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Abstract

This paper deals with random fractional differential equations of the form,
CDα

0+X(t) + AẊ(t) + BX(t) = 0, t > 0, with initial conditions, X(0) = C0

and Ẋ(0) = C1, where CDα
0+X(t) stands for the Caputo fractional derivative of

X(t). We consider the case that the fractional differentiation order is 1 < α < 2.
For the sake of generality, we further assume that C0, C1, A and B are ran-
dom variables satisfying certain mild hypotheses. Then, we first construct a
solution stochastic process, via a generalized power series, which is mean square
convergent for all t > 0. Secondly, we provide explicit approximations of the
expectation and variance functions of the solution. To complete the random
analysis and from this latter key information, we take advantage of the Prin-
ciple of Maximum Entropy to calculate approximations of the first probability
density function of the solution. All the theoretical findings are illustrated via
numerical experiments.

Keywords. Random fractional differential equations, random mean square cal-
culus, Principle of Maximum Entropy, mean square Laplace transform.

1. Introduction and preliminaries

Fractional differential equations are widely applied for describing many phys-
ical phenomena such as seepage flow in porous media [1], fluid dynamic traffic
[2], viscoelastic damping in certain types of materials like polymers [3], spreads
of diseases [4], etc., just to list a few ones. Although many types of fractional
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derivatives have been introduced in the extant literature, a common character-
istic is that they are defined via nonlocal operators, which results particularly
effective for modelling phenomena with memory or after-effects.

In [5] one analyzes the main advantages and disadvantages of different types
of fractional derivatives. In the present contribution, we study a class of initial
value problem formulated via the Caputo fractional derivative. As explicitly
indicated in [5], the Caputo derivative is very useful in dealing with real-world
problems formulated through initial and boundary conditions. The contributions
listed in the previous paragraph illustrate this assertion (see [6, 7] for further
examples). In [8, 9, 10], one can find interesting theoretical and practical appli-
cations of fractional derivatives.

On the other hand, the presence of uncertainties is ubiquitous when math-
ematical modelling real-world problems. Randomness appears from different
sources such as, for example, the lack of knowledge of complex phenomena or
the measurement errors associated to experiments or samples required to cal-
ibrate the corresponding mathematical model. As a result, the formulation of
fractional differential equations with uncertainties leads to two main classes of
approaches, namely, stochastic fractional differential equations (SFDEs) and
random fractional differential equations (RFDEs).

SFDEs are differential equations driven by the fractional Brownian motion
(fBm), which is Gaussian, so with unbounded trajectories. The analysis of this
class of equations is usually done via the Wick-Itô-Skorohod calculus [11, 12].
fBm is neither a semimartingale (except when the Hurst exponent H = 1/2)
nor a Markov process, so the classical mathematical machineries for stochastic
calculus are not applicable in the fBm case [13]. SFDEs have found interest-
ing applications, particularly in Finance where abrupt changes may occur [14].
Nevertheless, it must be said that applying SFDEs implicitly entails assuming
the uncertainties are Gaussian. Obviously, this limits the application of SFDEs
in real-world problems where other stochastic patterns are more suitable.

A complementary approach to SFDEs are RFDEs. These class of equations
are more flexible when applying in practice, since it permits separately ran-
domizing all the information (initial/boundary conditions, source term and/or
coefficients) defining the fractional differential equation. Furthermore, one can
assign a wide range of probability distributions to each term of the differential
equation instead of prefixing a single stochastic pattern to the whole model, as it
is done when using SFDEs via the fBm. An appealing option to choice the dis-
tributions for model inputs is utilizing parametric distributions (uniform, beta,
exponential, Gaussian, etc.), since it provides great flexibility to better capture
uncertainties. As accurately indicated in recent contributions, parametric RDEs
are becoming at the forefront useful tools to model real-world problems [15, 16].
For example, in [16] explicitly one states: “Random Ordinary Differential Equa-
tions are being used in the biological sciences, where non-Gaussian and bounded
noise are often more realistic than the conventionally used Itô calculus”.

While there are many contributions dealing with SFDEs, the study of RFDEs
is still scarce and further analysis is required. Some recent contributions on
RFDEs include the study both of theoretical aspects [17, 18, 19, 20] and appli-
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cations [21, 22, 23].
The aim of this paper is contributing to advance in the study of parametric

RFDEs by studying a class of second order linear equations that, in the classi-
cal scenario (deterministic setting and entire order derivative) are vital to any
serious investigation of the classical areas of mathematical physics. Indeed, one
cannot go very far in the development of fluid mechanics, heat conduction, wave
motion, or electromagnetic phenomena without finding it necessary to solve sec-
ond order linear differential equations. In particular, this class of equations is
ubiquitous in the study of oscillations of mechanical and electrical systems.

For the sake of completeness, down below we briefly collect the main defini-
tions and results that will be required throughout this paper. Given a complete
probability space (Ω,F ,P), throughout this paper we will work in the Hilbert
space, (L2(Ω), 〈·, ·〉), whose elements are real random variables, X : Ω −→ R,

having finite second-order moment, i.e. E[|X|2] < ∞. Here, E[·] denotes the
expectation operator. The norm, ‖·‖2, usually termed 2-norm, is defined as

‖X‖2 = (E[|X|2])1/2 < ∞, for each X ∈ L2(Ω) and inferred by the inner
product 〈X,Y 〉 = E[|XY |], X,Y ∈ L2(Ω). Such random variables are called
2-random variables. A 2-stochastic process, X(t) ≡ {X(t) : t ∈ T }, is a set of
2-random variables indexed by t. This index usually represents the time and
then it lies within a positive interval, say T = [0, T ], T > 0. Notice that the
ω-notation (i.e., sample dependence) for both random variables X ≡ X(ω) and
stochastic processes, X(t) ≡ X(t;ω), ω ∈ Ω has been hidden, as usual. The con-
cepts of 2-continuity, 2-differentiability and 2-integrability are defined in terms
of the stochastic convergence inferred from the 2-norm. The corresponding con-
vergence is called mean square convergence [24], [25, Ch.4]. A key property of
mean square convergence, that will be applied later, is stated in the following
result.

Lemma 1.1. [25] If {Xn : n ≥ 0} is a sequence of 2-random variables such
that Xn is mean square convergent to X ∈ L2(Ω), then

E [Xn] −−−−→
n→∞

E [X] and V [Xn] −−−−→
n→∞

V [X] , (1.1)

where V [Xn] = E
[
(Xn)2

]
− (E [Xn])2 denotes the variance of Xn.

Observe that any sequence of 2-random variables, that is mean square conver-
gent, will have both convergent mean and convergent variance. Later on, we
will show that the solution of the random model under study will be a mean
square convergent series, and therefore by Lemma 1.1, it will have convergent
mean and convergent variance.

In this paper we deal with the following random initial value problem (RIVP)
CDα

0+X(t) +AẊ(t) +BX(t) = 0, t > 0, 1 < α < 2,

X(0) = C0, Ẋ(0) = C1,

(1.2)

where A, B, C0 and C1 are random variables satisfying certain properties that
will be specified later. Here, CDα

0+X(t) denotes the mean square Caputo deriva-
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tive of the stochastic process X(t) (see [26, p. 290], [19], and references therein),
defined by

CDα
0+X(t) =

1

Γ(dαe − α)

∫ t

0

(t− τ)dαe−α−1(X(τ))(dαe)dτ, t > 0, (1.3)

where dαe is the ceiling function at α (so dαe = 2 and X(τ)(dαe) = Ẍ(τ) stands
for the mean square derivative of order 2) and Γ(·) denotes the classical Gamma
function. The equation (1.2) is a generalization of the classical damped simple
harmonic oscillator. This is because when α converges to 2, the deterministic
Caputo derivative of a function, converges to its second derivative, see [27, p.
79].

Assuming that {X(t) : t ≥ 0} is twice mean square differentiable, and denot-
ing by ΓX(t1, t2) := E [X(t1)X(t2)] its correlation function (which, according
to Schwarz inequality always exists for a 2-stochastic process), it is straightfor-
ward to prove, by applying [25, Th. 4.5.1, p.100], that its mean square Caputo
derivative, CDα

0+X(t), exists, if and only if, the following double integral exists
and is finite ∫ t

0

∫ t

0

(t− τ1)1−α(t− τ2)1−αΓẌ(τ1, τ2)dτ1dτ2, t > 0. (1.4)

Remark 1.2. In the particular case that ΓẌ(τ1, τ2) is continuous at every point
(τ, τ), τ ∈ [0, t], (which, according to [25, Th.4.3., p. 90], is equivalent to say
that the 2-stochastic process X(t) is such that its Ẍ(t) is mean square contin-
uous), the integral (1.4) exists and is finite, and, as a consequence, the mean
square Caputo derivative, CDα

0+X(t), exists. Of course, this result is also true
in the case that mean square continuity is replaced by mean square piecewise
continuity.

