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Abstract: Water distribution system monitoring is currently carried out using advanced real-time
control technologies to achieve a higher operational efficiency. Data analysis techniques can be imple-
mented for condition estimation, which are crucial tools for managing, developing, and operating
water networks using the monitored flow rate and pressure data at some network pipes and nodes.
This work proposes a state estimation methodology that enables one to infer the hydraulic state of
the operating speed of pumping systems from these pressure and flow measurements. The presented
approach suggests using graph convolutional neural network theory linked to hydraulic models for
generating a digital twin of the water system. It is validated on two benchmark hydraulic networks:
the Patios-Villa del Rosario, Colombia, and the C-Town networks. The results show that the proposed
model effectively predicts the state estimation in the two hydraulic networks used. The results of
the evaluation metrics indicate low values of mean squared error and mean absolute error and high
values of the coefficient of determination, reflecting high predictive ability and that the prediction
results adequately represent the real data.

Keywords: graph convolutional neural networks; machine learning; state estimation; water distribu-
tion system; hydraulic modeling; digital twin

1. Introduction

Water distribution systems (WDS) are currently made up of different hydraulic struc-
tures and complex elements interconnected to supply the requirements regarding the water
demand of a community [1,2]. To better supply the users, pump stations should be con-
trolled by on/off operations, and in many cases, using variable speed drivers (VSD). As
pointed by [3], these devices can improve the efficiency of the system when well designed
and controlled. The advances in information technology and computational devices lead to
civil systems’ digital transformation [4]. Due to the complexity of these systems, it is neces-
sary to implement monitoring and control techniques that allow for optimal management
of the networks [1–5]. These techniques/methodologies are typically based on supervisory
control and data acquisition systems (SCADA), which provide real-time measurements
taken in the field, the WDS, and are transmitted to a central control system [5,6].

The comprehensive monitoring of a WDS is a complex task. Nevertheless, it is one
of the necessary actions for good practices in managing the system [7]. The water system
management could be fully understood since control and monitoring devices could be
installed. Nevertheless, abnormal situations, such as failures in the monitoring system,
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remote control, cyber-attacks etc., lead to a loss of knowledge of the real system state. For
this reason, it is crucial to analyze the monitored data from an optimal set of sensors placed
at critical nodes and pipes of the system within a calibrated hydraulic model to efficiently
anticipate, detect and manage abnormal operating conditions [8,9]. These techniques are
known as the state estimation (SE) of a WDS [10,11].

Some approaches to SE of WDSs have been developed in recent years, mainly focused
on hydraulic parameter estimations (e.g., pressure and flow). Díaz et al. [12] implemented
an algebraic method evaluating the impacts of measurements on inferring the hydraulic
state of WDSs through an observability analysis. The authors presented a new methodology
for sensor placement and uncertainty evaluation of various hydraulic variables. Combining
the methods from Díaz et al. [10] and the algebraic analysis for clustering presented by [13],
a set of research has been presented for improving various needs of SE, such as sensitivity
analysis [14], calibration of a WDS [15], SE in changing WDS topologies [16,17], and leak
detection using SE [18].

Fusco et al. [19] analyzed complementary SE approaches in WDSs with control devices
and monitoring data, iteratively solving the unknown variable estimation problem using
weighted least squares minimization and gradient methods. By performing residual analysis,
it was possible to identify the changes in a WDS due to the opening or closing of control
elements, such as pressure-reducing valves.

In addition to statistical or stochastic methodologies, new research approaches have
been developed in the WDS field. In recent years, Hydroinformatics has integrated water
sciences, data sciences, artificial intelligence, and social sciences [20]. The models proposed
from data mining and machine learning have become popular in the last decade [21].
Some of the developed applications using machine learning are applied to optimal pres-
sure management and district metered area design [22], leak detection in WDSs [23–27],
water demand estimation [28–30], and detection of cyberattacks, physical attacks, and
contamination in WDSs [31,32].

