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Abstract

In this paper, we presented a novel and efficient fourth order derivative free optimal family of iterative methods for ap-
proximating the multiple roots of nonlinear equations. Initially the convergence analysis is performed for particular values
of multiple roots afterward it concludes in general form. In addition, we study several numerical experiments on real life
problems in order to confirm the efficiency and accuracy of our methods. We illustrate the applicability and compar-
isons of our methods on eigenvalue problem, Van der Waals equation of state, continuous stirred tank reactor (CSTR),
Plank’s radiation and clustering problem of roots with earlier robust iterative methods. Finally, on the basis of obtained
computational results, we conclude that our methods perform better than the existing ones in terms of CPU timing, ab-
solute residual errors, asymptotic error constants, absolute error difference between two last consecutive iterations and
approximated roots as compared to the existing ones.
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1. Introduction

Finding the novel higher-order derivative free iterative methods for nonlinear equations of the form

f(x) = 0, (1)

where f : D ⊂ C → C is an analytic function defined in D, neighborhood of the required zero ξ), is one of the most
fascinating and hard problems in the area of numerical analysis and computational mathematics. Some of the main reasons
are: the non-existence of analytical methods that give us the exact solution, the non-differentiability of function f , the
complexity of the derivative of f , etc. More details can be found in some of the standard books [1, 2, 3].

In the recent and past years, some researchers suggested derivative free methods for the simple roots of expression
(1), in their research articles [4, 5, 6, 7, 8] but not for multiple roots. Finding derivative free techniques that can handle
multiple roots is more tougher and harder problem than the simple roots. So, higher-order derivative free techniques are
in high demand and attracting the scholars in the case of multiple roots. In the recent years, some scholars proposed the
following new iterative methods in this direction.

In 2015, Hueso et al. [9], proposed a new derivative free method for multiple roots (when the multiplicity m ≥ 2 is
known in advance) of nonlinear equations, which is given by

yj = xj −m
f(xj)

f [µj , xj ]
,

xj+1 = xj −
(
a1 + a2h(yj , xj) + a3h(xj , yj) + a4h(yj , xj)

2
) f(xj)

f [µj , xj ]
,

(2)

where µj = xj + f(xj)
q, q ∈ R with h(xj , yj) =

f [yj + f(yj)
q, yj ]

f [xj + f(xj)q, xj ]
and f [x, y] =

f(x)− f(y)

x− y
. The scheme (2)

attains the non-optimal fourth-order convergence for

{
q = 1, for each m ≥ 4

q ≥ 2, for all m ≥ 2
.
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In 2019 and 2020, Sharma et al. [10, 11], suggested the following two optimal fourth-order iterative schemes

zj = tj −m
f(tj)

f [sj , tj ]
,

tj+1 = zj −H(xj , yj)
f(tj)

f [sj , tj ]
,

(3)

and

zj = uj −m
f(uj)

f [vj , uj ]
,

uj+1 = zj −G(hj)

(
1

yj
+ 1

)
f(uj)

f [vj , uj ]
,

(4)

where sj = tj + βf(tj), β ∈ R, β 6= 0; xj =
(
f(zj)
f(tj)

) 1
m

, yj =
(
f(zj)
f(sj)

) 1
m

, vj = uj + βf(uj), xj =
(
f(zj)
f(uj)

) 1
m

,

yj =
(
f(vj)
f(uj)

) 1
m

and hj =
xj

xj+1 . The conditions on weight functions H and G, in order to reach order four, can be found
in [10] and [11], respectively.

Recently, in 2020, Kumar et al. [12], introduced the following optimal fourth-order derivative free iterative method
for approximating multiple roots

wj = uj −m
f(uj)

f [vj , uj ]
,

uj+1 = wj −
sj

η1 + η2sj

f(uj)

η3f [vj , uj ] + η4f [wj , vj ]
,

(5)

where η1, η2, η3, η4 are disposable parameters with vj = uj + βf(uj) and sj =
(
f(wj)
f(uj)

) 1
m

.
In this manuscript, we introduce a novel and efficient derivative free family of iterative methods for multiple roots

(m ≥ 2). The derivation of our scheme is establish on the weight function approach. The new family consume only three
evaluations of the involved function f and attaining the optimal order of convergence in the sense of classical Kung-Traub
conjecture [13]. The members of our families have the simple body structure as well as consume the lowest CPU timing
in comparison to the existing ones. In addition, we propose a main theorem which illustrate the fourth-order convergence
when the multiplicity of roots (m) is known in advance. A numerical exhibition of our family is also illustrated on
several numerical experiments which are based on the real life problems like: eigenvalue, Van der Waals equation of state,
continuous stirred tank reactor (CSTR), Plank’s radiation and roots clustering problems.

2. Construction of higher-order scheme

Here, we construct an optimal fourth-order family of iterative method for multiple zeros m ≥ 2 with simple and
compact body structure, which is defined by

ηj = xj + βf(xj),

yj = xj −m
f(xj)

f [ηj , xj ]
,

xj+1 = yj + (yj − xj)
[

1

2
µ+Q(ν)

]
,

(6)

where β ∈ Ris a nonzero real parameter and m ≥ 2 is the known multiplicity of the required zero. In addition, function

Q : C → C is analytic in the neighborhood of origin. Moreover, we considered µ =
(
f(yj)
f(ηj)

) 1
m

and ν =
(
f(yj)
f(xj)

) 1
m

two
multi-valued functions.

Suppose their principal analytic branches (see [14]), ν as a principal root given by ν = exp
[

1
m log

(
f(yj)
f(xj)

)]
, with

log

(
f(yj)

f(xj)

)
= log

∣∣∣∣ f(yj)

f(xj)

∣∣∣∣+ i arg

(
f(yj)

f(xj)

)
, for − π < arg

(
f(yj)

f(xj)

)
≤ π.
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The choice of arg(z), for z ∈ C, agrees with that of log(z) to be employed later in the section of numerical experiments.
We have an analogous way

ν =

∣∣∣∣ f(yj)

f(xj)

∣∣∣∣ 1
m

exp

[
1

m
arg

(
f(yj)

f(xj)

)]
= O(ej).

In the following result, we illustrate that the constructed scheme (6) attains maximum fourth-order of convergence for
all β ∈ R, β 6= 0, without adopting any supplementary evaluation of function or its derivative.

