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Abstract: Qualitative analysis of iterative methods with memory has been carried out a few years
ago. Most of the papers published in this context analyze the behaviour of schemes on quadratic
polynomials. In this paper, we accomplish a complete dynamical study of an iterative method with
memory, the Kurchatov scheme, applied on a family of cubic polynomials. To reach this goal we
transform the iterative scheme with memory into a discrete dynamical system defined on R2. We
obtain a complete description of the dynamical planes for every value of parameter of the family
considered. We also analyze the bifurcations that occur related with the number of fixed points. Finally,
the dynamical results are summarized in a parameter line. As a conclusion, we obtain that this scheme
is completely stable for cubic polynomials since the only attractors that appear for any value of the
parameter, are the roots of the polynomial.
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1. Introduction

Non-linearity is inherent in a wide variety of physical processes observed in real life, as well as in
the systems underlying engineering problems. If they are linearized for the sake of greater simplicity,
then much of the complexity disappears, but it is also removed from the reality that defines it and,
therefore, the solution to the problem is a worse approximation of the real solution. Iterative schemes
are very useful in this context in order to estimate the solution of nonlinear equations, f (x) = 0, that
model these kind of problems.

Although the most known fixed-point iterative method is Newton’s scheme, it is only the reference
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for a subclass of numerical procedures: iterative schemes without memory, due to the fact that it
only uses the actual iterate in order to calculate the next one of the sequence that will converge to
the solution. There exists another class of iterative schemes that use more than one known iterate to
calculate the following one: they are known as iterative procedures with memory, and the most known
scheme with memory is the classical secant one, whose iterative expression is

xn+1 = xn −
f (xn)(xn − xn−1)
f (xn) − f (xn−1)

, n = 1, 2, . . .

being x0 and x1 initial guesses. The simplicity of its expression makes it very useful but its convergence
is only super-linear, in contrast with the quadratic convergence of Newton’s scheme. To overload this
inconvenient, Kurchatov designed in [1], by using interpolation techniques, the root-finding algorithm
known as Kurchatov’s scheme,

∆n = xn − xn−1,

xn+1 = xn −
2 f (xn)∆n

f (xn + ∆n) − f (xn − ∆n)
,

that is also an iterative method with memory that holds the second order of convergence of Newton’s
scheme.

In the last years, different schemes with memory have been designed (a good overview can be
found in [2]) with increasing order of convergence (and, therefore, higher computational complexity).
In terms of stability, some researchers compared the wideness of their basins of attraction (the set of
starting points converging to the same attractor) by using techniques of discrete dynamics. In [3],
the authors observed that iterative schemes with memory of seventh-order of convergence showed
better stability properties than many optimal eight-order procedures without memory. This graphical
comparison was used afterwards by different authors; see, for example, the work by Cordero et al. [4],
that of Wang et al. [5] in 2016 or the research by Bakhtiari et al. in [6] and Howk et al. [7] in the
following years.

Meanwhile, the authors developed in [8] a technique using multidimensional real discrete dynam-
ics, able to analyze the stability of iterative schemes with memory, not only in graphical terms, but
essentially analytical. It has also been used to make a brief analytical study of other schemes as in
the paper by the authors [9], or that defined by Choubey et al. in [10], or those by Chicharro et al.
in [11–13].

A key fact to deeply understand the performance of the iterative schemes are the poles of the rational
functions composing its multidimensional operator.

If we denote by xn−1 = x and xn = y, as it was defined in [8, 9], the algorithm of Kurchatov can be
studied from a dynamical point of view as a two dimensional map

K :
(

x
y

)
→

(
y

y − 2 f (y)(y−x)
f (2y−x)− f (x)

)
, (1.1)

with a vanishing denominator.
In [14], a parametric family of iterative procedures, including Kurchatov’s scheme, was designed.

By using the tools of multidimensional real discrete dynamics, the performance on quadratic polyno-
mials is studied pointing out many particular schemes with very good properties in terms of stability

AIMS Mathematics Volume 7, Issue 4, 6445–6466.



6447

and wideness of the set of converging starting points; several other methods found with unstable or
even chaotic performance were also described as members of this class of iterative procedures.

As far as we know, there are not many papers dealing with the dynamics of iterative methods with
memory applied on polynomials of degree greater than two. A complete study of the secant method
for polynomials of arbitrary degree can be found in [20, 21]. In [22], Bairstow’s method is studied for
a family of cubic polynomials equivalent to the one studied in this paper.

Our goal in this manuscript is to analyze the behaviour of Kurchatov’s method on cubic polynomials
and state its stability in this context. To get this aim, we introduce in the following section some
concepts and properties of multidimensional real discrete dynamics that are used in the subsequent
sections. Our final conclusion is that this scheme is stable for every value of the parameter of the
family these polynomials.

The rest of this manuscript is organized as follows: Section 2 is devoted to introduce all these
necessary concepts and tools for the analysis of the stability of the fixed points of the multidimensional
rational operator associated to Kurchatov’s scheme on a generic cubic polynomial p(x) = x(x−1)(x−a)
in Section 3. We also analyze the focal points and prefocal lines, that help us to delimit the boundaries
of the basins of attraction. In Section 3.2, we study the inverses of the mentioned rational operator and
their properties. The basins of attraction of the fixed points of the rational operator are presented, and
the dynamical planes and bifurcations are also studied. The manuscript finishes with the conclusions
and the references used.

