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Abstract

This paper presents a new series expansion based on Bernoulli
matrix polynomials to approximate the matrix cosine function. An
approximation based on this series is not a straightforward exercise
since there exist different options to implement such a solution. We
dive into these options and include a thorough comparative of per-
formance and accuracy in the experimental results section that shows
benefits and downsides of each one. Also, a comparison with the Padé
approximation is included. The algorithms have been implemented in
MATLAB and in CUDA for NVIDIA GPUs.

1 Introduction and notation

In recent years, the study of matrix functions has been the subject of in-
creasing focus due to its usefulness in various areas of science and engineer-
ing, providing new and interesting problems to those already existing and
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already well-known. Of all matrix functions, it is certainly the matrix expo-
nential which attracts much of the attention because of its connection with
systems of first order linear differential equations

Y ′(t) = AY (t)
Y (0) = Y0

}
, A ∈ Cr×r,

whose solution is given by Y (t) = eAtY0 and where Cr×r represents the set
of all complex square matrices of size r. The hyperbolic matrix functions
are applied in the study of the communicability analysis in complex net-
works [1–3] and also in the solution of coupled hyperbolic systems of partial
differential equations [4]. In particular, the sine and cosine trigonometric
matrix functions have been proven to be especially useful for solving systems
of second-order linear differential equations of the form:

d2

dt2
Y (t) + A2Y (t) = 0

Y (0) = Y0

Y ′(0) = Y ′0

 , A ∈ Cr×r,

whose solution, if matrix A is non-singular, is given by

Y (t) = cos (At)Y0 + A−1 sin (At)Y ′0 .

Due to the relationship sin (A) = cos
(
A+

π

2
I
)

, where I is the identity

matrix of Cr×r, the matrix sine function can be calculated using the same
methods as for the matrix cosine one. Usually, research is concentrated on
developing efficient state-of-the-art algorithms to compute the matrix co-
sine function approximately. The main of these methods and algorithms
can be found in references [5–8]. Other algorithms, for normal and non-
negative matrices, which are based on approximations L∞ have been pre-
sented in [9]. Alternative methods for computing matrix functions using
interpolation techniques is given in [6]. Methods based on finite differences,
and its application to solve fractional partial differential equations, can be
found in references [10–12].

Among the methods proposed to approximate the matrix cosine, two
fundamentally stand out: 1) those focused on polynomial approximations,
thanks to the developments of the matrix cosine in Taylor or Hermite series
(see [13–15]); or 2) those based on rational approximations, such as Padé
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approach (see [5,9,16,17]). In general, polynomial methods are more efficient
in terms of accuracy than rational ones, although they may be somewhat
more computationally expensive.

On the other hand, Bernoulli polynomials (and Bernoulli numbers), intro-
duced by Jacob Bernoulli (1654–1705) in the 18-th century, are widely used
in various areas of mathematics, both pure and applied. See, for instance,
reference [18] and references therein.

In this paper, Bernoulli matrix polynomials are defined and a new se-
ries expansion of the matrix sine and cosine functions in terms of them is
presented. Then, this series expansion is evaluated to analyse if, indeed,
provides a new and efficient method to approximate the matrix cosine.

The organization of the paper is as follows: in Section 2, two series ex-
pansions of the matrix cosine in terms of the Bernoulli matrix polynomials
are described. Then, the algorithms in charge of computing the matrix co-
sine function and those ones responsible for providing the most appropriate
polynomial order and the scaling parameter are presented in Section 3. Next,
different experiments, that have been performed to compare the numerical
performance of the distinct implemented MATLAB codes, are incorporated
in Section 4, together with their migration and execution on a GPU-based
parallel computing platform. Finally, conclusions are given in Section 5.

Throughout this paper, we denote by Cn×n the set of all complex square
matrices of order n, by I the identity matrix, as mentioned before, and by
ρ(A) its spectral radius. A polynomial of degree m is given by an expression
of the form Pm(x) = pmx

m+pm−1x
m−1+· · ·+p1x+p0, where x is the variable

(real or complex) and the coefficients pj, 0 ≤ j ≤ m, are complex numbers.
Moreover, we can define the matrix polynomial Pm(A), for A ∈ Cn×n, as the
expression Pm(A) = pmA

m + pm−1A
m−1 + · · · + p1A + p0I. With dre, we

denote the result of rounding a real number r to the nearest integer greater
than or equal to r, and brc refers to the result of rounding r to the nearest
integer less than or equal to r. As usual, the matrix norm ‖·‖ symbolizes
any subordinate matrix norm; in particular ‖·‖1 is the usual 1-norm.

2 On Bernoulli matrix polynomials

The sequence of Bernoulli polynomials, denoted by {Bn(x)}n≥0, and Bernoulli
numbers, Bn = Bn(0), appear in important applications of different areas of
mathematics, from number theory to classical analysis. For example, they are
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used for representing the remainder term of the composite Euler-McLaurin
quadrature rule. They also appear in the Taylor expansion in the neigh-
bourhood of the origin of circular and hyperbolic tangent and co-tangent
functions. Moreover, this sequence expresses the exact value of ζ(2p), where

p is a positive integer and ζ(z) =
∑
k≥1

1

kz
is the well-known Riemann’s zeta

function.
These polynomials and numbers were first studied by Jacob Bernoulli be-

fore 1705 in relation with the computation of sums of powers of m consecutive

integers, Sr(m) =
m∑
k=1

kr, where r and m are two given positive integers.

