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ABSTRACT 

Reservoir development in the petroleum industry starts with the drill bit. A drill bit’s dull condition must be 
closely monitored since it significantly influences the efficiency and the cost of drilling operations. The dull 
condition check procedure is called drill bit grading and is essentially a change detection problem to determine 
the state of the drill bit, in particular the wear of the cutting teeth inserts. Currently, the grading is conducted 
manually on-site, which is error-prone and highly subjective. Laser scanning technology offers a potential 
solution to overcome the shortcomings of existing practice. The integration of LiDAR (Light Detection and 
Ranging) on the newly-launched iDevices, the iPhone 12 Pro and the iPad Pro 2020 offers new opportunities for 
close-range measurement given their huge customer base and low cost. The goal of this research is to investigate 
the performance of these devices, and to develop a tool for the drill bit grading. Since bit grading is significantly 
impacted by the performance of the sensor, several basic tests were first conducted under controlled 
experimental conditions, e.g., the room temperature and ambient lighting and measurement surface. The 
temporal stability of the iDevices was examined by capturing a series of datasets of a flat wall over forty-five 
(45) minutes, then the effect of range, reflectivity and incidence angle on data quality was tested by measuring 
the Spectralon targets at different situations. The performance tests found that using only the LiDAR data was 
not sufficient for drill bit grading. Thus, a preliminary grading system based on the fusion of LiDAR and color 
camera is proposed by modelling the post-drilling bit and detecting the changes. 

 
I. INTRODUCTION 

Being used in the first step in reservoir development, 
drill bits play a critical role in petroleum industry. The 
drill bit is connected to the head of a rotary drill pipe 
and then transmitted downward to the well. According 
to the cutting mechanism, drill bits are broadly 
classified into two main types, rolling cutter bits and 
fixed cutter bits. The focus of this paper is a particular 
type of the fixed cutter bits, the Polycrystalline 
Diamond Compact (PDC) bit. This type of bit is usually 
made with a matrix or steel body. On the bit body, 
several blades are constructed with multiple cylindrical 
cutter inserts. The bit also contains nozzles that 
transmit drilling fluid during the work and includes 
other supporting structures. 

Apart from the maximum drilling performance, 
another design goal that a drill bit must satisfy is a long 
service life. Thus, the dullness of a post-drilling bit 
needs to be assessed to identify the damage, to guide 
future bit selection, and thus to optimize the efficiency 
and cost of the drilling work. The industry standard for 
drill bit grading is published by the IADC (International 
Association of Drilling Contractors; Brandon et al., 
1992). According to the IADC grading document, the 
dullness of a drill bit needs to be investigated in terms 

of several aspects including the primary cutting 
structure wear, overall gauge undersize, etc. A score or 
code is used to either measure or describe the damage 
condition in each aspect. A detailed introduction to the 
drill bit grading will be covered in Section III. 

Up until now, most dull grading is conducted by a 
manual and highly subjective screening approach, 
which is error prone and inconsistent. Some research 
has been conducted to replace of this subjective 
procedure. Ashok et al. (2020) developed an image-
based drill bit grading method by using the trained 
Convolutional Neural Networks (CNN) to identify the 
drill bit and image processing techniques in damage 
assessment. Ekeregbe et al. (2021) also proposed an 
approach using the deep learning, but the data analytics 
were based on a video that captures the drill bit in 360°. 

As a technique that can remotely gather large 
volumes of 3D point information of an object, LiDAR has 
been used in widespread applications including 
surveying, autonomous vehicles, robotics, videogames, 
among others. The last two decades have witnessed a 
skyrocketing development of LiDAR, and laser scanning 
sensors have also experienced tremendous 
improvements in price, size, portability, and 
compatibility. The variety of the sensors ranges from 
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terrestrial laser scanners to the mobile LiDAR 
backpacks, from the handheld systems to smart 
devices. 

