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Abstract

Aquifer-stream interactions affect the water quality in Mediterranean areas; therefore, the coupling of
surface water and groundwater models is generally used to solve water-planning and pollution
problems in river basins. However, their use is limited because model inputs and outputs are not
spatially and temporally linked, and the data update and fitting are laborious tasks. Machine learning
models have shown great potential in water quality simulation, as they can identify the statistical
relationship between input and output data without the explicit requirement of knowing the physical
processes. This allows the ecological, hydrological, and environmental variables that influence water
quality to be analysed with a holistic approach. In this research, feature selection (FS) methods and
algorithms of artificial intelligence—random forest (RF) and eXtreme Gradient Boosting (XGBoost)
trees—are used to simulate nitrate concentration and determine the main drivers related to nitrate
pollution in Mediterranean streams. The developed models included 19 inputs and sampling of nitrate
concentration in 159 surface water quality-gauging stations as explanatory variables. The models were
trained on 70 percent data, with 30 percent used to validate the predictions. Results showed that the
combination of FS method with local knowledge about the dataset is the best option to improve the
model’s performance, while RF and XGBoost simulate the nitrate concentration with high
performance (r = 0.93 and r = 0.92, respectively). The final ranking, based on the relative importance
of the variables in the RF and XGBoost models, showed that, regarding nitrogen and phosphorus
concentration, the location explained 87 percent of the nitrate variability. RF and XGBoost predicted
nitrate concentration in surface water with high accuracy without using conditions or parameters of
entry and enabled the observation of different relationships between drivers. Thus, it is possible to
identify and delimit zones with a spatial risk of pollution and approaches to implementing solutions.

1. Introduction

Nitrate is an important component in the environment. Its availability influences food supply, water and habitat
quality, while toxic effects on stream biota and human health can occur with high concentrations of nitrate
(Singh et al 2022). Its main source in Europe is diffuse pollution (Grinsven et al 2015, Alcon et al 2022), whereby
nitrogen leaches when transformed into nitrate form. The main issue, then, with nitrates is their mobility in soil,
and the fact that they can persist in surface water (SW) and groundwater (GW) (Defterdarovi€ et al 2021),
contributing to poor water quality and eutrophication (Pang et al 2022). Currently, the ecological status of more
than half the water bodies in the EU is assessed as poor (Poikane et al 2019), contrary to the requirements of the
Water Framework Directive (WFD) and Nitrates Directive (Directive 91/676/EEC). Decreasing nitrate
concentration is already a challenge in several areas of Europe (Grizzetti et al 2021, Tzilivakis et al 2021) with
approximately 40 percent of water bodies in Spain assessed as having poor water quality (Ministerio parala
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transcion ecoldgica y el reto Demografico 2020). A similar situation occurred in the Jticar River Basin (RB) (the
fourth most populated region in Spain), where 61 percent of the 124 water bodies have been assigned poor
quality status, according to the local hydrological plans (Confederacién Hidrografica del Jticar 2022a).

The usual methods for the assessment of nitrate concentrations consist of numerical modelling of pollutant
transport, which is an efficient tool for understanding the physical, chemical and biological processes of nitrate
transport (Singh and Craswell 2021). Complete reviews of models used in pollution estimation were conducted
by Bouraoui and Grizzetti 2014 and Yuan et al 2020, however, most models simulate rather simplified scenarios,
such as a single soil type, and layered soil types in a two-dimensional vertical domain, or river—aquifer
interactions are not represented. As a result of the above, the coupling of the two models PATRICAL (Pérez-
Martin et al 2014) and RREA (Paredes-Arquiola 2021) was employed to simulate the nitrate concentration in the
Jacar RB, with the combination of the models representing river-aquifer interactions, the hydrological cycle
altered by humans, irrigation returns, and lateral transfer among aquifers. According to the result reported by
Dorado-Guerra et al 2021, this coupling found 58 percent of lineal correlation between simulated and observed
nitrate concentration. The heterogeneity of the study area, availability of data, and complexity of integrated SW-
GW modelling means other techniques are needed to improve the accuracy and computational cost of the
nitrate concentration predictions.

Recently, artificial intelligence algorithms have been applied in hydrological studies of nitrate pollution with
good results. These algorithms can efficiently solve complex non-linear problems, as they learn from the dataset
and therefore do not require pre-defined rules based on expert criteria (Zhu et al 2022). Furthermore, artificial
intelligence algorithms have been found to increase predictive performance across a wide range of
environmental processes (Tyralis et al 2019). Presently, ensemble learning such as random forest (RF) and
eXtreme Gradient Boosting (XGBoost) are widely adopted in water science; however, previous investigations
indicated limited application of RF and XGBoost algorithms to predict SW nitrate concentrations (Zhu et al
2022). Furthermore, no such studies were found looking at the Jicar RB. RF’s advantages include the ability to
capture non-linear dependencies and interactions of variables, computational speed, parsimonious
parameterisation, and the use of variable importance metrics (Tyralis et al 2019). Various studies have been
conducted to predict nitrate distribution patterns in GW using the RF algorithm (Rodriguez-Galiano et al 2014,
Baoetal 2022, He et al 2022). According to Castrillo and Lépez 2020, RF is suitable for representing the
concentration of nutrients in either a rural or urban catchment. On the other hand, XGBoost can improve the
model’s robustness and running speed by introducing terms for regularisation, column sampling and the
decision tree’s ability to choose the split point (Ma et al 2021, Gervasi et al 2022). In applied water quality studies,
XGBoost performed better against other algorithms such as LogiBoost, RF, AdaBoost, and support-vector
machines (Garabaghi 2022, Izzuan et al 2022, Li et al 2022, Nasir et al 2022).

