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Abstract

In this work, we use Newton-type iterative schemes to obtain a domain of exis-
tence of solution, approximate the solution of Chandrasekhar H-equations and deal
with the case of nonlinear integral equations with non-separable kernels. A change
of variable in the Chandrasekhar H-equation allows us to apply a previous study by
describing nonlinear integral equations of Hammerstein-type with non-separable ker-
nel. We use the Bernstein polynomials for approximating the non-separable kernel
and then we apply a semilocal converge study done previously to the Chandrasekhar
H-equation . Moreover, we apply Newton-type iterative schemes for some specific
Chandrasekhar H-equations to approximate the H-function solution and compare
our results with others obtained previously.
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1 Introduction

The Chandrasekhar H-equation is a nonlinear integral equation that appears in various
physical problems (radioactive transfer, kinetic of gases, etc.) [4, 5, 14]. In addition,
this kind of equations describe a great variety of mathematical and physics phenomena
where one can transform any ordinary differential equation of second order with boundary
conditions into a Hammerstein integral equation by using the Green’s function [8, 13]. For
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this reason, a great variety of analytical solutions and numerical solutions can be found
in the literature for discussing these type of equations (see [1, 2, 3, 7]).

In our study, we consider the space C[0, 1] of the continuous functions in [0, 1] and
endowed with the maximum norm ‖x‖ = maxt∈[0,1] |x(t)|, x ∈ C[0, 1]. Fixed the known
characteristic function ψ(t), which is a even polynomial in ”t”, our aim is to find a function
h ∈ C[0, 1] verifying the H-equation

h(s) = 1 + h(s)

∫ 1

0

s

s+ t
ψ(t)h(t)dt. (1)

A solution of this equation is called H- function.
For this purpose, we consider the operator H : C[0, 1] −→ C[0, 1] with

H(h)(s) = h(s)− 1− h(s)

∫ 1

0

s

s+ t
ψ(t)h(t)dt. (2)

Then, a solution of (1) is obtained as a zero of the operator H. In order to approximate
this zero of H we can use the well known Newton method, which is written as follows:{

h0 given in C[0, 1]
hn+1 = hn − [H′(hn)]−1H(hn), n ≥ 0.

It is clear that, the calculus of the inverse of the linear operator H′ is non-trivial. But, it is
known [11] that, in the case that (1) is a nonlinear integral equation of Hammerstein type
with separable kernel, it is possible to obtain this inverse operator and apply Newton’s
method to approximate a solution of equation (1). For this reason, we do a change in the
integral equation (7) that allows us to transform it into a nonlinear integral equation of
Hammerstein type.

Before doing this change, we need information about a solution of (1). So, it is clear
that if h∗(s) is a solution of (1), this function cannot be null in the interval [0, 1], since
in this case it would exists s̃ ∈ [0, 1] such as h∗(s̃) = 0, but by using (1) we have that
h∗(s̃) = 1. On the other side, it is evident that h∗(0) = 1. Moreover, one can prove that
h∗ is derivable and verifies

(h∗)′(s) = (h∗)′(s)

∫ 1

0

s

s+ t
ψ(t)h∗(t)dt+ h∗(s)

∫ 1

0

t

(s+ t)2
ψ(t)h∗(t)dt, (3)

so that

(h∗)′(s) = h∗(s)2
∫ 1

0

t

(s+ t)2
ψ(t)h∗(t)dt (4)

and, from (4), we deduce that (h∗)′(s) > 0 and h∗(s) is then a strictly increasing function.
On the other hand, by taking norms in (1), we have

‖h∗‖ ≤ 1 + ‖h∗‖ max
s∈[0,1]

∣∣∣ ∫ 1

0

t

(s+ t)
dt
∣∣∣‖ψ‖‖h∗‖

. ≤ 1 + log(2)‖ψ‖‖h∗‖2,
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so that

1− ‖h∗‖+ log(2)‖ψ‖‖h∗‖2 ≥ 0

and, by using h(0) = 1 and h is an increasing function, if ‖ψ‖ 6
1

4 log(2),
it then

follows that ‖h∗‖ ∈
[
1,

1−
√

1−4‖ψ‖ log(2)
2‖ψ‖ log(2)

]
. Therefore, we can work with the open convex

D = {x ∈ C[0, 1] : x > 0} and consider H : D ⊆ C[0, 1] −→ C[0, 1]. In this situation,

we propose the change of variable z(s) =
1

h(s)
in (1) and obtain the following integral

equation of Hammerstein type:

z(s) = 1−
∫ 1

0

K(s, t)N (z)(t)dt, (5)

whose solution z∗(s) allows us to obtain the H-function h∗(s) =
1

z∗(s)
, which is a solution

of the main problem (1), where the kernel K(s, t) =
s

s+ t
ψ(t) and the Nemystkii operator

N : D −→ C[0, 1], such as N (z)(t) =
1

z(t)
, are well defined.