Recently, research based on graph convolutional neural networks (GCNs) [33–35] has
been applied to different areas such as the classification of texts, images, and videos, social
network analysis, biological sciences, material sciences, and engineering [36,37]. Similarly,
GCNs have been implemented in the research of vehicular traffic prediction based on
urban road networks [38] and traffic speed prediction by analyzing the influence of external
factors such as weather conditions and the distribution of monitored points [39,40]. GCNs
are successfully applied in several fields; however, dynamic systems can be better modeled
if time-dependencies can be captured by the modeling method. For instance, temporal
GCNs (T-GCNs) are proposed in the literature for passenger prediction [41], electric vehicle
charging [42], or flood forecasting [43]. Many T-GCNs add recurrent layers based on
long-short-term demand in the architecture of classical GCNs.

Moreover, in recent years, research in water networks has considered the possibility
of implementing digital twins (DTs), a recent technique for modeling civil infrastructure
systems [44]. In WDS, the implementation of DTs allows for the creation of hydraulic
models that enable the development of the simulation of dynamic processes to improve
the design of new infrastructures, reduce risk scenarios and optimize the management
of the network and its elements [45]. In this case, new SE techniques, based on T-GCNs,
contribute to the initial implementation of DTs in WDSs.

Although SE applications on WDSs have recently been explored, most works intend
to estimate hydraulic parameters (e.g., pressure and flow). In general, these parameters can
be obtained by well-calibrated hydraulic models. Nevertheless, these models should be fed
with information on control devices, such as relative pump speeds. This paper proposes a
SE algorithm using T-GCNs that enables one to infer the real operating pump speeds in
the network based on the available pressure and flow rate measurements from the sensors
installed in the WDS. The relative speeds are then injected into a hydraulic model, allowing
for the estimation of pressure and flow for the entire water network. Monitoring data from
two benchmark water networks; the Patios-Villa del Rosario network in Colombia and the
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C-Town network are used to develop and evaluate the algorithm. The proposed algorithm
results are robust and provide reliable performance that allows one to infer pump speeds
in the analyzed networks. The results of the estimated pump speeds allow the hydraulic
models to calculate the hydraulic state of the entire network.

The major advance in the study is the possibility it offers for producing a model that
estimates the relative operating speed of the pumps, a parameter that is usually input
data for classical hydraulic models. These results have two functions; the first one, which
we exploit in this article, is the ability to build a DT; the second one is the possibility of
detecting anomalies in a network.

2. Materials and Methods

In this section, we present the methodologies developed for this study. T-GCNs are
presented as algorithms for estimating relative pump speeds. Used error evaluation metrics
are then stated. Finally, the pressure and flow rate calculation from the estimated relative
pump speed rates is described. The general diagram shown in Figure 1 illustrates the entire
procedure developed in this article.
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2.1. Temporal-Graph Convolutional Neural Networks

A graph is a mathematical representation of a network. A generic graph G = (V, E, A)
is defined by a set V of vertices or nodes connected through the edges or lines in set E. The
graph is represented by the adjacency matrix A, which embodies the graph structure and
the related connections.

This study proposes to represent a WDS through a graph structure, where the vertices
represent the network status on some defined points that are assumed to be connected
based on their correlation. For the data set, the correlation matrix is obtained. Based on a
threshold defined by the user, if the correlation coefficient between two variables is higher
than the threshold, a link between those variables is created.

Given the proposed structure, this work aims to create a model that extracts the
necessary and fundamental features from the graph to estimate the pump statuses from the
available information in monitored nodes. This can be summarized as:

S = f (P, Q), (1)

where S represents the pump speeds, P the pressures at the nodes, and Q the flow rates in
the pipes. In other words, the graph is built with some nodes that represent the pressures,
some nodes that represent the flow rates, and some nodes, the pump speeds. The task of
the model is to identify the relationship of Equation (1) among these variables in order to
estimate the unknown pump speeds of each of the pumps operating in a network.

Graph convolutional neural networks are computational models designed to process
graph data and are useful in many applications [46]. The main idea of a GCN is to apply
to graphs the same extraction features of conventional convolutional neural networks.
However, the proposed problem has an essential dependency on time. Pressures, flow
rates, and pump speeds are variables that change continuously in time. For this reason, it
is proposed to model Equation (1) with a temporal graph convolutional neural network.

