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Abstract 

The design of district metered areas (DMA) in potable water supply systems is of paramount importance 
for water utilities to properly manage their systems. Concomitant to their main objective, namely deliver 
quality water to consumers, the benefits include leakage reduction and prompt reaction in cases of 
natural or malicious contamination events. Given the structure of a water distribution network (WDN), 
graph theory is the basis for DMA design, and clustering algorithms can be applied to perform the 
partitioning. However, such sectorization entails a number of network modifications (installing cut-off 
valves and metering and control devices) involving costs and operation changes, which have to be 
carefully studied and optimized. Given the complexity of WDNs, optimization is usually performed 
using metaheuristic algorithms. In turn, optimization may be single or multiple-objective. In this last 
case, a large number of solutions, frequently integrating the Pareto front, may be produced. The decision 
maker has eventually to choose one among them, what may be tough task. Multi-criteria decision 
methods may be applied to support this last step of the decision-making process. In this paper DMA 
design is addressed by: i) proposing a modified k-means algorithm for partitioning; ii) using a multi-
objective particle swarm optimization to suitably place partitioning devices; iii) using fuzzy analytic 
hierarchy process (FAHP) to weight the four objective functions considered; and iv) using technique for 
order of preference by similarity to ideal solution (TOPSIS) to rank the Pareto solutions to support the 
decision. This joint approach is applied in a case of a well-known WDN of the literature, and the results 
are discussed. 

 

Keywords: Graph theory, k-means algorithm, metaheuristic, multi-objective optimization, fuzzy AHP, 
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1. Introduction and literature review 

The complex structures of water distribution networks (WDNs) are responsible for delivering drinkable 
water to citizens. Topography of cities, dynamics of consumption, and highly looped networks may 
cause lack of service uniformity, and make systems management a complex task. Large efforts have 
been devoted to improve WDN management, mainly regarding leakage. In [1], an extensive literature 
review is presented, which collects the most important contributions to leak management in water 
distribution systems. Among the alternatives for better controlling pipe pressure, the creation of district 
metered areas (DMAs) stands out. Different pressurized zones can be better operated by splitting the 
network into smaller parts, the so-called DMA [2] When efficiently operated, DMAs are capable to 
control the hydraulic pressure in water pipes, thus reducing leakage, what is one of the most important 
objectives for water utilities. Furthermore, a well partitioned network can react promptly in anomalous 
scenarios as contamination intrusion (either natural or malicious), for which correct network 
management pursued by isolating the non-affected area is crucial for health security. 



DMA creation can be basically divided into the two following phases: identification of DMA zones, and 
installation of metering and control devices, as well as cut-off valves. 

Identification of DMA zones could be approached by using experts’ knowledge. However, advances in 
applied mathematics and computational models in water systems have made it possible the use of the 
graph theory and Data Mining for this task [2-6].  

Since water network models are built in terms of nodes and links simulating, respectively, the users and 
pipes composing the water systems, these models can be seen as graphs, with the consequent possibility 
of applying graph theory [7]. Graph connectivity is explored as an important feature for DMA creation 
by means of algorithms such as the deep-first search (DFS) [8] and the breadth-first search (BFS) [9] in 
water networks [10]. Comparing both tools, the authors of [11] propose the division of a Mexican water 
network into independent but interconnected networks. The DFS and BFS algorithms are also explored 
in [12] for water network clustering. An important point to be highlighted about this work consists in 
the proposal of DMA creation to study contamination spread. The BFS is applied in [13] to define the 
nodes of a graph that constitute each DMA, and the shortest path distance from each source is computed 
to determine the set of boundary pipes for each DMA. 

By linking graph theory and data analysis, community algorithms have also been proposed to identify 
DMA regions [2,5,13-14]. Specifically, [2] combines the concept of accumulated shortest path value 
and social community detection algorithms to identify DMAs. A community structure detection 
algorithm is also applied in [5]. The study uses a community structure to create physical boundaries for 
DMAs. Community detection is performed to maximize the matrix modularity. In the realm of data 
mining and clustering algorithms, gaussian mixture models (GMM) are applied in [14] to identify DMAs 
in water networks.  

The purely data mining algorithms are capable to cluster high-dimensional datasets; however, the 
straightforward application to WDNs is not easy. This difficulty originates from the fact that features 
characterizing each node should be exhaustively defined to avoid clustering physically unconnected 
nodes. Coordinates of nodes are commonly used as input together with physical and hydraulic features. 
However, using coordinates is not enough to guarantee the connection of all the nodes in a cluster. This 
evidence can indeed lead to the design of unfeasible layouts, with consequent losses of time and money. 

By coupling graph theory and data mining algorithms, this paper proposes a modified 𝑘𝑘-means algorithm 
for DMA region identification. Such a modified algorithm considers the connectivity of nodes during 
the clustering stage by guaranteeing the interconnection of all the nodes within a cluster. The main 
advantage of this proposal with respect to the simple 𝑘𝑘-means algorithm regards the correction of 
clusters by considering information about real links of the water network.  

Despite there are many water utilities still using operators’ expertise to identify DMAs zones, data 
mining tools represent an effective support for decision makers to accomplish this task. 

Let’s move now to the second phase of DMA design. After identifying the regions and building a DMA 
structure, control devices must be installed in an optimal way. In this direction, a trade-off has to be 
reached between the cost of control devices and the operational parameters of the water network. Indeed, 
if, on the one hand, installing many devices improves network control, on the other hand, this has an 
impact on project costs and operation. From the optimization point of view, placing control devices and 
cut-off valves can be studied as an optimization problem subjected to a set of operational constrains. By 
using social community detection for DMA region identification, optimization is put to work at two 
levels in [3]. The authors use Particle Swarm Optimization (PSO) to select the position of control devices 
and cut-off valves at the first level and, successively, they obtain the operational point of control devices 
at the second level. The concept of minimal background leakage is applied in [15] to locate the best 
locations for cut-off valves.  

Since DMA creation modifies the hydraulic behaviour of water networks, many objectives could be 
explored during the process of optimal placement of valves and DMAs entrances. The traditional 
approach that minimises the surplus pressure in the system, then reducing background leakage, has been 
widely explored in the literature [16,17]. Even prior to the introduction of the concept of DMA took 
place, the objective of reducing leakage by means of pressure reducing valves (PRV) can be considered 
as a pioneer approach for optimization of water systems. With new challenges and requirements for 



water companies, governmental institutions guidelines, and global goals, the main objectives of DMA 
creation have also become the reduction of the energy spent on operation, and the improvement of water 
quality and resilience of systems. 