Furthermore, taking into account that (see [25, formula (4.133), p.98])

ΓẌ(τ1, τ2) =
∂4ΓX(τ1, τ2)

∂τ2
1 ∂τ

2
2

,

the existence of CDα
0+X(t) can be given in terms of the existence and finiteness

of the following double integral of the correlation function∫ t

0

∫ t

0

(t− τ1)1−α(t− τ2)1−α ∂
4ΓX(τ1, τ2)

∂τ2
1 ∂τ

2
2

dτ1dτ2, t > 0. (1.5)

Example 1.3. Let U be a Beta random variable of parameters (2, 1), i.e. U ∼
Be(2, 1) (so U ∈ L2(Ω)) and define X(t) := Ut3, t ≥ 0. Observe that Ẍ(t) =
6tU , E[U2] = 1

2 , ΓẌ(τ1, τ2) = E[Ẍ(τ1)Ẍ(τ2)] = 36τ1τ2E[U2] = 18τ1τ2 and∫ t

0

∫ t

0

(t− τ1)1−α(t− τ2)1−α18τ1τ2dτ1dτ2 =
18t6−2α

(α2 − 5α+ 6)2
<∞.

Then, applying condition (1.4), it is justified that the mean square Caputo
derivative of X(t) exists. Moreover, it can be shown that CDα

0+X(t) = 6U
Γ(4−α) t

3−α.
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2. Basic properties of the mean square Laplace transform of second-
order stochastic processes

In this section, we introduce the basic definitions, results and operational
rules, corresponding to mean square calculus, that will be required to solve the
RIVP (1.2). Some preliminary results about the mean square Laplace transform,
that complement the ones given hereafter, were established by some of the
authors in [28].

Definition 2.1. The Laplace transform of a 2-stochastic process, {X(t) : t ≥
0}, is defined by

L{X(t); s} :=

∫ ∞
0

e−stX(t)dt, s ∈ S ⊂ R, (2.1)

provided the improper integral exists in L2(Ω). The variable s can be allowed
to be a complex number, but for our purposes of solving random fractional
differential equations, we will only require that s be a real parameter.
Similarly as it is done in the deterministic context, to examine conditions under
which a 2-stochastic process has a mean square Laplace transform, we define
the concept of exponential order in the mean square sense that extends its
deterministic counterpart.

Definition 2.2. A 2-stochastic process, {X(t) : t ≥ 0}, is said to be of expo-
nential order s0 ≥ 0, if and only if, there exist positive constants M and T0 such
that ‖X(t)‖2 ≤Mes0t, for all t ≥ T0 > 0.

Lemma 2.3. If the 2-stochastic process, X(t), is of exponential order s0 ≥ 0,
then

lim
T→∞

e−sT ‖X(T )‖2 = 0, s > s0. (2.2)

Proof. Since X(t) is of exponential order s0 ≥ 0, applying Definition 2.2
for t = T large enough, one gets, 0 ≤ e−sT ‖X(T )‖2 ≤ MeT (s0−s). Since
limT→∞MeT (s0−s) = 0, s > s0, one straightforwardly follows the result. †

Then, we are ready to establish sufficient conditions in order for the existence
of the mean square Laplace transform of a 2-stochastic process is guaranteed,
as well as to determine the domain of the transform.

Proposition 2.4. Let {X(t) : t ≥ 0} be a mean square piecewise continuous
stochastic process of exponential order s0 ≥ 0. Then, its mean square Laplace
transform, L{X(t); s}, exists for s > s0.

Proof. To establish the result we show that the integral (2.1) is mean square
convergent for every s > s0. Now, taking into account Definition 2.2, we split
the improper integral in two parts,

L{X(t); s} =

∫ T0

0

e−stX(t)dt+

∫ ∞
T0

e−stX(t)dt.
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The first integral exists because it can be written as a sum of mean square
integrals over intervals on which the stochastic process e−stX(t) is mean square
continuous. Since s > s0, for the second integral one gets∥∥∥∥∫ ∞

T0

e−stX(t) dt

∥∥∥∥
2

≤
∫ ∞
T0

e−st ‖X(t)‖2 dt ≤M
∫ ∞
T0

e−(s−s0)t dt = M
e−(s−s0)T0

s− s0
<∞.

Notice that the first inequality is legitimized by [25, expression (4.149), p.102]
for mean square Riemann integrals. Finally, notice that we have also shown
that ‖L{X(t); s}‖2 <∞, therefore the Laplace transform of a 2-stochastic pro-
cess satisfying the hypotheses of the theorem is also a 2-stochastic process, i.e.
L{X(t); s} ∈ L2(Ω) for each s > s0. †

Remark 2.5. As it also happens in the deterministic context, the two condi-
tions of Prop. 2.4, namely, (1) mean square piecewise continuity and (2) ex-
ponential order for a 2-stochastic process X(t), are sufficient but not necessary
for the existence of a mean square Laplace transform. Indeed, let U be a Uni-
form random variable on the unit interval, U ∼ U([0, 1]) (so, U ∈ L2(Ω)), then
the 2-stochastic process X(t) = U/

√
t is obviously not mean square piecewise

continuous on [0,∞), while X(t) = 2Utet
2

cos (et
2

) is not of exponential order.
However, it is easy to show that in both cases the mean square Laplace transform
exists. We here omit the proof since it is similar to the deterministic case [29,
p.15].

Remark 2.6. Similarly as we have previously shown for the existence of the
mean square Caputo derivative of a 2-stochastic process, X(t), in terms of its
correlation function, ΓX(t1, t2) (see condition (1.5)), by applying [25, Th. 4.5.1,
p.100] one also deduces the mean square Laplace transform exists, if and only,
if the following double integral is convergent∫ ∞

0

∫ ∞
0

e−s(t1+t2)ΓX(t1, t2)dt1dt2.

Notice that by Jensen and Schwarz inequalities one gets

|ΓX(t1, t2)| = |E[X(t1)X(t2)]| ≤ E[|X(t1)X(t2)|] ≤ ‖X(t1)‖2 ‖X(t2)‖2 ,

and by Fubini’s theorem one gets,∫ ∞
0

∫ ∞
0

e−s(t1+t2)|ΓX(t1, t2)|dt1dt2

≤
∫ ∞

0

∫ ∞
0

e−s(t1+t2) ‖X(t1)‖2 ‖X(t2)‖2 dt1dt2

=

(∫ ∞
0

e−st1 ‖X(t1)‖2 dt1

)(∫ ∞
0

e−st2 ‖X(t2)‖2 dt2

)
.

6



So, it is sufficient that the following integral exists and is finite to guarantee the
existence of the mean square Laplace transform∫ ∞

0

e−st‖X(t)‖2dt <∞. (2.3)

In the following example, we compute the Laplace transform of a particular 2-
stochastic process X(t) that will be required later on. We will apply condition
(2.3) to check that its mean square Laplace transform exists.

Example 2.7. Let U be a 2-random variable and define {X(t) := Utk, t ≥ 0}
with k > −1. Hence, for s > 0,∫ ∞

0

e−st‖X(t)‖2dt =

∫ ∞
0

e−sttk‖U‖2dt,

=

∫ ∞
0

e−v
1

s

(v
s

)k
‖U‖2dv

= ‖U‖2
1

sk+1

∫ ∞
0

e−vv(k+1)−1dv

= ‖U‖2
1

sk+1
Γ(k + 1) <∞, (2.4)

where in the second step we have made the change of variables v = st and in last
step we have used the integral representation of the classical Gamma function,
Γ(x) =

∫∞
0

e−vvx−1dv, x > 0 since k > −1. According to (2.3), the Laplace

transform of the 2-stochastic process, X(t) = Utk, k > −1, is well defined in
L2(Ω). If k ≥ 0, this fact can also be checked by applying Proposition 2.4. For
every k ≥ 0, the 2-stochastic process, X(t) = Utk, U ∈ L2(Ω) is, obviously,
mean square continuous and of exponential order with s0 = k ≥ 0. Indeed, let
us denote ‖U‖2 = M < ∞, then taking into account that ln(t) ≤ t, t > 0, one
gets

‖X(t)‖2 = ‖U‖2 t
k = Mek ln(t) ≤Mekt, t > 0.