2. Materials and methods

In this section we recall some basic concepts related with multidimensional dynamics. Let us denote
as T a vectorial rational operator. We define the orbit of x(0) as a set of the successive images by
T , that is, {x(0),T (x(0)), . . . ,T m(x(0)), . . .}. Indeed, the dynamical behavior of a point x ∈ Rn can be
characterized by analyzing its asymptotic performance, thus x∗ such that T (x∗) = x∗ is called a fixed
point of T . Some results about stability of fixed points are summarized in the next result ( [15]).

Theorem 2.1. Let T : Rn → Rn be C2. Assume x∗ is a fixed point. Let λ1, λ2, . . . , λn be the eigenvalues
of the Jacobian JT (x∗). Then,

a) If |λ j| < 1, ∀ j ∈ {1, 2, . . . , n}, then x∗ is attracting.
b) If, at least, one eigenvalue λ j0 holds |λ j0| > 1, then x∗ is unstable, that is, repelling or saddle.
c) If |λ j| > 1, ∀ j ∈ {1, 2, . . . , n}, then x∗ is repelling.

Indeed, if x∗ is an attracting fixed point of the rational function T , we define its basin of attraction
A(x∗) as the set of preimages of any order such that

A(x∗) = {x(0) ∈ Rn : T m(x(0))→ x∗,m→ ∞}

and it is denoted by A∗(x∗) if the set of preimages considered is in the same connected component as
x∗.

Now, we recall some definitions and properties related to maps with vanishing denominators. We
refer to [16–19, 24, 25] for a more complete study.
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Definition 2.2. A map with vanishing denominator is a map T of Rn, with n ≥ 2, that is not defined
in the whole space Rn because at least one of its components contains a denominator that can vanish.
The set of points δT where the denominators vanish is called the set of non definition of the map.

We consider an arbitrary map of the form:

T :
(

x
y

)
→

(
F(x, y)

G(x, y) =
N(x,y)
D(x,y)

)
, (2.1)

where the continuously differentiable functions F(x, y),N(x, y) and D(x, y) have not common factors
and are defined on the whole plane R2. The set of non definition

δT = {(x, y) ∈ R2/D(x, y) = 0}

is usually made of the union of smooth curves in the plane.
Many global properties of two dimensional maps can be explained from the analysis of some kinds

of singularities, such as the sets where the denominator of the map vanishes, some inverses vanish,
their preimages and the points where the map takes the form 0/0.

2.1. Focal points and prefocal lines

As commented before, some dynamical properties of two-dimensional maps can be explained from
the analysis of their singularities, such as the set of points where the denominator of the map (or some
of its inverses) vanishes, see [19, 23]. The following definition helps us to understand it.

Definition 2.3. Consider a two dimensional map T of the form (2.1). A point Q that belongs to the
set of non-definition δT , is a focal point if at least one component of the map takes the form 0/0 in Q
and there exist smooth simple arcs γ(τ) with γ(0) = Q, such that limτ→0 T (γ(τ)) is finite. The set of all
such finite values, obtained by taking different arcs γ(τ) through Q, is called the prefocal set δQ.

A focal point Q is simple if:

(NxDy − NyDx)|Q , 0.

Let us consider a smooth simple arc γ transverse to δT (not tangential) and look how it is transformed
by applying the map T , that is, what is the shape of its image. Consider a point (x0, y0) ∈ δT and assume
that in a neighborhood of (x0, y0) the arc γ is represented by the parametric equations:

γ (τ) =

{
x(τ) = x0 + ξ1τ + ξ2τ

2 + · · ·

y(τ) = y0 + η1τ + η2τ
2 + · · ·

with τ , 0. As (x0, y0) ∈ δT , there exists a vanishing denominator, but if the numerator is different
from zero, then:

lim
τ→0

T (γ(τ)) = (y0,∞) .

This means that the image T (γ(τ)) is made up of two disjoint arcs asymptotic to the line x = y0.
Different arcs through the same point are mapped into different arcs asymptotic to the same line, see
Figure 1.

If the point (x0, y0) ∈ δT satisfies that both numerator and denominator vanish, then the limit can be
finite and the image of an arc can be bounded, see Figure 2.
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Figure 1. Mapping Ta on transverse arcs with unbounded image.
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Figure 2. Mapping Ta on transverse arcs with bounded image.

3. Results and discussion

3.1. Kurchatov’s method applied on cubic polynomials

In this paper, we study the dynamics of the map K associated to the Kurchatov’s method given in
(1.1), when f (x) is a generic cubic polynomial, p(x) = x(x − 1)(x − a) and a is real. By applying (1.1)
to this polynomial, we obtain a uniparametric family of maps:

Ka :
(

x
y

)
→

 y
y(x2+3y2−y(1+a+2x))
x2+4y2−2y(1+a+x)+a

 . (3.1)

The set of non definition of Ka is given by the ellipse

δKa = {(x, y) ∈ R2/x2 + 4y2 − 2y(1 + a + x) + a = 0}.