The usual way to define these Bernoulli polynomials Bn(x) is as the co-
efficients of the Taylor expansion of the following generating function

g(x, t) =
tetx

et − 1
=
∑
n≥0

Bn(x)

n!
tn , |t| < 2π, (1)

where g(x, t) is a holomorphic function in C, for variable t, that has an
avoidable singularity in t = 0 [19, p. 588]. Bernoulli polynomials have the
explicit expression

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k, (2)

where the Bernoulli numbers Bn satisfy the following recurrence relation (for-
mula (24.5.3) from [19, p. 591]):

B0 = 1,
n−1∑
k=0

(
n

k

)
Bk = 0, n ≥ 2.

From this last relation, the explicit expression for the Bernoulli numbers can
be derived:

B0 = 1,Bn = −
n−1∑
k=0

(
n

k

)
Bk

n+ 1− k
, n ≥ 1. (3)

Notice that all Bernoulli numbers with odd index vanish, except B1 = −1/2.
For a matrix A ∈ Cr×r, we define the n-th Bernoulli matrix polynomial

by the expression

Bn(A) =
n∑

k=0

(
n

k

)
BkAn−k. (4)
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The series expansion of the exponential matrix function eAt, given by

eAt =

(
et − 1

t

)∑
n≥0

Bn(A)tn

n!
, 0 < |t| < 2π, (5)

was demonstrated in [20]. An efficient method based on (5) to approximate
the exponential matrix also was presented and developed in [20].

Setting t = 1 in (5) and using the definition of the matrix sine and cosine,
it is easy to derive the following expressions

cos (A) = (cos (1)− 1)
∑
n≥0

(−1)nB2n+1(A)

(2n+ 1)!
+ sin (1)

∑
n≥0

(−1)nB2n(A)

(2n)!
,

sin (A) = sin (1)
∑
n≥0

(−1)nB2n+1(A)

(2n+ 1)!
− (cos (1)− 1)

∑
n≥0

(−1)nB2n(A)

(2n)!
.

Nevertheless, we will use the truncated series

cos (A) ≈ Pm(A) = (cos (1)− 1)
m∑

n=0

(−1)nB2n+1(A)

(2n+ 1)!
+sin (1)

m∑
n=0

(−1)nB2n(A)

(2n)!
,

(6)
to provide a first approximation to the matrix cosine.

On the other hand, replacing t by it (i =
√
−1), firstly, and by −it, sec-

ondly, in (5), and then calculating the arithmetic mean of the corresponding
results, it is obtained that∑

n≥0

(−1)nB2n(A)

(2n)!
t2n =

t

2 sin
(
t
2

) (cos

(
tA− t

2
I

))
, 0 < |t| < 2π. (7)

Now, taking t = 2 in (7), it follows that

cos (A) = sin (1)
∑
n≥0

(−1)n22nB2n

(
A+I

2

)
(2n)!

. (8)

Note that, in (8), only the Bernoulli polynomials with even index appear.
As previously, we will use the truncated series

cos (A) ≈ Pm(A) = sin (1)
m∑

n=0

(−1)n22nB2n

(
A+I

2

)
(2n)!

, (9)

to obtain a second approximation to the matrix cosine.
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3 Algorithms

The most efficient and accurate start-of-the-art algorithms that can be found
in the literature, for matrix functions computation, are those based on poly-
nomial or rational approximations. Basically, all of them consist of truncat-
ing the appropriate series so that the relative forward or backward errors are
smaller than the unit roundoff in double precision floating-point arithmetic,
determining the polynomial optimal order m and scaling, if necessary, the
matrix. This type of methods can be used as long as the matrix function (ex-
ponential, trigonometric, logarithm, p-th root, and so on) can be recovered
from its computation to the scaled matrix.

Actually, the two truncated series (6) or (9) can be expressed in explicit
terms of powers of matrix A,

Pm(A) =
m∑
i=0

p
(m)
i Ai, (10)

where coefficients p
(m)
i depend on the integer m and the truncated expres-

sion employed, and where Pm(A) represents the matrix polynomial of order
m corresponding to the Bernoulli approximation of the cosine function of ma-
trix A. These coefficients converge to those of the Taylor series for increasing
values of m.

Taking into account the two previous truncated series, three different ap-
proximations have been addressed: two of them are based on expressions
(6) or (9), respectively, in which all the polynomial terms have been consid-
ered; and one more, derived from expression (9), where only the coefficients

p
(m)
i of the even order terms have been taken into account, similarly to what

happens when considering cosine series expansions using Taylor or Hermite
polynomials [13, 15].

According to the above mentioned approaches we have developed Algo-
rithms 1 and 2. In Phase I (for both algorithms), integers m and s are esti-
mated so that the Bernoulli approximation of the scaled matrix is computed
accurately and efficiently. There exist several methods that can be applied to
compute efficiently C = Pmk

(A) in Phase II [21,22]. In our implementations,
we have used those based on the Paterson-Stockmeyer’s method [21]. Accord-
ing to it, an integer mk (order of the Bernoulli approximation polynomial) is
chosen from the set

M = {2, 4, 6, 9, 12, 16, 20, 25, 30, 36, 42, . . . } .
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Algorithm 1: Given a matrix A ∈ Cn×n, this algorithm computes C = cos(A)
by Bernoulli series (6) or (9), where all coefficients are considered.