Further, in similar manner as we have proved, using condition (2.3), the exis-
tence of the Laplace transform of X(t) in (2.4), it can be shown that

L{X(t); s} = U
1

sk+1
Γ(k + 1), s > 0.

The linearity of the mean square Laplace transform, defined in (2.1), follows
from the linearity of the mean square Riemann integral [25, Ch.4]. However,
when the constants of the linear combination are random variables, according
to Lemma 1 of [30], some conditions must be imposed on the data in order to
guarantee the resulting stochastic process lies in L2(Ω). The proof is a conse-
quence of the following key inequality that involves the random Lebesgue spaces
L2(Ω) and L4(Ω) [31],

‖XY ‖2 ≤ ‖X‖4 ‖Y ‖4 , X, Y ∈ L4(Ω). (2.5)
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Lemma 2.8. Let U1 and U2 be 4-random variables and let {X1(t) : t ≥ 0} and
{X2(t) : t ≥ 0} be 4-stochastic processes. If L{X1(t); s} and L{X2(t); s} belong
to L4(Ω), then

L{U1X1(t) + U2X2(t); s} = U1L{X1(t); s}+ U2L{X2(t); s}, (2.6)

and L{U1X1(t) + U2X2(t); s} ∈ L2(Ω).

Proof. Since U1, U2 ∈ L4(Ω) and L{X1(t); s}, L{X2(t); s} ∈ L4(Ω) for each
t ≥ 0, then, from (2.5), one obtains U1L{X1(t); s}, U2L{X2(t); s} ∈ L2(Ω).
Consequently, U1L{X1(t); s}+U2L{X2(t); s} ∈ L2(Ω). Similarly, for each t ≥ 0,
U1X1(t) + U2X2(t) ∈ L2(Ω). Further, the linearity of the mean square integral
and Lemma 1 of [30] imply the identity.†

Remark 2.9. It can be proved that if U1 and U2 in Lemma 2.8 are bounded
random variables, then U1, U2, L{X1(t); s},L{X2(t); s} ∈ L2(Ω), and the con-
clusion of Lemma 2.8 holds. Indeed, let M1,M2 > 0 such that |U1(ω)| ≤ M1

and |U2(ω)| ≤M2 for every ω ∈ Ω. Setting M = max{M1,M2}, we have

E
[
|U1L{X1(t); s}|2

]
=

∫
Ω

|U1L{X1(t); s}|2 dP ≤M2

∫
Ω

|L{X1(t); s}|2 dP < +∞,

which proves that U1L{X1(t); s} ∈ L2(Ω). Analogously, it can be shown that
U2L{X2(t); s} ∈ L2(Ω). Hence U1L{X1(t); s} + U2L{X2(t); s} ∈ L2(Ω). The
equality in Lemma 2.8 is inferred from the linearity of the mean square integral
and Proposition 1 of [19]. Throughout this paper, we will apply the linearity of
mean square Laplace transform in the case that coefficients U1 and U2 of the
linear combination (2.6) are bounded random variables.

A key result in solving random differential equations is knowing the Laplace
transform of the mean square derivative, Ẋ(t), of a 2-stochastic process, X(t),
whose mean square Laplace transform exists.

Proposition 2.10. Let {X(t) : t ≥ 0} be a 2-stochastic process satisfying the
following conditions:

i) X(t) is mean square differentiable (so, continuous),

ii) Ẋ(t) is mean square piecewise continuous,

iii) X(t) is of exponential order s0 ≥ 0.

Then,
L{Ẋ(t); s} = sL{X(t); s} −X(0), s > s0 ≥ 0.

Proof. Using the definition of the Laplace transform and the formula of
integration by parts for improper mean square integrals (see [25, p. 104]), we
have

L{Ẋ(t); s} =

∫ ∞
0

e−stẊ(t)dt = lim
T→∞

e−sTX(T )−X(0) + s

∫ ∞
0

X(t)e−stdt.
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AsX(t) is of exponential order s0, Remark 2.3 implies that limT→∞ e−sTX(T ) =
0 in the mean square sense. Hence,

L{Ẋ(t); s} = sL{X(t); s} −X(0).†

Remark 2.11. If the 2-stochastic process X(t) is twice mean square differen-
tiable such that X(t) and Ẋ(t) are both mean square continuous and of expo-
nential order and Ẍ(t) is mean square piecewise continuous, then applying twice
Proposition 2.10, one obtains

L{Ẍ(t); s} = sL{Ẋ(t); s} − Ẋ(0) = s(sL{X(t); s} −X(0))− Ẋ(0)

= s2L{X(t); s} − sX(0)− Ẋ(0). (2.7)

One of the most attractive applications of the Laplace transform is solving
differential equations, in particular, fractional differential equations (see [32] and
references therein). The next result gives the mean square Laplace transform of
the mean square Caputo fractional derivative of a 2-stochastic process.

Proposition 2.12. Let X(t) be a 2-stochastic process satisfying the hypotheses
of Remark 2.11. Let CDα

0+X(t), 1 < α < 2, denote its mean square Caputo

fractional derivative. If the pathwise integral
∫∞

0
e−sτ |Ẍ(τ)|dτ exists and is

finite, then

L{CDα
0+X(t); s} = sαL{X(t); s} − sα−1X(0)− sα−2Ẋ(0),

and L{CDα
0+X(t); s} belongs to L2(Ω).

Proof. By definition of the mean square Laplace transform and the definition
of the Caputo derivative (see (1.3)) one gets,

L{CDα
0+X(t); s} =

∫ ∞
0

e−st
(
CDα

0+X(t)
)

dt

=

∫ ∞
0

e−st
1

Γ(2− α)

∫ t

0

(t− τ)1−αẌ(τ)dτdt

=

∫ ∞
0

∫ ∞
τ

e−st
1

Γ(2− α)
(t− τ)1−αẌ(τ)dtdτ

u=t−τ
=

∫ ∞
0

∫ ∞
0

e−s(u+τ) 1

Γ(2− α)
u1−αẌ(τ)dudτ

=

∫ ∞
0

e−sτ
1

Γ(2− α)
Ẍ(τ)

[∫ ∞
0

e−suu1−αdu

]
dτ.

(2.8)

Since it is known, from the deterministic scenario, that L{uk; s} = Γ(k+1)
sk+1 ,

k > −1, taking k = 1− α > −1 the L{CDα
0+X(t); s} yields

L{CDα
0+X(t); s} =

∫ ∞
0

e−sτ
1

Γ(2− α)
Ẍ(τ)L{u1−α; s}dτ
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=

∫ ∞
0

e−sτ
1

Γ(2− α)
Ẍ(τ)

Γ(2− α)

s2−α dτ

= sα−2L{Ẍ(τ); s}
= sα−2(s2L{X(t); s} − sX(0)− Ẋ(0))

= sαL{X(t); s} − sα−1X(0)− sα−2Ẋ(0), (2.9)

where we have applied identity (2.7) derived in Remark 2.11. Observe that by
hypothesis, for each ω ∈ Ω the integral

∫∞
0

e−sτ |Ẍ(τ)|dτ exists and is finite.

Further,
∫∞

0
e−stt1−αdt < ∞. Hence, Fubini’s Theorem justifies the commu-

tation of the integrals made in the third step of (2.8), see [33, p. 26 ], [34, p.
46] and [35, p. 11]. Finally, L{CDα

0+X(t); s} belongs to L2(Ω) because for each

t ≥ 0, X(t), Ẋ(t), L{X(t); s} belong to L2(Ω). †

Remark 2.13. Notice that according to Remark 1.2, in Proposition 2.12 it is
guaranteed the existence of the mean square Caputo derivative, CDα

0+X(t), since

we are assuming that Ẍ(t) is mean square piecewise continuous.