In 2020, Apple launched their first two devices with 
an embedded LiDAR scanner, the iPhone Pro 12 and the 
iPad Pro 2020 (hereafter denoted as the iPhone and the 
iPad). However, not much information has been 
unveiled on this custom-designed LiDAR sensor except 
that it improves the camera’s properties and allows 
taking 3D measurements and point clouds of an 
environment up to 5 m away, at ns speeds (Apple, 
2021). Limited research has been found on investigating 
the performance of Apple’s LiDAR sensor. Among them, 
Luetzenburg et al. (2021) tested the technical 
capabilities of the iPhone and iPad by repeatedly taking 
scans for fourteen (14) rectangular boxes varied from 
14 cm × 6 cm × 2 cm up to 50 cm × 30 cm × 52 cm. 
Comparing with the photogrammetric point cloud, both 
the accuracy and the precision of the iPhone’s LiDAR 
were found to increase with the object size in all 
dimensions. They also reported an 11 cm cloud-to-
cloud distance between the iPhone and 
photogrammetric solutions in modelling a coastal cliff 
of 130 m × 15 m × 10 m. Vogt et al. (2021) conducted an 
accuracy test of the LiDAR and TrueDepth cameras on 
iPad by imaging Lego bricks from 300 mm with a 65° 
scanning angle. However, it was found that the iPad’s 
LiDAR camera was impractical for the capture of small 
objects due to the selection of the data collection 
application. A comparison between the iPad’s LiDAR 
and a professional mobile laser scanner on measuring 
tree parameters was made by Gollob et al. (2021). The 
precision for the tree diameter estimation from iPad 
was found to be up to 4.5 cm, while it was 1.6 cm for 
the professional scanner. Research regarding the iPad’s 
performance on the tree diameter measurement can 
also be found in Wang et al. (2021), which indicated a 
bias of up to 4 cm in scanning one hundred one (101) 
trees with diameters of 39.72 cm ±19.42 cm. Spreafico 
et al. (2021) compared iPad with the Faro Focus3D X330 
in the rapid architectural mapping. Their research 
implied that the iPad seemed promising as a portable 
cost-efficient solution, while 60% of the points achieved 
a less than 2 cm cloud-to-cloud distance. 

The aim of our work is to first evaluate the iPhone and 
iPad’s LiDAR sensors through a comparison with the 
industrial HDS6100 scanner manufactured by Leica, and 
then to determine the potential of these devices for drill 
bit modelling and dull grading. 

This paper is structured as follows: the background of 
drill bit grading problems and the literature review for 
the LiDAR on Apple devices are provided in this section. 
In Section II, the performance of LiDAR on iPhone and 
iPad are investigated under controlled experiment 
environment. This includes the sensors’ temporal 
stability during repeated tests over time and the range 
precision from various distances and incidence angles 
for objects having different reflectivity. A drill bit 
scanning strategy guided by the performance test 

outcome is described in Section III, followed by the 
post-processing of the captured model that includes the 
drill bit isolation and point cloud denoising. In Section 
IV, a preliminary drill bit grading method involving both 
LiDAR and 2D camera is proposed. Finally, conclusions 
are drawn, and some future topics are suggested in 
Section V. 

 

II. LIDAR PERFORMANCE ANALYSIS 

Several tests were conducted to examine the 
performance of the LiDAR integrated in the 2020 
iDevices. The purpose of these tests is to quantify the 
quality of the lidar data and to further guide the data 
collection, so that the drill bit can be modelled 
precisely. 

To mitigate the errors caused by environmental or 
personal factors, the following data capture method 
was used for all the tests in this section: 

1. The devices were mounted on a tripod (Figure 1a 
and Figure 1b), and a plastic clamp mount was 
used to connect both devices to the tripod. 

2. All the devices were operated by one person, 
under a controlled room temperature of 20.1℃ 
and a stable artificial lighting conditions.  