1 Select suitable values of mk and s ∈ N ∪ {0} /* Phase I */
2 A = 2−sA
3 C = Pmk

(A) /* Phase II: Compute Bernoulli approximation (6) or (9) */
4 for i = 1 to s do /* Phase III: Recovering cos(A) */
5 C = 2C2 − I
6 end

Algorithm 2: Given a matrix A ∈ Cn×n, this algorithm computes C = cos(A)
by Bernoulli series (9), where only the coefficients of the even order terms are
considered.

1 Select suitable values of mk and s ∈ N ∪ {0} /* Phase I */
2 A = 4−sA2

3 C = Pmk
(A) /* Phase II: Compute Bernoulli approximation (9) */

4 for i = 1 to s do /* Phase III: Recovering cos(A) */
5 C = 2C2 − I
6 end

Then, powers Ai, 2 ≤ i ≤ q, are calculated, being q =
⌈√

mk

⌉
or q = b√mkc

a divisor of the integer mk. With these matrix powers, we can efficiently
compute C = Pmk

(A) as

Pmk
(A) = (11)

(((pmk
Aq + pmk−1A

q−1 + pmk−2A
q−2 + · · ·+ pmk−q+1A+ pmk−qI)Aq

+ pmk−q−1A
q−1 + pmk−q−2A

q−2 + · · ·+ pmk−2q+1A+ pmk−2qI)Aq

+ pmk−2q−1A
q−1 + pmk−2q−2A

q−2 + · · ·+ pmk−3q+1A+ pmk−3qI)Aq

. . .

+ pq−1A
q−1 + pq−2A

q−2 + · · ·+ p1A+ p0I.

The computational cost of (11), in terms of matrix products, is k.
The calculation of m and s in Phase I of Algorithms 1 and 2 is based on

the relative backward error of approximating cos(A) using (10). This error
is defined as a matrix ∆A such that cos(A + ∆A) = Pm(A). We bound the
relative backward error as

Erb =
‖∆A‖
‖A‖

=

∥∥∥∥∑
i≥0

c
(m)
i A

i

∥∥∥∥
‖A‖

w

∥∥∥∥ ∑
i≥m+1

c
(m)
i A

i

∥∥∥∥
‖A‖

≤

∥∥∥∥∥∑
i≥m

c
(m)
i+1A

i

∥∥∥∥∥ .



Mathematical Methods in the Applied Sciences 8

If we define hm(x) =
∑
i>m

c
(m)
i+1x

i , h̃m(x) =
∑
i≥m

∣∣∣c(m)
i+1

∣∣∣xi and we apply

Theorem 1.1 from [23] for ak = ||Ak||, considering p = m and l = m, then

||hm(A)|| ≤ h̃l(αm),

where αm = max{||Ak|| 1k : k = m,m+ 1,m+ 2, . . . , 2m− 1}. Hence

Erb ≤ ‖hm(A)‖ ≤ h̃m(αm). (12)

Let Θm be

Θm = max

{
θ ≥ 0 :

∑
i≥m

∣∣∣c(m)
i+1

∣∣∣ θi ≤ u

}
, (13)

where u = 2−53 is the unit roundoff in IEEE double precision arithmetic.
If αm < Θm, then we have

Erb 6 ‖hm(A)‖ 6 h̃m(αm) 6 h̃m(Θm) 6 u, (14)

and the polynomial order m will be obtained and the scaling parameter s
will be set to 0. Otherwise, we should find values of m and s such that
2−sαm < Θm, if Pmk

(2−sA) had to be computed in step 3 of Algorithm 1, or
values of m and s such as 4−sαm < Θm, if Pmk

(4−sA) had to be estimated
in the same step of Algorithm 2. In our case, MATLAB Symbolic Math
Toolbox has been used to compute Θm.

In this paper, we propose to use the approximation

αm ≈ ||Am||1/m, (15)

where lim
m→∞

||Am||1/m = ρ(A). Experimental results show that this is a good

approach when considering relatively high values for m, such as m ≥ 30.
The norm ||Am|| can be computed approximately by using the one-norm
estimation algorithm from [24].

Algorithms 3, 4 and 5 have been developed with this theoretical analysis
in mind. For the sake of simplicity, the following notation has been used in
Algorithms 3, 4 and 5:

αi ≡ αmi
, Θi ≡ Θmi

.
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Algorithm 3: Given a matrix A ∈ Cn×n, a minimum order mlower ∈M and a
maximum order mupper ∈M, this algorithm provides an order m ∈M, mlower ≤
m ≤ mupper, a factor s and several powers of A.

1 A1 = A; i = lower; f = 0
2 for j = 2 to d√mie do
3 Aj = Aj−1A
4 end
5 while f = 0 and i ≤ upper do
6 v =

√
mi

7 j = dve
8 if j > v then Aj = Aj−1A

9 αi ≈ ‖Ami‖1/mi from Aj /* based on Algorithm 1 from [24] */
10 if αi < Θi then f = 1
11 else i = i+ 1

12 end
13 if f = 1 then s = 0
14 else
15 i = upper
16 s = dmax (0, fslog2(αi/Θi))e /* fs = 1 (Alg. 1) or fs = 0.5 (Alg. 2) */
17 j = i
18 while f = 0 and j > lower do
19 j = j − 1
20 s1 = dmax (0, fslog2(αj/Θj))e
21 if s ≥ s1 then
22 s = s1
23 i = j

24 else f = 1

25 end

26 end
27 m = mi

Algorithms 3 and 4 try to find out the minimum value mi, mlower ≤ mi ≤
mupper, such that αi ≤ Θi, computing the necessary powers of matrix A to
obtain Pmi

(A) from (11) as i increases. Values of polynomial orders mlower

and mupper can be varied in the developed implementations. If mi is found,
then s will be set to 0 and the algorithms finish their execution.