The T-GCN is designed to extract temporal and spatial information from structured
graph data. The T-GCN is intended to be a sequence of graph convolutional layers with
recurrent layers to perform this task. Specifically, the T-GCN designed for this study
comprises three stages of layers. Firstly are the GCN layers, which receive the graph input.
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It is worth noting that, in order to process the graph, the GCN layers receive, as input,
the adjacency matrix of the graph (i.e., the correlation between measurements) and the
nodes’ features. Secondly, the output of the GCNs layers is processed by the recurrent
layers. Finally, the output of the recurrent layers is further processed by a dense layer that
provides the final output. This study implements a similar architecture of T-GCN as the one
proposed by [39], where further details about the T-GCN model can be found. Furthermore,
similar T-GCN models have also been successfully designed [47]. The Keras version 2.6.0,
TensorFlow version 2.6.0, and Spektral version 1.0.8 [48,49] libraries of Python have been
used to build the model practically.

2.2. Evaluation Parameters

The performance of the proposed T-GCN model for SE is evaluated using 3 statistical
metrics: the root mean square error (RMSE) (Equation (2)), the mean absolute error (MAE)
(Equation (3)), and the determination coefficient (r2) (Equation (4)),

RMSE =

√
1
N ∑N

i=1(yi − ŷi)
2, (2)

MAE =
1
N ∑N

i=1|yi − ŷi|, (3)

r2 = 1− ∑N
i=1(yi − ŷi)

2

∑N
i=1
(
yi − Ŷ

)2 , (4)

where the yi are the measured pump speeds, ŷi the predicted pump speeds data of sample
i, for a dataset with N samples, and Ŷ is the mean of the data set of ŷi.

Low RMSE and MAE values reflect a low prediction error and a good performance
of the proposed model. In contrast, high r-squared (r2) values (close to 1) represent better
predictive ability, and the prediction results have a high similarity to the real data [38–40].

2.3. Pressure and Flow Calculation from the Estimated Relative Speed

After estimating the relative speeds for pumps, it is possible to obtain the pressure and
flow rate of the entire network through a hydraulic model. The estimated relative pump
speed is used as input to a hydraulic model built using Epanet 2.2. The simulations are
carried out using the WNTR library with the Epanet hydraulic solver [50]. In general, for
hydraulic models, the operational conditions of control devices are required as input for
simulations. Nevertheless, these controls are unknown in many cases and require a deep
calibration process. Using the estimated relative speeds, it is possible to calculate all of the
pressures and flow rates of water network models based only on measured pressure and
flow rate. The process of the proposed methodology is illustrated in Figure 2.
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Figure 2 highlights the entire procedure proposed in this study. The first part shows
the novel use of the T-GCN to estimate pump speeds in a specific location of a WDS (already
presented in Section 2.1). Specifically, the process starting from the original WDS where the
measurements are taken is highlighted. With the flow rates and pressure measurements
from the network, the following step is the graph creation, which is the basis for the T-GCN
model. Once the graph is built based on the correlation between its nodes, the graph
is processed by the T-GCN, estimating the pump speed. Hereafter, the estimated pump
speeds are used together with the already measured pressures and flow rates to calculate
the flow rates in the non-monitored pipes and the pressures in the non-monitored nodes.
The result is a complete estimation of the network status, which originates a digital twin of
the base network hydraulic model. This resulting model is called the digital twin due to the
capability of reproducing the operations found in the real network, even if no information
about the control of pumps is provided.

Finally, pressures and flow rates on monitored elements are compared with their
estimates provided by the hydraulic model to evaluate the methodology’s performance.
This evaluation is conducted based on the metrics presented in Section 2.2.

3. Case Studies

As previously mentioned, the two hydraulic networks used in this research are the
Patios-Villa del Rosario network in Colombia and the C-Town network used in the well-
known case study “The Battle of the Water Networks II”. Usually, in a real water supply
system, related to the variability and stochasticity of demand and the presence of anomalies
in the network, such as leaks, make the estate estimation a challenging task. In this work, for
both case studies, demand variability and stochasticity have been considered, as explained
later. The two reference networks are described in the following sections.