To approximate a solution of (5), we define the nonlinear operator G : D ⊆ C[0, 1] −→
C[0, 1] such that

G(z)(s) = z(s)− 1 +

∫ 1

0

s

s+ t
ψ(t)

1

z(t)
ds. (6)

As

[G
′
(z)]y(s) = y(s)−

∫ 1

0

s

s+ t
ψ(t)

1

z(t)2
y(t)dt,

if the kernel K(s, t) =
s

s+ t
ψ(t) is separable, we can then obtain [G

′
(z)]−1 and apply

Newton’s method to approximate a zero of G(z) = 0. However, in our case, the kernel is

non separable. If we approximate the non-separable kernel by a separable kernel K̃(s, t),

then K(s, t) = K̃(s, t) +R(s, t), with K̃(s, t) =
∑m

j=1 αj(s)βj(t), where αj and βj are two
real functions in [0, 1]× [0, 1] and R(s, t) is the error made in the approximation. Then,

we can obtain G̃
′
(z)−1, where G̃ : D ⊆ C[0, 1] −→ C[0, 1], with

G̃(z)(s) = z(s)− 1 +

∫ 1

0

K̃(s, t)
1

z(t)
dt. (7)

As in [11], we can consider in the previous study the Newton-type iterative scheme
given by: {

z0 given in D,
zn+1 = zn − [G̃

′
(zn)]−1G(zn), n ≥ 0.

(8)
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Now, we analyze how to obtain [G̃
′
(z)]−1. For this, we have

[G̃
′
(zn)]y(s) = y(s)−

∫ 1

0

K̃(s, t)
1

zn(t)2
y(t)dt.

By denoting Aj = −
∫ 1

0

βj(t)
1

zn(t)2
y(t)dt, we can then write

[G̃
′
(zn)]−1w(s) = w(s) +

m∑
j=1

αj(s)Aj = y(s). (9)

In addition, the integrals Aj can be obtained independently of y(t). For this, we consider

i = 1, ...,m and multiply in (9) by βi(s)
(−1)

zn(s)2
and integrate with respect to the variable

s, so that we have

Ai −
m∑
j=1

(
−
∫ 1

0

βi(s)
1

zn(s)2
αj(s)ds

)
Aj = −

∫ 1

0

βi(s)
1

zn(s)2
w(s)ds.

Then, by denoting aij(zn) = −
∫ 1

0

βi(s)
1

zn(s)2
αj(s)ds and bi(zn) = −

∫ 1

0

βi(s)
1

zn(s)2
w(s)ds,

we obtain the following linear system:

Ai −
m∑
j=1

aij(zn)Aj = bi(zn), 1 ≤ i ≤ m.

Which has an unique solution if the associated matrix has full rank, that is:∣∣∣∣∣∣∣∣∣
a11(zn)− 1 a12(zn) a13(zn) . . . a1m(zn)
a21(zn) a22(zn)− 1 a23(zn) . . . a2m(zn)

...
...

...
...

...
am1(zn) am2(zn) am3(zn) . . . amm(zn)− 1

∣∣∣∣∣∣∣∣∣ 6= 0.

Then, we assume that λ = 1 is not an eigenvalue of the matrix (aij(z))1≤i,j≤m. Thus, by

solving the linear system, we have the characterization of the inverse operator of G̃
′
:

[G̃
′
(zn)]−1G(zn)(s) = G(zn)(s) +

m∑
j=1

αj(s)Aj.

It is well known that the cost of Newton’s method increases slightly if we do a second step
without actualizing the derivative (see [10, 12]). So, in order to solve (7), we propose the
following two steps of Newton-type iterative scheme:

z0 given in D,
yn = zn − [G̃

′
(zn)]−1G(zn),

zn+1 = yn − [G̃
′
(zn)]−1G(yn), n ≥ 0,

(10)
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which uses the same inverse of the derivative operator in the second step. This iterative
scheme achieves an efficient acceleration for the convergence of the Newton-type iterative
scheme (8), see [9].

Thus, three are our main goals in this work. First, to approximate the H-function
in a more precise and efficient way than by applying the Newton-type iterative scheme
(8) used in [11]. Second, locating domains of existence of solution for the Chandrasekhar
H-equation. And third, we express explicitly the H-function by means of a linear combi-
nation of functions.

The paper is organized as follows. In Section 1 we have introduced the problem to
solve. Section 2 is devoted to the Bernstein polynomials that we use to approximate the
non-separable kernel. We also include a practical application of Newton-type iterative
schemes (8) and (10). In Section 3, we apply a theoretical result of semilocal convergence
study, developed in a previous work, to the H-equation of Chandrasekhar. In Section 4,
we develop an explicit expression for the H-function and apply it for specific examples.
Finally, Section 5 is dedicated to the conclusions.