Otherwise, we choose m = mupper and

s = max

{
0,

⌈
fs log

(
αupper

Θupper

)⌉}
,

where fs = 1 or 0.5, respectively, if Algorithm 1 or Algorithm 2 is used. Ad-
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Algorithm 4: Given a matrix A ∈ Cn×n, a minimum order mlower ∈M and a
maximum order mupper ∈M, this algorithm provides an order m ∈M, mlower ≤
m ≤ mupper, a scaling factor s and the necessary powers of A.

1 A1 = A; i = lower; f = 0
2 for j = 2 to d√mie do
3 Aj = Aj−1A
4 end
5 while f = 0 and i ≤ upper do
6 v =

√
mi

7 j = dve
8 if j > v then Aj = Aj−1A
9 Compute ai ≈ ‖Ami‖ from Aj /* based on Algorithm 1 from [24] */

10 αi = mi
√
ai

11 if αi < Θi then f = 1
12 else i = i+ 1

13 end
14 if f = 1 then s = 0
15 else
16 i = upper
17 s = dmax (0, fs log2(αi/Θi))e
18 if |pmi

|air(1−s)mi < u then /* r = 2 (Alg. 1) or r = 4 (Alg. 2) */
19 s = s− 1

20 if |pmi |air(1−s)mi < u then s = s− 1

21 end

22 end
23 m = mi

ditionally, at lines 17-25, Algorithm 3 tests whether it is possible to decrease
the above values s and m = mupper, so that inequality

h̃m(2−sαm) 6 h̃m(Θm) 6 u or h̃m(4−sαm) 6 h̃m(Θm) 6 u,

is fulfilled for Algorithm 1 or Algorithm 2, respectively. In such cases, these
new values are to be considered.

On the other hand, let pmupper be the coefficient of the term of order mupper

of the Bernoulli polynomial. Then, at lines 18-21, Algorithm 4 tests whether
it is possible to decrease the value of s to satisfy that

|pmupper |||Amupper ||2(1−s)mupper < u or |pmupper |||Amupper ||4(1−s)mupper < u,

depending on the use of Algorithm 1 or Algorithm 2.
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Algorithm 5: Given a matrix A ∈ Cn×n, a minimum order mlower ∈ M, a
maximum order mupper ∈ M and a small value tol, this algorithm provides an
order m ∈ M, mlower ≤ m ≤ mupper, the scaling factor s and the necessary
powers of A.

1 i = lower; f = 0

2 Compute α0 ≈ ‖Ami‖1/mi from A /* based on Algorithm 1 from [24] */
3 while f = 0 and i < upper do
4 i = i+ 1

5 Compute α ≈ ‖Ami‖1/mi from A /* based on Algorithm 1 from [24] */
6 if |α− α0| > α · tol then α0 = α
7 else f = 1

8 end
9 i = lower; f = 0

10 while f = 0 and i ≤ upper do
11 if α < Θi then f = 1
12 else i = i+ 1

13 end
14 if f = 1 then s = 0
15 else
16 i = upper
17 s = dmax (0, fs log2(α/Θi))e /* fs = 1 (Alg. 1) or fs = 0.5 (Alg. 2) */
18 j = i
19 while f = 0 and j > lower do
20 j = j − 1
21 s1 = dmax (0, fs log2(α/Θj))e
22 if s ≥ s1 then
23 s = s1
24 i = j

25 else f = 1

26 end

27 end
28 m = mi

29 A1 = A
30 for j = 2 to d√mie do
31 Aj = Aj−1A
32 end

Unlike Algorithms 3 and 4, Algorithm 5 does not compute initially the
powers of matrix A, so the estimation (15) is obtained only from A. This
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Table 1: Bernoulli polynomial coefficients for m = 25.

Coefficients Expression (6) Expression (9)

p0 1.000000000000000e+00 9.999999999999776e-01
p1 4.268425513808927e-17 2.200931543663476e-25
p2 -5.000000000000000e-01 -4.999999999998889e-01
p3 -7.103351130950067e-18 9.114115486610701e-26
p4 4.166666666666666e-02 4.166666666657532e-02
p5 3.340635907377075e-19 1.642205248036368e-25
p6 -1.388888888888889e-03 -1.388888888858840e-03
p7 1.188305192257936e-20 2.406735243784263e-26
p8 2.480158730158730e-05 2.480158729629132e-05
p9 -1.104189679966496e-20 -2.741989705063794e-28
p10 -2.755731922398609e-07 -2.755731916590913e-07
p11 4.004071095795792e-21 -2.506940767309528e-29
p12 2.087675698787421e-09 2.087675655363431e-09
p13 -1.013606842281333e-21 -1.827655933239498e-31
p14 -1.147074559786225e-11 -1.147074324303990e-11
p15 1.905862492984388e-22 -3.648057207260014e-33
p16 4.779477334567797e-14 4.779467650734273e-14
p17 -2.768223171137328e-23 2.331854748958815e-35
p18 -1.561920725009726e-16 -1.561889490721346e-16
p19 3.205121320979757e-24 0
p20 4.110320556779777e-19 4.109509217914593e-19
p21 -3.051721100969466e-25 0
p22 -8.897045307814457e-22 -8.879692513470797e-22
p23 2.530017510290091e-26 0
p24 1.613667223591245e-24 1.582268801402494e-24
p25 -2.511873775100074e-27 0