In terms of the prediction of nitrates, many factors have been reported in research studies as influential and
playing a crucial role, including location, nitrogen, ammonium, phosphate, pH level, ambient and water
temperature, dissolved oxygen, biological oxygen demand, suspended solids, and streamflow (Wu etal 2017,
Bagherzadeh et al 2021). In order to select the most informative variables for dealing with the problem, feature
selection (FS) methods need to be applied. FS removes irrelevant and noisy features while keeping those with
minimum redundancy and maximum relevance to the target variable, and its application results in more cost-
effective models and improves algorithm performance (Effrosynidis and Arampatzis 2021). Although there are
many FS methods, most studies use correlation methods only, such as Pearson’s correlation. Therefore, a
comparative assessment of the effect of FS on improving the accuracy of simulating nitrate concentration in
surface water is still needed.

This study aims to investigate the effect of FS methods and two artificial intelligence algorithms in terms of
enhancing the prediction performance of SW nitrate concentration in water bodies of the Jucar RB. The specific
objectives of this paper are fourfold: (1). Defining groups of variables according to the FS result; (2). creating Al
models using algorithms such as RF and XGBoost; (3). finding the best nitrate concentration forecasting model;
and (4). finding the features that most influence nitrate concentration in the Jicar RB. A total of 19 features were
adopted for application of FS methods and to construct the proposed models: air temperature (T,),
precipitation, distance from the river source (DRS), streamflow, piezometric level (PL), water temperature (T,,),
pH level, nitrogen (N), nitrite (NO,), ammonium (NH,), biochemical oxygen demand over five days (BOD5),
suspended solids (SS), dissolved oxygen (DO), total phosphorus (TP), nitrate GW, the Specific Pollution
Sensitivity Index (IPS, in Spanish), the Iberian Biological Monitoring Working Party IBMWP), the quality
riparian index (QBR, in Spanish), and load of diffuse pollution (DP). The novelty of this study is its inclusion of
ecological indicators and the relationship between river and aquifer with the PL and nitrate in the GW. In areas
with water scarcity and high river-aquifer connectivity, such as the Jicar RB, where conjunctive use of GW and
SW is typical, the contribution of the GW component to SW pollution is important.
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Figure 1. Location of the Jucar River Basin, water sampling network, mean annual precipitation, and mean temperature (1980-2020).

2. Material and methods

2.1. Case study
The Jtcar RB is located within the Jucar River Basin District in the east of the Iberian Peninsula (Spain) on the
Mediterranean side, with an area of 22,208 Km? (figure 1). The Juicar River has the largest catchment area and the
greatest flow contribution of the Jiicar RB District, with 36 surface water bodies and alength of 509 km on the
main axis, which empties into the Mediterranean Sea. In the geomorphological context, the main characteristics
of the basin can be grouped into two main zones: a mountainous interior, with peaks between 1,500 and
2,028 m, but which develops below 1,000 m and a second coastal zone, made up of coastal plains. This plain is an
alluvial platform that provides nutrient-rich soil that supports most of the irrigated agricultural production, and
is home to more than 80% of the basin’s total population (Confederacién Hidrogréfica del Jucar 2022b).

Average temperatures range from less than 10 °C inland to 18 °C in the coastal zone (figure 1). The climate
varies from humid to semi-arid, with the presence of droughts and a concentration of approximately 42 percent
of the annual rainfall in autumn on the coastal strip. The average annual rainfall is 504 mm year ', with a spatial
range of 797 mmyear” ' in the headwater, 368 mm year ' in the midstream and 679 mm year ' at the mouth of
the river at the Mediterranean Sea. The contribution to the main river network in the Jucar RB is 1245 hm?
year ' with 23.9 hm’ year ' discharging into the Mediterranean Sea. The great hydrological variability and the
scarcity of resources in the basin has meant that, in order to meet the demand, especially for irrigation water, a
large number of hydraulic infrastructures have been built with a total water storage capacity of 2,846 hm’
(Confederacién Hidrografica del Jucar 2022b).

According to the dominant lithology of the GW bodies IGME-DGA 2012), the outcrop can be classified as
25 percent detrital and 29 percent carbonate, with the rest being of mixed origin from both materials. The water
bodies on the main axis of the river are classified as gaining stream (64 percent receiving discharges from the
GW), losers (14 percent of the river infiltrating resources into the GW), and variable (22 percent representing
one situation or another depending on the time of the year). The nitrate concentration of 25 percent of the
aquifer is above the good status threshold, located in the midstream and downstream sections (Confederacién
Hidrogréfica del Jucar 2022a).