Regarding optimization, single and multi-objective approaches have been proposed in the literature by 
combining various objectives for optimal DMA’s entrance and cut-off valve installation [3,6]. While 
single objective approaches attribute different weights to the objectives, multi-objective solutions are 
capable to find a trade-off among all the objectives. Both cases present their own challenge. In the single 
objective approach, weights change throughout the search space, by attributing different importance to 
the objectives. Nevertheless, a single solution is obtained from the optimization process and it can be 
directly implemented in the water system. In contrast, multi-objective solutions are not unique, and 
water utilities’ managers have to decide about which solution will be eventually implemented. In this 
case, an analysis supported by the use of multi-criteria decision-making (MCDM) methods can be useful 
to help decision makers in this task, by providing an answer in terms of which solutions, among those 
belonging to the set of the non-dominated solutions of the Pareto front, represent optimal trade-offs 
according to the evaluation of differently weighted criteria. 

Regarding MCDM approaches commonly used in the literature, the FAHP (Fuzzy Analytic Hierarchy 
Process), first proposed in [17] as an evolution of the traditional AHP [18], represents a valuable way to 
manage situations affected by uncertainty by taking advantage of the fuzzy set theory [19,20]. Regarding 
the field of application of the mentioned method, a wide review (190 related papers) has been published 
by Kubler et al. [21], which recognise the FAHP as an effective tool for criteria weight calculation.  

As shown by many authors [22-24], the method has also been integrated with other MCDM techniques 
aimed at ranking the alternatives under evaluation. In this regard, the TOPSIS (technique for order of 
preference by similarity to ideal solution) effectively works across various application areas [25]. Such 
a technique was developed by Hwang and Yoon [26] as a simple way to solve decision-making problems 
by ranking various decision alternatives [27]. With respect to other MCDM methods, TOPSIS allows to 
get the final ranking even if the set of solutions is large, as it is often the case of solutions belonging to 
the Pareto front. Moreover, this method is able to obtain the ranking of alternatives without pairwise 
comparing them, what may be a really high time-consuming task when we have to deal with a huge 
number of solutions. This was already shown in a previous conference contribution [28] we aim to 
develop in this paper, which is a substantial extension of that contribution. Among other new aspects, 
the TOPSIS was applied to rank optimal solutions, but the objectives were considered as having the 
same mutual importance. On the contrary, in the present extended research we integrate the FAHP to 
attribute different weights to the objectives on the basis of judgments provided by an expert in the field 
of water distribution management. The weights were used to combine various objectives in a single 
objective problem and now we also rank the Pareto solutions using TOPSIS. Additionally, regarding the 
optimisation problem, the modified 𝑘𝑘-means algorithm is applied to identify DMA regions in a real-size 
benchmark water network. The boundary pipes are identified as possible positions for control and cut-
off valves. In this context, the objective of the MCDM application to the multi-objective problem 
consists in selecting solutions representing optimal trade-offs (among the set of optimal solutions 
belonging to the Pareto front) under the perspective of the considered evaluation criteria weighted by 
means of the FAHP. We note that the same weights were used to build the objective function for the 
single objective optimization approach presented in [28], which we also consider now for comparison 
with the results regarding the multi-objective optimisation performed in the present research. 

The flowchart of Figure 1 synthetises the entire procedure implemented in the present paper.  

 



 
Figure 1. Flowchart summarising the proposed procedure 

 

2. Mathematical methods: clustering based on a modified 𝒌𝒌-means algorithm and optimization 

In this section we present the mathematical methods used in our approach for DMA design in a WDN, 
leaving the integrate multi-criteria approach for the next section. First of all, a modification of the 
traditional k-means algorithm is presented for partitioning the nodes of the network into clusters on the 
basis of the physical connections between nodes. After that, this section formalises the mathematical 
formulation of objective functions with relation to the problem of optimal valve placement for DMA 
design. Lastly, the multi-objective evolution of the PSO approach is described as a way to solve the 
optimisation problem. The output of the whole stage will be a set of non-dominated solutions, that is the 
Pareto front, to be successively treated by means of the integrated multi-criteria approach. 

 

2.1 Clustering process using a modified 𝑘𝑘-means algorithm 

As stated in the introduction, DMA design starts by clustering the nodes of the network. Among the 
various methods suitable for this step, a simple and effective one is the 𝑘𝑘-means algorithm. The classical 
𝑘𝑘-means is based on grouping samples by a similarity measure, being the Euclidean distance between 
samples and centroids the most used metric. To exemplify the process, let’s take a set with 𝑚𝑚 data points 
𝜒𝜒 = [𝒙𝒙1, 𝒙𝒙2 . . . 𝒙𝒙𝑚𝑚] where each point 𝒙𝒙𝑖𝑖 = �𝑥𝑥𝑖𝑖,1, 𝑥𝑥𝑖𝑖,2, … , 𝑥𝑥𝑖𝑖,𝑛𝑛�. Taking a pre-defined number of clusters 
𝑘𝑘, the method starts distributing randomly the 𝑘𝑘 centres in the data space. The Euclidean distance 𝑑𝑑𝑖𝑖,𝑗𝑗 
between each center 𝑗𝑗 and each data point 𝒙𝒙𝑖𝑖 is computed. The data points are classified as belonging to 
cluster 𝑗𝑗 if the distance 𝑑𝑑𝑖𝑖,𝑗𝑗 is minimum when compared with all the other centres. When all groups are 
identified, new position of each centre is calculated as the mean value of all the points belonging to the 
corresponding cluster. The process is repeated (distance calculation, point classification, and centre 
replacement) until the distance between the centres at iteration 𝑡𝑡 − 1 and 𝑡𝑡 is smaller than a tolerance 
value.  

In this work, a modification of 𝑘𝑘-means is proposed to consider the physical links between the nodes. 
Before replacing the centre, a verification is performed to identify the links between one node and the 
others. Since 𝑘𝑘-means was not originally developed for graph clustering, the algorithm does not use 
connectivity information for clustering. In this sense, it may occur that some nodes end up clustered in 
a certain group with no physical connection to this group. When this kind of wrong classification 



happens, a clustering post-processing is performed, and unconnected nodes are assigned to the 
neighbour group they have real physical connection with. Concluding this stage, the centres are 
recalculated, based on the average value of the cluster’s point position. This modification is important 
to guarantee the identification of physically feasible DMA’s. 

One important task on using clustering algorithms, such as 𝑘𝑘-means, is defining the number of clusters. 
In [29] various mathematical and engineering criteria for DMA design are evaluated. Mathematical 
criteria evaluate the quality of the clustering process in terms of external and internal measures. Among 
those mathematical criteria, the Davies-Bouldin (DB) criterion [30] evaluates the final clustered data 
considering the distances among data points in a cluster and the corresponding centre (intra-criterion), 
and the distances among centres (inter-criterion). The DB criterion is written as: 

𝐷𝐷𝐷𝐷 = 1
𝑘𝑘
∑ 𝑚𝑚𝑚𝑚𝑥𝑥𝑖𝑖≠𝑗𝑗{𝐷𝐷𝑖𝑖,𝑗𝑗}𝑘𝑘
𝑖𝑖=1 ,      (1) 

where 𝐷𝐷𝑖𝑖,𝑗𝑗 is the ratio of distances within the same cluster 𝑖𝑖 and the distances between clusters 𝑖𝑖 and 𝑗𝑗, 
written as 

𝐷𝐷𝑖𝑖,𝑗𝑗 =  𝑑𝑑
�𝑖𝑖+𝑑𝑑�𝑗𝑗
𝑑𝑑𝑖𝑖,𝑗𝑗

 ,      (2) 

where �̅�𝑑𝑖𝑖 is the mean distance between the points belonging to cluster 𝑖𝑖 and the centre of this cluster; �̅�𝑑𝑗𝑗 
is the mean distance between the points belonging to cluster 𝑗𝑗 and the centre of this cluster; and 𝑑𝑑𝑖𝑖,𝑗𝑗 is 
the distance between the centres 𝑖𝑖 and 𝑗𝑗. The lower 𝐷𝐷𝐷𝐷 the better the clustering, since internally the 
points are near to the respective centres while the centres are far from each other. 