So, the iteration of Ka is well defined, provided that the initial condition belongs to the set E given
by:

E = R2\Λ,

where
Λ =

⋃
n≥0

K−n
a (δKa),
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that is, Λ is the set of preimages (of any order) of the ellipse δKa cancelling the denominator of a
component of the rational operator.

The iterations of the map Ka : E → E can be considered as a discrete dynamical system. As the
singular set δKa corresponds to a curve in the plane, the set of points excluded from the phase space of
the iterations of Ka has zero Lebesgue mesure in R2.

3.1.1. Fixed points of Ka

Proposition 3.1. The fixed points of map Ka are (0, 0), (1, 1) and (a, a) and all of them are attractive.

Proof. The fixed points satisfy Ka(x0, y0) = (x0, y0). In this case, the fixed points coincide with the
roots of the cubic polynomial:

Ka

(
x
y

)
=

(
x
y

)
⇒

 y
y(x2+3y2−y(1+a+2x))
x2+4y2−2y(1+a+x)+a

 =

(
x
y

)
.

From the first equation we obtain x = y. The second equation gives:

y(x2 + 3y2 − y(1 + a + 2x)) = y(x2 + 4y2 − 2y(1 + a + x) + a).

One solution is y = 0. For y , 0, x2 + 3y2 − y(1 + a + 2x) = x2 + 4y2 − 2y(1 + a + x) + a. By substituting
y = x and simplifying:

y2 − y(1 + a) + a = 0 ⇒ y = 1, y = a.

Then, the fixed points coincide with the roots of the cubic polynomial.
In order to study their stability we build the Jacobian matrix:

JKa(x, y) =

(
0 1
∂G
∂x

∂G
∂y

)
where:

∂G
∂x

=
−2y(y − 1)(y − a)(y − x)

(x2 + 4y2 − 2y(1 + a + x) + a)2 ,

∂G
∂y

=
x2(a + x2) − 2(1 + a + 2x)(a + x2)y + (2(1 + a)2 + 6x(1 + a) + 9(a + x2))y2

(x2 + 4y2 − 2y(1 + a + x) + a)2 +

+
−12(1 + a + x)y3 + 12y4

(x2 + 4y2 − 2y(1 + a + x) + a)2 .

Then, the fixed points are attractive since the value of the Jacobian evaluated at each of them is:

JKa(x, y) =

(
0 1
0 0

)
.

�

The following property gives us the lines on the plane that are mapped onto the fixed points.

Property 3.2. Let R = (x∗, y∗) be a fixed point of Ka. Then, Ka(x, y) = (x∗, y∗) if and only if y = y∗.
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Proof. The fixed points of Ka are (0, 0), (1, 1) and (a, a).
For R = (0, 0)

Ka(x, y) = (0, 0)⇔
 y

y(x2+3y2−y(1+a+2x))
x2+4y2−2y(1+a+x)+a

 =

(
0
0

)
⇔ y = 0.

Similarly, for R = (1, 1)

Ka(x, y) = (1, 1)⇔ y = 1

and for R = (a, a)
Ka(x, y) = (a, a)⇔ y = a.

That is, the line y = y∗ is mapped onto the fixed point R. �

3.1.2. Focal points and prefocal curves of Ka

Focal points are defined as those points where at least one of the components of the two dimensional
map is 0/0 with finite limit. In our case, we obtain two simple focal points for almost all values of a.

Now, let us consider the two dimensional map Ka defined by (3.1).

Proposition 3.3. The map Ka has two simple focal points Q1 and Q2 with associated prefocal sets δQ1

and δQ2 respectively, given by:

• Q1 =
(
−
√
−a, 0

)
, Q2 =

(√
−a, 0

)
,

δQ1 = δQ2 = {(x, y) ∈ R2/x = 0} for a < 0.

• Q1 =
(
a −
√

a(1 − a), a
)
, Q2 =

(
a +
√

a(1 − a), a
)
,

δQ1 = δQ2 = {(x, y) ∈ R2/x = a} for 0 < a < 1.

• Q1 =
(
1 −
√

a − 1, 1
)
, Q2 =

(
1 +
√

a − 1, 1
)
,

δQ1 = δQ2 = {(x, y) ∈ R2/x = 1} for a > 1.

For a = 0 and a = 1, the focal points are double and coincide with the double root of the polynomial.

Proof. Focal points of Ka satisfy the equations:

y(x2 + 3y2 − y(1 + a + 2x)) = 0,
x2 + 4y2 − 2y(1 + a + x) + a = 0.