The land use in the Jticar RB (EEA 2021) roughly breaks down into forest areas and open spaces (49 percent),
agriculture (49 percent), and artificial surfaces (2 percent). Agriculture is the activity with the highest water
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resource requirement (85 percent of total demand), and the dry season (July and August) coincides with the
most water demanding period (Ortega-Reig et al 2017). The water demand is 1338 hm” year ', of which 55
percent is supplied by rivers, and 41 percent by aquifers. The total rainfall area is 209,773 ha, 38 percent of which
corresponds to citrus crops, located in the downstream of the basin, the area with the highest nitrate
concentration in rivers and aquifers. The second and third most important groups are winter cereals for grain
and the grape crop, each covering 11 percent of the area. However, net water demand is higher for rice crops
(8011 m’ ha ' year '), while citrus requires 3890 m> ha™' year ' (Confederacién Hidrografica del Jticar 2022c).
Citrus orchards and rice crops with irrigation are the main sources of diffuse pollution in the basin. The largest
cities in the basin are Albacete (385,000 inhabitants) and Cuenca (198.842 inhabitants). The discharge
wastewater produced by domestic and industrial uses amounts to 20 hm year ™" in the two cities. The greatest
load of nitrate pollution comes from agriculture rather than from point sources (Dorado-Guerra et al 2021).

2.2.Observed data

The variable target nitrate concentration, water quality, water quantity and ecological parameters in SW, PL, and
nitrate concentration in GW were measured by the Jicar RB District authority and the dataset is available on the
Water Information System for the Jucar RB District report (‘SIA Jucar’ in Spanish: aps.chj.es/siajucar/, accessed
on March 26 2021). The different sampling networks are shown in figure 1.

T,» pH, N, NO,, NH,, BODs, SS, DO, and TP have recently been factors used to forecast nitrate concentration
using machine learning models (Latif ef al 2020). The variable target nitrate concentration and previous parameters
have been measured at surface water quality gauging stations at 159 points since 1990.

Some studies have revealed the dependent relationship between hydrological factors and nitrate
concentration in SW bodies with precipitation and streamflow playing an important role in the fluctuations
across different temporal scales (Gu et al 2020). Precipitation and T, were acquired from AEMET (the State
Meteorological Agency in Spain), which has a high-resolution (0.05 degrees) daily gridded precipitation dataset
for Peninsular Spain and the Balearic Islands (version 2) (Peral Garcia et al 2021). The point nearest to the surface
water body was taken as the reference for precipitation in each of the river reaches, where the streamflow has
been measured at 20 points since 1970. GW and SW interactions can be significant when modelling nitrate
concentration in rivers in the region where piezometric levels and nitrate concentration in the GW are high
(Rafiei eral 2022). The PL has been measured in 19 wells since 1990.

Changes are expected in the community structure after stress levels or pollutant agents and provide an early
indication of possible adverse effects within the ecosystem. The Specific Pollution Sensitivity Index (IPS)
measures the relative abundance of diatom species, and, with a score range from 0 to 20, the reaches with values
above 18 are classified as good quality, while values close to 0 are classified as poor quality (Cemagref 1982). The
Iberian Biological Monitoring Working Party IBMWP) index is determined by the numbers of
macroinvertebrate families (Alba-Tercedor ef al 2002). Index scores range from 0 to 235 points, and reaches with
values above 100 are classified as good quality, while values close to 0 are classified as poor quality. The quality
riparian index (QBR) is used to assess the quality of the riparian vegetation, providing a rapid assessment of the
overall condition of the riparian zone using four aspects (total riparian vegetation cover, cover structure, and
quality and degree of naturalness of the stream channel). The QBR index scores range from 0 to 100, with
reaches attaining values above 95 classified as good quality, and values close to 0 as poor (Munné et al 2003).
Ecological indicators have been measured every year since 2009.

Anthropogenic effects have been taken into account when dealing with DP, which corresponds to 99 percent
of the nitrate load in the Jucar RB District. DP comes from the PATRICAL model using the methodology
detailed in Dorado-Guerra et al 2021.

Once the time series were obtained for each SW body, the median of all parameters was calculated on a
quarterly scale, with the exception of temperature and precipitation, which were entered into the model as
cumulative. The analysis was performed for the period between 2009 and 2019, due to ecological indicator data
being available since 2009. Table 1 shows the independent parameters, including data sources and timescale
(Dorado-Guerra et al 2022).

2.3.Methodology

In total, 19 parameters, including climatic, hydrological, hydrogeological, ecological, water quality and
anthropogenic, were used as inputs for modelling the SW nitrate concentration using RF and XGBoost models.
The models were calibrated and validated with 70 and 30 percent of the dataset, respectively, which consisted of
the target value and prediction factors at the location of each SW body from 2009 to 2019. Records with missing
values were excluded from training and test datasets. As a result, some features with only few samples were
excluded and the cross-validation (CV) method was applied, which allowed the algorithm to learn from the
totality of the data, so that the data was unbiased. In order to identify the best input combination for nitrate
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abbreviations used are defined in table 1.
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Figure 2. Steps for simulating nitrate concentration in surface water using random forest regression and XGBoost models. The

Table 1. Summary of the parameters and data sources.