 

2.1. Mathematical formulation of optimal valve placement for DMA design 

 After identifying each DMA region, optimal places for the corresponding entrances, where control 
devices and flow meters have to be installed, should be identified. Furthermore, cut-off valves should 
also be installed on other pipes linking the DMAs. These devices are crucial for effective isolation and 
control of DMAs. Cut-off valves and control devices, however, modify the hydraulics of the system, 
usually reducing pressure, and consequently leakage, but also impairing the system resilience. 
Furthermore, cutting pipes make the water take alternative paths to reach the users. As a result, as 
pointed by [31], DMA creation can increase the water age, with a negative impact on the water quality. 
Bearing in mind these hydraulic modifications of the water system, not only should the cost be 
minimized, but also the benefits should be maximized and the drawbacks minimized.  

The problem can be thus formulated by means of four objective functions, corresponding to minimize 
the cost (𝐹𝐹1), minimize pressure management (𝐹𝐹2) as proposed in [32], maximize resilience of the 
system (𝐹𝐹3) as proposed in [33], and minimize water quality (𝐹𝐹4), as proposed in [34]: 

𝐹𝐹1 =  ∑ 𝑐𝑐�𝑑𝑑𝑗𝑗�𝑁𝑁𝑁𝑁
𝑗𝑗=1 ,      (3) 

𝐹𝐹2  = ∑ 1
𝑁𝑁𝑛𝑛
∑

⎝

⎜
⎛𝑃𝑃𝑖𝑖,𝑡𝑡−𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛

𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛
+

��𝑃𝑃𝑖𝑖,𝑡𝑡−𝑃𝑃𝑚𝑚𝑡𝑡�
2

𝑁𝑁𝑛𝑛

𝑃𝑃𝑚𝑚𝑡𝑡

⎠

⎟
⎞𝑁𝑁𝑛𝑛

𝑖𝑖=1
𝑇𝑇
𝑡𝑡=1 ,    (4)  

𝐹𝐹3 = 1
𝑇𝑇
∑ ∑ 𝑞𝑞𝑖𝑖,𝑡𝑡𝑁𝑁𝑛𝑛

𝑖𝑖=1 �ℎ𝑖𝑖,𝑡𝑡−ℎ∗𝑖𝑖,𝑡𝑡�

∑ 𝑄𝑄𝑘𝑘,𝑡𝑡𝐻𝐻𝑘𝑘,𝑡𝑡+𝑁𝑁𝑁𝑁
𝑘𝑘=1 ∑ 𝑃𝑃𝑗𝑗,𝑡𝑡

𝛾𝛾�
𝑁𝑁𝑁𝑁
𝑗𝑗=1 −∑ 𝑞𝑞𝑖𝑖,𝑡𝑡𝑁𝑁𝑛𝑛

𝑖𝑖=1 ℎ∗𝑖𝑖,𝑡𝑡

𝑇𝑇
𝑡𝑡=1  ,    (5) 

𝐹𝐹4 = ∑ ∑ 𝑘𝑘𝑖𝑖,𝑡𝑡𝑞𝑞𝑖𝑖,𝑡𝑡�𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡−𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚�𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑛𝑛
𝑖𝑖=1

∑ ∑ 𝑞𝑞𝑖𝑖,𝑡𝑡𝑇𝑇
𝑡𝑡=1

𝑁𝑁𝑛𝑛
𝑖𝑖=1

 .     (6) 

The variables are as follows: 

• 𝐹𝐹1 calculates the accumulated cost, 𝑐𝑐(𝑑𝑑𝑗𝑗), of control devices and flow meters installed, which 
depends on the diameter 𝑑𝑑𝑗𝑗 of the boundary pipes, these being 𝑁𝑁𝑁𝑁 in total. 



• 𝐹𝐹2 is called pressure uniformity. This parameter measures the distance of the operational 
pressure 𝑃𝑃𝑖𝑖,𝑡𝑡 of the network from the minimal operational pressure 𝑃𝑃𝑚𝑚𝑖𝑖𝑚𝑚 and from the average 
pressure of the network 𝑃𝑃𝑚𝑚𝑡𝑡. It is composed by the sum for all simulation time steps, 
totaling  𝑇𝑇 time steps, and for each node 𝑖𝑖 from a total of 𝑁𝑁𝑛𝑛 nodes. 

• 𝐹𝐹3 is called resilience index and can be seen as a relation between the required and the available 
power in the system; 𝑞𝑞𝑖𝑖,𝑡𝑡 and ℎ𝑖𝑖,𝑡𝑡 are, respectively, the flow and hydraulic head at node 𝑖𝑖 at time 
step 𝑡𝑡; ℎ∗𝑖𝑖,𝑡𝑡 is the required hydraulic head to deliver the demand at node 𝑖𝑖 time step 𝑡𝑡; 𝑄𝑄𝑘𝑘,𝑡𝑡 and 
𝐻𝐻𝑘𝑘,𝑡𝑡 are the outlet flow and hydraulic head of the reservoir 𝑘𝑘 at time step 𝑡𝑡 in a network with 
𝑁𝑁𝑁𝑁 reservoirs; 𝑃𝑃𝑗𝑗,𝑡𝑡 is the power of pump 𝑗𝑗 at time step 𝑡𝑡 in a network with 𝑁𝑁𝑁𝑁 pumps. 

• Finally, 𝐹𝐹4 is a quality parameter related to the water age; 𝑘𝑘𝑖𝑖,𝑡𝑡 is a Boolean variable, equal to 1 
when the water age 𝑊𝑊𝑊𝑊𝑖𝑖,𝑡𝑡 at node 𝑖𝑖 at time step 𝑡𝑡 is greater than a water age limit 𝑊𝑊𝑊𝑊𝑚𝑚𝑚𝑚𝑚𝑚.  

Since optimal valve placement is an engineering problem, operational constraints should be considered 
during the process. Minimal operational pressure for demand nodes and non-negative pressure for 
connection nodes are considered as constraints. Bearing in mind the stated optimization problem, and 
the fact that a heuristic algorithm is used for solving it, the constraints are handled by penalty functions, 
as presented in equation (7). 