The first equation implies y = 0 or x2 + 3y2 − y(1 + a + 2x) = 0. Taking y = 0 and substituting in the
second equation, we obtain x2 + a = 0; so, the points

(
−
√
−a, 0

)
and

(√
−a, 0

)
are obtained, that exist

for a ≤ 0.
From x2 + 3y2 − y(1 + a + 2x) = 0 we can deduce x2 − 2yx = −3y2 + y(1 + a), and substituting in the

second equation we obtain:

−3y2 + y(1 + a) + 4y2 − 2y(1 + a) + a = 0⇒ y2 − y(1 + a) + a = 0⇒ y = 1 or y = a.
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If y = 1, then x2 − 2x = −2 + a ⇒ x = 1 ±
√

a − 1, that exists if a > 1. For y = a, then x2 − 2ax =

−2a2 + a ⇒ x = a ±
√

a(1 − a), that exists if 0 ≤ a ≤ 1. It is easy to check that when a = 0 there is
a unique focal point at (0, 0), that is also a double root of the polynomial; for a = 1, the double focal
point is (1, 1).

As said above, for a map T as given by (2.1), a focal point Q is simple if:

(NxDy − NyDx)|Q , 0.

In our case:

N(x, y) = y(x2 + 3y2 − y(1 + a + 2x)),
D(x, y) = x2 + 4y2 − 2y(1 + a + x) + a.

It can be checked that:

(NxDy − NyDx)|Q1,2 = ±2a
√
−a, a < 0,

(NxDy − NyDx)|Q1,2 = ∓2a(1 − a)
√

a(1 − a), 0 < a < 1,

(NxDy − NyDx)|Q1,2 = ∓2(a − 1)
√

a − 1, a > 1.

Then, the focal points are simple for any value of the parameter different from a = 0 and a = 1. On the
other hand, for a = 0 and for a = 1 focal points coincide with the double root of the polynomial and
they are not simple.

Let us obtain the prefocal sets. For a given value a, a , 0 and a , 1, consider a focal point
Q = (x0, y0) ∈ δKa , and take smooth simple arcs γ transverse to δKa at this point, represented by the
parametric equations:

γ(τ) =

{
x(τ) = x0 + ξ1τ + ξ2τ

2 + ...

y(τ) = y0 + η1τ + η2τ
2 + ...

with τ , 0. Then, if we apply the map Ka on this point the numerator and the denominator vanish and

lim
τ→0

Ka(γ(τ)) =

(
y0, lim

τ→0

N(γ(τ))
D(γ(τ))

)
= (xγ, yγ).

Then, xγ = y0 and

yγ =
Nx + Nym

Dx + Dym
,

where m =
ξ1

η1
and Nx means the derivative of N respect to x evaluated in the focal point.

For a < 0, the focal points are Q1 =
(
−
√
−a, 0

)
,Q2 =

(√
−a, 0

)
∈ δKa . Then, xγ = 0 and

yγ =
am

2
(
±
√
−a +

(
1 + a ±

√
−a

)
m
) .

Let us notice that the values of yγ go over the entire real line except when m =
±
√
−a

1+a±
√
−a

. This value
of the slope corresponds to curves that are tangent to δKa at the focal points.
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The same can be proven for the focal points obtained for the other values of a. So, the prefocal sets
in our case are given by x = F(Q) (see [16]):

x = 0, a < 0,
x = a, 0 < a < 1,
x = 1, a > 1,

where F : R2 → R2 is defined in (3.1). �

3.2. Inverses of Ka and their properties

In order to understand the global dynamical properties of a map, it is important to see how many
inverses map has Ka and in which regions of the phase plane the inverses are defined. Let (x′, y′) be
a given point of the plane. Then, by solving the system of equations obtained from (3.1), we can get
either two distinct real solutions, called rank-1 preimages of point (x′, y′), or no real solutions. We call
Z2 and Z0 the regions of the plane whose points have, respectively, two distinct rank-1 preimages and
no preimages at all.

K−1
a :

(
x′

y′

)
→

(
x = x′ ±

√
∆

y = x′

)
, (3.2)

where

∆ =
−2x′3 + ay′ − 2(1 + a)x′y′ + x′2(1 + a + 3y′)

x′ − y′
.

These regions are given by:

Z0 = {(x, y) ∈ R2 / − 2x3 + ay − 2(1 + a)xy + x2(1 + a + 3y) > 0, x − y < 0}⋃
{(x, y) ∈ R2 / − 2x3 + ay − 2(1 + a)xy + x2(1 + a + 3y) < 0, x − y > 0},

Z2 = {(x, y) ∈ R2 / − 2x3 + ay − 2(1 + a)xy + x2(1 + a + 3y) > 0, x − y > 0}⋃
{(x, y) ∈ R2 / − 2x3 + ay − 2(1 + a)xy + x2(1 + a + 3y) < 0, x − y < 0},

and they are separated by the line y = x and the graphic of the rational function y =
x2(2x−(a+1))

3x2−2(a+1)x+a . These
curves form the boundary of the regions Z0 and Z2, but they are not a locus of critical points where the
two inverses are defined and merge, since the denominator vanishes for y = x.

Let

LC =

{
(x, y) ∈ R2/y = f (x) =

x2(2x − (a + 1))
3x2 − 2(a + 1)x + a

}
(3.3)

be the critical set, that is, the set of points where the preimages merge.
Merging preimages are located in another set of points LC−1 that is included in the set of points in

which the determinant of the Jacobian matrix vanishes:

LC−1 ⊂ J0 = {(x, y) ∈ R2/ det J(Ka) = 0}.

Moreover, it is easy to check the following results.