2 The Bernstein polynomials for the iterative schemes

(8) and (10)

Notice that the nonlinear integral equation (6), for obtaining the H-function h∗(s) =
1

z∗(s)
, has a non-separable kernel K(s, t) =

s

s+ t
ψ(t). Then, to approximate this kernel

by a separable kernel, we consider f : [0, 1] −→ R given by f(s) =
s

s+ t
ψ(t), which is

a continuous function in [0, 1], for a fixed value t ∈ [0, 1]. Now, we use the Bernstein
polynomials [15] to approximate the non-separable kernel K(s, t) by considering different
approximations, due to the fact that these polynomials converge uniformly to f(s) on
[0, 1]; limm‖Bm(f) − f‖ = 0 [14]. So, from the Bernstein polynomials associated to f
given by

Bm(f)(s, t) =
m∑
j=0

f(
j

m
)

(
m

j

)
sj(1− s)m−j =

m∑
j=0

j

j +mt
ψ(t)

(
m

j

)
sj(1− s)m−j, m > 0,

we consider K(s, t) = K̃(s, t) +R(s, t), with

K̃(s, t) =
m∑
j=0

αj(s)βj(t), (11)

αj(s) =

(
m

j

)
sj(1− s)m−j, βj(t) =

j

j +mt
ψ(t) and R(s, t) = Bm(f)(s, t)− f(s).

Thus, we have

G̃(z)(s) = z(s)− 1 +
m∑
j=0

(
m

j

)
sj(1− s)m−j

∫ 1

0

j

j +mt
ψ(t)

1

z(t)
dt,
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and

[G̃
′
(z)]y(s) = y(s)−

m∑
j=0

(
m

j

)
sj(1− s)m−j

∫ 1

0

j

j +mt
ψ(t)

1

z(t)2
y(t)dt.

2.1 Algorithm of iterative schemes (8) and (10)

Now, we apply the iterative schemes (8) and (10) to approximate the solution of equation

(5) using the procedure indicated in Section 1 to obtain [G̃
′
(z)]−1, we consider a starting

guess zn(s) ∈ C[0, 1], for n > 0, and apply the following algorithm:

1. First step:

w(zn)(s) = G(zn)(s) = zn(s)− 1 +

∫ 1

0

s

s+ t
ψ(t)

1

zn(t)
dt.

2. Second step: Calculate the following integrals for i, j = 0, ...,m.

aij(zn) = −
(
m

j

)∫ 1

0

i

i+ms
ψ(s)

1

zn(s)2
sj(1− s)m−jds,

and

bi(zn) = −
∫ 1

0

i

i+ms
ψ(s)

1

zn(s)2
w(zn)(s)ds.

3. Third step: To obtain Aj with j = 0, 1...,m, we solve the following linear system

Ai −
m∑
j=0

aij(zn)Aj = bi(zn), i = 0, 1, ...,m.

4. Fourth step: The final iteration for iterative method (8) is

yn(s) = zn(s)− w(zn)(s)−
m∑
j=0

(
m

j

)
sj(1− s)m−jAj.

5. Fifth step: For the two steps iterative method (10).

w(yn)(s) = G(yn(s)) = yn(s)− 1 +

∫ 1

0

s

s+ t
ψ(t)

1

yn(t)
dt.

6. Sixth: Calculate the following integrals

b̂i(yn) = −
∫ 1

0

i

i+ms
ψ(s)

1

zn(s)2
w(yn)(s)ds,
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7. Seventh step: To obtain Âj, with j = 0, 1, 2, ...,m, we solve the following linear
system

Âi −
m∑
j=0

aij(zn)Âj = b̂i(yn), i = 1, 2, ...,m.

8. Eighth step: Calculate

zn+1(s) = yn(s)− w(yn)(s)−
m∑
j=0

(
m

j

)
sj(1− s)m−jÂj.

2.2 Computational cost

To obtain the computational cost of scheme (8), we have to solve a linear system of
order m × m. For this, we do a LU factorization for the matrix (aij(zn)), whose cost

in number of products and quotients is
m(m2 − 1)

3
, in terms of m the degree of the

Bernstein polynomial that we use in the approximation, and then, we need to solve two
triangular systems, with cost m2, that is order 2 in contrast with the order 3 from the LU
factorization. But, in case of scheme (10), we have to solve two linear systems with only
one LU factorization. So, in order to compare the computational cost for the proposed
Newton-type iterative schemes, we obtain that the total computational cost is(

m(m2 − 1)

3
+m2

)
k

, when we apply iterative scheme (8), and(
m(m2 − 1)

3
+ 2m2

)
k

for the iterative scheme (10), where k is the number of iterations done for reaching the
tolerance. Notice that, as we can see in [9], the iterative scheme (10) needs,, in general,
to perform fewer iterations to approximate the solution with a given tolerance. Thus,
in the following section, by applying iterative process (10), we obtain better accuracy in
our approach to the solution and with an similar operational cost to the application of
iterative scheme (8). We can therefore conclude that the application of iterative scheme
(10) is more efficient than the application of iterative scheme (8).