Theorem 1. Let x = ξ be a multiple zero, of multiplicity m = 2, of function f . Consider that f : D ⊂ C → C is an
analytic function in D surrounding the required zero ξ. Then, the presented scheme (6) has fourth-order convergence,
provided

Q(0) = 0, Q′(0) =
1

2
, Q′′(0) = 4, Q′′′(0) = κ ∈ R, (7)

and satisfies the following error equation

ej+1 = −

(
βf ′′(ξ) + 2c1

)
384

[
β2
(
f ′′(ξ)

)2
κ+ 4βf ′′(ξ)

(
κ− 9

)
c1 + 4

(
κ− 33

)
c21 + 48c2

]
e4j +O(e5j ).

Proof. Let us consider that ej = xj − ξ and ck =
2!

(2 + k)!

f (2+k)(ξ)

f (2)(ξ)
, k = 1, 2, 3, 4, are the error in jth iteration and

asymptotic error constant numbers, respectively. Now, we adopt Taylor’s series expansions for functions f(xj) and f(ηj)
around x = ξ with the assumption f(ξ) = f ′(ξ) = 0 and f ′′(ξ) 6= 0, which are given by

f(xj) =
f
′′
(ξ)

2!
e2j

(
1 + c1ej + c2e

2
j + c3e

3
j + c4e

4
j +O(e5j )

)
(8)

and

f(ηj) =
f
′′
(ξ)

2!
e2j

[
1 +

(
βf
′′
(ξ) + c1

)
ej +

1

4

(
β2
(
f ′′(ξ)

)2
+ 10βf

′′
(ξ)c1 + 4c2

)
e2j +

1

4

(
5β2
(
f ′′(ξ)

)2
c1

+ 6βf
′′
(ξ)c21 + 12βf

′′
(ξ)c2 + 4c3

)
e3j +

1

8

(
β3
(
f ′′(ξ)

)3
c1 + 14β2

(
f ′′(ξ)

)2
c21 + 16β2

(
f ′′(ξ)

)2
c2

+ 28βf
′′
(ξ)c1c2 + 28βf

′′
(ξ)c3 + 8c4

)
e4j +O(e5j )

]
,

(9)

respectively.
By using expressions (8) and (9) in scheme (6), we get

yj − ξ =
1

4

(
βf
′′
(ξ) + 2c1

)
e2j + θ0e

3
j + θ1e

4
j +O(e5j ), (10)

where

θ0 = − 1

16
β2
(
f ′′(ξ)

)2
+

1

2
βf
′′
(ξ)c1 + c2 −

3c21
4
,

θ1 =
1

64

[
β3
(
f ′′(ξ)

)3 − 10c1

(
β2
(
f ′′(ξ)

)2
+ 16c2

)
− 20βf

′′
(ξ)c21 + 64βf

′′
(ξ)c2 + 72c31 + 96c3

]
.

Expression (10) and Taylor series expansion, leads us to

f(yj) =
f
′′
(ξ)

2!
e2j

[
1

16

(
βf
′′
(ξ) + 2c1

)2
e2j −

1

32

(
βf
′′
(ξ) + 2c1

)(
β2
(
f ′′(ξ)

)2 − 8βf
′′
(ξ)c1 + 12c21 − 16c2

)
e3j

+
1

256

(
3β4
(
f ′′(ξ)

)4 − 4c1

(
7β3
(
f ′′(ξ)

)3 − 48βf
′′
(ξ)c2 − 96c3

)
+ 96β2

(
f ′′(ξ)

)2
c2

+ 32c21

(
β2
(
f ′′(ξ)

)2 − 32c2

)
− 80βf

′′
(ξ)c31 + 192βf

′′
(ξ)c3 + 464c41 + 256c22

)
e4j +O(e5j )

]
.

(11)
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From expressions (8), (9) and (11), we obtain

µ =

(
f(yj)

f(ηj)

) 1
m

=
1

4

(
βf
′′
(ξ) + 2c1

)
ej + θ̄0e

2
j + θ̄1e

3
j +O(e4j ) (12)

and

ν =

(
f(yj)

f(xj)

) 1
m

=
1

4

(
βf
′′
(ξ) + 2c1

)
ej + Θ0e

2
j + Θ1e

3
j +O(e4j ), (13)

where

θ̄0 =
−3β3

(
f ′′(ξ)

)3 − 4β2
(
f ′′(ξ)

)2
c1 − 12βf

′′
(ξ)c21 + 16βf

′′
(ξ)c2 − 32c31 + 32c1c2

16 (βf ′′(ξ) + 2c1)
,

θ̄1 =
1

64

(
7β3
(
f ′′(ξ)

)3 − 22β2
(
f ′′(ξ)

)2
c1 − 14βf

′′
(ξ)c21 + 24βf

′′
(ξ)c2 + 116c31 − 208c1c2 + 96c3

)
,

Θ0 =
−β3

(
f ′′(ξ)

)3
+ 4β2

(
f ′′(ξ)

)2
c1 − 4βf

′′
(ξ)c21 + 16βf

′′
(ξ)c2 − 32c31 + 32c1c2

16 (βf ′′(ξ) + 2c1)
,

Θ1 =
1

64

(
β3
(
f ′′(ξ)

)3 − 6β2
(
f ′′(ξ)

)2
c1 − 22βf

′′
(ξ)c21 + 56βf

′′
(ξ)c2 + 116c31 − 208c1c2 + 96c3

)
.

Next, from expression (13), ν = O(ej). Then, we expand the weight function Q(ν) in the neighborhood of origin (0)
as:

Q(ν) ≈ Q(0) +Q′(0)ν +
1

2!
Q′′(0)ν2 +

1

3!
Q′′′(0)ν3. (14)

By using expressions (8)–(14) in (6), we have

ej+1 = −Q(0)ej +

2∑
i=0

Aie
i+2
j +O(e5j ), (15)

where Ai = Ai(f
′′
(ξ), β, c1, c2, c3, c4, Q(0), Q′(0), Q′′(0), Q′′′(0)), i = 0, 1, 2. For example, first coefficient explicitly

written as
A0 =

1

8

(
2Q(0)− 2Q′(0) + 1

)(
βf
′′
(ξ) + 2c1

)
.