Property 3.4. The intersection of the two curves that form the boundary of Z0 and Z2 are the fixed
points.
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Proof. The solutions of the system

y =
x2(2x − (a + 1))

3x2 − 2(a + 1)x + a
,

y = x,

are (0, 0), (1, 1) and (a, a). �

Property 3.5. The inverse of the curve LC is given by

LC−1 = {(x, y) ∈ R2/y = x}.

Moreover, LC−1 ⊂ J0.

Proof. It is easy to check that

Ka(x, x) =

(
x,

x2(2x − (a + 1))
3x2 − 2(a + 1)x + a

)
.

As J0 = {(x, y) ∈ R2/ det J(Ka) = 0} and det J(Ka) =
2y(y−1)(y−a)(y−x)

(x2+4y2−2y(1+a+x)+a)2 , then LC−1 ⊂ J0. �

Property 3.6. The fixed points are critical points of LC.

Proof. The derivative of f (x) =
x2(2x−(a+1))

3x2−2(a+1)x+a is f ′(x) =
2x(x−1)(x−a)(3x−(a+1))

(3x2−2(a+1)x+a)2 .
So, f ′(x) vanishes for x = 0, x = 1 and x = a, that coincide with the fixed points. �

Property 3.7. The points of intersection of the set δKa and the line y = x belong to the asymptotes of
LC. Moreover, they are the maximum and the minimum of the ellipse δKa .

Proof. It is easy to check that the points satisfying the equations:

4y2 + x2 − 2y(1 + a + x) + a = 0,
x = y,

are:

P1 =

1 + a −
√

a2 − a + 1
3

,
1 + a −

√
a2 − a + 1
3

 ,
P2 =

1 + a +
√

a2 − a + 1
3

,
1 + a +

√
a2 − a + 1
3

 ,
so, they belong to the asymptotes of LC. On the other hand, the slope of the tangent lines to the ellipse
is y′|P =

y−x
4y−(1+a+x)

∣∣∣∣
P
; this slope vanishes if the point satisfies x = y, being y′′ , 0. �
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3.3. Basins of attraction of the map

In this section, we describe the basins of attraction of the fixed points and their bifurcations as the
parameter a varies. As we have said before, this map has three fixed points for every value of the
parameter except for a = 0 and a = 1, where two of the fixed points collide. Moreover, for these values
the two focal points also collide and coincide with the double fixed point.

Another bifurcation occurs when the focal points are in Z2 and change to be in Z0. This kind of
bifurcation is described in the next result.

Lemma 3.8. Focal points Q1 and Q2 satisfy the following statements:

• Q1 has two preimages if and only if a ∈ (−∞,−3 − 2
√

2) ∪ ( 1
4 (2 +

√
2), 2(2 −

√
2)).

• Q1 has one preimage if and only if a = −3 − 2
√

2 or a = 1
4 (2 +

√
2) or a = 2(2 −

√
2).

• Q1 has no preimage for the other parameter values.
• Q2 has two preimages if and only if a ∈ (−3 + 2

√
2, 1

4 (2 −
√

2)) ∪ (2(2 +
√

2),∞).
• Q2 has one preimage if and only if a = −3 + 2

√
2 or a = 1

4 (2 −
√

2) or a = 2(2 +
√

2).
• Q2 has no preimage for the other parameter values.

Proof. For a < 0, the preimages of Q1 = (−
√
−a, 0) satisfy the system:

y = −
√
−a,

x2 + 3y2 − y(1 + a + 2x) = 0,

whose solution is

x = −
√
−a ±

√
−
√
−a(a + 1) + 2a.

The values of the parameter that satisfy −
√
−a(a + 1) + 2a > 0 and a < 0 are those satisfying a <

−3 − 2
√

2. For a = −3 − 2
√

2, then Q1 has one preimage.
Following the same reasoning it is easy to check that the focal point Q2 = (

√
−a, 0) has two preim-

ages if
√
−a(a + 1) + 2a > 0 and a < 0, that implies −3 + 2

√
2 < a < 0. For a = −3 + 2

√
2, then Q2

has one preimage.
For 0 < a < 1, the preimages of Q1 = (a −

√
a(1 − a), a) satisfy:

y = a −
√

a(1 − a,
x2 + 3y2 − y(1 + a + 2x)

x2 + 4y2 − 2y(1 + a + x) + a
= a,

whose solution is

x = a −
√

a(1 − a) ±
√

2a(a − 1) + (2a − 1)
√

a(1 − a).

The values of the parameter that satisfy 2a(a − 1) + (2a − 1)
√

a(1 − a) > 0 and 0 < a < 1 are those
verifying 1

4 (2 +
√

2) < a < 1. For a = 1
4 (2 +

√
2), then Q1 has one preimage.

With the same reasoning it is easy to check that the focal point Q2 = (a +
√

a(1 − a), a) has two
preimages if 0 < a < 1

4 (2 −
√

2). For a = 1
4 (2 −

√
2), Q2 has one preimage.

Finally, for a > 1, the preimages of Q1 = (1 −
√

a − 1, 1) satisfy:

y = 1 −
√

a − 1,
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x2 + 3y2 − y(1 + a + 2x)
x2 + 4y2 − 2y(1 + a + x) + a

= 1,

whose solution is

x = 1 −
√

a − 1 ±
√

2(1 − a) + (2 − a)
√

a − 1.