Parameters Abbreviation ~ Monitoring Points Source
Weather State Meteorological Agency in Spain
(https://aemet.es)
Air temperature (°C) T, 36
Precipitation (mm) 36
Hydrological—Hydrogeologial SIA Jucar (https:/ /aps.chj.es/siajucar/)
Distance from the river source (Km) DRS
Streamflow (hm” year ) 20
Piezometric level (m.a.s.l) PL 19
Water Quality SIA Jucar (https:/ /aps.chj.es/siajucar/)
Nitrate SW (mgNO;/L) 159
Water temperature (°C) Tw 159
pH pH 159
Nitrogen (mgN/L) N 159
Nitrite (mgNO,/L) NO, 159
Ammonium (mgNH,/L) NH, 159
Biochemical oxygen demand over five days BODs 159
Suspended solids (mg1™ D) SS 159
Dissolved oxygen (mgO,/L) DO 159
Total phosphorus (mgP/L) TP 159
Nitrate GW (mgNO5/L)
Ecological indicators SIA Jucar (https:/ /aps.chj.es/siajucar/)
Specific Pollution Sensitivity Index IPS 36
Iberian Biological Monitoring Working Party IBMWP 36
index
Quality riparian index QBR 36
Anthropogenic Dorado-Guerra etal 2021
Diffuse pollution DP 36

estimation, a comprehensive feature selection analysis was carried out using Pearson correlation, mutual
information (MI) and the BorutaShap algorithm. The applied methodology is depicted in figure 2.

2.3.1. Feature selection

When the number of inputs is high, selecting the best inputs has an important impact on the model accuracy and
computational cost (Rodriguez-Galiano et al 2018, Effrosynidis and Arampatzis 2021). Therefore, to recognise
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the best input combination for estimating nitrate concentration, a feature selection analysis was carried out
using Pearson correlation, MI and the BorutaShap algorithm as a random forest-based wrapper process.

Ml is a measure of the quantity of information that a random variable shares with another variable. The
mathematical definition of MI is described in Cover and Thomas 2006, and Vergara and Estévez 2014. Itis
related linearly to the entropies of variables: a nonlinear measure that can be a useful tool to determine the
dominant inputs among large numbers of parameters, thereby supporting the information obtained with
Pearson’s coefficient. Features are ranked from largest to smallest MI values in terms of the target.

BorutaShap is a wrapper-feature selection methodology that merges the Boruta algorithm with the SHAP
(Shapley Additive Explanations) framework for feature importance and ranking, and the sampling procedure
uses smaller sub-samples of the available data at each iteration of the algorithm. Boruta and BorutaShap are
based on a RF algorithm, which is faster than other algorithms, can usually be run without parameters tuning,
can capture non-linear dependencies between predictor and dependent variables and provides a numerical score
of feature importance (Kursa and Rudnicki 2010). The BorutaShap algorithm uses the following process
(Keany 2021): (1). create shadow features (new copies of all the features in the dataset), and add the shadow
features back to the dataset; (2). estimate the feature importance metrics of original and shadow features; (3).
generate a threshold using the maximum importance score of the shadow features, and assign a hit to any
features that are above the threshold; (4). carry out a two-sided t-test of equality for each unassigned feature; (5).
classify the features into three groups— features with an importance significantly above the threshold
(‘important’), those that outperform at a less than the threshold (‘tentative’), and features with an importance
significantly below the threshold (‘unimportant’), which are removed from the process; and 6. delete all shadow
features and repeat the procedure until an importance has been assigned to each feature. The Boruta-SHAP
library for Python was then applied to the feature selection (Keany 2020).

2.3.2. Machine learning models

Supervised learning algorithms, such as RF, are increasingly being used in SW pollution modelling (e.g., Thornhill
etal 2017, Jamei et al 2022). RF is an assemblage of a large number of classification or regression trees, which uses a
sample of the data to build a model. For regression targets, RF generates several decision trees and aggregates the
predictions using bootstrapping, thereby averaging the predictions to construct a model using only a proportion of
the predictors (Breiman 2001). The correlation between decision trees decreases, thereby improving the predictive
power and reducing the computational complexity of the algorithm (Tyralis et al 2019).

XGBoost is an enhancement of the gradient-boosting decision tree algorithm (Chen and Guestrin 2016) with the
main objective to improve the accuracy and speed of the model. Each update in the algorithm is based on the
prediction results of the previous one; by adding a new tree to adjust the residual error between the prediction results
of the previous tree and the true value, a new model was formed and used as the basis for the next model learning (J Li
et al 2022). XGBoost increases the weight of training samples with high error rates and processes them multiple times
with the aim of reducing the error rate (Kiangala and Wang 2021, Singha et al 2021). Therefore, this algorithm is
insensitive to outliers and consistent against overfitting, which simplifies model selection (Shahhosseini et al 2019).
For the mathematical details of the algorithm, see Chen and Guestrin 2016.