By (15), we deduce at least second-order convergence, provided

Q(0) = 0. (16)

From expression (16) and A0 = 0, we have

1

8

(
1− 2Q′(0)

)(
βf
′′
(ξ) + 2c1

)
= 0, (17)

which further yield

Q′(0) =
1

2
. (18)

By using expressions (16) and (18) in A1 = 0, we get

− 1

32

(
Q′′(0)− 4

)(
βf
′′
(ξ) + 2c1

)2
= 0, (19)

which further have
Q′′(0) = 4. (20)

The asymptotic error constant term is obtained if we insert (16), (18) and (20) in (15). Then, we have

ej+1 = −

(
βf ′′(ξ) + 2c1

)
384

[
β2
(
f ′′(ξ)

)2
κ+ 4βf ′′(ξ)

(
κ− 9

)
c1 + 4

(
κ− 33

)
c21 + 48c2

]
e4j +O(e5j ), (21)

where κ = Q′′′(0) ∈ R.
Expression (21) demonstrates maximum fourth-order convergence for all β, β 6= 0, with three evaluations of function

f . Hence, our scheme (6) has an optimal convergence order as stated in conjecture given by Kung and Traub.
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Theorem 2. Adopting the same hypotheses of Theorem 1, then the proposed class (6) has fourth-order convergence for
multiple roots of multiplicity m = 3.

Proof. We adopt Taylor’s series expansions for functions f(xj) and f(ηj) around x = ξ with the assumption f(ξ) =
f ′(ξ) = f ′′(ξ) = 0 and f ′′′(ξ) 6= 0, which are defined as follow:

f(xj) =
f
′′′

(ξ)

3!
e3j

(
1 + b1ej + b2e

2
j + b3e

3
j + b4e

4
j +O(e5j )

)
(22)

and

f(ηj) =
f
′′′

(ξ)

3!
e3j

[
1 + b1ej +

1

2

(
βf
′′′

(ξ) + 2b2

)
e2j +

(
7

6
βf
′′′

(ξ)b1 + b3

)
e3j +O(e4j )

]
, (23)

where bi =
3!

(3 + i)!

f (3+i)(ξ)

f (3)(ξ)
, i = 1, 2, 3, 4, are asymptotic error constant numbers.

By using expressions (22) and (23) in scheme (6), we get

yj − ξ =
b1
3
e2j +

1

18

(
3βf

′′′
(ξ)− 8b21 + 12b2

)
e3j +

(
1

9
b1

(
2βf

′′′
(ξ)− 13b2

)
+

16b31
27

+ b3

)
e4j +O(e5j ). (24)

Expression (24) and Taylor series expansion, leads us to

f(yj) =
f
′′′

(ξ)

3!
e3j

[
b31
27
e3j +

1

54
b21

(
3βf

′′′
(ξ)− 8b21 + 12b2

)
e4j +O(e5j )

]
. (25)

By adopting expressions (22), (23) and (25), we obtain

µ =

(
f(yj)

f(ηj)

) 1
m

=
b1
3
ej +

1

18b21

(
3βf

′′′
(ξ)b21 − 10b41 + 12b2b

2
1

)
e2j +

1

27

(
3βf

′′′
(ξ)b1 + 23b31 − 48b2b1

+ 27b3

)
e3j +O(e4j )

(26)

and

ν =

(
f(yj)

f(xj)

) 1
m

=
b1
3
ej +

1

18b21

(
3βf

′′′
(ξ)b21 − 10b41 + 12b2b

2
1

)
e2j +

1

54

(
9βf

′′′
(ξ)b1 + 46b31

− 96b2b1 + 54b3

)
e3j +O(e4j ).

(27)

Next, from expression (27), we have ν = O(eσ). Then, we expand the weight function Q(ν) in the neighborhood of
origin (0) as:

Q(ν) = Q(0) +Q′(0)ν +
1

2!
Q′′(0)ν2 +

1

3!
Q′′′(0)ν3. (28)

By using expressions (22)–(28) in equation (6), we have

ej+1 = −Q(0)ej +

2∑
i=0

Bie
i+2
j +O(e5j ), (29)

where Bi = Bi(f
′′′

(ξ), β, b1, b2, b3, b4, Q(0), Q′(0), Q′′(0), Q′′′(0)), i = 0, 1, 2. For example, first coefficient explicitly
written as

B0 =
1

6
(2Q(0)− 2Q′(0) + 1)b1.

By (29), we deduce at least second-order convergence, provided

Q(0) = 0. (30)

From equation (30) and B0 = 0, we have

1

6

(
1− 2Q′(0)

)
b1 = 0, (31)
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which further yield

Q′(0) =
1

2
. (32)

By using expressions (30) and (32) in B1 = 0, we get

− 1

18

(
Q′′(0)− 4

)
b21 = 0, (33)

which further have
Q′′(0) = 4. (34)

The asymptotic error constant term is obtained if we insert (30), (32) and (34) in (29). Then, we have

en+1 = − b1
324

[
2(κ− 36)b21 + 9βf

′′′
(ξ) + 36b2

]
e4j +O(e5j ), (35)

where κ = Q′′′(0) ∈ R. Hence, we have proved that scheme (6) has fourth-order convergence for m = 3.
In a same way as before the following result can be established.

Theorem 3. Adopting the same hypotheses of Theorem 1, the family of iterative methods given by (6) is of fourth-order
convergence for m = 4, 5, 6. It satisfies the error equations for m = 4, 5 and m = 6, which are given by, respectively

ej+1 = − 1

384

(
(κ− 39)p31 + 24p1p2

)
e4j +O(e5j ),

ej+1 = − 1

750

(
(κ− 42)q31 + 30q1q2

)
e4j +O(e5j ),

and

ej+1 = − 1

1296

(
(κ− 45)r31 + 36r1r2

)
e4j +O(e5j ),

where pi =
4!

(4 + i)!

f (4+i)(ξ)

f (4)(ξ)
, qi =

5!

(5 + i)!

f (5+i)(ξ)

f (5)(ξ)
and ri =

6!

(6 + i)!

f (6+i)(ξ)

f (6)(ξ)
, i = 1, 2, 3, 4.

2.1. Error for the general form of class (6)

Now, let us prove a result similar to Theorem 1 for an arbitrary multiplicity m, m ≥ 4.

Theorem 4. Adopting the same hypotheses of Theorem 1, the iterative schemes given by (6) are of fourth-order conver-
gence for m ≥ 4. In this case, its error equation is

ej+1 = − 1

6m3

[(
κ− 3(m+ 9)

)
s31 + 6ms1s2

]
e4j +O(e5j ).

Proof. Let us consider that ej = xj − ξ and sk =
m!

(m+ k)!

f (m+k)(ξ)

f (m)(ξ)
, k = 1, 2, 3, 4 are the error in jth iteration

and asymptotic error constant numbers, respectively. Now, we adopt Taylor’s series expansions for functions f(xj) and
f(ηj) around x = ξ with the assumption f(ξ) = f ′(ξ) = . . . = f (m−1)(ξ) = 0 and f (m)(ξ) 6= 0, which are given by,
respectively,

f(xj) =
f (m)(ξ)

m!
emj

(
1 + s1ej + s2e

2
j + s3e

3
j + s4e

4
j +O(e5j )

)
(36)

and

f(ηj) =
fm(ξ)

m!
emj

[
1 +

2∑
i=0

∆ie
i+2
j O(e5j )

]
, (37)

where ∆i = ∆i(m, f
(m)(ξ), β, s1, s2, s3, s4), i = 0, 1, 2. For example, the first three coefficients explicitly written are

∆0 = s1, ∆1 = s2 and

∆2 =


1

6

(
βf (4)(ξ) + 6∆3

)
, m = 4

s3, m ≥ 5
.