Among the available data collection applications, 
SiteScape (SiteScape, 2021) was used because unlike 
other applications, it does not perform any extra 
processing such as meshing or interpolation on the raw 
data. For each test, another set of data was also 
collected with a high-accuracy, commercially-available 
scanner, the Leica HDS6100. With a modelled surface 
precision of 1 mm at 25 m, data from HDS6100 were 
used as a benchmark to assess the quality of data from 
the iDevices. 

 

a) b) 

c) d) 
Figure 1. Experimental setup: a) Temporal stability tests; b) 

Range tests; c) Schematic diagram for the range, reflectivity, 
and incidence angle tests. 
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A. Temporal stability analysis 

1)  Experimental Description: All three devices (the 
iPhone, the iPad, and the HDS6100) were set up to 
image a flat wall at 1.5 m range (Figure 1a). The wall is 
constructed of drywall and painted matte beige. Scans 
of the wall were captured every one (1) minute for 
iPhone/iPad, and every five (5) minutes for HDS6100 for 
a period of 45 minutes. 

 
2)  Experimental results: Each dataset was checked 

by performing a least-squares plane fit. The results are 
presented in Figure 2. The RMSE (root mean square 
error) is a measure of the quality of the plane fit and can 
indicate the level of random noise in the system. The 
HDS6100 RMSE, which is consistently below 1.0 mm 
(Figure 2a), sets the benchmark for data quality and 
confirms the degree of flatness of the wall. The results 
for the iDevices have larger RMSE values, which indicate 
a higher degree of noise. However, with this setup, the 
iDevices can also provide millimetre-level precision, 
which is only slightly worse than the HDS6100. No 
obvious evidence indicates the necessity of a warm-up 
period to ensure the stabilization of the LiDAR data. 

 

 
a) 

 
b) 

c) 
Figure 2. Temporal stability analysis: a) Plane fit precision; 

b) Distance to plane differences; c) Normal vector 
differences. 

 

The device-to-plane orthogonal distance, and the 
normal vector of the plane were also estimated. When 
compared to the Leica HDS6100 reference, they can 
give an indication about the accuracy of reconstructing 
a planar surface in 3D. The results can identify 
instrument instability. The values reported in Figures 2b 
and 2c are the changes in orthogonal distance and 
normal vector orientation relative to the first data 
collection epoch. Values that are close to zero indicate 
a more stable reconstruction. The HDS6100 reference 
parameter values are clearly very stable, with little 
discernable change over time. One can see that the 
iDevices’ results are less stable, especially the iPad. 
Figure 2c shows a clear trend of growing normal vector 
instability in the iPad. This could be from the wobble of 
the clamp that was caused by touching the screen for 
data collection. Physically touching the screen is 
necessary to commence the LiDAR data collection. That 
said, it is also possible that sensor instability contributes 
to the visible trend. Further investigation is required to 
test this hypothesis. 

 
B. Range, reflectivity, and incidence angle analysis 

1) Experimental Description: Two 27 cm ൈ 27 cm 
Spectralon targets were used to test the impact of 
range, reflectivity, and incidence angle on the LiDAR 
performance. The white target (Figure 1b) has 99% 
reflectivity and the black target has 25% reflectivity. 
Spectralon targets are used due to their nearly constant 
spectral reflectivity in the visible and NIR (near infrared) 
part of the spectrum and their near-Lambertian 
behaviour. Each the targets were imaged at normal 
incidence every 0.5 m from 0 m to 5 m as shown in 
Figure 1c. Then, the tests were repeated at 1 m but with 
various incidence angles to the target surface: every 15° 
from 0° to approximately 82° as shown in Figure 1d. 
Point clouds captured with each sensor were manually 
cropped so that only points lying within the extents of 
the Spectralon target were used in the plane fitting. 
Although the Spectralon target materials are quite 
different from that of drill bits, as accepted reference 
standards they give an indication of best-case data 
quality that can be expected. 