 𝐶𝐶1=𝛿𝛿�𝑃𝑃𝑖𝑖,𝑡𝑡 − 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛,𝑖𝑖� (7) 

Here 𝑃𝑃𝑚𝑚𝑖𝑖𝑛𝑛,𝑖𝑖 is the minimal operational pressure if the node 𝑖𝑖 is a demand node, or zero otherwise and 𝛿𝛿 
is the penalty coefficient, responsible for amplifying the fitness value of a solution that violates the 
minimal operational pressure. Non-negative pressure at junctions is treated similarly. In this work, 𝛿𝛿 is 
set to 106, so as to guarantee convergence.  

For the single objective approach, the penalty function is summed to the combined objective functions. 
For the multi-objective approach, penalties, obviously, only affect objective functions 𝐹𝐹2 and 𝐹𝐹3. 

 

2.2. Particle Swarm Optimization  

Optimization problems in water distribution analysis have been explored with heuristic algorithms. 
Among the classical heuristic algorithms, PSO [35], a swarm-based metaheuristic, has an important 
place on solving complex optimization problems. The algorithm is based on a flock of birds traveling in 
the search for food. The principle of PSO is the improvement of solutions, guiding their search for 
optimal solutions. Each particle of the swarm is evaluated according to its position on the search space. 
The position changes through iteration using its search velocity, which is updated following a linear 
combination of three parameters,  

 𝐯𝐯𝑖𝑖𝑡𝑡+1 =  𝑤𝑤𝐯𝐯𝑖𝑖𝑡𝑡 + 𝑐𝑐1𝑁𝑁1�𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐩𝐩𝑖𝑖𝑡𝑡  � + 𝑐𝑐2𝑁𝑁2(𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐠𝐠𝑡𝑡  ),   (8) 

where 𝐯𝐯𝑖𝑖𝑡𝑡+1 is the search velocity of particle 𝑖𝑖 at iteration 𝑡𝑡 + 1; 𝑤𝑤𝐯𝐯𝑖𝑖𝑡𝑡 is called inertia term, and is 
responsible to avoid roaming by partially maintaining the particle search direction of the last iteration 
given by its previous velocity 𝐯𝐯𝑖𝑖𝑡𝑡 weighted by the inertia coefficient, 𝑤𝑤; 𝑐𝑐1𝑁𝑁1�𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐩𝐩𝑖𝑖𝑡𝑡  � is the cognitive 
term and is calculated as the difference between the last particle position and the best position already 
occupied by the particle, weighted by a cognitive coefficient 𝑐𝑐1 and multiplied by a random number 𝑁𝑁1; 
finally, the third term, 𝑐𝑐2𝑁𝑁2(𝐱𝐱𝑖𝑖𝑡𝑡 − 𝐠𝐠𝑡𝑡  ), is called social term, and is calculated by the difference between 
the last position of the particle and the best position ever occupied by a swarm particle (the swarm 
leader), weighted by a social coefficient 𝑐𝑐2 and multiplied by a random number 𝑁𝑁2. The main goal of the 
random numbers is to avoid local optimal points, leading the particles to explore the search space.  

Different from single objective optimization algorithms, multi-objective approaches do not find just one 
optimal solution, but a set of compromise solutions, the so-called Pareto front. In [36] an extension from 
single-objective PSO to multi-objective PSO (MOPSO) problems is proposed.  

The main structure of MOPSO follows the proposal of [35], by using the original equations of PSO. The 
position and velocity of the particles are randomly initialized. A particle’s position vector represents a 
possible solution. Each particle is evaluated under the objective functions.  After evaluating all particles, 



the non-dominated solutions are stored. To identify non-dominated solutions, considering two solutions 
𝒙𝒙𝑚𝑚 and 𝒙𝒙𝑁𝑁, it is said that 𝒙𝒙𝑚𝑚 dominates 𝒙𝒙𝑁𝑁 if and only if both conditions a) and b) below are satisfied.  

a) 𝒙𝒙𝑚𝑚 is no worse than 𝒙𝒙𝑁𝑁 for all objectives, and  
b) 𝒙𝒙𝑚𝑚 is strictly better than 𝒙𝒙𝑁𝑁 at least for one objective.  

For each single solution 𝒙𝒙𝑝𝑝 it is possible to know the number 𝑚𝑚𝑝𝑝 of solutions dominating 𝒙𝒙𝑝𝑝 and the set 
of solutions 𝑆𝑆𝑝𝑝 dominated by 𝒙𝒙𝑝𝑝. By definition, non-dominated solutions have 𝑚𝑚𝑝𝑝 = 0, and integrate the 
so-called primary Pareto front.  

With the primary Pareto front, a new velocity and position for each particle is calculated and the 
objective functions are re-evaluated. This process is repeated until a convergence criterion is reached, 
such as a maximum number of iterations, or no improvements in the Pareto front. The method results in 
a set of non-dominated solutions with an optimal compromise relation for all the objectives.  

 

3. Integrated multi-criteria approach 

This section presents the MCDM methodologies used in this paper to support the optimisation problem. 
The main objective consists in treating the solutions belonging to the Pareto front resulting from the 
former stage. Specifically, we aim to obtain a final ranking of solutions to the ones representing the best 
trade-offs under the considered evaluation criteria. As analysis criteria, we create a direct 
correspondence with the objectives of the optimisation problem and apply a MCDM technique to derive 
their mutual degree of importance, while simultaneously manage uncertainty of input evaluations. Once 
criteria weights have been derived, their values will be used with the rest of the input data for the 
application of another MCDM method able to rank large sets of solutions. Specifically, the FAHP will 
be applied to calculate criteria weights, and the TOPSIS will be implemented to select the optimal 
solution representing the best trade-off under the perspective of the previously weighted criteria. These 
techniques are described next. 

 

3.1. The FAHP to calculate criteria weights  

As previously said, the fuzzy set theory is a helpful support tool in solving those situations involving 
human judgments, thus affected by uncertainty of evaluations. Its main advantage consists in the 
possibility of representing linguistic variables through fuzzy numbers rather than crisp values, with 
associated a degree of membership 𝜇𝜇(𝑥𝑥) varying between 0 and 1.  