6



By using expressions (36) and (37) in (6), we get

eyj = yj − ξ =
s1
m
e2j +

1

m2

(
2ms2 − (1 +m)s21

)
e3j +

1

m3

(
3m2s3 + (m+ 1)2s31 −m(3m+ 4)s2s1

)
e4j

+O(e5j ).
(38)

Expression (38) and Taylor series expansion, leads us to

f(yj) =
f (m)(ξ)

m!
emyj

[
1 + s1eyj + s2e

2
yj + s3e

3
yj + s4e

4
yj +O(e5j )

]
. (39)

By adopting expressions (36), (37) and (39), we obtain

µ =

(
f(yj)

f(ηj)

) 1
m

=
s1
m
ej +

1

m2

(
2ms2 − (m+ 2)s21

)
e2j +

1

2m3

(
(2m2 + 7m+ 7)s31 − 2m(3m+ 7)s1s2

+ 6m2s3

)
e3j +O(e4j )

(40)

and

ν =

(
f(yj)

f(xj)

) 1
m

=
s1
m
ej +

(
2

m
s2 −

(m+ 2)

m2
s21

)
e2j +

1

2m3

[
(2m2 + 7m+ 7)s31 − 2m(3m+ 7)s1s2

+ 6m2s3

]
e3j +

1

3m4

[
−
(

11m2

2
+

33m

2
+ 14

)
s41 − 12m2s3s1 + 3m(6m+ 11)s2s

2
1

− 6m2s22

]
e4j +O(e5j ).

(41)

Next, from expression (41), ν = O(eσ). Then, we expand the weight function Q(ν) in the neighborhood of origin (0)
as:

Q(ν) = Q(0) +Q′(0)ν +
1

2!
Q′′(0)ν2 +

1

3!
Q′′′(0)ν3. (42)

By using expressions (36)–(42) in (6), we have

ej+1 = −Q(0)ej +

2∑
i=0

Ωie
i+2
j +O(e5j ), (43)

where Ωi = Ωi(m, f
(m)(ξ), β, s1, s2, s3, s4, Q(0), Q′(0), Q′′(0), Q′′′(0)), i = 0, 1, 2. For example, the first coefficient

explicitly written is

Ω0 =
1

2m

(
2Q(0)− 2Q′(0) + 1

)
.

By (43), we deduce at least second-order convergence, provided

Q(0) = 0. (44)

From the expression (44) and Ω0 = 0, we have

1

2m

(
1− 2Q′(0)

)
= 0, (45)

which further yield

Q′(0) =
1

2
. (46)

By using expressions (44) and (46) in Ω1 = 0, we get

− 1

2m2

(
Q′′(0)− 4

)
s21 = 0, (47)
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which further have
Q′′(0) = 4. (48)

The asymptotic error constant term is obtained if we insert (44), (46) and (48) in (43). Then, we have

ej+1 = − 1

6m3

[(
κ− 3(m+ 9)

)
s31 + 6ms1s2

]
e4j +O(e5j ). (49)

The expression (49) demonstrates the maximum fourth-order convergence for all β, κ ∈ R by consuming only three
distinct evaluations of f . Hence, the proposed schemes (6) have an optimal convergence order as stated in conjecture
given by Kung-Traub.

Remark 1. No doubts from the expression (49) (for m ≥ 4) that β is not appearing there. Actually, it appears with
the coefficient of e5j . But, we don’t need the calculation of the coefficient of e5j in order to prove optimal fourth-order
convergence. On the other hand, it is quite hard to calculate and time consuming task. However, the role of β and κ can
be found in the expressions (21) and (35) for m = 2 and m = 3, respectively.

3. Some Special cases of class (6)

Here, some of the special cases are generated from proposed class (6), by using different weight functions Q(ν) that
satisfies the conditions of Theorem 1–4.

1. Consider Q(ν) = 2ν2 +
ν

2
, then, we have the following iterative method

yj = xj −m
f(xj)

f [ηj , xj ]
,

xj+1 = yj + (yj − xj)
[

1

2
µ+ 2ν2 +

ν

2

]
.

(50)

2. Assume Q(ν) = − ν

2(4ν − 1)
, which further leads to

yj = xj −m
f(xj)

f [ηj , xj ]
,

xj+1 = yj + (yj − xj)
[

1

2
µ− ν

2(4ν − 1)

]
,

(51)

another new iterative scheme for multiple roots.

3. Suppose Q(ν) =
ν

2 (a1ν2 − 4ν + 1)
, then, we have the new scheme

yj = xj −m
f(xj)

f [ηj , xj ]
,

xj+1 = yj + (yj − xj)
[

1

2
µ+

ν

2 (a1ν2 − 4ν + 1)

]
, a1 ∈ R.

(52)

4. Let us assume another weight function Q(ν) =
ν(2a2ν + 1)

4(a2 − 2)ν + 2
, which further yields

yj = xj −m
f(xj)

f [ηj , xj ]
,

xj+1 = yj + (yj − xj)
[

1

2
µ+

ν(2a2ν + 1)

4(a2 − 2)ν + 2

]
, a2 ∈ R,

(53)

an another new parametric family of iterative methods for multiple roots.
Similarly, many more new methods can be introduced by adopting different weight functions Q(ν) that satisfy the
conditions of Theorems in 1–4.
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4. Numerical experimentation

This section is devoted to confirm the efficiency and convergence of our suggested family (6). Therefore, we consider

the particular methods (50), (51) and (53)
(

for a2 =
7−m

8

)
, denoted by OM1, OM2 and OM3, respectively, with(

β = 1
2

)
in all cases. Here, we consider several numerical experiments based on real life problems like eigenvalue

problem, Van der Waals equation of state, continuous stirred tank reactor (CSTR), Plank’s radiation and clustering of
roots. The details of these numerical examples can be found in examples (1)–(5).