 
2) Experimental results: Like the temporal stability 

tests, the plane fit precision was estimated to evaluate 
the LiDAR’s range precision under different scenarios. 
As can be seen from Figure 3a, the target can only be 
measured up to a 4 m range with the iDevices. The 
working range for the iPhone/iPad’s LiDAR is reported 
as up to 5 m. The Leica HDS6100 reference provides 
better than millimetre precision at distances above 1.5 
m, which is consistent with its reported modelled 
surface precision of 1 mm at up to 25 m. 

Poorer precision can be found at the closer distances 
for HDS6100, which is caused by placing the object 
within the reported minimum working range of the 
scanner, which is 1 m in this case. The range precision 
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for iPhone and iPad decreases with distance, and a 
5 mm precision can be achieved if the object is captured 
within a 1.5 m range. Interestingly, the results for the 
black and the white targets are very similar. However, 
the RMSE values for the white Spectralon are larger 
than those from the wall test. This may be due to the 
higher reflectivity of the reflectance standard. The plots 
of plane fit residuals in Figure 3b indicate the “flatness” 
of the captured target. Green dots represent points that 
lie on the plane, while red and blue points represent 
points that deviate significantly from the estimated 
plane. These results show that the range measurements 
above 1.5 m do not accurately represent the shape of 
the flat Spectralon target. 

 

 
a) 

b) 
Figure 3. Impact of range on data quality: a) Plane fit 

precision; b) Plane fit residuals. 

 
Plane fit precision from the incidence angle tests is 

shown in Figure 4. The reference data results from the 
HDS6100 are again of very high quality. The number and 
geometry of iDevice data points decreases dramatically 
at high incidence angles (above 45°). However, deeper 
investigation is required to uncover the cause of the 
spikes at 45°. Thus, the planes cannot be reliably 
estimated from the captured data. Results above this 
incidence angle should not be considered. Analysis of 
the remaining data reveals that the data captured at 
incidence angles below 30° exhibit compatible 
precision. Regarding the reflectivity, no significant 
differences has been observed in the data captured 
from the two targets. 

 
Figure 4. Plane fit precision from the incidence angle tests. 

 

III. THE MODELLING OF DRILL BIT 

A. Introduction to the drill bit 

As mentioned before, the fixed cutter PDC bit is the 
object of this research. Different PDC bits may vary in 
size and shape, but they have the similar primary 
cutting structure, which consists of several blades with 
PDC cutters inserted on each of them. On the PDC bit 
shown in Figure 5a, six (6) blades can be found, while 
four (4) to six (6) cutters are fixed on each blade. The 
dimensions of the bit and cutters are approximately 20 
cm (L) × 20 cm (W) × 15 cm (H) and 1 cm (L) × 1 cm (W) 
× 1 cm (H), respectively. 

 

 
a) b) 

Figure 5. A PDC drill bit: a) Unused drill bit; b) Used drill bit 
with cutter wear. 

 
According to the IADC regulation, the grading of a 

fixed cutter drill bit needs to be conducted in terms of 
the following four aspects: 

1. Cutter wear. Figure 5b shows a PDC bit after 
removal from the drilling hole. Different levels of 
cutter wear can be observed. According to IADC, 
the cutter wear should be graded following the 
scale illustrated in Figure 6. By considering the 
cutter surface as a circle, it scores the cutter wear 
by estimating the worn amount of the circle. 
According to the grading scale between 0-8 listed 
in Table 1, the more the wear is, the higher the 
grade would be.  

2. Primary dull characteristic and location. This is 
the description of the primary damage on the bit, 
e.g., lost cutters or worn cutters. The 
corresponding location is also recorded. 

3. Gauge undersize. This test is conducted by 
placing a gauge ring over the largest diameter of 
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a post-drill bit and measuring the gap in 
between. 

4. Remarks. This includes the second most notable 
condition and the possible reasons for all the 
damages. 

 

 
Figure 6. Schematic diagram for the cutter wear grading 

scale (BESTEBIT, 2021). 