As recalled in a previous work [37], there are various types of fuzzy numbers, TFN (Triangular Fuzzy 
Numbers) 𝑚𝑚� and TrFN (Trapezoidal Fuzzy Numbers) 𝑚𝑚�  being the most common [38,21]:  

𝑚𝑚� = (𝑚𝑚, 𝑁𝑁, 𝑐𝑐), (9) 

𝑚𝑚� = (𝑑𝑑, 𝑒𝑒, 𝑓𝑓, 𝑔𝑔), (10) 

where 𝑚𝑚 ≤ 𝑁𝑁 ≤ 𝑐𝑐 and 𝑑𝑑 ≤ 𝑒𝑒 ≤ 𝑓𝑓 ≤ 𝑔𝑔. Addition, multiplication and inversion (considered in this study) 
are examples of common algebraic operations than can be performed with TFNs 𝑚𝑚�1 and 𝑚𝑚�2: 

𝑚𝑚�1 ⊕ 𝑚𝑚�2 = (𝑚𝑚1 + 𝑚𝑚2, 𝑁𝑁1 + 𝑁𝑁2,  𝑐𝑐1 + 𝑐𝑐2), (11) 

𝑚𝑚�1 ⊙ 𝑚𝑚�2 = (𝑚𝑚1 × 𝑚𝑚2, 𝑁𝑁1 × 𝑁𝑁2,  𝑐𝑐1 × 𝑐𝑐2), (12) 

𝑚𝑚�1−1 = ( 1
𝑐𝑐1

, 1
𝑁𝑁1

, 1
𝑚𝑚1

).                                     (13) 

Taking advantage of the use of fuzzy numbers, the FAHP method can be implemented for the purpose 
of our research by performing three steps in sequence, as suggested in [39]: 1) building the hierarchy 
structure representing the decision-making problem under analysis; 2) collecting fuzzy pairwise 
comparisons from experts with respect to evaluation criteria; 3) calculating the vector of criteria weights 
that represent their mutual importance. 



Concerning the stage of fuzzy pairwise comparisons collection, fuzzy input evaluations (translating 
linguistic judgments attributed by the expert or decision-making team) have to be collected in a FPCM 
(Fuzzy Pairwise Comparison Matrix), 𝑋𝑋�, which is a squared, reciprocal matrix: 

𝑋𝑋� = �
𝑥𝑥�11 ⋯ 𝑥𝑥�1𝑛𝑛
⋮ ⋱ ⋮
𝑥𝑥�𝑛𝑛1 ⋯ 𝑥𝑥�𝑛𝑛𝑛𝑛

�,  (14) 

the generic element 𝑥𝑥�𝑖𝑖𝑗𝑗 expressing the degree of preference of criterion 𝑖𝑖 with respect to criterion 𝑗𝑗 with 
a certain level of uncertainty. Reciprocity implies that for each element 𝑥𝑥�𝑖𝑖𝑗𝑗 = (𝑥𝑥1, 𝑥𝑥2, 𝑥𝑥3) of the matrix 
𝑥𝑥�𝑗𝑗𝑖𝑖 = ( 1

𝑚𝑚3
, 1
𝑚𝑚2

, 1
𝑚𝑚1

) holds (for convenience, we have omitted here the subindices). 

Linguistic variables used to express pairwise comparisons about the relative importance between a pair 
of criteria refer to the fuzzy version of the Saaty scale (Figure 2). The considered variables and the 
associated TFNs are: equal (EQ), (1,1,2); moderate (M), (2,3,4); strong (S), (4,5,6); very strong (VS), 
(6,7,8); and extreme (EX) importance, (8,9,9). The TFNs (1,2,3), (3,4,5), (5,6,7) and (7,8,9) correspond 
to intermediate values. The diagonal elements, 𝑥𝑥�11, 𝑥𝑥�22, … , 𝑥𝑥�𝑛𝑛𝑛𝑛, of matrix 𝑋𝑋�, express the comparison 
between an element and itself. As a consequence, they have all associated an evaluation of “equal”, what 
corresponds to the TFN (1,1,2) according to the presented scale.    

 

 
Figure 2. Fuzzy version of the Saaty scale [38] 

 

Once filled in the FPCM 𝑋𝑋�, the literature offers several approaches to calculate the vector of weights. 
Chang [40] proposes to derive crisp weights from the input matrix, by means of the extent analysis 
method. The value of fuzzy synthetic extent with relation to the 𝑖𝑖th element of matrix 𝑋𝑋� can be calculated 
as follows: 

𝑆𝑆𝑖𝑖 = ∑ 𝑥𝑥�𝑖𝑖𝑗𝑗 ⊙ �∑ ∑ 𝑥𝑥�𝑖𝑖𝑗𝑗𝑚𝑚
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1 �−1𝑚𝑚

𝑗𝑗=1 , (15) 

in our case 𝑚𝑚 = 𝑚𝑚, since the FPCM 𝑋𝑋� is a square matrix.  

With relation to two fuzzy pairwise comparisons (e.g. two TFNs 𝑚𝑚�1 and 𝑚𝑚�2), we aim to establish the 
degree of possibility that 𝑚𝑚�1 ≥ 𝑚𝑚�2, defined in [25]: 

𝑉𝑉(𝑚𝑚�1 ≥ 𝑚𝑚�2) = 𝜇𝜇(𝑥𝑥∗) = �
1                                    if 𝑁𝑁1 ≥ 𝑁𝑁2
0                                    if 𝑚𝑚2 ≥ 𝑐𝑐1

𝑚𝑚2−𝑐𝑐1
(𝑁𝑁1−𝑐𝑐1)−(𝑁𝑁2−𝑚𝑚2)

            otherwise
, (16) 

where 𝑥𝑥∗ is the ordinate of the highest intersection point 𝑃𝑃 between the two membership functions 𝜇𝜇𝑛𝑛�1  
and 𝜇𝜇𝑛𝑛�2  of the two considered TFNs (Figure 3). In order to compare the two TFNs 𝑚𝑚�1 and 𝑚𝑚�2, both 
values 𝑉𝑉(𝑚𝑚�1 ≥ 𝑚𝑚�2) and 𝑉𝑉(𝑚𝑚�2 ≥ 𝑚𝑚�1) have to be calculated. 



 
Figure 3. Representation of the degree of possibility that 𝑚𝑚�1 ≥ 𝑚𝑚�2 [40,41] 

 

We can also determine the possibility degree that a fuzzy number 𝑚𝑚� is greater than 𝑘𝑘 fuzzy numbers 
𝑚𝑚�𝑖𝑖(𝑖𝑖 = 1 … 𝑘𝑘) as: 

𝑉𝑉(𝑚𝑚� ≥ 𝑚𝑚�1,𝑚𝑚�2, … ,𝑚𝑚�𝑘𝑘) = 𝑉𝑉[(𝑚𝑚� ≥ 𝑚𝑚�1) 𝑚𝑚𝑚𝑚𝑑𝑑 (𝑚𝑚� ≥ 𝑚𝑚�2) 𝑚𝑚𝑚𝑚𝑑𝑑…𝑚𝑚𝑚𝑚𝑑𝑑(𝑚𝑚� ≥ 𝑚𝑚�𝑘𝑘)] =
𝑚𝑚𝑖𝑖𝑚𝑚 𝑉𝑉(𝑚𝑚� ≥ 𝑚𝑚�𝑖𝑖), 𝑖𝑖 = 1 … 𝑘𝑘.          (17) 

In this way, we can link each criterion 𝑋𝑋𝑖𝑖 given in the FPCM 𝑋𝑋� to the related value of fuzzy synthetic 
extent by defining: 