3. Some applications of the mean square Laplace transform of second-
order stochastic processes

The Binomial and Geometric series will be used to find a mean square an-
alytic solution of the RIVP (1.2). Hereinafter, we will assume that the coef-
ficients, A and B, and the initial conditions, C0 and C1, of (1.2) satisfy the
following assumptions:

A1. A and B are bounded random variables, that is, there are positive numbers
MA and MB such that |A(ω)| ≤MA and |B(ω)| ≤MB , for all ω ∈ Ω. So,
A,B ∈ L2(Ω).

A2. C0 and C1 are second order random variables, i.e. C0, C1 ∈ L2(Ω).

A3. C0, C1, A and B are independent random variables.

Applying the mean square Laplace transform to the fractional differential equa-
tion of RIVP (1.2) yields

L{CDα
0+X(t) +AẊ(t) +BX(t); s} = 0.

By linearity of the mean square Laplace transform and Remark 2.9 (with U1 = A
and U2 = B that are bounded random variables by assumption A1), we have

L{CDα
0+X(t); s}+AL{Ẋ(t); s}+BL{X(t); s} = 0.

Now, taking into account Propositions 2.10–2.12, we obtain

sαL{X(t); s}−sα−1X(0)−sα−2Ẋ(0)+AsL{X(t); s}−AX(0)+BL{X(t); s} = 0.
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Solving for L{X(t); s} and taking into account that X(0) = C0 and Ẋ(0) = C1,

L{X(t); s} =
sα−1C0 + sα−2C1 +AC0

sα +As+B
. (3.1)

Now, we would like to find a domain, S, for which the Laplace transform of the
2-stochastic process, X(t), can be written as a mean square convergent series.
To this end, we will first prove the following technical result which is established
for each ω ∈ Ω.

Theorem 3.1. Let A and B be random variables satisfying assumption A1. If

1 < α < 2 and s > K1 := max

{
M

1
α−1

A , (MA +MB)
1

α−1 , 1

}
, then for all ω ∈ Ω,

i) |A(ω)|s1−α < 1.

ii)
∣∣∣ B(ω)s−1

sα−1+A(ω)

∣∣∣ < 1.

iii) 1
sα+A(ω)s+B(ω) =

∑
n,m≥0

Γ(m+n+1)
Γ(n+1)Γ(m+1) (−A(ω))m(−B(ω))ns−(m(α−1)+α(n+1)).

Proof. By hypothesis s > M
1

α−1

A and so sα−1 > MA ≥ |A(ω)|, for all ω ∈ Ω.

Thus, it follows that 1 > |A(ω)|
sα−1 = s1−α|A(ω)|. This proves i).

On the one hand, s > (MA + MB)
1

α−1 , so sα−1 > MA + MB . Consequently,
sα−1−MA > MB . On the other hand, −|A(ω)| ≥ −MA and so sα−1−|A(ω)| ≥
sα−1 −MA > MB > 0. Hence,∣∣∣∣ B(ω)s−1

sα−1 +A(ω)

∣∣∣∣ ≤ MBs
−1

|sα−1 +A(ω)|
<

(sα−1 − |A(ω)|)s−1

|sα−1 +A(ω)|

<
|sα−1 +A(ω)|s−1

|sα−1 +A(ω)|
=

1

s
< 1, (3.2)

since s > K1 ≥ 1. Hence, ii) holds.
In the following the Geometric series,

∑
n≥0 x

n = 1
1−x , |x| < 1, and an implica-

tion of the Binomial series (see [36, p. 201]),

(1− x)−λ =
∑
m≥0

Γ(m+ λ)

m!Γ(λ)
xm, |x| < 1, λ > 0, (3.3)

will be used. First, observe that

1

sα +As+B
=

s−1

sα−1 +A+Bs−1
=

s−1

(sα−1 +A)
(

1 + Bs−1

sα−1+A

) . (3.4)

For each ω in Ω, part ii) and the Geometric series with ratio x = Bs−1

sα−1+A
(|x| < 1), imply

1

sα +A(ω)s+B(ω)
=

s−1

sα−1 +A(ω)

∑
n≥0

(−B(ω))ns−n

(sα−1 +A(ω))n

11



=
∑
n≥0

(−B(ω))ns−n−1

(sα−1(1 +A(ω)s1−α))
n+1

=
∑
n≥0

(−B(ω))ns−αn−α(1 +A(ω)s1−α)−(n+1).

(3.5)

Further, as a consequence of (3.3) with λ = n + 1 > 0, x = −A(ω)s1−α (that
satisfies |x| < 1 by part i)), it follows

1

sα +A(ω)s+B(ω)
=
∑
n,m≥0

(−B(ω))n(−A(ω))m
Γ(m+ n+ 1)

Γ(m+ 1)Γ(n+ 1)
s−((α−1)m+α(n+1)).†

(3.6)
For every ω ∈ Ω, let us denote A := A(ω) and B := B(ω) to alleviate the
forthcoming notation. Setting

φn,m(A,B) = (−B)n(−A)m
Γ(m+ n+ 1)

Γ(m+ 1)Γ(n+ 1)
= (−1)n+mBnAm

Γ(m+ n+ 1)

m!n!
,

(3.7)
then according to (3.1) and (3.6), we have proved that for each ω ∈ Ω,

L{X(t); s} =
∑
n,m≥0

φn,m(A,B)C0s
−((α−1)m+nα+1)

+
∑
n,m≥0

φn,m(A,B)C1s
−(m(α−1)+nα+2)

+
∑
n,m≥0

φn,m(A,B)AC0s
−(m(α−1)+(n+1)α) (3.8)

converges for all s > K1, being K1 given in Theorem 3.1. Expression (3.8) will
be used to show that L{X(t); s} is a mean square convergent series. To conduct
this analysis, the following inequalities for the Gamma function will be applied
[37]

Γ(p+ q) ≥ pqΓ(p)Γ(q) = Γ(p+ 1)Γ(q + 1), p, q ≥ 1, (3.9)

and
Γ(p+ q) ≤ (Γ(2p)Γ(2q))

1
2 , p, q > 0. (3.10)

We will start by showing that the first term of the expansion given by (3.8)
is mean square convergent, and for the other ones, the reasoning is analo-
gous. By assumption A1, is clear that ‖(−A)m‖2 = ‖Am‖2 = (E[|A2m|]) 1

2 ≤
(E[(|A|m)2])

1
2 ≤ (E[(MA)m]2)

1
2 = (MA)m. Similarly, ‖(−B)n‖2 ≤ (MB)n. Ap-

plying (3.10) to p = n > 0 and q = m+ 1 > 0 integers, we have Γ(n+m+ 1) ≤
(Γ(2n)Γ(2(m+ 1)))

1
2 = ((2n− 1)!(2m+ 1)!)

1
2 , since n and m are positive inte-

gers. Next, setting

δ1(n) =
‖C0‖2(MB)n((2n− 1)!)

1
2

n!
s−(αn+1), δ2(m) =

(MA)m ((2m+ 1)!)
1
2

m!
s−m(α−1),
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and using assumption A3, yields

‖φn,m(A,B)C0‖2s−(m(α−1)+αn+1) ≤ δ1(n)δ2(m). (3.11)

Hence, we only need to show that both deterministic series
∑
n≥0 δ1(n) and∑

m≥0 δ2(m) are convergent in a common domain to be determined. To this
end, we will use the ratio test. Since

lim
n→∞

δ1(n+ 1)

δ1(n)
= lim
n→∞

MB

n+ 1
((2n+ 1)(2n))

1
2 s−α =

2MB

sα
, (3.12)

and

lim
m→∞

δ1(m+ 1)

δ2(m)
= lim
m→∞

MA

m+ 1
((2m+ 3)(2m+ 2))

1
2 s−(α−1) =

2MA

sα−1
. (3.13)

This proves that first series in expression (3.8) is mean square convergent for

s > K2 := max
{

(2MB)
1
α , (2MA)

1
α−1 ,K1

}
,

where K1 is defined in Theorem 3.1.
Analogously, it can be shown that the remaining two infinite series in (3.8) are
mean square convergent for s > K2. We summarize our findings in the next
theorem.

Theorem 3.2. Consider the RIVP given by (1.2). Under assumptions A1 −
−A3, the Laplace transform of the mean square solution X(t), of (1.2) can be
written as the mean square convergent series given by (3.8) for s > K2 :=

max
{

(2MB)
1
α , (2MA)

1
α−1 ,K1

}
, where K1 is defined in Theorem 3.1.