 
Table 1. Cutter wear grading scale 

Grade 
 

0 1 2 3 4 5 6 7 8 

Wear 0
8

 
1
8

 
2
8

 
3
8

 
4
8

 
5
8

 
6
8

 
7
8

 
8
8

 

 

Following this IADC standards, this paper focuses on 
the grading of the primary cutting structure, which is 
the wear of the cutters. The overall goal is to replace 
the current subjective grading procedure with a more 
accurate and consistent method using an imaging 
sensor such as one of the iDevices. 

 
B. Suggested drill bit modelling procedure 

According to the performance tests, the LiDAR from 
the iPhone/iPad has been found to perform best when 
the object is scanned within 1.5 m and with an 
incidence angle that is smaller than 30°. The SiteScape 
app integrates the IMU (Inertial Measurement Unit) 
data for real time registration while moving the device, 
thus provides a registered 3D model of the object. 

Based on the above conditions and several test scans, 
the authors found that instead of scanning the entire 
drill bit (Figure 7a), which leads to many mixed-pixel 
errors, higher data quality can be achieved if the drill bit 
is scanned blade by blade (Figure 7b). As the cutters are 
distributed on the top half of the drill bit (Figure 5), it is 
recommended to start scanning from the top of each 
blade and gently move the devices to the bottom. By 
doing so, the registraion errors can be mitigated for the 
the best results. 

 

a) b) 
Figure 7. Drill bit and the test scans: a) Full drill bit scan; b) 

Single blade scan. 
 

C. Drill bit model post processing 

The scanned model needs to be processed before 
being analyzed. This post-processing mainly includes 
the following two steps. 

 
1) Drill bit model segmentation: Figure 8a shows a 

raw point cloud from a larger standoff distance and 
includes unwanted measurements in the background. 
Thus, the drill bit needs to be identified in the point 
cloud. Assuming that the drill bit was within a 1.5 m 
range of the devices, the drill bit isolation was realized 
by firstly removing points at longer ranges. Then, the 
remaining point cloud was segmented based on the 
colour information to separate the drill bit from other 
objects. Lastly, the segmented point cloud was 
extracted by connected components analysis. The 
largest cluster was saved as the identified drill bit model 
(Figure 8b). Note that the bit shown in Figure 8 has no 
PDC cutter bits. All bits were removed and replaced by 
with artificial bits made from wooden dowels to allow 
simulation different wear conditions. 

 
2) Point cloud denoising: The point cloud denoising 

is required due the existence of outliers, many of which 
are mixed pixels. This was realized by the statistical 
outlier removal method. The idea of this method is that 
it will first calculate the average distance from each 
point to its fifty (50) nearest neighbours, which are 
found by the k-d tree method. Then, a distance 
threshold will be defined as the mean plus deviation of 
all these average distances. Points whose average 
neighbour distance are above this threshold will be 
considered as outliers and will be removed from the 
point cloud. The denoised drill bit model is shown in 
Figure 8c. 

 

a) 

b) c) 
Figure 8. Point cloud post processing: a) A sample scan 

from iPhone; b) Isolated drill bit scan; c) Denoised drill bit 
model. 
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IV. DRILL BIT GRADING STRATEGY 

The initial plan of this research was to test the 
performance of the LiDAR sensor on the new iDevices, 
and to determine the potential of using only one sensor 
to fulfill the goal of drill bit grading. However, based on 
our experimental findings, the LiDAR on theses smart 
devices only captured the general geometry of the drill 
bit and was not capable allowing identification of the 
finer details like the wear of the cutters. This was largely 
due to mixed pixel data artefacts and registration errors 
from the IMU data. Thus, a drill bit grading technique 
presented in this paper also utilizes the iPhone/iPad 
colour camera images. The LiDAR data are used to 
provide 3D information that can improve the 2D-only 
solutions. One picture needs to be taken for each blade 
from a proper perspective, after which the following 
steps are performed to grade the cutter wears. 

 
A. Image ortho-rectification 

Ortho-rectification is the process of synthetically 
generating an orthophoto, which is an image of the 
object space in orthogonal parallel projection. By doing 
so, the distortions due to image tilt and relief 
displacement can be corrected. 