𝑥𝑥∗′(𝑋𝑋𝑖𝑖) = 𝑚𝑚𝑖𝑖𝑚𝑚 𝑉𝑉(𝑆𝑆𝑖𝑖 ≥ 𝑆𝑆𝑘𝑘),  (18) 

for 𝑘𝑘 = 1 …𝑚𝑚, 𝑘𝑘 ≠ 𝑖𝑖. The vector of crisp and not normalized weights is lastly given by: 

𝑊𝑊′ = �𝑥𝑥∗′(𝑋𝑋1), 𝑥𝑥∗′(𝑋𝑋2), … , 𝑥𝑥∗′(𝑋𝑋𝑛𝑛)�
𝑇𝑇

, (19) 

having the former weights to be normalised with respect to their total to obtain the final vector of 
normalised crisp weights: 

𝑊𝑊 = �𝑥𝑥∗(𝑋𝑋1), 𝑥𝑥∗(𝑋𝑋2), … , 𝑥𝑥∗(𝑋𝑋𝑛𝑛)�𝑇𝑇. (20) 

The last operation consists in checking the consistency ratio (𝐶𝐶𝐶𝐶) of the FPCM 𝑋𝑋�. To such an aim, each 
fuzzy value 𝑥𝑥�𝑖𝑖𝑗𝑗 of the matrix needs to be defuzzified and transformed into a crisp value 𝑥𝑥𝑖𝑖𝑗𝑗 by means of 
the graded mean integration approach [40]: 

𝐺𝐺�𝑥𝑥�𝑖𝑖𝑗𝑗� = 𝑥𝑥𝑖𝑖𝑗𝑗 = 𝑚𝑚1+4𝑚𝑚2+𝑚𝑚3
6

. (21) 

After having defuzzified each value of the matrix, consistency can be easily verified with the proper 
threshold [42]. We underline that checking consistency represents a fundamental issue in this kind of 
application. Indeed, if judgments were not consistent, this would have a negative impact on the whole 
quality of final decision. In such a case, experts should be asked to formulate new judgments until the 
condition of consistency is met [43]. 

 

3.2. The TOPSIS to rank optimal solutions  

The TOPSIS method is capable to rank even large sets of alternatives, such as the set of optimal solutions 
of the decision-making problem under analysis, for example, those belonging to a populated Pareto 
front. The method calculates distances from each solution to a positive ideal solution and to a negative 
ideal solution. The solution representing the best trade-off under the considered criteria is the one 
characterised by the shortest distance to the positive ideal solution, and the farthest to the negative one. 

First of all, the TOPSIS technique needs the preliminary collection of the following input data to be 
applied: a decision matrix (collecting the evaluations 𝑔𝑔𝑖𝑖𝑗𝑗 of each alternative 𝑖𝑖 under each criterion 𝑗𝑗), 



the weights of criteria (representing their mutual importance), and their preference directions (to 
establish if criteria have to be minimised or maximised). 

The implementation of the procedure is led by the following five main steps.  

● Building the weighted normalized decision matrix, for which the generic element 𝑢𝑢𝑖𝑖𝑗𝑗  is calculated 
as: 

  𝑢𝑢𝑖𝑖𝑗𝑗 = 𝑤𝑤𝑗𝑗 ∙ 𝑧𝑧𝑖𝑖𝑗𝑗 ,∀𝑖𝑖,∀𝑗𝑗; (22) 

where 𝑤𝑤𝑗𝑗 is the weight of criterion 𝑗𝑗 and 𝑧𝑧𝑖𝑖𝑗𝑗 is the score of the generic solution 𝑖𝑖 under criterion 𝑗𝑗, 
normalized by means of the equation: 

 𝑧𝑧𝑖𝑖𝑗𝑗 = 𝑔𝑔𝑖𝑖𝑗𝑗

�∑ 𝑔𝑔𝑖𝑖𝑗𝑗
2𝑛𝑛

𝑖𝑖=1

,∀𝑖𝑖,∀𝑗𝑗.    (23) 

● Identifying the positive ideal solution 𝑊𝑊+ and the negative ideal solution 𝑊𝑊−, calculated through the 
following equations: 

   𝑊𝑊+ = (𝑢𝑢1∗ , … ,𝑢𝑢𝑘𝑘∗) = ��𝑢𝑢𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐼𝐼′�, �𝑢𝑢𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐼𝐼′′��;   (24) 

   𝑊𝑊− = (𝑢𝑢1−, … ,𝑢𝑢𝑘𝑘−) = ��𝑢𝑢𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐼𝐼′�, �𝑢𝑢𝑖𝑖𝑗𝑗| 𝑗𝑗 ∈ 𝐼𝐼′′��;   (25) 

𝐼𝐼′ and 𝐼𝐼′′ being the sets of criteria to be, respectively, maximized and minimized. 

● Computing the distance from each alternative 𝑖𝑖 to the positive ideal solution 𝑊𝑊+ and to the negative 
ideal solution 𝑊𝑊− as follows: 

   𝑆𝑆𝑖𝑖+ = �∑ �𝑢𝑢𝑖𝑖𝑗𝑗 − 𝑢𝑢𝑗𝑗∗�
2𝑘𝑘

𝑗𝑗=1 , 𝑖𝑖 = 1, …𝑚𝑚;   (26) 

    𝑆𝑆𝑖𝑖− = �∑ �𝑢𝑢𝑖𝑖𝑗𝑗 − 𝑢𝑢𝑗𝑗−�
2𝑘𝑘

𝑗𝑗=1 , 𝑖𝑖 = 1, …𝑚𝑚.   (27) 

● Calculating, for each alternative  𝑖𝑖, the closeness coefficient 𝐶𝐶𝑖𝑖∗ which represents how the solution 𝑖𝑖 
performs with respect to the ideal positive and negative solutions: 

   𝐶𝐶𝑖𝑖∗ = 𝑆𝑆𝑖𝑖
−

𝑆𝑆𝑖𝑖
−+𝑆𝑆𝑖𝑖

∗ , 0 ≤ 𝐶𝐶𝑖𝑖∗ ≤ 1,∀𝑖𝑖.   (28) 

● Obtaining the final ranking of alternatives on the basis of the closeness coefficients calculated above. 
Consequently, with relation to two generic solutions 𝑖𝑖 and 𝑧𝑧, solution 𝑖𝑖 must be preferred to solution 
𝑧𝑧 when 𝐶𝐶𝑖𝑖∗ ≥ 𝐶𝐶𝑧𝑧∗. 

 

4. Case study 

The DMA design methodology proposed is applied to the literature benchmark water network called 
EXNET [44]. It is a large-size water network since it supplies around 400,000 consumers and the 
network is composed of 1,891 nodes and 2,465 pipes. The network is fed by two reservoirs and five 
injection nodes (well pumps). Each node is used as a data point for the clustering analysis, and is 
endowed with its topological features, namely geographical position, elevation and base demand. 