2.3 Practical application of iterative schemes (8) and (10)

First, we use the Bernstein polynomials to approximate the non-separable kernel of equa-
tion (5) by using different approximations in (11), m = 2 and m = 3. We consider the
iterative schemes (8) and (10), that are implemented by the previous algorithm. We
compute the integrals in the second and sixth steps of the algorithm by applying Gauss-
Legendre’s formula with 8 nodes.
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Second, in order to compare the iterative schemes (8) and (10), we consider the Ex-
ample 1 given in [6], with ψ = 1

2
ψ0, for solving the integral equation (5) and approximate

the H-function by using iterative schemes (8) and (10), which are denoted by IS(8) and
IS(10) in the numerical results. In both schemes we take starting guess x0(s) = 2. In
Table 1, the results are obtained by working with 10 significant digits. In the first two
rows we can see the number of iterations, k, needed to reach a tolerance at 10−6 and the
residual error, ‖xn(s)−xn−1(s)‖, when the kernel is approximated by the Bernstein poly-
nomial of orders m = 2 and m = 3. Next row is the computational cost, CC, calculated
in Section 2.2, and in the last row, once we have approximated the H-function h∗, we
calculate numerically the following integral by Gauss-Legendre formula∫ 1

0

h∗(t)dt,

which is denoted by Iapp in Tables 1 and 2 . To measure the accuracy of our approach,
we compare this value with the exact value of the previous integral, which is given by:

Iex =
2

ψ0

[1− (1− ψ0)
1/2].

In Table (2) we find the same rows we can find , but we work now with 50 significant
digits to reach a tolerance of 10−15.

Tables 1 and 2 show that iterative scheme (10) always reaches the stopping criterion
quickly. Moreover, this iterative scheme is usually more efficient than the method (8)
taking into account the computational cost and the approximation obtained. Obviously,
for m = 3, both schemes do more operations, so that the computational cost is higher
than for m = 2.

To finish this practical application, we can see in Table 3, that the evaluation of the
iterations 1/z1(s) and 1/z2(s) give approximately the same results for the H-function as
those obtained by Chandrasekhar in [5]. Therefore, we check that just two iterations of
the iterative scheme (10) provide us with excellent approximations to the H-function.

3 Convergence of iterative scheme (10) for approxi-

mating H-functions

In this section we are interested in studying the convergence of iterative scheme (10). For
this, we consider the semilocal convergence result given in [9] for the method

z0 given in Ω,

yn = zn − A(zn)−1(zn − F (zn))

zn+1 = yn − A(zn)−1(yn − F (yn)), n ≥ 0,

(12)

where

F (z)(s) = f(s) + λ

∫ b

a

K(s, t)[N (z)](t)dt

8



ψ0 IS (8) m=2 IS (10) m=2 IS (8) m=3 IS (10) m=3

0.1

k 4 3 4 3
‖xn − xn−1‖ 2.0360e-07 1.7199e-09 9.8215e-08 8.0487e-10

CC 24 30 68 78
|Iex − Iapp| 4.7115e-11 3.2994e-15 1.6064e-11 2.5119e-15

0.2

k 5 3 4 3
‖xn − xn−1‖ 9.6324e-09 3.1035e-08 8.6818e-07 1.4540e-08

CC 30 30 68 78
|Iex − Iapp| 4.7437e-12 8.2330e-14 2.9990e-10 2.0706e-14

0.3

k 5 3 5 3
‖xn − xn−1‖ 5.5241e-08 1.7819e-07 1.9941e-08 8.3600e-08

CC 30 30 85 78
|Iex − Iapp| 4.3311e-11 1.1469e-12 1.1035e-11 2.8125e-13

0.4

k 5 3 5 3
‖xn − xn−1‖ 1.9913e-07 6.4282e-07 7.2224e-08 3.0212e-07

CC . 30 30 85 78
|Iex − Iapp| 2.2166e-10 8.0314e-12 5.6633e-11 1.9689e-12

0.5

k 5 4 5 3
‖xn − xn−1‖ 5.5871e-07 3.8776e-10 2.0376e-07 8.5003e-07

CC 30 40 85 78
|Iex − Iapp| 8.3065e-10 8.7638e-15 2.1295e-10 9.4620e-12

Table 1: Significant digits 10; tol=10−6; maxiter =30;
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ψ0 IS (8) m=2 IS (10) m=2 IS (8) m=3 IS (10) m=3