In Tables 1 – 5, we depict the approximated root (only up to 15 significant digits), absolute residual errors (only

up to two significant digits with exponent), asymptotic error constants
‖xj+1 − xj‖
‖xj − xj−1‖4

(only up to 6 significant digits

with/without exponent), absolute error differences between two consecutive iteration (only up to two significant digits
with exponent), due to the page restriction. However, we consider several number of significant digits (minimum 3000
significant digits) in order to minimize the rounding off errors. In addition, we also calculate the computational order of
convergence based on the following formula

ρ =
ln
‖xj+1−ξ‖
|xj−ξ‖

ln
‖xj−ξ‖
‖xj−1−ξ‖

, for each j = 1, 2, . . . (54)

Finally, we calculate the CPU timing and results are depicted in Table 6. These results are obtained by adopting the
command “AbsoluteTiming[]” in Mathematica 9. We run the same program for five times and mentioned their average
in Table 6. We adopted Mathematica 9 with multiple precision arithmetic for calculating the required values. In the
Tables 1–5, the meaning of b1(±b2) is b1 × 10(±b2).

The configurations of the used computer are given below:
Processor: Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz,
Made: HP,
RAM: 8:00GB,
System type: 64-bit-Operating System, x64-based processor.

We choose five existing robust optimal fourth-order methods for comparisons. Firstly, we make a contrast of our
methods with the following fourth-order optimal scheme suggested by Kumar et al. [12]:

wj = uj −m
f(uj)

f [vj , uj ]
,

uj+1 = wj −
(m+ 2)sj

1− 2sj

f(uj)

f [vj , uj ] + 2f [wj , vj ]

(55)

where vj = uj + βf(uj), sj =

(
f(wj)

f(uj)

) 1
m

, is called by KS (for β = 0.5).

Further, we contrast the same with the optimal schemes given by Sharma et al. [10], which are defined as follow:

zj = tj −m
f(tj)

f [sj , tj ]
,

tj+1 = zj −
(
mxjyj +mx2j + (m− 1)yj + xj

) f(tj)

f [sj , tj ]

(56)

and

zj = tj −m
f(tj)

f [sj , tj ]
,

tj+1 = zj −

(
xj − yj +myj −m2xjyj + 2mxjyj

−mxj + x2j + 1

)
f(tj)

f [sj , tj ]
,

(57)

where sj = tj + βf(tj), xj =

(
f(zj)

f(tj)

) 1
m

and yj =

(
f(zj)

f(sj)

) 1
m

. The above expressions are one of their best schemes

claimed by Sharma et al. [10]. For particular β = 0.5, the previous schemes are denoted by SS1 and SS2, respectively.
Furthermore, we compare them with the following two optimal methods constructed by Kumar et al. [11]:
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zj = uj −m
f(uj)

f [vj , uj ]
,

uj+1 = zj −
mhj(m− 2hj)

2
(
2mh2j − hj(3m+ 2) +m

) ( 1

yj
+ 1

)
f(uj)

f [vj , uj ]

(58)

and

zj = uj −m
f(uj)

f [vj , uj ]
,

uj+1 = zj −
hj(3− hj)m

6− 20hj

(
1

yj
+ 1

)
f(uj)

f [vj , uj ]

(59)

where vj = uj + βf(uj), xj =

(
f(zj)

f(uj)

) 1
m

and yj =

(
f(vj)

f(uj)

) 1
m

, with hj =
xj

xj + 1
. The expressions (58) and (59)

are one of their best methods claimed by them. We called them by KS1 and KS2, respectively, with β = 0.5.

Example 1. Eigenvalue problem
Finding the eigenvalues of a large matrix is a difficult task in the field of linear algebra. The linear algebra approach

is not always feasible. So, one of the best way is to use numerical techniques. Here, we consider the following square
matrix of order 9:

A =
1
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-12 0 0 19 -19 76 -19 18 437
-64 24 0 -24 24 64 -8 32 376
-16 0 24 4 -4 16 -4 8 92
-40 0 0 -10 50 40 2 20 242
-4 0 0 -1 41 4 1 2 25

-40 0 0 18 -18 104 -18 20 462
-84 0 0 -29 29 84 21 42 501
16 0 0 -4 4 -16 4 16 -92
0 0 0 0 0 0 0 0 24


,

whose characteristic equation is modeled into nonlinear equation as

f1(x) = x9 − 29x8 + 349x7 − 2261x6 + 8455x5 − 17663x4 + 15927x3 + 6993x2 − 24732x + 12960.

A root of this equation is ξ = 3 with multiplicity m = 4. Table 1 depicts the computational results by taking initial
guess x0 = 3.5.

Our methods OM1, OM2 and OM3 have same approximated roots and same absolute error difference between two
consecutive iterations in compare to the existing schemes. In addition, methods OM2 and OM3 have higher computa-
tional order of convergence among all the mentioned methods.

Example 2. Van der Waals equation of state(
P +

a1n
2

V 2

)
(V − na2) = nRT,

describes the nature of a real gas between two gases namely, a1 and a2 when we introduce the ideal gas equations. For
calculating the volume V of gases, we need the solution of preceding expression in terms of remaining constants

PV 3 − (na2P + nRT )V 2 + α1n
2V − α1α2n

2 = 0.

For choosing the particular values of gases α1 and α2, we can easily obtain the values for n, P and T . Then, we yield

f2(x) = x3 − 5.22x2 + 9.0825x− 5.2675.

The function f2 having 3 zeros and among them: ξ = 1.75 is a multiple zero of multiplicity m = 2 and ξ = 1.72 is
a simple zero. The computational results by adopting starting guess x0 = 2.0 for the required zero ξ = 1.75, are given in
the Table 2.

Based on the obtained results, we conclude that our method OM3 has the least absolute residual error and absolute
error difference between two consecutive iterations as compared to the other mentioned methods. In addition, it also
shows the stable computational order of convergence.
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Table 1: Convergence behavior of different methods on eigenvalue problem f1

Methods j xj ‖xj+1 − xj‖ ‖f(xj)‖ ρ
‖xj+1−xj‖
‖xj−xj−1‖4

KS

1 2.98003995753693 2.0(−2) 1.3(−5)

2 3.00000000783350 7.8(−9) 3.0(−31) 9.63863(+1)

3 3.00000000000000 2.9(−17) 5.8(−65) 1.316 4.93525(−2)

SS1

1 2.98048789485049 2.0(−2) 1.2(−5)

2 3.00000000492928 4.9(−9) 4.7(−32) 1.14425(+2)

3 3.00000000000000 1.2(−17) 1.4(−66) 1.308 2.03699

SS2

1 2.97977318565461 2.0(−2) 1.4(−5)

2 3.00000002569087‘ 2.6(−8) 3.5(−29) 1.20509(+2)