 

4.1 DMA identification 

To define the number of clusters, the modified 𝑘𝑘-means algorithm is applied by varying 𝑘𝑘 from 2 to 15. 
The best number of clusters, which minimises the intra-criterion and maximizes the inter-criterion, is 
nine, as shown in Figure 4. Figure 5 shows the clustered network with EPANET, using latitude and 
longitude coordinates. This configuration results in 136 boundary pipes that are candidates to be selected 
as DMA entrances. 



 
Figure 4: Davies-Bouldin index for various numbers of clusters applying modified k-means algorithm.  

 

 
Figure 5. DMA regions identified by the modified 𝑘𝑘-means algorithm 



 

4.2 Fuzzy AHP to identify weights for the objective functions 

As previously stated, the FAHP technique is applied to determine weights of the objective functions, 
treated as evaluation criteria for single objective optimization. The same weights will be used later 
within TOPSIS. The four evaluation criteria used for the analysis (𝐹𝐹1, cost, 𝐹𝐹2, lack of pressure, 𝐹𝐹3, 
resilience, and 𝐹𝐹4, water age/quality) have been pairwise compared by using the linguistic scale of Figure 
2. The responsible of the safety management system of a water distribution utility was involved in such 
a task, given his relevant background for providing effective pairwise comparisons between pairs of 
criteria characterising the topic under evaluation. Tables 1 and 2 respectively report the collected 
linguistic evaluations and the FPCM of input for the FAHP application (the last column reporting the 
final vector of normalised criteria weights). 

 

Table 1. Linguistic evaluations provided by the expert 

 F1 F2 F3 F4 

F1 - EQ M M 

F2 - - M/S EQ/M 

F3 - - - EQ/M 

F4 - - - - 

 

Table 2. FPCM and vector of criteria weights 

𝑿𝑿� F1 F2 F3 F4 weights 

F1 (1, 1, 2) (1, 1, 2) (2, 3, 4) (2, 3, 4) 36.12% 

F2 (1
2
, 1, 1) (1, 1, 2) (3, 4, 5) (1, 2, 3) 36.12% 

F3 (1
4
, 1
3
, 1
2
) (1

5
, 1
4
, 1
3
) (1, 1, 2) (1, 2, 3) 17.42% 

F4 (1
4
, 1
3
, 1
2
) (1

3
, 1
2
, 1) (1

3
, 1
2
, 1) (1, 1, 2) 10.34% 

 

Table 3 summarises: the values of fuzzy synthetic extent for each criterion, calculated by means of 
formula (11); the related degrees of possibility, obtained through formula (12); and the components of 
the non-normalised vector of weights, achieved by formula (14). 
 
 

Table 3. Synthesis of FAHP main results 

Values of fuzzy synthetic extent 

𝑆𝑆1 = (6.00, 8.00, 12.00) ⊙�
1

33.33
,

1
21.92

,
1

15.87
� = (0.18, 0.36, 0.76) 

𝑆𝑆2 = (5.50, 8.00, 11.00) ⊙�
1

33.33
,

1
21.92

,
1

15.87
� = (0.16, 0.36, 0.69) 

𝑆𝑆3 = (2.45, 3.58, 5.83) ⊙�
1

33.33
,

1
21.92

,
1

15.87
� = (0.73, 0.16, 0.37) 

𝑆𝑆4 = (1.92, 2.33, 4.50) ⊙�
1

33.33
,

1
21.92

,
1

15.87
� = (0.06, 0.11, 0.28) 



Degrees of possibility to compare values of fuzzy synthetic extent 

𝑉𝑉(𝑆𝑆1 ≥ 𝑆𝑆2) 1 𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1) 1 𝑉𝑉(𝑆𝑆3 ≥ 𝑆𝑆1) 0.4822 𝑉𝑉(𝑆𝑆4 ≥ 𝑆𝑆1) 0.2861 

𝑉𝑉(𝑆𝑆1 ≥ 𝑆𝑆3) 1 𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆3) 1 𝑉𝑉(𝑆𝑆3 ≥ 𝑆𝑆2) 0.5014 𝑉𝑉(𝑆𝑆4 ≥ 𝑆𝑆2) 0.3145 

𝑉𝑉(𝑆𝑆1 ≥ 𝑆𝑆4) 1 𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆4) 1 𝑉𝑉(𝑆𝑆3 ≥ 𝑆𝑆4) 1 𝑉𝑉(𝑆𝑆4 ≥ 𝑆𝑆3) 0.7865 

Components of the non-normalised vector of weights 

𝑥𝑥∗′(F1) = 𝑉𝑉(𝑆𝑆1 ≥ 𝑆𝑆2, 𝑆𝑆3, 𝑆𝑆4) = min(1; 1; 1) = 1 

𝑥𝑥∗′(F2) = 𝑉𝑉(𝑆𝑆2 ≥ 𝑆𝑆1, 𝑆𝑆3, 𝑆𝑆4) = min(1; 1; 1) = 1 

𝑥𝑥∗′(F3) = 𝑉𝑉(𝑆𝑆3 ≥ 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆4) = min(0.4822; 0.5014; 1) = 0.4822 

𝑥𝑥∗′(F4) = 𝑉𝑉(𝑆𝑆4 ≥ 𝑆𝑆1, 𝑆𝑆2, 𝑆𝑆3) = min(0.2861; 0.3145; 0.7865) = 0.2861 

 
 
It is lastly possible to get the normalised vector of weights 𝑊𝑊 = (0.3612, 0.3612, 0.1742, 0.1034)𝑇𝑇, 
already presented in the last column of Table 2, to verify the consistency of the FPCM. After having 
defuzzified the values of the matrix through the graded mean integration approach, we can affirm that 
the level of consistency of judgments is acceptable being the 𝐶𝐶𝐶𝐶 index equal to 0.0642, that is, within 
the allowed threshold of 0.08 established in [27]. 

 

4.3 Single-objective solution 

PSO is run with 400 particles, using inertia weight varying from 1.2 to 0.8 and cognitive and social 
coefficients equal to 1.95, following the literature suggestion [35], resulting in a scenario with 55 
entrances. In the present work, the number of entrances is not limited, allowing more than one entrance 
by DMA. Table 4 summarises the results for each objective function for the best particle. 

  

Table 4. Objective function values for best solution of single optimization 

Objective Function Optimal solution Original Network 

𝐹𝐹1 (cost – US$) 120,542 - 

𝐹𝐹2 (pressure uniformity – [ ]) 89.28 92.21 

𝐹𝐹3 (resilience [ ]) 0.88 0.95 

𝐹𝐹4 (water age index [h]) 4.00 3.69 

 

The optimized layout improves pressure uniformity by reducing the operational pressure of the system. 
Consequently, network resilience is reduced whereas water age grows. This occurs because, when 
cutting pipes, water has to follow a longer path to reach some consumers. Figures 6a and 6b present a 
pressure and water age surface plot for the maximum demand time.  