algorithm computes αi such that∣∣∣∣αi − αi−1

αi

∣∣∣∣ < tol,

where tol is a small prefixed value (lines 1-8).
Then, Algorithm 5 tries to find out the smallest value mi, mlower ≤ mi ≤

mupper, that satisfies αi ≤ Θi. If so, similarly to Algorithm 4, Algorithm 5
will finish and s will be set to 0. Otherwise, we choose mupper and

s = max

{
0,

⌈
fs log

(
αupper

Θupper

)⌉}
.

Next, lines 18-26 of Algorithm 5 make sure whether it is possible to cut down
the above values of s and m such that the inequality

h̃m(2−sαm) 6 h̃m(Θm) 6 u or h̃m(4−sαm) 6 h̃m(Θm) 6 u,
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is fulfilled, for Algorithm 1 or Algorithm 2, respectively. If this condition is
satisfied, these new values will be used instead.

4 Numerical Experiments

Although theoretically, and according to formulations (9) and (10), all coef-

ficients p
(m)
i occupying odd positions in the Bernoulli polynomial Pm(A) =

p
(m)
m Am + p

(m)
m−1A

m−1 + · · ·+ p
(m)
1 A+ p

(m)
0 I should be equal to 0, in practice,

it might not happen with all of them. As an example, Table 1 shows the
coefficients of Pm(A) for formulae (6) and (9) when m = 25. For the sake of

brevity, pi will be used instead of p
(25)
i , 0 ≤ i ≤ 25. As it can be seen in the

third column of the table, most of the odd terms are not equal to 0, although
they are close. This raises the following dilemma: turn these values into zero
and take into account only the even terms or keep these values as they are
and consider them all.

Therefore, having in mind expression (6), the two different mentioned
above alternatives that derived from expression (9) and the three distinct
algorithms described in Section 3 to compute the polynomial degree m and
the scaling parameter s, a total of nine different approximations are at our
disposal to compute the matrix cosine function. To test and compare the
numerical performance of all these different approaches, the following algo-
rithms have been implemented in MATLAB:

• cosmber 1 3, cosmber 1 4, and cosmber 1 5: codes based on formu-
la (6), where all the polynomial terms must be considered. Algo-
rithms 3, 4 and 5 will be used in each code, respectively, to compute
m ∈ {30, 36} and s values.

• cosmber 2 3, cosmber 2 4, and cosmber 2 5: implementations belong-
ing to formula (9). As in the previous case, even and odd terms will
be taken into account. Algorithms 3, 4 and 5 will be also respectively
considered to calculate parameters m ∈ {30, 36} and s.

• cosmber 3 3, cosmber 3 4, and cosmber 3 5: developments derived
from formula (9) where odd position coefficients have been neglected.
In this way, only the even terms will be employed, as in the case of
Taylor series [13]. One more time, the same Algorithms 3, 4 and 5
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will be employed to work out m ∈ {16, 20} (it would be equivalent to
m = 32 or 40 using the even and odd terms) and s values.

• cosm: implementation based on the Padé rational approximation for
the matrix cosine function [17].

The next test battery, composed of four types of different and represen-
tative matrices, has been used to compare the above mentioned algorithms.
MATLAB Symbolic Math Toolbox with 256 digits of precision was run to
compute the “exact” matrix cosine function, using the vpa (variable-precision
floating-point arithmetic) function:

a) Diagonalizable real matrices: These matrices are obtained as the
result of A = V · D · V −1, where D is a diagonal matrix (with real
and complex eigenvalues) and matrix V is an orthogonal matrix being
V = H/

√
n, where H is a Hadamard matrix and n its number of rows or

columns. As 1-norm, we have that 2.18 ≤ ‖A‖1 ≤ 132.62. The matrix
cosine function was calculated “exactly” as cos (A) = V · cos (D) · V T

thanks to the vpa function.

b) Non-diagonalizable complex matrices: These matrices are computed
as A = V · J · V −1, where J is a Jordan matrix with complex eigen-
values whose modules are less than 10 and the algebraic multiplicity
is randomly generated between 1 and 5. V is an orthogonal random
matrix with elements in the interval [−0.5, 0.5]. As 1-norm, we have
obtained that 91.3 ≤ ‖A‖1 ≤ 92.6. The “exact” matrix cosine function
was computed as cos (A) = V · cos (J) ·V −1, by means of vpa function.

c) Matrices from the Matrix Computation Toolbox (MCT) [25] and
from the Eigtool MATLAB Package (EMP) [26]: These matrices
have been chosen because they have highly different and significant
characteristics from each other. The “exact” matrix cosine for these
matrices was computed by using Taylor approximations of different
orders, changing their scaling parameter.