0.1

k 8 5 7 5
‖xn − xn−1‖ 9.8731e-18 8.3227e-20 7.4428e-16 1.2007e-20

CC 48 50 119 130
|Iex − Iapp| 2.2690e-15 2.2690e-15 2.2691e-15 2.2690e-15

0.2

k 9 5 8 5
‖xn − xn−1‖ 8.3139e-18 2.6555e-17 2.2762e-16 3.8065e-18

CC 54 50 136 130
|Iex − Iapp| 6.3163e-16 6.3163e-16 6.3171e-16 6.3163e-16

0.3

k 9 5 9 5
‖xn − xn−1‖ 2.6803e-16 8.5736e-16 2.9531e-17 1.2211e-16

CC 54 50 153 130
|Iex − Iapp| 3.5141e-16 3.5162e-16 3.5161e-16 3.5162e-16

0.4

k 42 6 9 6
‖xn − xn−1‖ 3.9034e-17 1.4304e-18 3.7437e-16 1.1149e-19

CC 252 60 153 156
|Iex − Iapp| 2.3161e-16 2.3156e-16 2.3186e-16 2.3156e-16

0.5

k 10 6 10 6
‖xn − xn−1‖ 3.8688e-16 1.8258e-17 3.1348e-17 1.4081e-18

CC 60 60 170 156
|Iex − Iapp| 4.0198e-16 4.0140e-16 4.0144e-16 4.0140e-16

Table 2: Significant digits 50; tol=10−15; maxiter =30;
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s 1/z1(s) 1/z2(s) Chandrasekhar [5]

0 1.0 1.0 1.0
0.05 1.00776 1.00780 1.00783
0.1 1.01231 1.01238 1.01238
0.15 1.01575 1.01584 1.01584
0.2 1.01853 1.01864 1.01864
0.25 1.02086 1.02099 1.02099
0.3 1.02286 1.02301 1.02300
0.35 1.02461 1.02476 1.02475
0.4 1.02615 1.02631 1.02630
0.45 1.02751 1.02768 1.02768
0.5 1.02875 1.02892 1.02892
0.55 1.02986 1.03004 1.03004
0.6 1.03087 1.03106 1.03106
0.65 1.03180 1.03199 1.03199
0.7 1.03265 1.03285 1.03284
0.75 1.03343 1.03364 1.03363
0.8 1.03416 1.03437 1.03436
0.85 1.03483 1.03504 1.03504
0.9 1.03546 1.03567 1.03567
0.95 1.03604 1.03626 1.03626
1.0 1.03659 1.03682 1.03682

Table 3: h∗(x),m = 2, ψ0 = 0.1
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and

A(z) = (I − F̃ )′(z) with F̃ (z)(s) = f(s) + λ

∫ b

a

K̃(s, t)[N (z)](t)dt,

being K̃(s, t) a separable approximation of the non-separable kernel K(s, t).

Theorem 1. [9] Assume

(I) The operator A(z0)
−1 exists, for some z0 ∈ Ω ⊆ C[a, b], with ‖A(z0)

−1‖ ≤ β and
‖A(z0)

−1(z0 − F (z0))‖ ≤ η.

(II) The operator N ′ is ω-Lipschitz continuous and

‖N ′(u)−N ′(v)‖ ≤ ω(‖u− v‖) for u, v ∈ Ω, (13)

where ω : R+ −→ R+ is a continuous and non-decreasing function satisfying ω(αx) ≤
h(α)ω(x) for α ∈ [0, 1] and x ∈ [0,+∞), with h : R+ −→ R+ a continuous and non-
decreasing function.

If the equation

t =
1 + φ(η, t)

1− ξ(η, φ(η, t)η, t)φ(η, t)
η (14)

has at least one positive real root and the smallest positive real root, denoted by R, satisfies
β |λ| M ω(R) < 1, Q = ξ(η, φ(η,R)η,R)φ(η,R) < 1 and B(x0, R) ⊆ Ω, then the sequence
generated by (12) converges to the solution z∗ of the equation z − F (z) = 0, starting at

the function z0, and z∗ ∈ B(x0, R), where φ(t, u) = µ(u)|λ|
(
LDω(t) + M(ε + ω(u))

)
,

ξ(t, u, v) = µ(v)|λ|
[
L
(
ω(t) + Dω(u)

)
+ M(ε + ω(v))

]
, M = maxs∈[a,b]

∫ b
a
‖R(s, t)|‖dt,

D =
∫ 1

0
h(t)dt and ε = ‖N ′

(x0)‖.

In our case, we have

F (z)(s) = 1−
∫ 1

0

s

s+ t
ψ(t)

1

z(t)
dt and A(z) = (I − F̃ )′,

with F̃ (z)(s) = 1−
∫ 1

0

Bm(f)(s, t)
1

z(t)
dt. So, it is clair that

(I − F )(z)(s) = G(z)(s) and A(z)(s) = G̃′(z)(s).