3 3.00000000000000 3.1(−16) 7.7(−61) 1.342 8.99188

KS1

1 2.98013951815471 2.0(−2) 1.3(−5)

2 3.00000002608467 2.6(−8) 3.7(−29) 1.17369(+2)

3 3.00000000000000 3.7(−29) 8.7(−61) 1.344 9.93570

KS2

1 2.98028470211794 2.0(−2) 1.2(−5)

2 3.00000002141616 2.1(−8) 2.1(−8) 1.16134(+2)

3 3.00000000000000 2.2(−16) 1.8(−61) 1.340 8.43820

OM1

1 2.98060140187230 1.9(−2) 1.2(−5)

2 3.00000001183796 1.2(−8) 1.6(−30) 9.54495(+1)

3 3.00000000000000 6.7(−17) 1.6(−63) 1.328 8.35977(−2)

OM2

1 2.97976872816216 2.0(−2) 1.4(−5)

2 3.00000003737290 3.7(−8) 1.6(−28) 9.68176(+1)

3 3.00000000000000 6.6(−16) 1.5(−59) 1.352 2.23080(−1)

OM3

1 2.97998520031377 2.0(−2) 1.3(−5)

2 3.00000003134086 3.1(−8) 7.7(−29) 9.64745(+1)

3 3.00000000000000 4.7(−16) 3.8(−60) 1.348 1.95300(−1)
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Table 2: Convergence behavior of different methods on Van der waals problem f2

Methods j xj ‖xj+1 − xj‖ ‖f(xj)‖ ρ
‖xj+1−xj‖
‖xj−xj−1‖4

KS

1 1.75173443192182 1.7(−3) 9.5(−8)

2 1.75000003709553 3.7(−8) 4.1(−17) 3.19594(+2)

3 1.75000000000000 8.8(−27) 2.3(−54) 3.989 4.09949(+3)

SS1

1 1.75310030071776 3.1(−3) 3.2(−7)

2 1.75000147880784 1.5(−6) 6.6(−14) 1.46364(+2)

3 1.75000000000000 1.2(−19) 4.5(−40) 3.939 7.42318

SS2

1 1.75233138059653 2.3(−3) 1.8(−7)

2 1.75000025958081 2.6(−7) 2.0(−15) 8.78843(+1)

3 1.75000000000000 5.3(−23) 8.3(−47) 3.970 3.40317

KS1

1 1.75145379531864 1.5(−3) 6.6(−8)

2 1.75000001017186 1.0(−8) 3.1(−18) 4.21235(+1)

3 1.75000000000000 2.5(−29) 1.8(−59) 3.999 7.13151(−1)

KS2

1 1.75140121500918 1.4(−3) 6.2(−8)

2 1.75000000858279 8.6(−9) 2.2(−18) 3.99562(+1)

3 1.75000000000000 1.3(−29) 4.7(−60) 3.997 6.88266(−1)

OM1

1 1.75309730578006 3.1(−3) 3.2(−7)

2 1.75000147342676 1.5(−6) 6.5(−14) 6.39715(+2)

3 1.75000000000000 1.2(−19) 4.3(−40) 3.940 1.60405(+4)

OM2

1 1.74792039281209 2.3(−3) 1.2(−7)

2 1.75017553497394 1.8(−4) 9.3(−10) 3.06551(+2)

3 1.74999999998922 1.1(−11) 3.5(−24) 6.504 6.78685(+6)

OM3

1 1.75101278063150 1.0(−3) 3.2(−8)

2 1.75000000018765 1.9(−10) 1.1(−21) 1.75867(+2)

3 1.75000000000000 2.1(−38) 1.3(−77) 4.153 1.78359(+2)
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Example 3. Continuous stirred tank reactor (CSTR)
Here, we assume an isothermal continuous stirred tank reactor (CSTR) problem. Let us consider that components M1

and M2 stands for fed rates to the reactors B1 and B2 −B1, respectively. Then, we obtain the following reaction scheme
in the reactor ( for the details see [15]):

M1 +M2 → B1,

B1 +M2 → C1,

C1 +M2 → D1,

C1 +M2 → E1.

Douglas [16] studied the above model, when he was designing a simple model for feedback control systems. He
converted the above model in to the following mathematical expression:

RC1

2.98(x+ 2.25)

(x+ 1.45)(x+ 2.85)2(x+ 4.35)
= −1,

where RC1
is the gain of proportional controller. The expression (60) is balanced for the negative real values of values of

RC1
. In particular, by choosing RC1

= 0, we yield

f3(x) = x4 + 11.50x3 + 47.49x2 + 83.06325x+ 51.23266875. (60)

The zeros of function f3 are known as the poles of the open-loop transfer function. The function f3 has four zeros
γ = −1.45,−2.85,−2.85,−4.35. But, we choose γ = −2.85 as the required zero with multiplicity m = 2. We assume
x0 = −2.8 as the starting point for f3 and results are mentioned in the Table 3.

Table 3: Convergence behavior of different methods on CSTR problem f3

Methods j xj ‖xj+1 − xj‖ ‖f(xj)‖ ρ
‖xj+1−xj‖
‖xj−xj−1‖4

KS

1 −2.85309218936353 3.1(−3) 2.0(−5)

2 −2.84999999997525 2.5(−11) 1.3(−21) 3.89174(+2)

3 −2.85000000000000 6.7(−22) 9.5(−43) 1.305 2.70769(−1)

SS1

1 −2.85308590593325 3.1(−3) 2.0(−5)

2 −2.85000000004208 4.2(−11) 3.7(−21) 2.96502(+3)

3 −2.85000000000000 1.5(−42) 4.5(−84) 3.999 2.85278

SS2

1 −2.85308999319490 3.1(−3) 2.0(−5)

2 −2.84999999999768 2.3(−12) 1.1(−23) 2.96996(+3)

3 −2.85000000000000 5.9(−24) 7.3(−47) 1.271 1.56209(−1)

KS1

1 −2.85309291853761 3.1(−3) 2.0(−5)

2 −2.84999999996770 3.2(−11) 2.2(−21) 2.97345(+3)

3 −2.85000000000000 1.1(−21) 2.8(−42) 1.309 2.17017

KS2

1 −2.85309294673949 3.1(−3) 2.0(−5)

2 −2.84999999996768 3.2(−11) 2.2(−21) 2.97348(+3)

3 −2.85000000000000 1.1(−21) 2.8(−42) 1.309 2.17130

OM1

1 −2.85308349814459 3.1(−3) 2.0(−5)

2 −2.85000000001372 1.4(−11) 4.0(−22) 3.88334(+2)

3 −2.85000000000000 5.4(−45) 6.2(−89) 4.000 1.51755(−1)

OM2

1 −2.85309503996439 3.1(−3) 2.0(−5)

2 −2.84999999989344 1.1(−10) 2.4(−20) 3.89449(+2)

3 −2.85000000000000 1.2(−20) 3.3(−40) 1.331 1.16129

OM3

1 −2.85309111881677 3.1(−3) 2.0(−5)

2 −2.84999999993161 6.8(−11) 9.8(−21) 3.89070(+2)

3 −2.85000000000000 5.1(−21) 5.5(−41) 1.323 7.49503(−1)
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From the results presented in Table 3, we deduce that our method OM1 perform far better than the existing ones in
terms of absolute errors difference between two iterations, absolute residual error and computational order of convergence.
We can clearly see from the approximated root that OM1 converges faster to the required root than the other depicted
methods.