Image ortho-rectification is essentially the process of 
transforming a central-perspective digital image by the 
analytical funtions 𝑓௫ and 𝑓௬ in Equation 1, and assigning 

the color in the corresponding pixels (Novak, 1992). This 
can be done by either direct or indirect method as 
described by Equation 1. 

 
𝑥 ൌ 𝑓௫ሺ𝑥ᇱ, 𝑦ᇱሻ ;  𝑦 ൌ 𝑓௬ሺ𝑥ᇱ, 𝑦ᇱሻ (1) 

 
where direct transformation means if: 

 𝑥, 𝑦 ൌ pixels of the orthophoto 
 𝑥ᇱ, 𝑦ᇱ ൌ pixels of the original image 

and indirect transformation means if: 

𝑥, 𝑦 ൌ pixels of the original image 
𝑥ᇱ, 𝑦ᇱ ൌ pixels of the orthophoto 

 
Since the direct method transforms the pixels on the 

original image to the orthophoto, it may happen that 
some pixels on the orthophoto have no 
correspondences on the original image and no color 
value can be assigned. Thus, the indirect method is 
more commonly used. 

Among all the ways to determine the analytical 
function, a method is called projective transformation. 
This method is used if the object scene can be modelled 
as a plane, then the problem is reduced to mapping the 
pixels of the orthophoto plane into the original image 
(Figure 9). 

The projective transformation models the geometric 
relationship between two planes. It is defined by eight 
(8) parameters from 𝑎ଵ to 𝑐ଶ in Equation 2. It can be 
solved by using four (4) control points lying in a plane in 

the object space and their corresponding pixels in the 
original image. 

 

𝑥 ൌ
𝑎ଵ𝑥ᇱ ൅ 𝑎ଶ𝑦ᇱ ൅ 𝑎ଷ

𝑐ଵ𝑥ᇱ ൅ 𝑐ଶ𝑦ᇱ ൅ 1
ൌ 𝑓௫ሺ𝑥ᇱ, 𝑦ᇱሻ 

 

𝑦 ൌ
𝑏ଵ𝑥ᇱ ൅ 𝑏ଶ𝑦ᇱ ൅ 𝑏ଷ

𝑐ଵ𝑥ᇱ ൅ 𝑐ଶ𝑦ᇱ ൅ 1
ൌ 𝑓௬ሺ𝑥ᇱ, 𝑦ᇱሻ 

(2) 

 

 
Figure 9. The projective transformation between the 

orthophoto plane and the original image. Four (4) points are 
required to solve the transformation function. 

 

An image for the drill bit in Figure 10a was taken at a 
perspective that best captured the cutters on an 
individual blade. One can see that the circular shaped 
cutter surfaces were elongated to ellipses to different 
extents. As the cutter surfaces lie roughly on a plane in 
object space, the ortho-rectification can be done by 
using the projective transformation method. The 3D 
coordinates of the cutter centers were extracted from 
the previously generated LiDAR model, and then were 
transformed into the 2D pixel coordinates in the 
orthophoto. When combined with the coordinates in 
the distorted image, the transformation fucntion 
parameters were estimated. By applying the 
transformation parameters to every pixel, the ortho-
rectified image was generated. As shown in Figure 10b, 
the cutters have been mostly corrected to their true 
shapes, which are circles in this case. Some residual 
deformation to the circles still exists due to the 
deviation of the cutter surfaces from the hypothesized 
planar shape. 

 

a) b) 
Figure 10. Image ortho-rectification: a) The original image; 

b) Rectified orthophoto. 
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B. Circle detection and isolation 

The cutters were replaced by the worn ones for the 
following grading procedure. They were identified in 
the rectified image by considering them as individual 
circles. Each circle was detected by the circular Hough 
transform. Six (6) cutters were detected on the blade in 
Figure 11a. Even though cutter 5 is partially occluded, 
its circumference can still be partially extracted and the 
wear measurement made. With the estimated centers 
and radii, each cutter can be cropped out from the 
Image for the following grading procedures. The 
isolated cutter images are shown in Figure 11b. 