Therefore, the iterative scheme (12) coincides with the iterative scheme (10).
Then, from this result, we can study the convergence of iterative scheme (10) when

is applied to the Chandrasekhar equation. So, we first consider, if ‖ψ‖ 6
1

4 log(2)
,

12



G̃, G : Ω ⊆ C[0, 1] −→ C[0, 1], where the domain Ω = {x ∈ C[0, 1] : p < ‖x‖ < q}, with

p =
2‖ψ‖ log(2)

1−
√

1− 4‖ψ‖ log(2)
. and q a positive real number greater than p to be determined.

First, fixed m ∈ N and the characteristic function ψ, we consider z0(s) = δ with p <

δ < q. As ‖I−G̃′(z0)‖ ≤ L
δ2

, if
L

δ2
< 1, the operator G̃(z0)

−1 exists with ‖G̃′(z0)−1‖ ≤
δ2

δ2 − L
and L = maxs∈[0,1]

∫ 1

0
|K̃(s, t)|dt.

Second, since

[G̃
′
(z0)]

−1G(z0)(s) = G(z0)](s) +
m∑
j=1

αj(s)Aj,

then ‖G̃′
(z0)

−1G(z0)‖ 6 |δ − 1|+ ‖ψ‖ log(2)

δ
+

m∑
j=1

‖αj‖|Aj|.

Third, we have N ′ is a Lipschitz continuous operator such that

‖N ′(u)−N ′(v)‖ ≤
∥∥∥∥(−1)

u2
− (−1)

v2

∥∥∥∥ ≤ 2δ

p4
‖u− v‖ for u, v ∈ Ω.

Moreover, it is easy to check that ‖N ′(z0)‖ 6
1

δ2
. So, we have all the necessary parameters

to apply the convergence result given in [9]. For this, we define the following auxiliary
real functions

µ(t) =
δ2p4

p4(δ2 − L)− 2δ3Lt
,

φ(t, u) =
µ(u)

δ2p4

(
δ3(Lt+ 2Mu) +Mp4

)
, (15)

ξ(t, u, v) =
µ(v)

δ2p4

(
δ3L(2t+ u) +M(p4 + 2δ3v)

)
,

where M = max
s∈[0,1]

∫ 1

0

‖R(s, t)‖dt.

Under these conditions and the convergence result given in [9], we obtain the following
particular result

Theorem 2. Fixed m = 2 and ψ0(t) = 0.1, we consider z0(t) = 1 and Ω = {x ∈ C[0, 1] :
0.9641 < ‖x‖ < 2}. Then, there exists R = 0.2057 such that the sequence (10) remains
in B(z0, R) ⊆ Ω and converges to z∗ ∈ B(z0, R).

Notice that, we can obtain a semilocal convergence result for both fixed values m and
ψ(t).

In Tables 4 and 5, we give the semilocal convergence radius for different cases that we
consider in (2). Notice that these results have been obtained by fixing the degree of the

13



m 2 3 2 3 2 3 2 3
δ 1 1 1.1 1.1 1.2 1.2 1.3 1.3
L 0.075 0.0945 0.075 0.0945 0.075 0.0945 0.075 0.0945
R 0.2057 0.2554 0.2899 0.3365 0.3903 0.4395 0.5121 0.5746

Table 4: p= 0.9641, q=2, M = ψ0(t) = 0.1

m 2 3 2 3 2 3 2 3
δ 1 1 1.1 1.1 1.2 1.2 1.3 1.3
L 0.375 0.4722 0.375 0.4722 0.375 0.4722 0.375 0.4722
R 0.0135 0.0546 0.0168 0.0559 0.0248 0.05775 0.03492 0.0603

Table 5: p= 0.7769, q=2, M = ψ0(t) = 0.5

Bernstein polynomial, m = 2 and m = 3, the values of ψ and the subset Ω. For these
values we consider different starting function z0(t) = δ and obtain the bonds needed to
construct auxiliary functions given in (15) that allow us to obtain the radius R. As we
can observe in the results, the radius is always bigger for m = 3 and decreases when the
value of ψ increases.

4 An explicit expression for the H-functions

Now, we use a quadrature formula to approximate the integral of (1),∫ 1

0

φ(t) dt '
∑̀
k=1

γkφ(θk), (16)

where the `, nodes {θk} and weights {γk} are known.
Let us check that the approximation of solution of equation (5), given by the iterative

schemes (8) and (10), can be expressed by a lineal combination of the functions families{
s

s+ θk

}`
k=1

and
{
sj(1− s)m−j

}m
j=1

. For this, we consider the algorithm that we can see

in Section 2.1 and taking into account (16), we obtain the following algorithm to apply
the iterative schemes (8) and (10).

1. First step:
Evaluate zn(θk), for k = 1, ..., `,

w(zn)(s) = zn(s)− 1 +
∑̀
k=1

γkψ(θk)

zn(θk)

s

s+ θk
,

Evaluate w(zn)(θk), for k = 1, ..., `.