In the numerical experiments, we have used 179 matrices of size 128×128:
60 from the diagonalizable set, 60 from the non-diagonalizable group, 42
from the MCT, and 17 from the EMP. Although the MCT and the EMP
are initially composed of fifty-two and twenty matrices, respectively, thirteen
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Table 2: Codes to be compared for each experiment.

Evaluated codes

Test 1: cosmber 1 3, cosmber 1 4, cosmber 1 5

Test 2: cosmber 2 3, cosmber 2 4, cosmber 2 5

Test 3: cosmber 3 3, cosmber 3 4, cosmber 3 5

matrices of these two packages were discarded for different reasons. In par-
ticular, matrices 5, 15, 16, 17, 21, 42, 43, 44 and 49 belonging to the MCT
and matrix 3 from the EMP were not used since the exact cosine solution
could not be computed. Matrix 2 of MCT and matrices 4 and 10 of EMP
were not considered due to the excessively high relative error provided by all
the codes.

Our first analysis is composed by the three tests described in Table 2.
These experiments were independently performed to find out the most ap-
propriate combination of the distinct variations of each theoretical formula-
tion with Algorithms 3, 4 and 5, in charge of computing parameters m and s.
For each test, the normwise relative errors, the performance profiles, and the
number of matrix products required are provided. All these executions were
carried out with MATLAB (R2018b) running on an HP Pavilion dv8 Note-
book PC with an Intel Core i7 CPU Q720 @1.60Ghz processor and 6 GB of
RAM.

The normwise relative error is computed as

Er =
‖ cos(A)− ˜cos(A)‖1

‖cos(A)‖1

,

where cos(A) is the exact solution and ˜cos(A) is the computed approximation
to cos(A). These errors are depicted in Figures 1(a), 1(c), and 1(e), which
show the numerical stability of the different compared methods. The solid
line represents function kcosu, where kcos (or cond) is the condition number
of the matrix cosine function [7, Chapter 3] and u is the unit roundoff in
the IEEE double precision floating-point arithmetic (u = 2−53). We use the
distance from the normwise relative error to the solid line, which illustrates
the theoretical expected normwise relative error for each matrix, as a measure
of accuracy. For most of the matrices, all the codes exhibit a very good
numerical stability according to the small distance that can be appreciated.
Furthermore, those methods with a relative error below the cond ∗ u line
provide even better accuracy.
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Figure 1: Experimental results for the Test 1, 2 and 3.
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Nonetheless, for a few matrices, we can appreciate a remarkable distance
between the computed normwise relative error and the expected one. In
the calculation of all these matrices it happens that the scaling parameter
s reaches high values. It should be clarified that such values lead to a sub-
stantial increment in the number of arithmetic operations to be performed
in the recovery phase, with the consequent negative effect on results caused
by rounding errors.

The performance profile is presented in Figures 1(b), 1(d) and 1(f). For a
given α value (represented on the x-axis and varying from 1 to 5 in steps equal
to 0.1) the p coordinate on the y-axis means the probability that the con-
sidered code has a relative error lower than or equal to α-times the smallest
relative error over all of them for the given test. This way of measuring the
accuracy of an algorithm is quite accepted as it has been defined in [7, p. 252].

For Test 1, the performance profile (Figure 1(b)) shows that cosmber 1 3

and cosmber 1 5 code accuracy is identical, while cosmber 1 4 achieves the
highest values for a large portion of the graph and, as a consequence, it
outputs the most accurate results in the calculation of the cosine for a large
number of matrices. In Test 2 (Figure 1(d)), cosmber 2 3 always gives rise to
the best results, whilst cosmber 2 4 and cosmber 2 5 present lower values,
though close to it, and quite similar between them. Finally, in the case of
Test 3 (Figure 1(f)), the matrix cosine function computed by cosmber 3 4 ap-
proaches the result with a much better numerical precision than that worked
out by cosmber 3 3 and cosmber 3 5, the least reliable codes whose results
are clearly disappointing. To understand the reasons behind these figures,
we need to proceed in our analysis.

Minimum, maximum and average polynomial degree (m) and scaling pa-
rameter (s) required by the different codes that compose Tests 1, 2, and 3 are
grouped in Table 3. As defined previously, the polynomial order to be pro-
vided by Algorithms 3, 4 and 5 varies between 30 and 36, for cosmber 1 x and
cosmber 2 x, and ranges from 16 to 20 for cosmber 3 x. It is not difficult to
observe a relationship between the parameterm calculated and the results de-
picted in Figure 1(f). Whereas implementations cosmber 1 x, cosmber 2 x

and cosmber 3 4 employ an average value of m practically identical to their
maximum allowed, this average value is equal or very close to the minimum
amount in the case of cosmber 3 3 and cosmber 3 5, hence their poor nu-
merical performance.

Table 4 collects the computational costs of each algorithm in each test cast
in terms of number of matrix products (P), since the cost of the rest of the op-
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Table 3: Minimum, maximum and average computed parameters m and s
for Tests 1, 2 and 3.

m s
Min. Max. Average Min. Max. Average

cosmber 1 3 30 36 35.13 0 17 2.52
cosmber 1 4 30 36 34.99 0 17 2.26
cosmber 1 5 30 36 34.99 0 17 2.52

cosmber 2 3 30 36 35.13 0 17 2.52
cosmber 2 4 30 36 34.99 0 17 2.26
cosmber 2 5 30 36 34.99 0 17 2.52

cosmber 3 3 16 16 16.00 0 17 2.56
cosmber 3 4 16 20 19.26 0 17 1.80
cosmber 3 5 16 20 16.22 0 17 2.49

Table 4: Matrix products (P) for implemented codes.