The values of the parameter that satisfy 2(1 − a) + (2 − a)
√

a − 1 > 0 and a > 1 are those satisfying
1 < a < 2(2 −

√
2). For a = 2(2 −

√
2), then Q1 has one preimage.

Similarly, it is easy to check that the focal point Q2 = (1 +
√

a − 1, 1) has two preimages if a >

2(2 +
√

2). For a = 2(2 +
√

2), then Q2 has one preimage. �

Remark 3.9. Let us notice that the focal points have not any preimage if a ∈ (−3− 2
√

2,−3 + 2
√

2)∪
( 1

4 (2 −
√

2), 1
4 (2 +

√
2)) ∪ (2(2 −

√
2), 2(2 +

√
2)).

Remark 3.10. There is not any parameter value for which both focal points have preimages simulta-
neously.

These results can be observed in Figure 3, where focal points are colored in blue.
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Figure 3. Location of the focal points for different values of a.

In Figure 3 we can also observe that there is always a fixed point surrounded by the singular set δKa ,
which leads to the next result:

Proposition 3.11. Let Ri = (x∗i , x
∗
i ), i = 1, 2, 3, be the three fixed points such that x∗1 < x∗2 < x∗3. Then,

the immediate basin of attraction of R2 is bounded.

Proof. For a < 0, the three fixed points are R1 = (a, a), R2 = (0, 0) and R3 = (1, 1). By substituting
the point (0, 0) in the equation of δKa we obtain a, as a < 0 we have that R2 = (0, 0) is located
in the interior of the closed curve of δKa . On the other hand, by substituting R1 and R3 we obtain
a2 + 4a2−2a(1 + a + a) + a = a2−a = a(a−1) > 0 and 1 + 4−2(1 + a + 1) + a = 1−a > 0, respectively,
that means that R1 = (a, a) and R3 = (1, 1) are located in the exterior of δKa .

For 0 < a < 1, then R2 = (a, a). By substituting it in equation δKa we obtain a2 + 4a2 − 2a(1 + a +

a) + a = a2 − a = a(a − 1) < 0. For the point R1 = (0, 0) we obtain a > 0, and for R3 = (1, 1) we obtain
1 + 4 − 2(1 + a + 1) + a = 1 − a > 0.
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Finally, for a > 1, R2 = (1, 1) and substituting it in δKa we obtain 1 + 4−2(1 + a + 1) + a = 1−a < 0.
For the point R1 = (0, 0) we obtain a > 0, and for R3 = (a, a) the result is a2 + 4a2 − 2a(1 + a + a) + a =

a2 − a = a(a − 1) > 0.
So, we deduce that R2 is located in the interior of the ellipse δKa while R1 and R3 are located

outside the curve δKa for any case. As this curve is in the boundary of different basins of attraction, the
immediate basin of R2 must be in the region delimited by δKa which involves that A∗(R2) is bounded.

�

Let us observe that line y = x divides the singular set δKa in two symmetric parts, δKa = δK,l ∪ δK,r

whose equations are:

δK,l : x = y −
√

2y(1 + a) − (3y2 + a),

δK,r : x = y +
√

2y(1 + a) − (3y2 + a).

If we consider a small neighborhood U of the fixed point Ri that belongs to the prefocal line δQi , the
points belonging to U ∩ Z0 have no preimages, while the points belonging to U ∩ Z2 have two distinct
preimages given by an unbounded area K−1

a (U) that must include the line y = y∗. As it is shown in
Figure 4, the fixed point Ri = (x∗i , x

∗
i ) is in the intersection of the two curves that form the boundary of

Z2, so the boundary of the disk, ∂U, cuts each of these curves in two different points. When ∂U cuts
the curve y = x their preimages go to ±∞ asymptotically to the line y = y∗ as function ∆ does too.
When ∂U cuts the prefocal line x = x∗ their preimages go to the focal points. So, the preimage of the
disk U is formed by a bounded region, with the two focal points in its boundary, around the fixed point
and by two unbounded regions that start from these focal points. In Figure 4, we observe two cases
for a < 0; in the left figure the two focal points are inside Z0 and in the right figure there is one focal
point inside Z2. The preimages of the boundary of the disk, K−1

a (∂U), in this figure are the magenta
and cyan curves; magenta curves correspond to the preimages of the upper side of the disk inside Z2

and the cyan curves correspond to the bottom side. Let us notice that both preimages go to ∞ as the
two side of the disk inside Z2 cut the line y = x.
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Figure 4. Sketch of the preimages K−1
a (U) of the neighborhood U of the fixed point that

belongs to the prefocal line.
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Nevertheless, let us notice that when one of the focal points is inside Z2 the preimages of the border
of the disk, K−1

a (∂U), have three different pieces inside Z2 and the preimages of one of them does not
go to ∞ as it does not cut the line y = x; in fact, their preimages give the border of a disk, as you can
see in the right picture of Figure 5.
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Figure 5. Sketch of the preimages K−2
a (U) of the neighborhood U of the fixed point that

belongs to the prefocal line.