The ML library packages within Python, scikit-learn and XGBoost, were used to carry out the RF and
XGBoost algorithms and CV. Each model was validated using a K—fold CV with 10 repeats. To conduct RF and
XGBoost analysis, a grid search for model performance optimisation was carried out with the CV; the
hyperparameter ranges and optimised values detected are shown in table 2.

2.3.3. Prediction performance assessment

Model performance was evaluated using the modified version of the Kling-Gupta Efficiency (KGEM) and its three
components (equation 1): r represents the correlation coefficient between the simulated and observed time series; 3
(bias) is the ratio between the simulated and observed means (11) (equation 2); and +yis the ratio of the coefficients of
variation for both time series (equation 3). The optimal value of the KGEM and for each of the three components is 1.
The KGEM indicator provides a useful assessment of model performance due to its decomposition into correlation
(1), bias (), and variability (7). In this way, the model’s ability to reproduce the temporal dynamics and distribution
of nitrate concentration can be measured (Gupta et al 2009, Kling et al 2012).

KGEM=1- =D’ + (8 — D*+(y — 17 )
p= Do @
Hops

Coefficient of variationgy,

3

Coefficient of variationp




10P Publishing

Environ. Res. Commun. 4 (2022) 125012 DY Dorado-Guerra et al

Table 2. Hyperparameter ranges and optimised values detected with grid search.

Algorithms Parameter Range Optimum value
Random forest regression n_estimators 100 to 1000 500
max_depth 80,90,100,110 110
min_samples_leaf 2-10 3
min_samples_split 2-12 10
Bootstrap True, False False
XGBoost regressor learning_rate 0.01,0.05,0.1,0.2, 1 0.1
max_depth 1-10 3
Gamma 0-5 0
min_child_weigh 1-10 4

Table 3. Variable importance information obtained after the analysis of mutual information and Pearson’s coefficient and running the
BorutaShap algorithm.

BorutaShap

Features Mutual Information Pearson’s Coefficient

Mean Importance Decision
Nitrogen (N) 1.18 0.94 4.53 Accepted
Piezometric level (PL) 0.87 0.48 —0.11 Accepted
Distance from river source (DRS) 0.81 0.58 —0.19 Accepted
Nitrates groundwater 0.68 0.71 —0.23 Rejected
Riparian forest quality (QBR) 0.68 0.50 —0.21 Rejected
Specific pollution sensitivity index (IPS) 0.64 0.53 —0.20 Rejected
Benthonic fauna of invertebrates (IBMWP index) 0.52 0.46 —0.17 Accepted
Nitrites (NO,) 0.46 0.31 —0.21 Rejected
Total phosphorus (TP) 0.40 0.28 —0.09 Accepted
pH 0.30 —0.51 —0.10 Accepted
Ammonium (NHy) 0.25 0.34 -0.19 Rejected
Streamflow 0.20 0.30 —0.18 Rejected
Water temperature (T,,) 0.18 0.07 -0.17 Rejected
Diffuse pollution (DP) 0.14 0.16 —0.19 Tentative
Precipitation 0.13 0.17 —0.22 Tentative
Air temperature (T,) 0.13 —0.06 —0.18 Rejected
Dissolved oxygen (DO) 0.08 —0.26 —0.19 Rejected
Suspended solids (SS) 0.06 0.15 —0.23 Rejected
Biochemical oxygen demand over five days (BODs) 0.00 0.18 —0.23 Rejected

3. Results and discussion

3.1. Feature selection

Pearson’s coefficient demonstrated the linear correlation between all candidate input parameters with the
output parameter (table 3). The N (r, = 0.92), nitrate-GW (r, = 0.70), DRS (1, = 0.61), and PL (r, = 0.58) values
showing higher Pearson correlation and the T, (r, = —0.07) and T, (r, = 0.05) values with the lowest Pearson
correlation were identified as the most and the least influential parameters, respectively, when estimating the
nitrate values. Regarding the predictor variables, a strong correlation of DRS was found with the PL (—0.95).

Table 3 shows the sensitivity analysis of applied MI for selecting dominant inputs. The highest MI scores
were obtained with the N (1.15), PL (0.90), DRS (0.85), and nitrate-GW (0.68), and the lowest with DBO5 (0.00),
SS(0.06), and DO (0.08). BorutaShap was applied to verify the Pearson and M1 analysis, and the relative
importance of features according to BorutaShap (table 3) indicated that N, DRS, piezometric level, IBMWP, TP
and pH were the most important features for predicting nitrate concentration. The tentative features were DP
and precipitation; the others were considered unimportant, and they should be omitted from the modelling
process. The Pearson’s coefficient, MI and BorutaShap values agreed on the three most influential parameters
(N, PLand DRS), while the less influential parameters changed depending on the FS method.

The output of the FS methods was used to choose the input groups for the algorithms (table 4). Group 1 was
composed of 19 features, and Group 2 of the 10 features with the highest value of the MI and Pearson correlation
coefficient. Group 3 was similar to Group 2 but one variable (QBR) was excluded to increase the number of data;
Group 4 was composed of the features selected using BorutaShap, and Group 5 was a mixture of the results
found with MI, Pearson’s coefficient (Group 3) and BorutaShap (Group 4). In Group 5, PL was excluded due to
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Table 4. Input combinations based on Pearson’s coefficient, mutual information and the BorutaShap algorithm to estimate nitrate
concentration.