3.1. Network 1: Patios Network-Villa del Rosario

The first case study is a water distribution system from northeastern Colombia (Norte
de Santander), a network that supplies the municipalities of Villa del Rosario and Los Patios.
The characteristics of the pumps are a flow rate of 9.39 L/s, a head loss of 57.06 m, and a
characteristic curve formed by three operating points as follows: flow (0.0; 63.09; 100.94) L/s
and head (57.06; 55.53; 35.72) m, respectively. The network comprises 67 pipes, 62 junction
nodes, five reservoirs, and two pumps. The main characteristics of Network 1 include a
total pipe length of 43.54 km, pipe material with a roughness coefficient of 0.0015 mm, and
pipe diameters ranging from 75 to 762 mm. This network was created using the Darcy
Weisbach loss equation.

3.2. Network 2: C-Town Network

The second case study is the C-Town water network. The network consists of 429 pipes,
388 junction nodes, seven tanks, 1 reservoir, 11 pumps, and 5 valves. The characteristics of each
of the pumps in this network can be consulted in the inp. file, available online. Network 2 has
a total pipe length of 56.73 km, pipe material with the Hazen-Williams roughness coefficient
ranging from 60 to 140, and the pipe diameter ranging from 51 to 610 mm. The network is
divided into five district metered areas (DMAs).

Table 1 summarizes the elements of each network described in Sections 3.1 and 3.2.

3.3. Data Set Generation for T-GCN Application

Since these networks do not have an associated data set of real data, a methodology
of synthetic data generation is used for our T-GCN application. To generate the set of
monitoring data used in this research, the Water Network Tool for Resilience (WNTR) [49]
is used to model both networks.
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Table 1. Main characteristics of the elements of the case study networks.

Parameter Network 1 Network 2

Total length 43.54 km 56.73 km

Roughness Coefficient 0.0015 mm
(Darcy-Weisbach)

60–140
(Hazen-Williams)

Pipe diameter 75–762 mm 51–610 mm
Number of pipes 67 429
Number of nodes 62 388

Number of reservoirs 5 1
Number of pumps 2 11
Number of tanks 0 7
Number of valves 0 5

WNTR is an open-source Python library based on EPANET that integrates hydraulic
simulation, water quality, and several metric options for the comprehensive resilience
assessment of a water network. It allows us to generate and modify the structure of
water networks, simulates different analysis scenarios and response strategies, simulates
and analyzes network pressure-dependent demands, analyzes water quality, calculates
resilience metrics, and visualizes the results [47].

Hydraulic modeling is performed using an already-existing hourly demand pattern for
each network. Considering the stochastic behavior of water demand, the data set generation
randomly changes the base demand every time step between 90% and 110% of the original
base demand. A random vector was created with the function “random.uniform”; this
random change represents the existing variations between the hourly demands of each day
of the week and the variations in the population regarding water consumption over time.
The simulations for dataset generation are conducted for one year, with a hydraulic time
step of one hour for both water networks. In the sequel, we refer to this data as real data.

From the generated hourly variation pattern, the relationship between the hourly
pattern and the rotational speed of each pump in each network was applied. The maximum
value of each pattern was taken as the maximum pump rotation speed, which is represented
as 100%. The minimum value of each pattern was taken as the minimum pump speed,
represented by 70% of the pump operating speed. This rule made it possible to generate a
real speed pattern for each pump and hydraulically model the networks to obtain a data
set of network pressures and flow rates.

For Network 1, Patios-Villa del Rosario network, five nodes are selected to simulate
pressure monitoring, and four pipes are set for simulation of flow meters. For Network 2,
C-Town water network, 12 nodes are selected as pressure sensors, and 10 pipes are selected
as flow meters. The selected pipes and monitored nodes were randomly distributed in the
network; no optimal sensor location criteria were used. Many drinking water utilities in Latin
America do not yet employ methodologies for optimal sensor placement. Figure 3 shows the
location of the monitoring sensors in each WDS highlighted as red dots and lines.