In the following, we obtain all types of curves in the set of non definition, Λ, of Kurchatov’s map.
We calculate the preimages of the arcs obtained from the intersection of the different curves with Z2,
starting from the curve δKa . The different arcs are colored in blue in Figure 6, and their corresponding
rank-1 preimages are colored in magenta.

Proposition 3.12. Let γ be an arc defined by Γ
⋂

Z2, where Γ ∈ Λ =
⋃
n≥0

K−n
a (δKa) and let LC be the

critical set defined in (3.3); then, γ satisfies one of the following statements:

• The arc γ goes from the curve LC to the line y = x.
• The arc γ connects the curve LC with the curve LC in different points.
• The arc γ connects the line y = x with the line y = x in different points.

Moreover, if an arc cuts the line y = x, then its preimages go to infinity. If it does not cut the line
y = x its preimages give a closed curve.

Proof. . The intersection of the critical set δKa with Z2 gives two arcs, colored in blue in Figures 6(A)
and 6(B) and denoted γ. In both cases, the intersection of the arc with ∂Z2 is produced at two points:
one on LC and the other on line y = x. Then, both arcs connect the curve LC and line y = x. Now, let
us see how is the rank-1 preimage of such arcs.

Let us consider the preimages of the points of γ for the case (A), moving along γ from right to left.
The preimages of the intersection of γ with line y = x are infinity due to the term ∆ in the map K−1

a (see
(3.2)). As x > 0, the second component of K−1

a is positive. For each point of γ we have two preimages,
starting at +∞ and −∞, respectively; when γ reaches the prefocal line, these two preimages are the
focal points. The curve K−1

a (γ) turns at these points and crosses the invariant line y = y∗ and finally,
the two preimages merge at the point corresponding to the preimage of the point of γ on the curve LC,
when y = x.
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We now consider the intersections of this curve with Z2. We again obtain two arcs. One of them
connects the curve LC and line y = x. If one prefocal point is inside Z2, the other arc connects LC with
LC, intersecting LC at two different points (see this type of arc colored in blue in Figure 6 (C)).

Let P and P′ be the intersection points of γ with LC; the preimages of this type of curve γ form a
closed curve K−1

a (γ) since the two preimages of these curve coincide at the points K−1
a (P) and K−1

a (P′),
as we have obtained previously.

If we now consider the intersection of this closed curve with Z2, we obtain an arc that cuts the line
y = x at two different points. We represent this type of arc in blue in Figure 6(D).

As seen before, the preimages of each point on line y = x are ±∞, due to the function ∆. As the arc
γ does not cut the curve LC, their preimages do not coincide at any point. The preimage of such arc
can be seen colored in magenta in Figure 6(D). If this curve is located in Z0, then it has no preimages.

So, three types of arcs are obtained: arcs connecting LC with LC, arcs connecting LC with line
y = x and arcs connecting line y = x with line y = x.

In a similar way, it can be described the curves preimages of the arc γ in Figure 6(B) obtaining the
same type of arcs, and so, the same type of curves. �
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Figure 6. Sketch of the preimages K−1(γ) of different curves embedded in Z2.

Due to the classification obtained above, we have the description of the curves Γ ∈ Λ : they go from
−∞ to +∞, passing through the focal points, they form closed curves or they form tongues.

3.4. Dynamical planes

Following the results of the previous section, it is possible to make an outline of dynamical planes
depending on whether there is a focal point inside Z2 or the two focal points are in Z0.
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To describe the basin boundaries we have to consider the singular set δKa and its preimages. From
Figure 3 it is observed that δKa ∩ Z2 is divided into two different branches denoted by δK,b and δK,t such
that δKa ∩ Z2 = δK,b ∪ δK,t. Moreover, it can be checked that δK,b ⊂ δK,r and δK,t ⊂ δK,l. The portion
of δKa located into Z0 has no preimages whereas the portion located into Z2 is made up of two disjoint
branches, each one having two rank-1 preimages. Therefore, K−1

a (δKa) is made up of four branches.
As Lemma 3.8 tell us, one of the focal points can belong to δK,b ∪ δK,t or none of them are in these
branches.

In Figure 7 we have drawn the preimages K−1
a (δKa) and K−2

a (δKa) for two different cases: the first
one corresponds to the case where none of the focal points are in Z2 and the second case corresponds
to one focal point in Z2. Let us observe that all the preimages of δKa go from −∞ to +∞ turning at the
focal points if the two focal points are in Z0. However, we can observe the emergence of closed curves
that do not cross the focal points when one focal point is in Z2, as it was predicted in Proposition 3.12.
The two points where this curve is cut by other preimage of δKa correspond to the two preimages of the
focal point.
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Figure 7. Sketch of the preimages K−1
a (δKa) and K−2

a (δKa) for a = −4 and a = −9.

The corresponding dynamical planes can be observed in Figure 8: in the left figure, the two focal
points are embedded in Z0, in the right one, there is a focal point in Z2.
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Figure 8. Dynamical planes for a = −4 and a = −9.
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3.5. Bifurcations

In this section, we study three types of bifurcation: when the number of fixed and focal points
change, the changes produced when the number of the preimages of focal points changes and the
changes produced in the dynamical system when bounded and isolated preimages of some basins of
attraction appear.