 
Figure 6a. Pressure surface comparing original network and optimized solution (single objective) 

 

In terms of pressure, the south-west region is the most affected by the DMA enforcement, what 
significantly reduces the pressure. Broadly speaking, it is possible to appreciate pressure improvement 
in the west region. 

 

 

 
Figure 6b. Water age surface comparing original network and optimized solution (single objective) 

 

In terms of water quality, the southern region reduces its water age. This can be observed by the light 
red on the optimized surface. At the same time, the water age is harmed in the western region. This 



relation between improvement of pressure management and water age harming is expected because, 
when closing a pipe to control pressure, water reaches some nodes following a longer path. 

4.4 Multi-objective approach and TOPSIS ranking of the Pareto solutions 

The application of MOPSO is applied considering the four abovementioned objective functions and uses 
400 particles to explore the search space. The algorithm parameters take the same values as for the 
single-objective PSO. After several iterations, the algorithm results in a Pareto front with 7 non-
dominated solutions. This is a small Pareto front, that usually has hundreds or thousands of solutions.  
The complexity of the hydraulic network considered, together with the many non-feasible solutions 
discarded, reduced significantly the number of possible solutions. 

With this recognition, by applying the TOPSIS method, we want to provide a structured framework able 
to deal with general situations, including those cases in which the number of alternatives to be ranked is 
large. In the particular case study herein analysed, the TOPSIS method has been applied to rank the 
seven solutions belonging to the Pareto front, being the application suitable and extendable for cases 
characterised by higher numerousness. Obviously, cost, lack of pressure and water age (respectively 𝐹𝐹1, 
𝐹𝐹2 and 𝐹𝐹4) will be minimised, whereas resiliency (𝐹𝐹3) will be maximised. Differently from the 
application presented in [27], the evaluation criteria have not herein assigned the same importance, but 
input weights will be those obtained previously through the FAHP. Results of the TOPSIS application 
are reported in Table 5. 

 

Table 5. TOPSIS results 

Ranking 
position 

# Pareto 
solution 

F1 
𝑤𝑤1 = 36.12% 

F2 
𝑤𝑤2 = 36.12% 

F3 
𝑤𝑤3 = 17.42% 

F4 
𝑤𝑤4 = 10.34% 

Closeness 
coefficient 

value 

1 6 6.30E+04 8.31E+01 3.58E+00 0.87E+00 0.9233 

2 7 6.32E+04 8.31E+01 3.58E+00 0.86E+00    0.9152 

3 5 6.55E+04    8.29E+01 3.56E+00 0.85E+00    0.6858 

4 3 7.00E+04    8.34E+01   3.61E+00     0.79E+00    0.0998 

5 1 7.02E+04    8.29E+01  3.60E+00 0.79E+00    0.0873 

6 2 7.05E+04    8.28E+01 3.60E+00 0.78E+00    0.0627 

7 4 7.08E+04    8.28E+01  3.60E+00 0.78E+00    0.0534 

 

4.5 Discussion of results 

The solutions in the first positions of the final ranking obtained by applying TOPSIS are characterised 
by higher values of the closeness coefficient, as can be appreciated by observing the last column of 
Table 5.  Higher values of the closeness coefficient show that those alternatives have large distance to 
the negative ideal solution and small distance to the positive ideal solution; these ideal solutions have 
been previously identified within the set of input data by means of formulas (24) and (25). Similar 
solutions appear in Table 5, such as 1 and 2, or 6 and 7. This happens by the closeness of those solutions 
in the Pareto front. This ranking approach shows the interest of MCDMs to select trade-off scenarios 
under the considered criteria. The first solution shows the best cost while the second highest pressure 
uniformity and lowest resilience. That means, the best hydraulic and operation conditions will appear in 
the most expensive scenario. This is because more installed valves allow to reduce even more the 
operational pressure. The relation between resilience and pressure uniformity can also be highlighted. 
Scenarios with lower pressure uniformity present lower resilience, since resilience is calculated based 



on overpressure, and pressure uniformity tries to minimize overpressure. Comparing with the single 
objective solution, it is possible to observe that multi-objective solutions dominate the single objective 
solution, since better values for three of the four objectives are reached. The selected solution (Solution 
6) has a lower cost, and better pressure uniformity and water quality index than the single objective one. 
As expected, this solution also exhibits a lower resilience index.  

To evaluate the hydraulic and quality effects of the selected solution from the Pareto’s front, Figures 7a 
and 7b present pressure and water age maps, and compare the chosen optimal solution with the network 
with no DMA structure. Pressure is significantly reduced in the south-west region of the network, as 
observed also for the single-objective solution. However, for the multi-objective solution, also the 
eastern side of the network has the pressure reduced, something is not occurring for the single-objective 
solution.  In the case of water age, one crucial indicator of water quality in the network, the southern 
side of the network has increased this parameter in most of the pipes. In the northern and central areas 
of the network it is possible to observe a reduction on water age, thus increasing the quality of water. 
This happens due to the changes on the topology, which increases the flow of a set of pipes. 

 
Figure 7a. Pressure surface comparing original network and optimized solution (multi objective) 

 
Figure 7b. Water age surface comparing original network and optimized solution (multi-objective) 



 

Comparing single and multi-objective optimization, the average water age on the demand nodes is the 
same, 8.61h. This value is slight lower than the one for the original network, 8.76h. Usually, closing 
pipes for DMA creation increases water age, thus harming the water quality. However, in this case study, 
the consideration of water quality during the optimization process allows to reduce the water age, 
improving the water quality. In terms of pressure, the average pressure in the single and multi-objective 
approaches are respectively 36.85m and 34.63m, while in the original network this value is 38.98m.  
This comparison shows that the multi-objective approach is able to define better management for 
pressure, reducing the water age.  

 

5. Conclusions 

The present work proposes a fully automated algorithm for DMA design based on clustering analysis, 
multi-objective optimization and multi-criteria analysis, which is compared with a weighted single-
objective approach. The clustering analysis is undertaken through a modified 𝑘𝑘-means algorithm 
evaluated under the Davies-Bouldin criterion, resulting in nine DMAs. The weighted single optimization 
found a feasible solution that could be implemented. However, the multi-objective optimization for 
entrance location is conducted with MOPSO and finds 7 non-dominated solutions in a trade-off between 
various objectives. In addition, an integrated MCDM approach, making use of the FAHP and TOPSIS, 
is applied to firstly weight objectives and to secondly rank the non-dominated solutions. The aim 
consists in identifying that optimal solution representing the best trade-off in fulfilling the objectives to 
be matched. Operational and hydraulic criteria are used to evaluate the solutions. The selected solution 
from TOPSIS has better hydraulic and water quality parameters with lower cost, when compared with 
the single-objective solution. Even though for the use case addressed, the optimization process of multi-
objective results in a reduced number of Pareto solutions, the multi-level (multi-objective and multi-
criteria analysis) algorithm is able to handle hundreds of solutions without high computational effort. 
The multi-level algorithm finds a feasible and high-performance solution, guaranteeing low cost and 
good efficiency of the system. 
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