14



2. Second step: Calculate the following coefficients for i, j = 0, ...,m.

aij(zn) =
(m
j

)∑̀
k=1

i

i+mθk
ψ(θk)

(−1)

zn(θk)2
θjk(1− θk)

m−j

and

bi(zn) =
∑̀
k=1

i

i+mθk
ψ(θk)

(−1)

zn(θk)2
w(zn)(θk).

3. Third step: To obtain Aj with j = 0, 1...,m, we solve the following linear system

Ai −
m∑
j=0

aij(zn)Aj = bi(zn), i = 0, 1, ...,m.

4. Fourth step: Final iteration for iterative method (8).

yn(s) = 1−
∑̀
k=1

[
γkψ(θk)

zn(θk)

]
s

s+ θk
−

m∑
j=0

[
Aj

(m
j

)]
sj(1− s)m−j.

5. Fifth step: For iterative method (10).

Evaluate yn(θk), for k = 1, ..., `,

w(yn)(s) = yn(s)− 1 +
∑̀
k=1

γkψ(θk)

yn(θk)

s

s+ θk
,

Evaluate w(yn)(θk), for k = 1, ..., `.

6. Sixth step:

b̂i(yn) =
∑̀
k=1

i

i+mθk
ψ(θk)

(−1)

yn(θk)2
w(yn)(θk).

7. Seventh step: To obtain Âj with j = 0, 1, 2, ...,m we solve the following linear
system

Âi −
m∑
j=0

aij(zn)Âj = b̂i(yn), i = 1, 2, ...,m.

8. Eighth step:

zn+1(s) = 1−
∑̀
k=1

[
γkψ(θk)

yn(θk)

]
s

s+ θk
−

m∑
j=0

[
Âj

(m
j

)]
sj(1− s)m−j.

As we just tested in the above algorithm, the iterations obtained using iterative
schemes (8) and (10) can be obtained by a linear combination of the function families

given by

{
s

s+ θk

}`
k=1

and
{
sj(1− s)m−j

}m
j=1

.
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4.1 Example 2

Now, for Example 2, the application of iterative scheme (10) and result of Section 4 allow
us to compare our results with those obtained in [6] by using Adomian’s method. So,

we consider ψ(t) =
3

8
t2(1 − t2) for solving the integral equation (5) and obtain the H-

function explicitly. Notice that done ‖ψ‖ < 3

32
≤ 1

4 log(2)
we can apply the theoretical

development done in Section 1. Then, we use the Bernstein polynomials to approximate
the non-separable kernel of equation (5) by using m = 2 and after two iterations with

starting guess z0(s) = 1, the H-function obtained can be expressed as: H2(s) =
1

z2(s)
with

z2(s) = −7.493e− 6s

s+ 0.01986
− 0.01474s

s+ 0.7628
− 0.0004299s

s+ 0.1017
− 0.00965s

s+ 0.4083
− 0.0067s

s+ 0.8983

− 0.0031s

s+ 0.23723
− 0.00074s

s+ 0.9801
− 0.01588s

s+ 0.5917
+ 7.74701e− 8s2 + 11.22e− 8s(1− s) + 1.

In order to compare our results with the previous ones, we calculate the integral cited in [6],
pag. 71, ∫ 1

0
ψ(t)H(t)dt = 1−

√
0.9 = 0.0513167019,

which is the exact value for this example. We approximate the value of this integral by Gauss-
Legendre formula with 8 nodes after two iterations∫ 1

0
ψ(t)H2(t)dt = 0.0513166956,

while the value obtained after two iterations with Adomian’s method is∫ 1

0
Ψ(t)H2(t)dt = 0.05128.

This results confirms the competitiveness of the H−function that we obtain in this study.

4.2 Example 3

Finally, we consider ψ(t) =
3

32
(1 − t2)2 for solving the integral equation (5) and obtain the

H−function explicitly. Under the same conditions as in Example 2, we get after two iterations

the following expression for the H−function: H2(s) =
1

z2(s)
with

z2(s) = − 0.00477s

s+ 0.01986
− 0.01474s

s+ 0.7628
− 0.01039s

s+ 0.1017
− 0.01219s

s+ 0.4083
− 0.0004041s

s+ 0.8983

− 0.01344s

s+ 0.2372
− 7.639e− 6s

s+ 0.9801
− 0.007443s

s+ 0.5917
+ 4.779e− 8s2 + 7.616e− 8s(1− s) + 1.
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s H2(s) IS (10) H2(s) (Adomian) Chandrasekhar [5]