Example 4. Planck’s radiation problem
Consider the Planck’s radiation equation that determines the spectral density of electromagnetic radiations released

by a black-body at a given temperature, and at thermal equilibrium [17] as

G(y) =
8πchy−5

e
ch

ykT − 1
,

where T , y, k, h, and c denotes the absolute temperature of the black-body, wavelength of radiation, Boltzmann constant,
Plank’s constant, and speed of light in the medium (vacuum), respectively. To evaluate the wavelength y which results to
the maximum energy density G(y), set G′(y) = 0. We obtained the equation(

ch
ykT

)
e

ch
ykT

e
ch

ykT − 1
= 5.

Further, the nonlinear equation is formulated by setting x =
ch

ykT
as follows:

f4(x) =
(
e−x − 1 +

x

5

)3
.

The root of this equation is γ ≈ 4.96511423174428 of multiplicity m = 3 and with this root one can easily find the

wave length y from the relation x =
ch

ykT
. The Planck’s problem is tested with initial guess x0 = 5.4 and computational

results are depicted in Table 4.
The results shown in Table 4 confirm that our method OM2 perform far better than the existing ones in the terms

of absolute errors difference between two iterations, absolute residual error and computational order of convergence. In
addition, it have the least asymptotic error constant as compare to other mentioned methods.

Example 5. Root clustering problem
We picked a root clustering problem (the details can be found in Zeng [18])

f5(x) = (x− 2)15(x− 4)5(x− 3)10(x− 1)20. (61)

In the above function, we have four multiple zeros x = 1, 2, 3 and 4 with multiplicities 20, 15, 10 and 5, respectively.
All multiple zero are quite close to each other. We chose x = 2 multiple zero of multiplicity 15 for the computational
point of view. The computational results by adopting the initial approximation x0 = 2.1 are depicted in Table 5.

From Table 5, we deduce that our method OM2 perform far better than the existing ones in the terms of absolute
errors difference between two iterations, absolute residual error and computational order of convergence. In addition, it
have the lowest asymptotic error constant as compare to the all mentioned methods.

Finally, in Table 6 we show the computational time of each of the methods used in the different examples above. In
this table, the meaning of T.T. and A.T. are total time and average time, respectively. We can observe that the best times,
both total and average, are provided by the methods proposed in this manuscript.

5. Concluding Remarks

In this study, we have proposed a novel and efficient fourth-order derivative free family of iterative methods for
multiple roots (m ≥ 2) of nonlinear equations. The presented schemes are stand on the weight function approach. By
choosing new weight functions, we can easily construct several new or existing iterative methods.

It is important to note down that our class (6), uses only three distinct functional evaluations at each iteration. Thus, it
has optimal fourth-order convergence in sense of the classic Kung–Traub conjecture.

We find from the numerical experimentation that our methods OM1, OM2 and OM3 have better numerical results
in contrast to KS,SS1, SS2,KS1 and KS2 in Examples 2–5, in the terms of absolute errors difference between two
iterations, absolute residual error and computational order of convergence. Our methods OM1, OM2 and OM3 have
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Table 4: Convergence behavior of different methods on Planck’s radiation problem f4

Methods j xj ‖xj+1 − xj‖ ‖f(xj)‖ ρ
‖xj+1−xj‖
‖xj−xj−1‖4

KS

1 4.96511652308559 2.3(−6) 8.7(−20)

2 4.96511423174428 2.8(−27) 1.6(−82) 6.40617(−5)

3 4.96511423174428 6.3(−111) 1.8(−333) 4.000 1.01708(−4)

SS1

1 4.96511673344157 2.5(−6) 1.1(−19)

2 4.96511423174428 4.6(−27) 6.9(−82) 2.54544(+1)

3 4.96511423174428 5.1(−110) 9.6(−331) 4.000 197740(+1)

SS2

1 4.96511613241687 1.9(−6) 4.9(−20)

2 4.96511423174428 1.1(−27) 1.1(−83) 1.93389(+1)

3 4.96511423174428 1.5(−112) 2.3(−338) 4.000 1.47339(+1)

KS1

1 4.96511580759512 1.6(−6) 2.8(−20)

2 4.96511423174428 4.7(−28) 7.5(−85) 1.60339(+1)

3 4.96511423174428 3.8(−114) 3.8(−343) 4.000 1.29392(+1)

KS2

1 4.96511592838008 1.7(−6) 3.5(−20)

2 4.96511423174428 6.8(−28) 2.3(−84) 1.72629(+1)

3 4.96511423174428 1.8(−113) 4.0(−341) 4.000 1.39392(+1)

OM1

1 4.96511639458599 2.2(−6) 7.3(−20)

2 4.96511423174428 2.3(−27) 9.0(−83) 6.04690(−5)

3 4.96511423174428 3.1(−111) 2.1(−334) 4.000 1.05906(−4)

OM2

1 4.96511542365886 1.2(−6) 1.2(−20)

2 4.96511423174428 1.2(−28) 1.2(−86) 3.33234(−5)

3 4.96511423174428 1.2(−116) 1.1(−350) 4.000 5.86773(−5)

OM3

1 4.96511567121202 1.4(−6) 2.1(−20)

2 4.96511423174428 3.0(−28) 2.0(−85) 4.02445(−5)

3 4.96511423174428 5.9(−115) 1.5(−345) 4.0000 7.04845(−5)
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Table 5: Convergence behavior of different methods on root clustering problem f5

Methods j xj ‖xj+1 − xj‖ ‖f(xj)‖ ρ
‖xj+1−xj‖
‖xj−xj−1‖4

KS

1 2.00003020108641 3.0(−5) 5.1(−67)

2 2.00000000000000 4.9(−19) 6.2(−274) 3.02376(−1)

3 2.00000000000000 3.2(−74) 1.4(−1101) 4.000 5.83228(−1)