P(cosmber 1 3) P(cosmber 1 4) P(cosmber 1 5)

2215 2165 2211

P(cosmber 2 3) P(cosmber 2 4) P(cosmber 2 5)

2215 2165 2211

P(cosmber 3 3) P(cosmber 3 4) P(cosmber 3 5)

1678 1542 1529

erations is negligible for big enough matrices. The lowest number of products
corresponds to implementations obtained from formula (9), after removing
the terms from odd positions (cosmber 3 x). More in detail, cosmber 3 5

achieves the lowest computational cost. Both sets of codes, those based on
formula (6) (cosmber 1 x) and those based on (9) when considering even and
odd terms (cosmber 2 x), require an identical number of matrix multiplica-
tions when the algorithm used to compute m and s (Algorithm 3, 4, or 5) is
the same.

According to the previous analysis, we conclude that the best codes for
each one of the three tests are cosmber 1 4, cosmber 2 3 and cosmber 3 4,
respectively. The choice of cosmber 2 3 and cosmber 3 4 for Test 2 and 3
is natural at the light of performance profile figures. More complicated is
the selection of cosmber 1 4 in Test 1, since its numerical performance is
very similar to that of the other codes. However, cosmber 1 4 keeps a very
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regular behaviour in the most part of the performance profile graph and the
number of matrix products required is smaller than that involved when ex-
ecuting cosmber 1 3 or cosmber 1 5. Moreover, cosmber 1 4 exhibits the
smallest average normwise relative error, calculated from all the matrices,
among the three codes compared in Test 1. Notwithstanding, the improve-
ment of cosmber 1 3 and cosmber 1 5 versus cosmber 1 4, when α takes
values greater than or equal to 4, can be justified having in mind that the
former codes have a slightly lower standard deviation than cosmber 1 4 in
the normwise relative error.

Once performed the above selection, we conducted another experiment,
named Test 4, which compares the three chosen codes with cosm, i.e. the
implementation that computes the matrix cosine function by means of the
Padé rational approximation. For this test, Figure 2 depicts the normwise
relative errors (a), the performance profiles (b), the ratio of the relative errors
(c), the order of the approximation polynomials employed (d) and the ratio of
the matrix products (e) among the different implementations now compared.

Figure 2(a) shows little differences in the relative errors incurred by the
different methods, where the vast majority takes values close to 1E-15 and,
in almost all cases, varying from 1E-9 to 1E-17.

Regarding the performance profile, as plotted in Figure 2(b), cosmber 1 4

always offers the best and highest values, which indicates that its results
are the most precise. As it can be seen in the initial part of the graph,
cosmber 2 3 presents very accurate values in the calculation of the cosine
function of a matrix, but it also provides more inaccurate results for a large
amount of cases than the other codes, giving rise to the lowest probability
in a large portion of the picture. The accuracy of the results supplied by
cosmber 3 4 and cosm is quite similar, although their computations are not
usually the most accurate compared to those offered by the other methods.

In Figure 2(c), the ratios of normwise relative errors have been presented
in decreasing order with respect to Er(cosmber 1 4)/Er(cosm). As this figure
draws, the ratio of relative errors related to cosmber 1 4 is less than 1 for the
vast majority of matrices. Clearly, cosmber 2 3 displays the largest amount
of values furthest from and above the unit, although in most cases the results
differ only slightly from those provided by cosmber 1 4 and are below 1. In
terms of cosmber 3 4, its ratio of relative errors is usually higher than that
of cosmber 1 4, with values close to unity. These data can be verified with
that exposed in Table 5, where we show the percentage of cases in which the
relative error of cosm is lower, greater or equal than that of cosmber 1 4,
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Figure 2: Experimental results for Test 4.
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Table 5: Relative error comparison among cosm versus cosmber 1 4,
cosmber 2 3 and cosmber 3 4 for Test 4.

Er(cosm)<Er(cosmber 1 4) 13.97%

Er(cosm)>Er(cosmber 1 4) 86.03%

Er(cosm)=Er(cosmber 1 4) 0.00%

Er(cosm)<Er(cosmber 2 3) 24.02%

Er(cosm)>Er(cosmber 2 3) 75.98%

Er(cosm)=Er(cosmber 2 3) 0.00%

Er(cosm)<Er(cosmber 3 4) 53.07%

Er(cosm)>Er(cosmber 3 4) 46.93%

Er(cosm)=Er(cosmber 3 4) 0.00%

cosmber 2 3, and cosmber 3 4, respectively.
As it can be appreciated, cosmber 1 4 and cosmber 2 3 both compute

the cosine function of most of the matrices included in the testbed in a
more accurate way than cosm. More in detail, the percentage of matrices in
which cosmber 1 4 and cosmber 2 3 outperform cosm is 86.03% and 75.98%,
respectively. As expected, cosmber 3 4 and cosm both offer an analogous be-
haviour, since cosmber 3 4 only outputs a better result than cosm in 46.93%
of cases.