Setting ν := α− 1 ∈ (0, 1), with the aid of Theorem 3.2, we will show that

X(t) =
∑
n,m≥0

φn,m(A,B)C0
tmν+nα

Γ(mν + nα+ 1)

+
∑
n,m≥0

φn,m(A,B)C1
tmν+nα+1

Γ(mν + nα+ 2)

+
∑
n,m≥0

φn,m(A,B)AC0
tmν+nα+α−1

Γ(mν + nα+ α)
(3.14)

is a mean square solution of (1.2) for all t > 0. To achieve this goal, two facts will
be proven for all t > 0: the m.s. convergence and the term-wise application of
the Laplace transform of the double series (3.14) to justify its Laplace transform
is given by (3.8).

Theorem 3.3. If the random variables A, B, C0 and C1 satisfy conditions A1–
A3, then the stochastic process X(t), given by (3.14), is a mean square solution
of RIVP (1.2) for all t > 0.
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Proof. Recall that 1 < α < 2, so 0 < ν = α − 1 < 1. First, we will show that
X(t) belongs to L2(Ω) for each t > 0. Inequality (3.10) with p = n + 1 and
q = m implies Γ(n+m+ 1) ≤ ((2n+ 1)!)1/2((2m− 1)!)1/2, and inequality (3.9)
with p = mν and q = nα + 1, gives Γ(mν + nα + 1) ≥ Γ(mν + 1)Γ(nα + 2).
Hence ∥∥∥∥φn,m(A,B)C0

tmν+nα

Γ(mν + nα+ 1)

∥∥∥∥
2

≤ ψ1(n; t)ψ2(m; t) (3.15)

with

ψ1(n; t) =
‖C0‖2(MB)n [(2n− 1)!]

1
2

n!Γ(nα+ 2)
tnα, ψ2(m; t) =

(MA)m [(2m+ 1)!]
1
2

m!Γ(mν + 1)
tmν .

To study the mean square convergence of first infinite series in (3.14), we will
apply the ratio test. So, we calculate

lim
n→∞

ψ1(n+ 1; t)

ψ1(n; t)
= lim
n→∞

MB [(2n+ 1)(2n)]
1
2

n+ 1

Γ(nα+ 2)

Γ(nα+ 2 + α)
tα.

The Stirling’s formula, Γ(x+ 1) ≈ xxe−x
√

2πx as x→∞, implies

lim
n→∞

Γ(nα+ 2)

Γ(nα+ 2 + α)
= lim
n→∞

(nα+ 1)nα+1e−(nα+1)
√

2π(nα+ 1)

(nα+ 1 + α)nα+1+αe−(nα+1+α)
√

2π(nα+ 1 + α)

= lim
n→∞

(
nα+ 1

nα+ 1 + α

)nα+1(
1

nα+ 1 + α

)α
eα
(

nα+ 1

nα+ 1 + α

) 1
2

.

(3.16)

Since

lim
n→∞

(
nα+ 1

nα+ 1 + α

)nα+1

= e−α, lim
n→∞

(
nα+ 1

nα+ 1 + α

) 1
2

= 1, lim
n→∞

(
1

nα+ 1 + α

)α
= 0,

from (3.16) yields limn→∞
Γ(nα+2)

Γ(nα+2+α) = 0. Moreover, limn→∞
MB [(2n+1)(2n)]

1
2

n+1 tα =

2MBt
α, then for every t > 0 finite, one gets

lim
n→∞

ψ1(n+ 1; t)

ψ1(n; t)
= 0. (3.17)

Similarly,

lim
m→∞

ψ2(m+ 1; t)

ψ2(m; t)
= lim
m→∞

MA [(2m+ 3)(2m+ 2)]
1
2

m+ 1

Γ(mν + 1)

Γ(mν + 1 + ν)
tν = 0,

(3.18)

since

lim
n→∞

Γ(mν + 1)

Γ(mν + 1 + ν)
= lim
m→∞

(
mν

mν + ν

)mν (
1

mν + ν

)ν
eν
(

mν

mν + ν

) 1
2

= 0
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and

lim
m→∞

MA [(2m+ 3)(2m+ 2)]
1
2

(m+ 1)
tν = 2MAt

ν .

As a consequence of (3.17) and (3.18), the ratio test implies that both majo-
rant series

∑
n≥0 ψ1(n; t) and

∑
m≥0 ψ2(m; t) are convergent for all t > 0. It

follows, by (3.15), that the first series of the stochastic process X(t), given by
(3.14), is mean square convergent for all t > 0. Following a similar analysis for
the remaining two series defining X(t), it is shown that (3.14) is mean square
convergent for all t > 0. This proves that X(t) belongs to L2(Ω). The mean
square convergence of X(t) for all t > 0 and the mean square continuity of the
each term in the expansion (3.14) imply that X(t) is mean square continuous
for all t > 0. Consequently, we only need to show that the Laplace transform
of (3.14) is (3.8) to validate that X(t) given (3.14) is a mean square solution
of (1.2). To this end, we prove that the term-wise application for the Laplace
transform of the expansion (3.14) is valid for all t > 0. Since the first series in
(3.8) is mean square convergent for s > K2 (see Theorem 3.2), its general term
tends to zero, so it must be bounded, i.e., there exists K3 > 0 such that

‖φn,m(A,B)‖2
sm(α−1)snα

≤ K3, (3.19)

for all n,m ∈ N ∪ {0} and for all s > K2. Let r be such that r > K2 > 0, then

‖φn,m(A,B)‖2 ≤ K3r
mνrnα, r > K2 > 0, ν = α− 1 > 0. (3.20)

Taking into account that Γ(mν + αn + 1) ≥ Γ(mν + 2)Γ(nα + 1) > 0 (derived
from (3.9)), one gets

‖φn,m(A,B)‖2
Γ(mν + αn+ 1)

≤ K3r
mνrnα

Γ(mν + 2)Γ(αn+ 1)
, r > K2 > 0. (3.21)

Let us define the tail for the first series in (3.14),

XT
N,M (t) :=

∑
n,m≥0

φn,m(A,B)C0
tmν+nα

Γ(mν + nα+ 1)

−
N∑
n=0

M∑
m=0

φn,m(A,B)C0
tmν+nα

Γ(mν + nα+ 1)
. (3.22)

Since the first series defining X(t) in (3.14) is mean square convergent, for M
and N large enough, applying (3.20) it follows

‖XT
N,M (t)‖2 ≤

∑
n≥N+1,m≥M+1

‖φn,m(A,B)‖2 ‖C0‖2
tmν+nα

Γ(mν + αn+ 1)

≤ K4

 ∑
m≥M+1

(rt)mν

Γ(mν + 2)

 ∑
n≥N+1

(rt)nα

Γ(nα+ 1)

 , (3.23)
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with K4 := K3 ‖C0‖2 > 0. For m > 1
ν (so mν + 1 > 2) and using that Γ(x) is

increasing for x > 2, one gets 1
Γ(mν+2) ≤

1
Γ(mν+1) . Then for M > 1

ν − 1,

‖XT
N,M (t)‖2 ≤ K4

 ∑
m≥M+1

(rt)mν

Γ(mν + 1)

 ∑
n≥N+1

(rt)nα

Γ(nα+ 1)


= K4

(
Eν((rt)ν)−

M∑
m=0

(rt)mν

Γ(mν + 1)

)(
Eα((rt)α)−

N∑
n=0

(rt)nα

Γ(nα+ 1)

)
,

(3.24)

where Eγ(z) :=
∑∞
k=0

zk

Γ(γk+1) , z > 0, denotes the Mittag-Leffler function. Set-
ting

I1(t) := Eν((rt)ν)Eα((rt)α), I2(t) := Eν((rt)ν)

N∑
n=0

(rt)nα

Γ(nα+ 1)
,

I3(t) :=

M∑
m=0

(rt)mν

Γ(mν + 1)
Eα((rt)α), I4(t) :=

M∑
m=0

(rt)mν

Γ(mν + 1)

N∑
n=0

(rt)nα

Γ(nα+ 1)
,

we have ‖XT
N,M (t)‖2 ≤ K4 (I1(t)− I2(t)− I3(t) + I4(t)). Hence

‖L{XT
N,M (t); s}‖2 ≤ L{‖XT

N,M (t)‖2; s}
6 K4 (L{I1(t); s} − L{I2(t); s} − L{I3(t); s}+ L{I4(t); s}) .