Each dataset is compiled with measured pressures and flows recorded at selected
nodes and pipes, respectively. Each network has thus data for one year from 1 January to
31 December, recorded hourly. A data split was performed from this data set, taking 50% of
the data for the training of the T-GCN model and the other 50% for the validation procedure.
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4. Results
4.1. T-GCN Evaluation for Pump Speed Estimation

The T-GCN model proposed is applied to Network 1 and Network 2. The results for
each case study are shown and discussed in this section.

Considering the pressure and flow rate monitored data of Network 1, a first data
processing is required to get the graph that will be the input structure to T-GCN. This
graph is built based on data correlation, as commented in Section 2.1. For Network 1, the
dataset turns out to be fully connected. Furthermore, the pressure head and the flow rate
positively correlate with the relative pump speed. This is expected since, by reducing the
relative speed of pumps, the operational pump curve is shifted to a new curve with a lower
hydraulic head for a specific flow rate. The algorithm is tested for the rest of the data.
Figure 4 shows the comparison of the estimated relative pump speed and the real values of
the relative speed.

Based on Figure 4, it is possible to observe that T-GCN achieves a reliable performance
on estimating relative speed. The estimation accuracy during the evening and night (low
relative speed values) is better than that during the day. This is related to the operational
rules for pump speed based on delivered flow in the network. Delivered flow is strongly
correlated to the water demand, leading to more uncertainties during the day’s peaks. For
better exploring the results of the T-GCN, estimated and real data are plotted in scatter
graphs, shown in Figure 5. The errors for low relative speeds are lower than errors for
higher speeds. For relative speeds lower than 0.85, the average error is lower than 0.05.
Nevertheless, for relative speeds higher than 0.85, the error can achieve values around 0.1.

For quantitively characterizing the performance of the T-GCN on estimating the
relative speed of pumps, the indicators presented in Section 2.2 are calculated. The RMSE
is equal to 0.015 and the MAE is equal to 0.011; the results of these two metrics reflect a
high predictive capacity. The r2 obtained for Network 1 is 0.972, a high value, showing, in
general, the high accuracy of the model.
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To implement the proposed model in Network 2, a T-GCN model is trained on each
pump to estimate the operating speed of the element. As mentioned in 3.2., the network
has 5 hydraulic zones, and the pump speeds are estimated for each zone. Due to the
sub-division of the network, five models are developed, one for each zone. The evaluated
models are named as follows: Model 1-PU2, Model 2-PU4, Model 3-PU6, Model 4-PU8,
and Model 5-PU10.

Figure 6 shows the graphical comparison of estimated values and the real values of
the operating speed of each driving equipment of Network 2. A high predictive capability
of the GCN model is observed. A similar trend can be observed between the real relative
speed pattern and the estimated speed by the T-GCN models. This suggests the model’s
validity in prediction and the ability to estimate pump speeds.

Scatter plots of the results for Network 2 are presented in Figure 7 and again highlight
an error trend with the speed values. In fact, for low-speed values, the errors are around
5% of the expected values, while for higher speeds, the errors can reach 15%.

In network 2, each model used is independently analyzed, and the RMSE results range
between 0.025 and 0.027, and the MAE values between 0.020 and 0.021. The r2 values obtained
range from 0.799 to 0.815, indicating that the prediction results adequately represent the real
data. The values obtained, which allows one to assess the T-GCN’s performance in the
different analyses performed, are shown in Table 2.
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4.2. Estimation of Pressure and Flowrate Using Estimated Pump Speeds

The relative speed pattern generated by the T-GCN is used in the hydraulic model to
estimate pressure and flow for the entire water network. New hydraulic modeling of the
two networks is performed using the WNTR tool, and the pressures at the nodes and the
flows in the pipes are calculated. These results are compared with the real values calculated
based on the real relative pump speeds. The same demand pattern is used for this analysis
for the real and estimated relative pump speeds. The monitored nodes and pipes indicated
in Figure 3 are used for comparison results.

Table 3 shows the error metrics (RMSE, MAE, and r2) calculated for a set of nodes of
Network 1 and Network 2, and pipes for Network 2. Flows in Network 1 do not change due
to new pump speeds because of the topology of the water network and the hydraulic model.
In effect, since Network 1 has no tanks and the hydraulic model is built as demand-driven,
the flows in the pipes do not change due to the relative pump speed differences. For this
reason, only pressures at some nodes of Network 1 are used in the evaluation process.
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Table 2. Performance evaluation parameters of the T-GCN model.