Table 6 compares the minimum, maximum and average order (m) of the
involved approximation polynomials and the scaling parameter (s) for cosm

and the three selected codes. Whereas the order of polynomials used by
cosmber 1 4 and cosmber 2 3 presents an average around 35, this value is
very close to 20 for cosmber 3 4 or 13 for cosm. More specifically, Figure 2(d)
depicts the order of the polynomial used in the calculation of each matrix
by each code. In the case of the scaling parameter, it reaches a mean value
equal to 2.26 for cosmber 1 4, 2.52 for cosmber 2 3, 1.8 for cosmber 3 4,
and 1.91 for cosm.

Finally, with regard to the computational cost, Table 7 includes the
number of matrix products performed. The largest amount of products
(2215) was needed by cosmber 2 3, followed by cosmber 1 4 (2165) and
cosm (1987). Algorithm cosmber 3 4 gives rise to the lowest computational
cost, by requiring the least number of matrix operations (1542). These re-
sults are graphically displayed in Figure 2(e), that exposes the ratio of matrix
products of the three selected Bernoulli-based methods with respect to cosm.
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Table 6: Mininum, maximum and average computed parameters m and s for
Test 4.

m s
Min. Max. Average Min. Max. Average

cosm 6 15 12.93 0 16 1.91
cosmber 1 4 30 36 34.99 0 17 2.26
cosmber 2 3 30 36 35.13 0 17 2.52
cosmber 3 4 16 20 19.26 0 17 1.80

Table 7: Matrix products (P) for Test 4.

P(cosm) P(cosmber 1 4) P(cosmber 2 3) P(cosmber 3 4)

1987 2165 2215 1542

This ratio is greater than or equal to 1 in the calculation of almost all ma-
trices for cosmber 1 4 and cosmber 2 3, but less than or equal to 1 for all
of them in the case of cosmber 3 4.

Tackling large-scale problems is quite common in this context, where,
e.g. the number of particles modeled by the physical system under study
can be very large. Thus, to conclude our experimental analysis, we show
the performance, cast in terms of execution time, stressing cosmber 1 3,
cosmber 1 4 and cosmber 1 5 codes to deal with large problem dimensions
ranging from n = 1000 to 10000 (Fig. 3).

The nature of the computational core of this type of algorithms, i.e. ma-
trix multiplication, let us to exploit the very highly efficient implementa-
tion of this kernel in different computing environments. On the one hand,
MathWorks® MATLAB uses the Intel® MKL library and its threaded ver-
sion of this operation when executing on a CPU environment. The user is
oblivious to this fact, simply notices that the algorithm runs fast. On the
other hand, NVIDIA provides a very optimized implementation of the matrix
product for its GPUs, included in the cuBLAS library [27], a development of
BLAS (Basic Linear Algebra Subprograms) from CUDA [28].

Our aim is to provide the user with the same capability as in the multi-
core environment, i.e. in a transparent way, when a GPU is available. Our
algorithms, they all implemented in MATLAB, also can make use of the
GPU through a MEX file [29] that uploads matrix multiplications to the
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Figure 3: CPU and GPU execution time.

GPU by performing the appropriate calls to the cuBLAS library. To analyse
the computational performance of our codes, using either the CPU or the
GPU system, we have carried out experiments on a computer equipped with
two processors Intel Xeon CPU E5-2698 at 2.20 GHz featuring 20 cores each
resulting in 40 cores to operate on matrix multiplications. The computer also
features an NVIDIA Tesla P100 SMX2 (Pascal architecture) with 16 GB of
memory attached to the PCI of this computer. A GPU of this type features
56 multiprocessors with 64 CUDA cores each, resulting in a total of 3584
CUDA cores.

Apart from the fact that the GPU version performs far more better than
its CPU counterpart, we can itemize two other important ideas. Firstly,
cosmber 1 4 is the routine that performs the fastest when the problem size
increases and, secondly, this behaviour is the same on the GPU though, due
to the reduced execution time, the difference among the three codes is smaller
and difficult to appreciate graphically.
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5 Conclusions

In this paper, a new efficient method based on Bernoulli matrix polynomi-
als to compute the matrix cosine function has been presented. For that,
two series expansions of the matrix cosine, in terms of the Bernoulli matrix
polynomials, are described, one of them resulted into two different interpre-
tations. In addition, three different algorithms to compute the polynomial
order and the scaling parameter are exposed. With all of this, nine different
approaches have been built and implemented in MATLAB.

An experimental analysis, comparing all our Bernoulli-like versions among
them and with respect to cosm, a code in charge of computing the matrix co-
sine function by means of Padé rational approximation, has been performed.
The different tests carried out have demonstrated that one of these imple-
mentations, i.e. cosmber 1 4, outputs the best results, with a relative error
involved in the computation, with regard to the exact solution, which im-
proved to cosm in a 86.03% of cases, although requiring a computational cost
slightly higher.

Moreover, a CUDA version of all the algorithms, that allows executing
them on an NVIDIA GPU, has been implemented. This version exploits one
of the highlights of this approach, being based on matrix multiplications,
a very optimized operation in high performance computing environments.
Nonetheless, the results in a GPU platform does nothing else than to con-
tribute to the conclusion of the former analysis carried out on the CPU core.
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Emilio Defez. Fast Taylor polynomial evaluation for the computation of
the matrix cosine. Journal of Computational and Applied Mathematics,
354:641–650, 2019.
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