project/BorutaShap/) (accessed 8.5.22)
Kiangala S K andWangZ 2021An effective adaptive customization framework for smallmanufacturing plants using extreme gradient

boosting-XGBoost and random forest ensemble learning algorithms in an Industry 4.0 environmentMach. Learn. with Appl. 4 100024

15

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al

https://doi.org/10.1016/j.jclepro.2022.130900
https://doi.org/10.1016/j.scitotenv.2013.07.066
https://doi.org/10.1016/j.scitotenv.2013.07.066
https://doi.org/10.1016/j.scitotenv.2013.07.066
https://doi.org/10.1016/j.scitotenv.2013.07.066
https://doi.org/10.1016/j.scitotenv.2013.07.066
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1023/A:1010933404324
https://doi.org/10.1016/j.watres.2020.115490
https://doi.org/10.1016/j.aquaeng.2005.09.004
https://doi.org/10.1016/j.aquaeng.2005.09.004
https://doi.org/10.1016/j.aquaeng.2005.09.004
https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2021-2027/PHJ/PHJ2227_CP_Anejo12_Estado.pdf
https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2021-2027/PHJ/PHJ2227_CP_Anejo12_Estado.pdf
https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Documentos/PHJ2227_Memoria_20220329.pdf
https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Documentos/PHJ2227_Memoria_20220329.pdf
https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Secretaria%20General%20Tecnica/PHJ2227_SGT_Anejo07_InvPresiones.pdf
https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Secretaria%20General%20Tecnica/PHJ2227_SGT_Anejo07_InvPresiones.pdf
https://www.chj.es/es-es/medioambiente/planificacionhidrologica/Documents/Plan-Hidrologico-cuenca-2021-2027/PHC/Secretaria%20General%20Tecnica/PHJ2227_SGT_Anejo07_InvPresiones.pdf
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/c/565/files/2017/01/solutions2.pdf
https://cpb-us-w2.wpmucdn.com/sites.gatech.edu/dist/c/565/files/2017/01/solutions2.pdf
https://doi.org/10.3390/su13126688
https://doi.org/10.3390/su13126688
https://doi.org/10.3390/su13126688
https://doi.org/10.3390/su132212835
https://doi.org/10.1016/j.ecolind.2006.10.003
https://doi.org/10.1016/j.ecolind.2006.10.003
https://doi.org/10.1016/j.ecolind.2006.10.003
https://doi.org/10.1016/j.ecoinf.2021.101224
https://doi.org/10.1029/2005JG000114
https://doi.org/10.1029/2005JG000114
https://doi.org/10.1029/2005JG000114
https://www.eea.europa.eu/publications/COR0-landcover
https://www.eea.europa.eu/publications/COR0-landcover
https://doi.org/10.1016/j.agrformet.2018.08.019
https://doi.org/10.1016/j.agrformet.2018.08.019
https://doi.org/10.1016/j.agrformet.2018.08.019
https://doi.org/10.1016/j.agrformet.2018.08.019
https://doi.org/10.21203/rs.3.rs-876980/v2
https://doi.org/10.21203/rs.3.rs-876980/v2
https://doi.org/10.21203/rs.3.rs-876980/v2
https://doi.org/10.1007/978-3-031-10545-6
https://doi.org/10.1007/978-3-031-10545-6
https://doi.org/10.1007/978-3-031-10545-6
https://doi.org/10.1016/j.apenergy.2022.119063
https://doi.org/10.1016/j.eswa.2022.118391
https://doi.org/10.2134/jeq2014.03.0102
https://doi.org/10.2134/jeq2014.03.0102
https://doi.org/10.2134/jeq2014.03.0102
https://doi.org/10.1016/j.gloenvcha.2021.102281
https://doi.org/10.1061/(ASCE)HE.1943-5584.0001934
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1016/j.jhydrol.2009.08.003
https://doi.org/10.1007/s10661-020-08731-2
https://doi.org/10.1016/j.chemosphere.2021.133388
https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/ReferenciasBibliograficas/AguasSubterraneas/IGME-DGA,2009.Act04_RelacSuperf_SubtMEMORIA%20RESUMEN.pdf
https://www.chj.es/Descargas/ProyectosOPH/Consulta%20publica/PHC-2015-2021/ReferenciasBibliograficas/AguasSubterraneas/IGME-DGA,2009.Act04_RelacSuperf_SubtMEMORIA%20RESUMEN.pdf
https://doi.org/10.1109/ICSGRC55096.2022.9845143
https://doi.org/10.1109/ICSGRC55096.2022.9845143
https://doi.org/10.1109/ICSGRC55096.2022.9845143
https://doi.org/10.1016/j.agwat.2022.107715
https://doi.org/10.1016/j.ecolind.2019.01.011
https://doi.org/10.1016/j.ecolind.2019.01.011
https://doi.org/10.1016/j.ecolind.2019.01.011
https://doi.org/10.5281/ZENODO.4247618
https://zenodo.org/record/4247618#.Y6HbjnbMLIU
https://pypi.org/project/BorutaShap/
https://doi.org/10.1016/j.mlwa.2021.100024