 

 
a) b) 

Figure 11. Circle detection. a) Detected circles; b) Isolated 
cutter images. 

 

C. Cutter wear grading 

The key point of the cutter wear grading is to 
recognize the edge that represents the location of wear. 
When using the artificial wooden cutter bits, accurate 
detection of the edge requires the aid of the edge marks 
as shown in Figure 11b. The edges were marked with 
black indelible marker to highlight the wear edges on 
the cutters so that they can be more easier detected in 
the image. The process for cutter wear grading can be 
summarized as the following three steps. 

 
1) Detection of the edge: Pixels with a certain 

colour, i.e., black in this case, were detected as the 
potential edge points. Shadows were excluded by 
removing the points that are overlain with the detected 
circles. Next, the largest connected component was 
labelled as the edge of the cutter wear, as can be seen 
in Figure 12. 

 

 
Figure 12. The detected edge of the cutter wear. 

 

2) Edge “recovery”: By using the points found in the 
last step, lines that represented each edge were 
estimated. Two intersection points between the line 
and the circle, marked as the blue and red triangles in 
Figure 13, were found for each edge to indicate the 
location of the cutter wear. 

 

 
Figure 13. Edge “recovery” results. 

 

3) Wear estimation: Following the grading strategy 
in Figure 6, the amount missing from each circle, which 
indicates the amount of cutter wear, is estimated. 
Table 2 lists the estimated wear of each cutter in 
Figure 13, and their grades determined based on 
Table 1. The value between two grades was rounded to 
the closer one. 

 
Table 2. The estimated wear and grades. 

ID 
 

1 2 3 4 5 6 

Wear 0
8

 
2
8

 
2
8

 
1
8

 
1
8

 
1
8

 

Grade 0 2 2 1 1 1 

 

V. CONCLUSION 

The current widely-used approch for grading a drilling 
bit is by visual inspection, which can be highly-
subjective and inaccurate. Thus, a consistent and ideally 
automated solution is expected. The aim of this work 
was to develop a new remote sensing approach using 
the new Apple iDevice LiDAR sensors, which have made 
3D point clouds accessable with consumer-level 
devices. 

In this paper, several performance tests were first 
conducted on the new sensor. Results from the 
temporal stability test reveal that the iDevices provide 
millimetre-level precision in plane modelling at a range 
of 1 m, which is only slighly worse than the reference 
data results from the Leica HDS6100 scanner. It has also 
been found that the performance of the iDevice LiDAR 
is more greatly impacted by the range than by the 
incidence angle and the object’s reflectivity, which 
suggests an ideal scanning configuration of within a 
1.5 m range and a 30° scanning angle. 

According to the performance tests, it was found that 
more research needed to be done to realize the drill bit 
grading by only using the LiDAR. Thus, colour camera 
imagery was introduced in the proposed method. 3D 
information from LiDAR was used to help reduce the 
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image distortion and to improve the results from image 
processing. Experiment results on laboratory data show 
that drill bit grading is possible using the proposed new 
image based method. 

Future work will be to pusue the LiDAR-only solution. 
As Apple doesn’t publish the sensor’s specifications, 
more comprehensive research needs to be 
implemented. It may include an application 
development so we can have direct access to the sensor 
and data. After that, more tests could be done 
regarding, for example, the scanning resolution, the 
measurement accuracy, the impact of placement angle 
of the device, the LiDAR sensor calibration. If the LiDAR 
data is sufficent for drill bit grading, new methodologies 
need to be proposed including the data registration, 
cutter segmentation and modelling. If not, the 
generated bit model can still be used to improve the 
current ortho-rectifciation results. Last but not the 
least, machine learning can be applied on the improved 
orthophoto to achieve more accurate image-based 
solution. 
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