Models Input Combinations Inputnumber  Data quantity

Group 1 N, PL, DRS, nitrate-GW, QBR, IPS, IBMWP, NO,, TP, pH, NH,, streamflow, Ty, DP, pre- 19 240
cipitation, T,, DO, SS, BODs

Group 2 N, PL, DRS, nitrate-GW, QBR, IPS, IBMWP, NO,, TP, pH 10 265

Group 3 N, PL, DRS, nitrate-GW, IPS, IBMWP, NO,, TP, pH 9 420

Group 4 N, PL, DRS, IBMWP, TP, pH, DP, precipitation 8 427

Group 5 N, DRS, nitrate-GW, IPS, IBMWP, TP, pH, DP, precipitation 9 648

data availability and because it demonstrated a significant correlation with DRS, which could present
collinearity. NO, was excluded due to data availability and because it did not show a strong relationship with
nitrate concentration.

3.2. Modelling assessment

The nitrate concentration in the Jticar RB was predicted using RF and XGBoost algorithms with five groups of
predictors. The KGEM indicator and its three parameters were calculated to evaluate the prediction accuracy of
these models, and the values obtained in the validation stage are shown in figures 3(a) and (b). In all models with
the RF algorithm the lineal correlation between simulated and observed is greater than 0.88, the bias was smaller
than 10 percent and errors in the simulated variability less than 9 percent. The KGEM value ranged between 0.85
and 0.90, which means that there were no significant changes in the model’s performance within the different
groups. The difference in each of the parameters turned out to be only a few percent of the overall achievable
range. However, a 4-percent increase in linear correlation was found with Group 3 when compared to Group 1.
The best KGEM index was found within Group 5, which decreased the bias and increased lineal correlation.
Meanwhile, the probability density function (PDF) of the residuals in validation shows (figure 3(c)) thatall
groups with RF algorithm were well-proportioned with lower mean and standard deviation values with high
accumulation of errors in zero values. The differences observed between groups with the KGEM index are
supported by the PDF.

In the models with XGBoost algorithm in the validation stage, the KGEM index range was between 0.77 and
0.87, the lineal correlation greater than 0.86, the bias smaller than 6 percent, and the variability smaller than 16
percent (figure 3(b)). In general, the XGBoost algorithm showed a systematic tendency to slightly underestimate
the nitrate concentration in the validation. Group 5 showed the best result, decreasing the bias in simulated to 4
percent (figure 3(b)), and improving the model performance by 2 percent compared with Group 1. The PDF
shows that the errors of Group 5 were well-proportioned with lower mean and high accumulation in zero values,
whereas the other groups showed a higher standard deviation of errors (figure 3(d)). However, after using CV,
the predictive performance of the models with XGBoost improved and reached a behavior similar to RF
(figure 3(f)).

Group 5, which consisted of the variables with the best MI and BoruraShap scores, was identified as the
optimal input combination for the two algorithms. It provided high lineal correlation, was unbiased (RF) or
slightly biased (XGBoost), and the variability was smaller. Moreover, mean and standard deviation of errors had
high accumulation in zero values. Likewise, the weakest performances in the validation with the two algorithms
were related to Group 2, which consisted of the 10 variables with the best MI scores. It demonstrated high lineal
correlation, and small bias; however, errors in the simulated variability are widespread (38 percent). After
applying CV, Groups 1, 2, 3 and 4 displayed a similar behavior (figures 3(e) and (f)), and Group 5 still produced
the best performance.

The plots simulated and observed nitrate values are shown in figure 4, comparing the performance of the two
predictive algorithms applying CV with Group 5. The models showed a pattern of nitrate distribution along the
river similar to the observed data, with differences existing mainly downstream of the watershed, where the
models slightly underestimated the nitrate concentration (figures 4(a) and (b)). In general, the probability of
identifying high nitrate concentrations increased in the middle and downstream of the watershed. The models
fit the temporal variability of nitrate concentrations along the river. There had been a slight decrease in recent
years, and this behavior is represented in the models. Moreover, the seasonal variability was in accordance with
the observed values, with nitrate concentration higher in autumn and winter, and decreasing in summer.
However, there was a slight underfitting in the values simulated in autumn and winter with the two algorithms
downstream of the basin (figures 4(c) and (d)).
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Figure 3. The KGEM components for assessing the prediction of nitrate concentration using RF (a) and XGBoost (b) algorithms.
Probability density function of residuals for the prediction of nitrate concentration using RF (c) and XGBoost (d) algorithms in the
validation stage and after apply K—fold cross validation with 10 repeats (e and f). r = correlation coefficient; = bias ratio; v = ratio of
the coefficients of variation; KGEM = Modified Kling-Gupta Efficiency.