KleimanM,Barenholtz E andGalvin J 2021 Screening for early-stage alzheimer’s disease using optimized feature sets andmachine learning
HHSPublic Access 81 355–66

KlingH, FuchsMandPaulinM2012Runoff conditions in the upperDanube basin under an ensemble of climate change scenarios J. Hydrol.
424–425 264–77

KursaMB andRudnickiWR2010 Feature selectionwith the boruta package J. Stat. Softw. 36 1–13
Latif SD, AzmiMSBN,AhmedAN, Fai CMandEl-Shafie A 2020Application of artificial neural network for forecasting nitrate

concentration as awater quality parameter: a case study of feitsui reservoirTaiwan. Int. J. Des. Nat. Ecodynamics 15 647–52
Li J, AnX, LiQ,WangC, YuH, ZhouX andGengY 2022Application of XGBoost algorithm in the optimization of pollutant concentration

Atmos. Res. 276 106238
Li L,Qiao J, YuG,Wang L, LiH, LiaoC andZhuZ 2022 Interpretable tree-based ensemblemodel for predicting beachwater qualityWater

Res. 211 118078
MaM,ZhaoG,HeB, Li Q,DongH,Wang S andWangZ 2021XGBoost-basedmethod for flashflood risk assessment J. Hydrol. 598 126382
Ministerio para la transción ecológica y el retoDemográfico 2020MInforme de seguimiento de la directiva 91/676/CEE contaminación del

agua por nitratos utilizados en la agricultura (https://miteco.gob.es/es/agua/temas/estado-y-calidad-de-las-aguas/informe-2016-
2019_tcm30-518402.pdf)(accessedon 30April 2022)

MunnéA, PratN, Solà C, BonadaN andRieradevallM 2003A simplefieldmethod for assessing the ecological quality of riparian habitat in
rivers and streams :QBR indexAquat. ConservMar. Freshw. Ecosyst 163 147–63

NasirN, Kansal A, AlshaltoneO, Barneih F, SameerM, Shanableh A andAl-shammaA2022 Journal of water process engineeringwater
quality classification usingmachine learning algorithms J.Water Process Eng. 48 102920

Nourani V, AndalibG andDąbrowskaD 2017Conjunction ofwavelet transform and SOM-mutual information data pre-processing
approach for AI-basedMulti-Station nitratemodeling of watersheds J. Hydrol. 548 170–83

Oehler F and Elliott AH2011 Science of the total environment predicting streamn and p concentrations from loads and catchment
characteristics at regional scale : a concentration ratiomethod Sci. Total Environ. 409 5392–402

Ortega-ReigM, Sanchis-Ibor C, Palau-SalvadorG,García-MolláM andAvellá-Reus L 2017 Institutional andmanagement implications of
drip irrigation introduction in collective irrigation systems in SpainAgric.WaterManag. 187 164–72

Pang S,WangX,Melching C S, GuoHand LiW2022 Identification ofmultilevel prioritymanagement areas for diffuse pollutants based on
streamflow continuity in awater-deficient watershed J. Clean. Prod. 351 131322