SS1

1 2.00003890701229 3.9(−5) 2.3(−65)

2 2.00000000000000 2.5(−18) 2.7(−263) 3.33065(+1)

3 2.00000000000000 4.1(−71) 5.1(−1055) 4.000 8.67022

SS2

1 1.99993731903336 6.3(−5) 2.9(−62)

2 2.00000000388735 + 4.1(−10)i 3.9(−9) 2.4(−125) 5.37703(+1)

3 2.00000000000000 + 2.41(−34)i 5.9(−34) 1.3(−497) 5.902 2.02363(+9)

KS1

1 2.00002793705549 2.8(−5) 1.6(−67)

2 2.00000000000000 2.8(−19) 1.6(−277) 2.38980(+1)

3 2.00000000000000 2.8(−75) 1.5(−1117) 4.000 3.66841

KS2

1 2.00003379654677 3.4(−5) 2.7(−66)

2 2.00000000000000 1.0(−18) 4.4(−269) 2.89217(+1)

3 2.00000000000000 8.5(−73) 3.0(−1080) 4.000 6.26933

OM1

1 2.00003890701229 3.9(−5) 2.3(−65)

2 2.00000000000000 2.5(−18) 2.7(−263) 3.89676(−1)

3 2.00000000000000 4.1(−71) 5.1(−1055) 4.000 1.08291

OM2

1 2.00002041197111 2.0(−5) 1.4(−69)

2 2.00000000000000 1.4(−20) 8.2(−297) 2.04286(−1)

3 2.00000000000000 3.7(−81) 9.1(−1206) 4.000 8.33951(−2)

OM3

1 2.00000932410079 9.3(−6) 1.1(−74)

2 2.00000000000000 3.1(−21) 9.5(−307) 9.32758(−2)

3 2.00000000000000 + 1.0(−42)i 9.9(−42) 2.6(−614) 1.325 4.16587(−1)

Table 6: CPU timing of distinct iterative schemes

I.M. Ex.(1) Ex.(2) Ex. (3) Ex. (4) Ex. (5) T.T. A.T.

KS 0.059216 0.00100 0.001000 0.071049 0.021157 0.153422 0.0306844

SS1 0.052139 0.000998 0.001001 0.056041 0.019011 0.12919 0.025838

SS2 0.054030 0.001000 0.001000 0.053054 0.043776 0.15286 0.030572

KS1 0.054752 0.000998 0.001001 0.051036 0.031698 0.139485 0.027897

KS2 0.050770 0.001000 0.000999 0.062369 0.018012 0.13315 0.02663

OM1 0.050717 0.000983 0.001000 0.054038 0.017688 0.124426 0.0248852

OM2 0.046783 0.000992 0.000984 0.049828 0.004056 0.102643 0.0205286

OM3 0.048770 0.000989 0.000998 0.052038 0.030021 0.132816 0.0265632
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same approximated roots and same error difference between two consecutive iterations in compare to the existing methods,
in Example 1.

The lowest CPU time (total and average time on the examples) is taken by our methods in order to execute the
computational results as compared to all mentioned schemes.

Finally, we deduce on the basis of Tables 1–6, that OM1, OM2 and OM3 are more effective and could be a better
alternative to the earlier existing methods.

References

[1] A.M. Ostrowski, Solutions of Equations and System of Equations, Academic Press, New York, NY, USA, 1964.

[2] M. Petkovic, B. Neta, L. Petkovic, J. Dzunic, Multipoint Methods for Solving Nonlinear Equations, Elsevier, Ams-
terdam, 2013.

[3] J.F. Traub, Iterative Methods for the Solution of Equations, Prentice-Hall Series in Automatic Computation; Engle-
wood Cliffs, NJ, USA, 1964.

[4] D. Le, An efficient derivative free method for solving nonlinear equations, ACM Trans. Math.Soft. 11(3), 1985,
250–262.

[5] A. Cordero, J.L. Hueso, E. Martı́nez, J.R. Torregrosa, A new technique to obtain derivative-free optimal iterative
methods for solving nonlinear equations, Comput. Appl. Math. 252, 2013, 95–102.

[6] T. Zhanlav, K. Otgondorj, Comparison of some optimal derivative free three point iterations, Numer. Anal. Approx.
Theory 49(1), 2020, 76–90.

[7] R. Behl, S.S. Motsa, M. Kansal, V. Kanwar, Fourth-Order Derivative-Free Optimal Families of King’s and Ostrowski’s
Methods. Springer India 2015 P.N. Agrawal et al. (eds.), Mathematical Analysis and its Applications, Springer Pro-
ceedings in Mathematics & Statistics 143.

[8] A. Cordero, J.R. Torregrosa, Low-complexity root-finding iteration functions with no derivatives of any order of
convergence, Comput. Appl. Math. 275, 2015, 502–515.

[9] J.L. Hueso, E. Martı́nez, C. Teruel, Determination of multiple roots of nonlinear equations and applications, Math.
Chem. 53, 2015, 880–892.

[10] J.R. Sharma, S.Kumar, L. Jntschi, On a class of optimal fourth order multiple root solvers without using derivatives,
Symmetry, 11, 452, 2019, https : //doi : 10.3390/sym11121452.

[11] J.R. Sharma, S. Kumar, L. Jntschi, On Derivative Free Multiple-Root Finders with Optimal Fourth Order Conver-
gence, Mathematics, 8, 1091, 2020, https : //doi.org/10.3390/math8071091.

[12] S. Kumar, D. Kumar, J.R. Sharma, C. Cesarano, P. Aggarwal, Y.M. Chu, An optimal fourth order derivative-free
Numerical Algorithm for multiple roots, Symmetry, 12, 1038, 2020. https : //doi : 10.3390/sym12061038.

[13] H.T. Kung, J.F. Traub, Optimal order of one-point and multipoint iteration, J. Assoc. Comput. Mach. 21, 1974,
643–651.

[14] l.V. Ahlfors, Complex Analysis, McGraw-Hill Book, Inc., 1979.

[15] A. Constantinides, N. Mostoufi, Numerical Methods for Chemical Engineers with MATLAB Applications, Prentice
Hall PTR, New Jersey, USA, 1999.

[16] J.M. Douglas, Process Dynamics and Control, vol. 2, Prentice Hall, Englewood Cliffs, USA 1972.

[17] B. Bradie, A Friendly Introduction to Numerical Analysis, Pearson Education Inc.: New Delhi, India, 2006.

[18] Z. Zeng, Computing multiple roots of inexact polynomials, Math. Comput. 74, 2004, 869–903.

17