0 1.0 1 1
0.05 1.0114 1.01120 1.01145
0.1 1.01723 1.01688 1.01724
0.15 1.02133 1.02088 1.02134
0.2 1.02448 1.02393 1.02448
0.25 1.027 1.02639 1.02700
0.3 1.02908 1.02841 1.02909
0.35 1.03085 1.03012 1.03085
0.4 1.03236 1.03159 1.03236
0.45 1.03368 1.03287 1.03368
0.5 1.03483 1.03399 1.03483
0.55 1.03586 1.03499 1.03586
0.6 1.03678 1.03588 1.03679
0.65 1.03761 1.03668 1.03761
0.7 1.03836 1.03741 1.03836
0.75 1.03904 1.03807 1.03904
0.8 1.03966 1.03867 1.03966
0.85 1.04024 1.03923 1.04024
0.9 1.04076 1.03974 1.04076
0.95 1.04125 1.04021 1.04125
1.0 1.0417 1.04065 1.04170

Table 6: H−function for Example 3 with different methods.

Resulting in this case the same value for the integral∫ 1

0
ψ(t)H(t)dt = 1−

√
0.9 = 0.0513167019

that we approximate by Gauss-Legendre formula with 8 nodes∫ 1

0
ψ(t)H2(t)dt = 0.0513166993

while the value obtained after two iterations with Adomian’s method is∫ 1

0
ψ(t)H2(t)dt = 0.05128.

These results confirm again the competitiveness of the H−function obtained by the iterative
method (10). Moreover, we evaluate the H−function and compare the values with that obtained
by Adomian’s method developed in [6], see Table 6, where we can appreciate the high accuracy
obtained by using the algorithm presented in this work for implementing iterative scheme (10).
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5 Conclusions

In this work, we study completely how to obtain the solution of the H-equation that describe a
nonlinear integral equation of Hammerstein type with non-separable kernel. Using the Bernstein
polynomials, we approximate this non-separable kernel by means a separable kernel so that we
can apply Newton-type iterative methods to approximate the H-function solution. The H-
function obtained is compared with the results obtained by Chandrasekhar and the Adomian’s
method, and show the competitiveness of the algorithms presented in this work.

References

[1] I. Argyros, Quadratic equations and applications to Chandrasekhar’s and related equations.
Bulletin of the Australian Mathematical Society, 32((1985), 275-292.

[2] I. Argyros, On a new iteration for solving Chandrasekhar’s H-equation. Mathematical Sci-
ences Research Hot-Line. 7. 10.22199/S07160917.1988.0015.00002. (2001).

[3] H. O. Bakodah, Mohamed Abdalla Darwish, On Discrete Adomian Decomposi- tion Method
with Chebyshev Abscissa for Nonlinear Integral Equations of Hammerstein Type. Advances
in Pure Mathematics, 2 (2012), 310–313.

[4] I. W. Busbridge, On solutions of Chandrasekhar’s integral equation. Trans. Amer. Math.
Soc., 105 (1962), 112–117.

[5] S. Chandrasekhar, Radiative Transfer. Dover, New York, 1960.

[6] E. Y. Deeba and S. A. Khuri, The Decomposition Method Applied to Chandrasekhar H-
Equation, International conference. Appl. Math. Comput., 77 (1996), 67–78.

[7] L. M. Delves, J. L. Mohamed, Computational methods for integral equations. Cambridge
University Press, 1985.

[8] R. Ezzati, K. Shakibi, On Approximation and Numerical Solution of Fredholm- Ham-
merstein Integral Equations Using Multiquadric Quasi-interpolation. Communication in
Numerical Analysis, 112 (2012), 1–10.

[9] M. A. Hernández-Verón, E. Mart́ınez, S. Sing, A reliable treatment to solve nonlinear Fred-
holm integral equations with non-separable kernel, International conference. Mathematical
Methods in Science and Engineering Conference (CMMSE-2020).

[10] M. A. Hernández-Verón, E. Mart́ınez, Carles Teruel, Semilocal convergence of a k-step
iterative process and its application for solving a special kind of conservative problems.
Numer. Algor., 76 (2017), 309–331.

[11] M. A. Hernández, M. A. Salanova, A Newton-like iterative process for the numerical
solution of Fredholm nonlinear integral equations. J. Integral Equations Appl. ,17 (2005),
1–17.

18



[12] M. A. Hernández-Verón, E. Mart́ınez, On the semilocal convergence of a three steps
Newton-type iterative process under mild convergence conditions. Numer. Algor., 70 (2015),
377–392.

[13] K. Maleknejad, H. Derili, The collocation method for Hammerstein equations by Daubechies
wavelets. Appl. Math. Comput., 172 (2006), 846–864.

[14] G. M. Phillips, P. J. Taylor, Theory and Applications of Numerical Analysis. Academic
Press Inc. (Second Edition), 1996.

[15] V. Sukkrasanti, P. Lerdkasem, An Error Bound on Uniform Approximation of Bounded
Function by Bernstein Polynomial. International Mathematical Forum, 3 (2008) 1409–1414

19