(3.25)

It is known that the Mittag-Leffler function satisfies the following inequality
([38, p. 21]),

exists C > 0 : Eγ(ρtγ) ≤ Ceρ
1
γ t, t, ρ ≥ 0, 0 < γ < 2. (3.26)

By a weaker form of Lebesgue’s dominated convergence theorem ([36, p. 167])
and inequality (3.26), the following commutation of the Laplace transform and
the double series on the third step is justified (see Appendix)

L{I1(t); s} = L{Eν((rt)ν)Eα((rt)α); s}

= L

 ∑
n,m≥0

rmν+nα

Γ(mν + 1)

tmν+nα

Γ(nα+ 1)
; s


=
∑
n,m≥0

L
{

rmν+nα

Γ(mν + 1)

tmν+nα

Γ(nα+ 1)
; s

}
. (3.27)

Next, by Example 2.7 it is inferred

L{I1(t); s} =
∑
n,m≥0

rmν+nα

Γ(mν + 1)Γ(nα+ 1)

Γ(mν + nα+ 1)

smν+nα+1
. (3.28)
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Further, inequality (3.26) also implies that the double series in (3.28) converges
for s > 2r > K2 > 0 (see Appendix). Similarly, it can be deduced that

L{I2(t); s} =

N∑
n=0

∑
m≥0

rmν+nα

Γ(mν + 1)Γ(nα+ 1)

Γ(mν + nα+ 1)

smν+nα+1
,

L{I3(t); s} =

M∑
m=0

∑
n≥0

rmν+nα

Γ(mν + 1)Γ(nα+ 1)

Γ(mν + nα+ 1)

smν+nα+1
,

L{I4(t); s} =

N∑
n=0

M∑
m=0

rmν+nα

Γ(mν + 1)Γ(nα+ 1)

Γ(mν + nα+ 1)

smν+nα+1
. (3.29)

Consequently from (3.25)–(3.29), we have limN,M→∞ ‖L{XT
N,M (t); s}‖2 = 0.

Hence from (3.22) we have that

L

 ∑
n,m≥0

φn,m(A,B)C0
tm(α−1)+nα

Γ(m(α− 1) + nα+ 1)
; s


= lim
N,M→∞

L

{
N∑
n=0

M∑
m=0

φn,m(A,B)C0
tm(α−1)+nα

Γ(m(α− 1) + nα+ 1)
; s

}

=
∑
n,m≥0

φn,m(A,B)C0
L{tm(α−1)+nα; s}

Γ(m(α− 1) + nα+ 1)

=
∑
n,m≥0

φn,m(A,B)C0s
−(m(α−1)+nα+1). (3.30)

That is, the application of the Laplace transform can be done term by term for
the first term of the expansion of X(t) given by (3.14). The analysis for the rest
of the terms is analogous. †

Remark 3.4. Since r, t,Γ(mν + 1) > 0, from (3.24) and (3.26) we have

‖XT
N,M (t)‖2 ≤ K4

 ∑
m≥M+1

(rt)mν

Γ(mν + 1)

 ∑
n≥N+1

(rt)nα

Γ(nα+ 1)


≤ K4Eν((rt)ν)Eα((rt)α) ≤ K4C1e

(
(rν)

1
ν

)
t
C2e

(
(rα)

1
α

)
t

= K4C1C2e2rt, (3.31)

for all N ≥ 0 and for all M > 1
ν −1. This shows that XT

N,M (t) is of exponential

order 2r > 0. Since
∑N
n=0

∑M
m=0 φn,m(A,B)C0

tmν+nα

Γ(mν+nα+1) is of exponential

order, it follows that the first term of the mean square solution, X(t), given by
(3.14), is of exponential order. A similar analysis with the rest of the terms of
X(t) proves that X(t) is of exponential order parameter s0 for some s0 > 0, so
it admits a mean square Laplace transform.
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4. Approximating the mean and the variance of the solution stochas-
tic process

So far, we have established sufficient conditions to show the mean square
convergence of the double sequence of approximations

XN,M (t) =

N∑
n=0

M∑
m=0

φn,m(A,B)C0
tmν+nα

Γ(mν + nα+ 1)

+

N∑
n=0

M∑
m=0

φn,m(A,B)C1
tmν+nα+1

Γ(mν + nα+ 2)

+

N∑
n=0

M∑
m=0

φn,m(A,B)AC0
tmν+nα+α−1

Γ(mν + nα+ α)

(4.1)

to the solution stochastic process, X(t), of the RIVP (1.2). Now, we will take
advantage of the key property stated in Lemma 1.1 to compute reliable approxi-
mations of the mean and of the variance of the solution. To this end, we need to
compute the mean and the variance of XN,M (t). To obtain the approximation
of the mean, we take the expectation operator in (4.1) (substituing the explicit
expression for φn,m(A,B) given in (3.7)), apply the linearity of the expectation
and utilize that C0, C1, A and B are independent random variables (assumption
A3). This yields

E[XN,M (t)] =

N∑
n=0

M∑
m=0

(−1)n+mE[Bn]E[Am]Γ(m+ n+ 1)

Γ(m+ 1)Γ(n+ 1)

·
{
E[C0]

tmν+nα

Γ(mν + αn+ 1)
+ E[C1]

tmν+nα+1

Γ(mν + αn+ 2)

}
+

N∑
n=0

M∑
m=0

(−1)n+mE[Bn]E[Am+1]E[C0]

· Γ(m+ n+ 1)

Γ(m+ 1)Γ(n+ 1)

tmν+αn+α−1

Γ(mν + αn+ α)
.

(4.2)

To calculate the approximation of the variance, V[XN,M (t)] = E[(XN,M (t))2]−
E2[XN,M (t)], we first need to calculate the second order moment, E[(XN,M (t))2].
Using again assumption A3 and the properties of the expectaion operator, after
some technical calculations one obtains

E[(XN,M (t))2] =

N∑
n=0

(
M∑
m=0

(
(n+m)!

n!m!

)
E[B2n]

[
E[A2m]

{
E[C2

0 ]

(
tmν+αn

Γ(mν + αn+ 1)

)2

+ E[C2
1 ]

(
tmν+αn+1

Γ(mν + αn+ 2)

)2

+ 2E[C0]E[C1]

(
tmν+αn

Γ(mν + αn+ 1)

)(
tmν+αn+1

Γ(mν + αn+ 2)

) M∑
n=0

}
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+ E[A2m+2]E[C2
0 ]

(
tmν+αn+α−1

Γ(mν + αn+ α)

)2

+ 2E[C2
0 ]E[A2m+1]

(
tmν+αn

Γ(mν + αn+ 1)

)(
tmν+αn+α−1

Γ(mν + αn+ α)

)
+ 2E[C0]E[C1]E[A2m+1]

(
tmν+αn+1

Γ(mν + αn+ 2)

)(
tmν+αn+α−1

Γ(mν + αn+ α)

) M∑
n=0

]

+ 2

M∑
m1=1

m1−1∑
m2=0

(−1)2n+m1+m2E[B2n]
Γ(n+m1 + 1)

Γ(n+ 1)Γ(m1 + 1)

Γ(n+m2 + 1)

Γ(n+ 1)Γ(m2 + 1)

·
[
E[Am1+m2 ]

{
E[C2

0 ]

(
tm1ν+αn

Γ(m1ν + αn+ 1)

)(
tm2ν+αn

Γ(m2ν + αn+ 1)

)
+ E[C0]E[C1]

(
tm1ν+αn

Γ(m1ν + αn+ 1)

)(
tm2ν+αn+1

Γ(m2ν + αn+ 2)

)
+ E[C0]E[C1]

(
tm1ν+αn+1

Γ(m1ν + αn+ 2)

)(
tm2ν+αn

Γ(m2ν + αn+ 1)

)
+ E[C2

1 ]

(
tm1ν+αn+1

Γ(m1ν + αn+ 2)

)(
tm2ν+αn+1

Γ(m2ν + αn+ 2)

)
22

1

}
+ E[Am1+m2+1]E[C2

0 ]

(
tm1ν+αn

Γ(m1ν + αn+ 1)

)(
tm2ν+αn+α+1

Γ(m2ν + αn+ α)

)
+ E[C0]E[C1]E[Am1+m2+1]

(
tm1ν+αn+1

Γ(m1ν + αn+ 2)

)(
tm2ν+αn+α−1

Γ(m2ν + αn+ α)