The design of the basins of attraction changes depending on the number of preimages of the focal
points. So, we study what happens when one focal point has not any preimage and the other has only
one preimage. As Lemma 3.8 states, the values of the parameter for which Q1 has one preimage are:
a = −3− 2

√
2, a = 1

2 (2 +
√

2 and a = 2(2−
√

2). For a = −3 + 2
√

2, a = 1
2 (2−

√
2) or a = 2(2 +

√
2),

Q2 has one preimage.
If focal points have not preimages, the pieces of δKa and their preimages embedded in Z2 go from

line y = x to the rational function o vice versa as they cut the prefocal line and have to cross the focal
points. So, if these preimages of δKa also go from line y = x to the rational function o vice versa, all
the borders of the basins of attraction of the fixed points go across the focal points similarly to those
drawn in Figure 7(A) and their dynamical plane are similar to Figure 8(A) with the pieces of the basins
of attraction going to the focal points.

However, if one focal point has two preimages, then the preimages of δKa include closed and
bounded curves that do not cut the focal points as they can go to the preimages of them, as it can
be seen in Figure 7(B) and their dynamical plane are similar to Figure 8(B). In the following we con-
sider the bifurcation case corresponding to one focal point with one preimage. As we can see in Figure
9(A), the preimages of δKa include closed and bounded curves that are tangent among themselves in
the preimages of the focal point.

In Figure 9(A) the curve δKa is colored in red, K−1(δKa) in magenta, K−2(δKa) in cyan and K−3(δKa)
is dashed and colored in blue. The corresponding dynamical plane can be seen in Figure 9(B).
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Figure 9. Sketch of the preimages and dynamical plane for a = −3 − 2
√

2.
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Additionally, if a is closed enough to one of these bifurcation values the preimages of δKa include
closed and bounded curves isolated inside K−1(δKa), (see Figure 10(A)) that give rise to bounded and
isolated regions in the dynamical plane (see Figure 10(B)).
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Figure 10. Sketch of the preimages and dynamical plane for a = −27/5.

These bounded curves approach each other until they are tangent at the bifurcation point. After this
point, the curves drift apart until the bounded and isolated curves disappear. This type of bifurcation
corresponds to the values of the parameter where K−1(δKa) is tangent to the rational function LC.

Finally, for a = 0 and a = 1 two fixed points collapse together with the focal points in the bifurcation
points; in these cases all the borders pass through the fixed point, that is also a focal point (see Figures
11 and 12).
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Figure 11. Sketch of the preimages and dynamical plane for a = 0.
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Figure 12. Sketch of the preimages and dynamical plane for a = 1.

Nevertheless, if we consider a small interval around a = 0 or a = 1, we observe that there are three
attractive fixed points and two focal points and only one of the focal points have two preimages; so,
the dynamics of the map does not change in a narrow interval of these bifurcations points, as we can
observe in Figure 13.
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Figure 13. Dynamical planes for a = 0.99 and a = 1.01.

If one focal point is in the boundary of Z2, then it has one preimage. The dynamical plane is similar
to the first case: there appear bounded and unbounded areas that do not have the focal points as limits
and belong to the basins of attraction of all the fixed points. The difference is that bounded areas touch
the immediate basin of R2 at a point which is the preimage of the focal point. The dynamical plane is
similar to that of a = −3 − 2

√
2, (see Figure 9).

AIMS Mathematics Volume 7, Issue 4, 6445–6466.



6464

Therefore, all the possible performance of the Kurchatov method on a generic cubic polynomial is
explained. We can summarize these results in the line of parameters shown in Figure 14, obtaining a
bifurcation diagram where each color represents one type of dynamical plane: cyan corresponds to the
first type, violet to the second one and magenta to the last type. The cases a = 0 and a = 1 correspond
to dynamical planes where the focal points are not simple and have been studied separately.

-10 -5 0 5 10

Figure 14. Parameter line.

4. Conclusions

A complete description of the dynamical planes for every value of the parameter has been carried
out. In fact, we have obtain three different types of dynamical planes:

1. If one focal point is inside Z2, then it has two preimages. There appear bounded areas that do
not have the focal points as limits and belong to the basins of attraction of all the fixed points.
The bounded areas touch the immediate basin of R2 at two points (which are the preimages of the
focal point). The unbounded areas have the focal points as limits.

2. If the focal points are inside Z0, but they are closed enough to the boundary of Z2, the bounded
areas belonging to the basins of attraction of the fixed points still remain but they do not touch the
immediate basin of R2. Moreover, there exist unbounded areas that do not reach the focal points.

3. Finally, when the focal points are inside Z0 and not close to Z2, the bounded areas have disappear
and all the areas are unbounded and have focal points as limits.

We have represented these different dynamical behaviours for every value of the parameter in a
bifurcation diagram, the parameter line.

Along this paper we have shown that this iterative scheme is completely stable for any polynomial
of degree three, since the only attractors that appear for any value of the parameter are the roots of the
polynomial.
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