Parameter PU2 PU4 PU6 PU8 PU10

RMSE 0.028 0.026 0.026 0.027 0.027
MAE 0.021 0.020 0.020 0.021 0.021

r2 0.801 0.815 0.799 0.802 0.802
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Table 3. Evaluation parameters of the T-GCN model in pressure and flow rate.

Network 1 Network 2

Parameter Node
14

Node
J269

Node
J256

Pipe
p397

Pipe
J379

RMSE 1.8 2.9 1.7 1.8 9.7
MAE 1.1 2.0 1.3 1.2 2.6

r2 0.923 0.448 0.592 0.949 0.632

Regarding Network 2, RMSE for nodal pressure varies from 1.7 m to 2.9 m, while,
for pipes flow, ranges from 1.8 L/s to 9.7 L/s. Some locations’ estimated flow rates
and pressures show more significant differences from the original model values. These
differences can mainly be attributed to nodes and pipes close to pump stations. These latter
elements are more affected by the relative pump speed variation. A slight error in the speed
prediction can cause an essential difference in the digital twin model’s resulting pressures
and flow rates.

Figure 8 shows the comparison between the estimated pressure using a relative pump
speed generated by the T-GCN and the real relative pump speed. It is observed that
the predicted pressure variation at each node shows a similar behavior trend to the real
pressure, which suggests that the T-GCN model is very effective in predicting SE in WDSs.
For node J256, the relative pump speeds’ errors impact pressure estimation more, although
the general trend remarkably matches the real values.

An analysis of the various graphs between the real flow rates of the C-Town network
and the predicted flow rates is also performed. Figure 9 compares the flow calculated by
the hydraulic model using real and estimated relative pump speeds. Figure 9a shows that
the variation between predicted and real flow rates in the p397 pipe is minimal. In contrast,
Figure 9b shows a more significant difference in the p379 pipeline when using the T-GCN
model, but with results still close to the real ones.

In summary, the T-GCN model yielded flow and pressure prediction values that
demonstrate efficiency and robustness in SE. Consequently, a new methodology for SE in
WDS could be implemented using this proposal.
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5. Conclusions

This paper presents an SE methodology that allows one to infer the hydraulic state
of a WDS based on available monitoring measurements and uses graph convolutional
network theory. The proposed T-GCN model is adopted to predict the pump speeds of two
WDSs from the monitoring data of pressure at some nodes and flow rate in certain pipelines.
Afterwards, it is proposed that one should jointly use the estimated pump speed with the
available pressure and flow rates to estimate the pressures and flow rates in the non-monitored
elements. This latter operation allows one to build a digital twin model of the WDS.

The proposed procedure is tested using monitoring data from the Patios-Villa del
Rosario hydraulic network, Colombia, and the C-Town network. The validation of the
model in the networks yielded solid results with high performance in prediction capacity.
The representation of the data obtained using scatter plots shows a good correlation and a
perfect fit of the estimated data versus the prediction model data in each of the analyses
performed in the two case studies.

The results of the evaluation metrics produce RMSE values between 0.015 and 0.028,
MAE values between 0.011 and 0.021, and r2 values between 0.799 and 0.972. Considering
both networks, the best results are obtained for Network 1. Network 1 is simpler than
Network 2, where several control devices and tanks drive the system. The values derived
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from the evaluation metrics can be very favorably interpreted and reflect a high predictive
and prognostic accuracy. In turn, they demonstrate the validity of the T-GCN model for SE
in WDSs.

The main limitation of this study for application in a real network is the need to have
monitored data of the relative operating speed of the pumps in a WDS, and it is important
to clarify that these data are not always available since not all companies that operate
distribution networks measure this parameter.

The proposed approach and the obtained results open a new path for research ideas in
the management, development, and operation of water networks through the applicability
of T-GCNs to SE. The model developed has the practical utility of contributing to the
creation and application of digital twins in WDS, which becomes a valuable tool for
detecting anomalies in WDSs.
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