)
+ E[C2

0 ]E[Am1+m2+1]

(
tm1ν+αn+α−1

Γ(m1ν + αn+ α)

)(
tm2ν+αn

Γ(m2ν + αn+ 1)

)
+ E[C0]E[C1]E[Am1+m2+1]

(
tm1ν+αn+α−1

Γ(m1ν + αn+ α)

)(
tm2ν+αn+1

Γ(m2ν + αn+ 2)

)
+ E[C2

0 ]E[A2]

(
tm1ν+αn+α−1

Γ(m1ν + αn+ α)

)(
tm2ν+αn+α−1

Γ(m2ν + αn+ α)

) M∑
n=0

])

+ 2

N∑
n1=1

n1−1∑
n2=0

M∑
m1=0

M∑
m2=0

(−1)n1+m1+n2+m2E[Bn1+n2 ]
Γ(m1 + n2 + 1)

Γ(m1 + 1)Γ(n1 + 1)

· Γ(m2 + n2 + 1)

Γ(m2 + 1)Γ(n2 + 1)

[
E[Am1+m2 ]

{
E[C2

0 ]

(
tm1ν+αn1

Γ(m1ν + αn1 + 1)

)(
tm2ν+αn2

Γ(m2ν + αn2 + 1)

)
+ E[C0]E[C1]

(
tm1ν+αn1

Γ(m1ν + αn1 + 1)

)(
tm2ν+αn2+1

Γ(m2ν + αn2 + 2)

)
+ E[C0]E[C1]

(
tm1ν+αn1+1

Γ(m1ν + αn1 + 2)

)(
tm2ν+αn2

Γ(m2ν + αn2 + 1)

)
+ E[C2

1 ]

(
tm1ν+αn1+1

Γ(m1ν + αn1 + 2)

)(
tm2ν+αn2+1

Γ(m2ν + αn2 + 2)

) M∑
n=0

}
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+ E[Am1+m2+1]

{
E[C2

0 ]

(
tm1ν+αn1

Γ(m1ν + αn1 + 1)

)(
tm2ν+αn2+α−1

Γ(m2ν + αn2 + α)

)
+ E[C0]E[C1]

(
tm1ν+αn1+1

Γ(m1ν + αn1 + 2)

)(
tm2ν+αn2+α−1

Γ(m2ν + αn2 + α)

)
+ E[C2

0 ]

(
tm1ν+αn1+α−1

Γ(m1ν + αn1 + α)

)(
tm2ν+αn2

Γ(m2ν + αn2 + 1)

)
+ E[C0]E[C1]

(
tm1ν+αn1+α−1

Γ(m1ν + αn1 + α)

)(
tm2ν+αn2+1

Γ(m2ν + αn2 + 2)

) M∑
n=0

}

+ E[Am1+m2+2]E[C2
0 ]

(
tm1ν+αn1+α−1

Γ(m1ν + αn1 + α)

)(
tm2ν+αn2+α−1

Γ(m2ν + αn2 + α)

) M∑
n=0

]
.

(4.3)

Remark 4.1. In the previous development we have approximated the mean
and the variance, however it is worthwhile to point out that higher moments,
(E[X(t)])k, k = 3, 4, . . ., can also be calculated using the same reasoning, but
the resulting expressions become somewhat cumbersome.

Remark 4.2. It is interesting to point out that hypothesis A3 can be relaxed
assuming weaker conditions, for example, that {C0, C1} and {A,B} are inde-
pendent random variables. However, assumption A3 is not too much restrictive
from a practical standpoint. We have assumed hypothesis A3 just to facilitate the
process of boundedness to rigurously prove the mean square convergence stated in
Th. 3.3. If the aforementioned weaker hypothesis is assumed, then the approxi-
mations of the mean and of the second-order moment given in (4.2) and (4.3),
respectively, would be expressed in terms of the joint moments of {C0, C1} and
{A,B}. For example, in the expression (4.2) would appear the joint moment
E[BnAm] instead of E[Bn]E[Am], etc.

5. Numerical examples

This section is addressed to numerically illustrate our previous theoretical
findings. First, we will compute approximations for the mean and the variance
of the solution stochastic process of RIVP (1.2) via the expressions obtained in
the foregoing section. Secondly, we will take advantage these approximations
together with the Principle of Maximum Entropy (PME) to construct approxi-
mations for the first probability density function (1-PDF) of the solution.

Example 5.1. Let us consider the RIVP (1.2) assuming the following hypothe-
ses with regard to its parameters and initial conditions:

• α = 1.5 ∈ (1, 2),
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• C0 and C1 such that E[C0] = E[C1] = 0.5 and E[C2
0 ] = E[C2

1 ] = 0.5 (so
they are second order random variables),

• A and B are random variables with Beta distributions, A ∼ Be(10, 20)
and B ∼ Be(20, 30) (so they are bounded second order random variables),

• C0, C1, A and B are independent.

To calculate the approximations of the mean and the variance of X(t), we will
apply expressions (4.2) and (4.3) taking into account the following expressions
for the moments of A and B [39]

E[Ak] =

k−1∏
r=0

10 + r

10 + 20 + r
, E[Bk] =

k−1∏
r=0

20 + r

20 + 30 + r
, k = 1, 2, . . . . (5.1)

Figure 1 shows the approximations for the mean and for the variance of
the truncated solution (4.1), XN,M (t), considering different values of M and
N in the time interval [0, 3]. To easily visualize the convergence, we zoom-up
the results on the right-piece of the interval where it is supposed the accuracy of
approximations becomes worse. However, the plots show very good results even
taking small order of truncation M = N = 12.

Considering the foregoing approximations of the mean and the variance with
M = N = 12, we now provide approximations of the 1-PDF of the solution X(t)
at this time instants using the PME technique [40]. According to this method,
for each t, the PDF is sought in the form

fX(t)(x) = e−1−λ0,t−λ1,tx−λ2,tx
2

, (5.2)

where λ0,t, λ1,t and λ2,t are determined solving the variational optimization
problem

Max. S(f) = −
∫ a2

a1

fX(t)(x) ln(fX(t)(x)) dx, (5.3)

subject to the following constraints∫ a2

a1

fX(t)(x) dx = 1,

∫ a2

a1

xfX(t)(x) dx = E[XN,M (t)],

∫ a2

a1

x2fX(t)(x) dx = E[X2
N,M (t)].

(5.4)
The integration interval [a1, a2] has been taken as a1 = E[XN,M (t)]−10

√
V[XN,M (t)]

and a2 = E[XN,M (t)] + 10
√

V[XN,M (t)]. According to the general Bienaymé-
Chebyshev inequality [39], more than 99.9% of the probability is contained within
this interval regardless the probability distribution of X(t). Table 1 collects the
values of λ0,t, λ1,t, λ2,t at t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Figure 2 shows the 1-PDF
surface of the approximate solution XN,M (t) on the time interval t ∈ [0, 3]. We
can see that the variance increases as t does which is in full agreement with the
results shown in Figure 1 (right panel).
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Figure 1: Approximations of the mean (left panel) and for the variance (right panel) of the
solution stochastic process of the RIVP (1.2) considering different order of truncation (M,N),
in the context of Example 5.1.

λ0,t λ1,t λ2,t

t = 0.5 2.86574e-02 -5.58862e-01 4.22942e-01
t = 1.0 6.00364e-01 -1.56599e-01 1.04757e-01
t = 1.5 1.15845e+00 -5.00819e-02 3.17505e-02
t = 2.0 1.69615e+00 -1.68397e-02 1.05534e-02
t = 2.5 2.22623e+00 -5.69139e-03 3.62312e-03
t = 3.0 2.75796e+00 -1.89774e-03 1.24712e-03

Table 1: Values of parameters λ0,t, λ1,t, λ2,t of the 1-PDF (5.2) resulting after solving the
optimization problem (5.3) and (5.4) at the time instants t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Example
5.1.

22



Figure 2: 1-PDF surface of the approximate solutionX(t) to random fractional IVP (1.2) using
PME method on the time interval t ∈ [0, 3] in the context of Example 5.1. The lines highlighted
in magenta represent the PDF at t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. They have been calculated using
(5.2) with the λi-values collected in Table 1.