3.3.Importance of conditioning factors

The importance of the driving features in the modelling process is shown in figure 5. N was the most important
feature in the prediction of nitrate concentration using RF and XGBoost algorithms. This result agrees with the
MI, Pearson’s coefficient and BorutaShap; however, there were differences between groups and algorithms in
terms of ranking the features. Most important among the other features for the prediction of nitrate
concentration are the following: DRS in Group 5 with RF, and Groups 4 and 5 with XGBoost; nitrate-GW in
Groups 3 and 5 with both algorithms; precipitation in Groups 4 and 5 with both algorithms; PLin all groups in
both algorithms (with the exception of Group 5); and pH and total P in all groups in both algorithms. Group 2,
which performed with less accuracy using the two algorithms, gave a high importance (88 percent RF—90
percent XGBoost) to N, while in Group 5 with RF, the importance of N is 57 percent. Of all the variables used in
the prediction of nitrate concentration, the least contributing variables were NO,, NH,4, DO, SS, BODs, Tw, Ta,
streamflow and QBR.

4. Discussion

4.1. Comparison of models and feature selection approaches
The models used with the RF and XGBoost algorithms are reliable when estimating the nitrate concentration in
the Jucar RB. However, the difference in the calculation procedures of feature selection methods and algorithms

9
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Figure 4. Linear regression for simulated and observed values of Group 5 (best model) applying RF (a) and XGBoost (b) algorithms. (c)
Monthly nitrate mean concentration observed (box squares without including outliers), simulated (continuous line, first and third
lower and upper shaded quartiles, respectively) and (d) seasonal nitrate concentration along the Jucar river Basin applying RF and
XGBoost algorithms.
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Figure 5. Feature importance results of the RF and XGBoost algorithms with different groups of variables.
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resulted in different model performances. Models in Group 2, consisting of the 10 features with the best MI
score, performed the worst with the two algorithms. This could be because MI assesses the features
independently without considering their context, and the features were selected in a univariate way. Therefore,
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MI was not able to deal directly with the problem of redundant inputs (Nourani et al 2017, Effrosynidis and
Arampatzis 2021). Models in Group 3 were similar to Group 2, but the removal of a feature with only few data
improved the model performance by 2 percent. Models in Group 4, consisting of the BorutaShap results
(selection of 8 out of 19 features) improved the model performance from Group 2 by 2 percent. Although
BorutaShap is a new algorithm, it has recently been used in different fields, performing well in terms of feature
reduction and predictive accuracy (Kleiman et al 2021, Ghosh and Chaudhuri 2022, Peird-Signes et al 2022). It
reduces the number of features by including only the relevant ones without compromising the model
performance, and the Shap value embedded in the algorithm adds an important explanatory capacity that
reduces the overfitting problem (Ghosh and Chaudhuri 2022).

The highest performance was found with Group 5 (merging Groups 3 and 4) with the two algorithms.
Combining the results of the two selection methods and knowledge of the data allowed variables that were highly
correlated and those that provided few data to be excluded. PL depends on DRS, and removing PL from the
predictors reduced the model complexity and the cost of prediction and increased the sample size of the dataset.
Sample size had a significant impact on modelling and prediction performance in this study, and the increase of
training data and smaller set of features decreased the variance among the residuals. In this way, the performance
of the model was improved. Similar results were found by Shahhosseini et al 2019, Zamani Joharestani et al 2019
and Effrosynidis and Arampatzis 2021.

Comparing the two algorithms in the validation stage for Group 5, the RF resulted in a slightly better performance
(3 percent) in respect to bias and variance. However, after applying CV the performance of XGBoost improved (4
percent), while RF remained the same. Therefore, either algorithm could be used for nitrate prediction, as the
difference between the two algorithms was 1 percent. The improvement with CV for the XGBoost algorithm was
possibly due to the fact that successive trees gave extra weight to points incorrectly predicted during the previous
analysis and finally a weighted vote was taken for the prediction (Fan et al 2018). After using CV, both models were
able to recognise the complex interactions between conditioning factors, and Tomperi et al 2017 reported an increase
in the accuracy of the prediction of Al models after applying the CV method.

On the other hand, the results revealed how sensitive XGBoost is to the wrong features being selected. In
Groups 2, 3, and 4, the XGBoost metrics decreased for the validation dataset. In contrast, RF showed a more
robust model, and introducing wrong features to RF did not change the model performance considerably, as it
maintained a similar performance level. In other research using RF and XGBoost algorithms, the authors
reported that they obtained the best performance with XGBoost, although the difference with RF was small (Fan
etal 2018, Zhong et al 2019, Kiangala and Wang 2021, Peir4-Signes et al 2022). XGBoost and RF are ensemble
algorithms; therefore, it is difficult to explain their predictions, and each one has different limitations. The
performance of RF depends on the amount of data used in the training dataset (Ghimire et al 2022), while
XGBoost presents less accurate results when dealing with imbalanced data (Kiangala and Wang 2021).

The models used with XGBoost and RF algorithms are substantially higher than the traditional hydrological
models applied in the Jucar RB. The coupling of hydrological and water quality models in the Jicar RB found 58
percent of lineal correlation, a bias smaller than 20 percent, and the variability was 25 percent (Dorado-Guerra
etal2021). ML algorithms improved the correlation, bias and variability measures reached with the coupling of
hydrological models in the Jucar RB by 40 and 37 percent with RF and XGBoost algorithms, respectively, with
the lineal correlation the parameter that improved the most. Similar results were found by Wu et al 2017, who
reported that Al algorithms are statistically better than hydrologic models.