Paredes-Arquiola J 2021Manual técnico delmodelo respuesta rápida del estado ambiental (R2EA) demasas de agua superficiales
continentales Universitat Politècnica deValència. (https://aquatool.webs.upv.es/files/manuales/rrea/ManualT%C3%
A9cnicoModeloRREA_V3.pdf)(accessed on 20November 2021)

Peiró-Signes Á, Segarra-OñaM,Trull-DomínguezÓ and Sánchez-Planelles J 2022 Exposing the ideal combination of endogenous–
exogenous drivers for companies’ ecoinnovative orientation: Results frommachine-learningmethods Socioecon. Plann. Sci. 79

Peral García C,Navascués Fernández-Victorio B andRamosCalzado P 2021 Serie de precipitación diaria en rejilla con fines climáticos Ser.
PrecipitaciónDiaria en Rejilla Con Fines Climáticos. (https://aemet.es/documentos/es/conocermas/recursos_en_linea/
publicaciones_y_estudios/publicaciones/NT_24_AEMET/NT_24_AEMET.pdf)(accessed on 14 July 2021), pages 1-30

Pérez-MartínMA, Estrela T, Andreu J and Ferrer J 2014Modelingwater resources and river-aquifer interaction in the Júcar River Basin,
SpainWater Resour.Manag. 28 4337–58

Poikane S, KellyMG, Salas F, Pitt J, JarvieHP,ClaussenU, LeujakW, LycheA, TeixeiraH and Phillips G 2019Nutrient criteria for surface
waters under the europeanwater frame-work directive : current state-of-the-art , challenges and future outlook Sci. Total
Environ. 695

Rafiei V,NejadhashemiAP,Mushtaq S, Bailey RT andAn-voD 2022Groundwater-surface water interactions at wetland interface :
Advancement in catchment systemmodeling Environ.Model. Softw. 152 105407

Rodriguez-GalianoV,MendesMP,Garcia-SoldadoM J, Chica-OlmoMandRibeiro L 2014 Predictivemodeling of groundwater nitrate
pollution using RandomForest andmultisource variables related to intrinsic and specific vulnerability: A case study in an agricultural
setting (Southern Spain) Sci. Total Environ. 476–477 189–206

Rodriguez-GalianoVF, Luque-espinar J A, Chica-olmoMandMendesMP2018 Feature selection approaches for predictivemodelling of
groundwater nitrate pollution : An evaluation offi lters, embedded andwrappermethods Sci. Total Environ. 624 661–72

Romero I,MoraguesM,González del Río J,Hermosilla Z, Sánchez-Arcilla A, Sierra J P andMössoC2007Nutrient behavior in the júcar
estuary and plume J. Coast. Res. 10047 48–55

ShahhosseiniM,Martinez-Feria RA,HuG andArchontoulis S V 2019Maize yield and nitrate loss predictionwithmachine learning
algorithms Environ. Res. Lett. 14

SielingK andKageH 2006Nbalance as an indicator ofN leaching in an oilseed rape—winterwheat—winter barley rotationAgriculture,
Ecosystems&Environment 115 261–9

Singh B andCraswell E 2021 Fertilizers andnitrate pollution of surface and groundwater : an increasingly pervasive global problem SNAppl.
Sci. 3 1–24

Singh S, Anil AG,KumarV, KapoorD, Subramanian S, Singh J andRamamurthy PC 2022Nitrates in the environment : a critical review of
their distribution, sensing techniques, ecological effects and remediationChemosphere 287 131996

Singha S, Pasupuleti S, Singha S S, SinghR andKumar S 2021 Prediction of groundwater quality using efficientmachine learning technique
Chemosphere 276 130265

Tyralis H, PapacharalampousG andLangousis A 2019Abrief review of random forests forwater scientists and practitioners and their recent
history inwater resourcesWater 2019 910

TanX, ZhangQ, BurfordMA, Sheldon F andBunn SE 2017 Benthic diatombased indices for water quality assessment in two subtropical
streams. front.microbiol. 8601file///c/users/a315-21-99m2/documents/articulo artif Intell. Intell. 8