23



0 1 2 3
0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2.96 2.98

1.655

1.66

1.665

0 1 2 3
0

50

100

150

200

250

2.8 2.9

100

150

200

M=N=4 M=N=6 M=N=8 M=N=10 M=N=12

Figure 3: Approximations for the mean (left panel) and for the variance (right panel) of
the solution stochastic process to the random (1.2) considering different order of truncation
(M,N). Example 5.2.

Example 5.2. In this example, we keep the same data as in Example 5.1, ex-
cept that we change the probability distributions of random variables A and B,
which clearly are the most influential parameters in the equation. Specifically,
we assume that A and B have truncated exponential distributions on the inter-
val [0, 20] with parameters 10 and 20, respectively, i.e. A ∼ Exp[0,20](10) and
B ∼ Exp[0,20](20). In this way, all the assumptions A1-A3 are fulfilled. To
compute the first moments of XN,M (t) via (4.2) and (4.3) will utilize that

E[Ak] = 10−k (k!− Γ(1 + k, 200)) , E[Bk] = 20−k (k!− Γ(1 + k, 400)) , k = 1, 2, . . . ,

where Γ(p, q) is the incomplete Gamma function defined by Γ(p, q) =
∫∞
q
tp−1e−tdt

[41].
Figure 3 shows the approximations for the mean and for the variance of the

truncated solution (4.1) considering different values of M and N . From this
graphical representation we can observe that approximations are better as N
and M increase as expected despite uncertainty propagates rapidly as observed
in the plot of the variance.

Similarly as in Example 5.1, we have approximated the 1-PDF of the solution
via the PME. In Table 2 we collect the values for λ0,t, λ1,t and λ2,t of the 1-PDF,
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λ0,t λ1,t λ2,t

t = 0.5 1.83532e-01 -4.30221e-01 2.93877e-01
t = 1.0 7.39317e-01 -1.54518e-01 8.16821e-02
t = 1.5 1.25723e+00 -6.16776e-02 2.68857e-02
t = 2.0 1.75189e+00 -2.57862e-02 9.64095e-03
t = 2.5 2.24213e+00 -1.07863e-02 3.55176e-03
t = 3.0 2.74480e+00 -4.36089e-03 1.28802e-03

Table 2: Values of parameters λ0,t, λ1,t, λ2,t of the 1-PDF (5.2) resulting after solving the
optimization problem (5.3) and (5.4) at the time instants t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Example
5.2.

Figure 4: 1-PDF surface of the approximate solutionX(t) to random fractional IVP (1.2) using
PME method on the time interval t ∈ [0, 3] in the context of Example 5.2. The lines highlighted
in magenta represent the PDF at t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. They have been calculated using
(5.2) with the λi-values collected in Table 2.

according to the general expression (5.2), at t ∈ {0.5, 1, 1.5, 2, 2.5, 3}. Figure 4
shows the approximate 1-PDF surface of the solution. We can observe that this
graphical representation is in full agreement with the results shown in Figure 3
for the mean and the variance of the solution. In particular, we notice that the
variance increases as time does.

Remark 5.3. In the two previous examples, we have applied the PME to ap-
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proximate the 1-PDF using the two first moment as restrictions. As indicated,
in Remark 4.1 we could also obtain higher moments and this information can
be added when applying the PME to improve the approximation of the 1-PDF.

6. Conclusions

The paper has focussed on the extension of an important class of fractional
linear differential equations (in the Caputo sense) to the random framework.
We have seen that random mean square calculus provides a suitable setting to
construct an approximate solution stochastic process to model (1.2). Even more
important, this approach has the distinctive advantage that the approximations
for the mean and the variance of the solutions will converge to their respective
exact values. This is a key information when studying differential equations
with uncertainties. Additionally, the approximations of these two probability
moments have also allowed us to approximate the first probability density func-
tion of the solution via the Principle of Maximum Entropy, a more complete
probabilisitic information of the solution which is barely given in practice. We
think that our approach can contribute to continue studying other classes of
fractional differential equations with randomness, such as the random fractional
3-term equation, that is, when the derivatives of order 1 and 2 are considered
fractional derivatives.

Appendix

In this appendix, we collect some useful results from Analysis that will clarify
the steps in the proof of Theorem 3.3.

Theorem 6.1. [36, p. 167]. If g and fn, n = 1, 2, 3, . . . are defined on (0,∞),
are Riemann-integrable on [t, T ] whenever 0 < t < T < ∞, |fn| ≤ g, fn → f
uniformly on every compact subset of (0,∞), and∫ ∞

0

g(x) dx <∞,

then

lim
n→∞

∫ ∞
0

fn(x) dx =

∫ ∞
0

f(x) dx.

Further, the next classical result gives sufficient conditions on which a series
product converges.

Theorem 6.2. Suppose that

a)
∑∞
n=0 an converges absolutely,

b)
∑∞
n=0 an = S1,

c)
∑∞
n=0 bn = S2,

26



d) cn =
∑n
k=0 akbn−k, n = 0, 1, 2, 3, . . . .

Then
∞∑
n=0

cn = S1S2.

Finally, it is well known that the Mittag-Leffler function

Eγ(z) :=
∑
k≥0

zk

Γ(γk + 1)
(6.1)

converges for all Re γ > 0, where Re stands for real part of γ, see [42, p. 17].

In the following we will show the assertion given by (3.27). Let am = (rt)νm

Γ(mν+1)

and bn = (rt)αn

Γ(αn+1) and cn =
∑n
k=0 akbn−k in Theorem 6.2. Since

∑
m≥0 am =

Eν((rt)ν) and
∑
n≥0 bn = Eα((rt)α) are absolutely convergent for all t > 0 and

for ν, α, r > 0, Theorem 6.2 implies that∑
n≥0

cn = Eν((rt)ν)Eα((rt)α).

On the other hand, in Theorem 6.1 set fN = e−st
∑N
n=0 cn and g = e−stEν((rt)ν)Eα((rt)α).

Further, observe that fN and g are Riemann integrable on [t, T ] for 0 < t <
T <∞. Since cn > 0 for all n because ν, α, r, t > 0 and Γ(x) > 0 for x > 0, we
have

|fN | = e−st
N∑
n=0

cn ≤ e−stEν((rt)ν)Eα((rt)α := g(t).

The absolutely convergence of Eν and Eα on (0,∞) implies that fN → e−stEν((rt)ν)Eα((rt)α)
uniformly for every compact set in (0,∞). Now, by (3.26) there exist two con-
stants C1 and C2 such that∫ ∞

0

g(t)dt ≤
∫ ∞

0

e−stC1e
(rν)

1
ν tC2e

(rα)
1
α tdt = C1C2

∫ ∞
0

e(2r−s)tdt. (6.2)

The above inequality shows that the improper integral on the left hand side
converges for 2r < s. Further,

lim
N→∞

(∫ ∞
0

fN (t)dt

)
= lim
N→∞

(∫ ∞
0

e−st
N∑
n=0

cn dt

)

= lim
N→∞

(
N∑
n=0

∫ ∞
0

e−stcn dt

)

= lim
N→∞

(
N∑
n=0

∫ ∞
0

e−st

(
n∑
k=0

akbn−k

)
dt

)

= lim
N→∞

N∑
n=0

n∑
k=0

L{akbn−k; s}.
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(6.3)

Now,

∫ ∞
0

(
lim
N→∞

fN (t)
)

dt =

∫ ∞
0

(
lim
N→∞

e−st
N∑
n=0

cn

)
dt

=

∫ ∞
0

e−stEν((rt)ν)Eα((rt)α) dt

= L{Eν((rt)ν)Eα((rt)α) dt; s}.
(6.4)

Therefore, Theorem 6.1 implies that

lim
N→∞

(∫ ∞
0

fN (t)dt

)
=

∫ ∞
0

(
lim
N→∞

fN (t)
)

dt

which shows

∑
n,m≥0

L
{

(rt)νm

Γ(mν + 1)

(rt)αn

Γ(αn+ 1)
; s

}
= L

 ∑
n,m≥0

(rt)νm

Γ(mν + 1)

(rt)αn

Γ(αn+ 1)
; s


for s > 2r.
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form method for solving random mixed parabolic differential prob-
lems, Applied Mathematics and Computation 259 (2015) 654–657.
doi:10.1016/j.amc.2015.02.091.

[29] J. L. Schiff, The Laplace Transform: Theory and Applications, Springer,
NY, 1991.

30



[30] C. A. Braumann, J. C. Cortés, L. Jódar, L. Villafuerte, On the random
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