4.2. Use of extrinsic features of surface water bodies and their effect on nitrate pollution
It can be inferred that it is possible to model the nitrate concentration in SW in the Jicar RB using N, DRS, P, IPS
pH, nitrate-GW, precipitation, DP and IBMWP, the features representative of weather, location, ecological
status, water quality and anthropogenic effects. This approach could be considered as a methodology to predict
nitrate concentration, especially in data-scarce areas, but it must be validated in the other catchments of the
region. Other studies showed that location and precipitation were important driving factors affecting water
quality in rivers and aquifers (Ha et al 2020, He et al 2022, Wang et al 2022).

The results show that the high nitrate concentration in the Jticar RB is linked to high nitrogen zones
(figure 6), and that the relationship between these two variables is lineal as shown by Pearson’s correlation. Other
studies showed similar results, in which nitrogen was the main predictor of nitrates (Oehler and Elliott 2011).
Nitrogen leaches when transformed into nitrate form, and the main issue then with nitrates is their mobility in
the soil and the fact that they can persistin SW and GW (Defterdarovié et al 2021). Agricultural activity is the
main source of nitrogen in the watershed (Dorado-Guerra et al 2021); therefore, DP is the most probable cause
for the higher nitrate probabilities and the increase of the nitrate concentrations in the river.

The DRS exhibited a positive effect on nitrate concentration in SW in the Jucar river (figure 6), and a similar
resultin GW was found by Rodriguez-Galiano et al 2014 and He et al 2022. This may be because the nitrate
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Figure 6. Scatter plot overlaid on a density contour plot to show a correlation between predictor features of group 5 with RF algorithm
and the target variable.

pollution is associated with agricultural zones located in the downstream of the watershed, while in the upstream
the land use is forest (Dorado-Guerra et al 2021). Therefore, DRS contributed significant information to help
identify polluted areas.

Precipitation was the most influential meteorological variable with relative importance, though a weak
positive effect of precipitation on SW nitrate was detected by the two algorithms used. In this study, precipitation
above 500 mm/trimester was associated with high nitrate concentration in SW (figure 6); as nitrate inputs were
mainly from diffuse sources, rise of nitrate concentration takes place mainly in winter and spring when
precipitation is high (figures 4(c) and (d)). However, the influence of precipitation on the SW nitrate
concentration is complex, as shown in figure 6. For example, high rainfall increases the streamflow resulting in
the dilution of SW chemical components (Romero et al 2007; Temino-Boes et al 2021), which can also promote
crops to uptake nitrogen (Sieling and Kage 2006). The precipitation would then have positive and negative
effects on nitrate concentration in SW.

TP was another important factor for predicting nitrates in SW, with similar results found by Oehler and
Elliott 2011. TP above 0.1 mg 1~ " was associated with high nitrate concentration in the Jtcar RB (figure 6), which
might be an indicator of the N:P ratio controlling important N speciation processes through temporary plant
uptake and decay (Ensign and Doyle 2006). As for pH, there was a negative relationship with nitrate
concentration, perhaps due to the fact that increasing pH affects microbial activity and decreases the nitrification
process (Chen et al 2006), and pH levels above 8.25 and below 7.4 were associated with the lowest nitrate
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concentration (figure 6). The relationship between the high nitrate concentration in GW was not clearly related
to the high nitrate levels in SW, because this relationship depends on the river-aquifer interaction. However, ina
previous study, it was shown that there is a high linear correlation between nitrate content in both GW and SW
when river and aquifer are connected (Dorado-Guerra et al 2021).

Nitrate is an important predictor of diatoms index IPS and macroinvertebrates index IBMWP (Valerio et al
2021), and several studies have shown that diatom distribution is highly dependent on nitrates, which have fast
growth rates that allow them to react faster to chemical changes and detect the first step of degradation (Doung
etal 2007, Tan etal 2017, Karaouzas et al 2019). The relationship between nitrate and IPS and IBMWP indices
was negative in this study (figure 6); IPS values above 16 were related with the lowest nitrate concentration, while
IBMWP values above 80 were related with the lowest nitrate concentration (figure 6).

5. Conclusions

This paper explores the potential of feature selection and artificial intelligence algorithms to model nitrate
concentration in surface water bodies in areas with water scarcity and high interaction between rivers and aquifers. RF
and XGBoost successfully modelled the nitrate concentration in the Jicar RB and enabled recognition of the complex
interactions between conditioning factors. FS methods are useful tools, but they need to be combined with local
knowledge of the dataset, as the amount of data available and high correlation between predictor features affect the
performance of the models. Nitrogen, total phosphorus and location were the strongest predictor factors for nitrate
concentration in surface water bodies in the Jicar RB, because they accounted for approximately 88 percent of the
nitrate variation. On the other hand, RF and XGBoost models obtained better performance than hydrological models
in the prediction of nitrate concentration in surface water bodies of Jicar RB.
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