Temino-Boes R, García-Bartual R, Romero I andRomero-Lopez R 2021 Future trends of dissolved inorganic nitrogen concentrations in
NorthwesternMediterranean coastal waters under climate change J. Environ.Manage. 282 111739

Thornhill I, Ho JG, Zhang Y, LiH,HoKC,Miguel-Chinchilla L and Loiselle S A 2017 Prioritising local action forwater quality
improvement using citizen science; a study across threemajormetropolitan areas of China Sci. Total Environ. 584–585 1268–81

Tomperi J, Koivuranta E and Leiviskä K 2017 Journal of water process engineering predicting the effluent quality of an industrial wastewater
treatment plant byway of opticalmonitoring . J.Water Process Eng. 16 283–9

Tzilivakis J,WarnerD J, GreenA and Lewis KA2021A broad-scale spatial analysis of the environmental benefits of fertiliser closed periods
implemented under theNitratesDirective in Europe J. Environ.Manage. 299 113674

ValerioC, Stefano L, De,Martínez-muñozG andGarridoA 2021 Science of the total environment amachine learningmodel to assess the
ecosystem response towater policymeasures in the Tagus River Basin (Spain) Sci. Total Environ. 750 141252

16

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al

https://doi.org/10.3233/JAD-201377
https://doi.org/10.3233/JAD-201377
https://doi.org/10.3233/JAD-201377
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.1016/j.jhydrol.2012.01.011
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.18637/jss.v036.i11
https://doi.org/10.18280/ijdne.150505
https://doi.org/10.18280/ijdne.150505
https://doi.org/10.18280/ijdne.150505
https://doi.org/https://doi.org/10.1016/j.atmosres.2022.106238
https://doi.org/10.1016/j.watres.2022.118078
https://doi.org/10.1016/j.jhydrol.2021.126382
http://www.w3.org/1999/xlink
http://www.w3.org/1999/xlink
https://doi.org/10.1016/j.jwpe.2022.102920
https://doi.org/10.1016/j.jhydrol.2017.03.002
https://doi.org/10.1016/j.jhydrol.2017.03.002
https://doi.org/10.1016/j.jhydrol.2017.03.002
https://doi.org/10.1016/j.scitotenv.2011.08.025
https://doi.org/10.1016/j.scitotenv.2011.08.025
https://doi.org/10.1016/j.scitotenv.2011.08.025
https://doi.org/10.1016/j.agwat.2017.03.009
https://doi.org/10.1016/j.agwat.2017.03.009
https://doi.org/10.1016/j.agwat.2017.03.009
https://doi.org/10.1016/j.jclepro.2022.131322
https://aquatool.webs.upv.es/files/manuales/rrea/ManualT%C3%A9cnicoModeloRREA_V3.pdf
https://aquatool.webs.upv.es/files/manuales/rrea/ManualT%C3%A9cnicoModeloRREA_V3.pdf
https://doi.org/10.1016/j.seps.2021.101145
https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/NT_24_AEMET/NT_24_AEMET.pdf
https://www.aemet.es/documentos/es/conocermas/recursos_en_linea/publicaciones_y_estudios/publicaciones/NT_24_AEMET/NT_24_AEMET.pdf
https://doi.org/10.1007/s11269-014-0755-3
https://doi.org/10.1007/s11269-014-0755-3
https://doi.org/10.1007/s11269-014-0755-3
https://doi.org/10.1016/j.scitotenv.2019.133888
https://doi.org/10.1016/j.envsoft.2022.105407
https://doi.org/10.1016/j.scitotenv.2014.01.001
https://doi.org/10.1016/j.scitotenv.2014.01.001
https://doi.org/10.1016/j.scitotenv.2014.01.001
https://doi.org/10.1016/j.scitotenv.2014.01.001
https://doi.org/10.1016/j.scitotenv.2014.01.001
https://doi.org/10.1016/j.scitotenv.2017.12.152
https://doi.org/10.1016/j.scitotenv.2017.12.152
https://doi.org/10.1016/j.scitotenv.2017.12.152
https://doi.org/10.2112/1551-5036-47.sp1.48
https://doi.org/10.2112/1551-5036-47.sp1.48
https://doi.org/10.2112/1551-5036-47.sp1.48
https://doi.org/10.1088/1748-9326/ab5268
https://doi.org/10.1016/j.agee.2006.01.011
https://doi.org/10.1016/j.agee.2006.01.011
https://doi.org/10.1016/j.agee.2006.01.011
https://doi.org/10.1016/j.chemosphere.2021.131996
https://doi.org/10.1016/j.chemosphere.2021.130265
https://doi.org/10.3390/w11050910
https://doi.org/10.3389/fmicb.2017.00601
https://doi.org/10.1016/j.jenvman.2020.111739
https://doi.org/10.1016/j.scitotenv.2017.01.200
https://doi.org/10.1016/j.scitotenv.2017.01.200
https://doi.org/10.1016/j.scitotenv.2017.01.200
https://doi.org/10.1016/j.scitotenv.2017.01.200
https://doi.org/10.1016/j.scitotenv.2017.01.200
https://doi.org/10.1016/j.jwpe.2017.02.004
https://doi.org/10.1016/j.jwpe.2017.02.004
https://doi.org/10.1016/j.jwpe.2017.02.004
https://doi.org/10.1016/j.jenvman.2021.113674
https://doi.org/10.1016/j.scitotenv.2020.141252


Vergara J R and Estévez PA 2014A review of feature selectionmethods based onmutual informationNeural Comput. Appl. 24 175–86
WangX, LiuX,Wang L, Yang J,WanX and Liang T 2022Aholistic assessment of spatiotemporal variation, driving factors, and risks

influencing river water quality in the northeasternQinghai-Tibet Plateau Sci. Total Environ. 851
WuR, Painumkal J T, Volk JM and Liu S 2017Parameter Estimation ofNonlinearNitrate PredictionModel UsingGenetic Algorithm 1893–9
Yuan L, SinshawT and ForshayK J 2020Review ofwatershed-scale water quality and nonpoint source pollutionmodelsGeosci. 1 1–33
Zamani JoharestaniM, CaoC,Ni X, Bashir B andTalebiesfandarani S 2019 PM2.5 prediction based on random forest, XGBoost, andDeep

LearningUsingMultisource Remote SensingDataAtmosphere 10 373
Zhong L,HuL andZhouH2019Deep learning basedmulti-temporal crop classificationRemote Sens. Environ. 221 430–43
ZhuM,Wang J, YangX, Zhang Y, Zhang L, RenH,WuB andYe L 2022A review of the application ofmachine learning inwater quality

evaluation Eco-EnvironmentHeal. 1 107–16

17

Environ. Res. Commun. 4 (2022) 125012 DYDorado-Guerra et al

https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1007/s00521-013-1368-0
https://doi.org/10.1016/j.scitotenv.2022.157942
https://doi.org/10.1109/CEC.2017.7969532
https://doi.org/10.1109/CEC.2017.7969532
https://doi.org/10.1109/CEC.2017.7969532
https://doi.org/10.3390/geosciences10010025
https://doi.org/10.3390/geosciences10010025
https://doi.org/10.3390/geosciences10010025
https://doi.org/10.3390/atmos10070373
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1016/j.rse.2018.11.032
https://doi.org/10.1016/j.eehl.2022.06.001
https://doi.org/10.1016/j.eehl.2022.06.001
https://doi.org/10.1016/j.eehl.2022.06.001

	1. Introduction
	2. Material and methods
	2.1. Case study
	2.2. Observed data
	2.3. Methodology
	2.3.1. Feature selection
	2.3.2. Machine learning models
	2.3.3. Prediction performance assessment


	3. Results and discussion
	3.1. Feature selection
	3.2. Modelling assessment
	3.3. Importance of conditioning factors

	4. Discussion
	4.1. Comparison of models and feature selection approaches
	4.2. Use of extrinsic features of surface water bodies and their effect on nitrate pollution

	5. Conclusions
	Acknowledgments
	Data availability statement
	Conflict of interest
	References



