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ABSTRACT 

In this study, the failure of a slope adjacent to a motorway was back-analyzed based on InSAR data. The 
location of the slided area and the exact date of the event were not known in advance. A post-processing 
strategy was applied on the displacement time series in order to aid the detection of instability signs and to 
enable the identification of the location and the narrowing down of the time interval of the slide. InSAR 
displacement time series were obtained following the small baseline subset approach implemented on an 
automatic processing platform. Distributed scatterers were clustered based on the similarity of their 
displacement time series, in order to form clusters of scatterers with similar behavior. This procedure allowed 
the computation of displacement time series representative of each cluster, aiding the detection of instability 
signs on the slope. One of the clusters showed a sudden movement away from the SAR sensor. It was later 
confirmed that the slide had occurred at the location of the scatterers belonging to that cluster and during the 
time interval between the two observation epochs corresponding to the break in the time series. In conclusion, 
the proposed method was effective in the back-analysis of the slope failure, hopefully contributing to the uptake 
of InSAR technology by structural safety experts. 

 
I. INTRODUCTION 

Interferometric Synthetic Aperture Radar (InSAR) has 
proved to be an effective technology for the monitoring 
of deformation caused by earthquakes, volcanic 
eruptions, glacier movement, urban subsidence, 
landslides, among others (Crosetto et al., 2016). Some 
authors have also used InSAR to monitor civil 
infrastructures (e.g. Di Martire et al., 2014; Emadali et 
al., 2017; Giardina et al., 2019; Lazecky et al., 2017; 
Milillo et al., 2019), profiting from its spatial coverage 
and temporal resolution. However, its application in 
this field remains a challenging task, due to several 
factors: 

1. Typical structure monitoring methods achieve 
higher accuracies; 

2. Lack of redundant observations; 
3. Displacements are measured along the SAR line-

of-sight (LOS); 
4. Observation frequency does not enable the 

monitoring of structure dynamic behavior; 
5. Large volume of data may be difficult to interpret 

by InSAR non-experts. 

The aforementioned reasons prevent the uptake of 
InSAR technology in the field of structural safety. 

Typically, large volumes of data are achieved using 
InSAR, in which hundreds or even thousands of 
measurement points are obtained per square 
kilometer, each of them having displacement time 

series possibly with hundreds of observation epochs 
associated. The exploration of these results is a big data 
problem and turn the displacement interpretation 
difficult to perform by InSAR non-experts. In the 
particular case of structural behavior, which varies over 
time, variables typically analyzed in InSAR products, 
such as average velocity or cumulative displacement 
during a certain time interval, do not provide all the 
potential knowledge InSAR data contain for structure 
monitoring. Therefore, the development of automatic 
methods to extract information from the displacement 
time series is of the utmost importance in this field. 

This study aims at contributing to increase the trust 
of structural safety experts in InSAR data by evaluating 
the capabilities of this technology to back-analyze 
movement on a slope affected by a landslide. A blind 
test was performed, in which the goal was to use InSAR 
data to identify the slope area affected by the landslide 
and to narrow down the time interval of its occurrence. 
InSAR displacements were computed through an 
automatic InSAR processing platform for a motorway 
and its surroundings, including the slope that is the 
study object of this paper. The InSAR displacement time 
series of the points located on the slope were evaluated 
through a semi-automatic procedure to form clusters of 
points with similar behavior. This aggregation of 
information allowed the detection of slope behavior 
patterns in space and time and enabled the attainment 
of the answers sought in the blind test. The applied 
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method is an improvement of that presented in Roque 
et al. (2018), by including a post-processing method to 
correct unwrapping errors and to analyze partial time 
series. 

The paper is organized as follows. Section II presents 
the methods used in the study, with Subsection A 
describing the InSAR processing and Subsection B 
presenting the time series clustering. Section III 
contains a description of the area of interest (AOI) and 
of the SAR image dataset. Section IV shows the 
achieved results and is followed by their discussion in 
Section V. The paper is finished by the main conclusions 
of the study in Section VI. 

 

II. METHODS 

A. InSAR processing 

Displacements were computed from a stack of SAR 
images through an automatic InSAR processing 
platform. In order to prepare the dataset for multi-
temporal analysis, GMTSAR was employed to 
corregister the products from the stack and generate 
interferograms using the SBAS model. A maximum 
temporal baseline was limited to 48 days, maximum 
spatial baseline was defined as 100 metres, and the 
threshold for acceptable amplitude dispersion was set 
to 0.6. The scene was divided into 4 patches, which was 
sufficient considering the relatively small area of 
interest. 

GMTSAR results were properly structured in order to 
be recognised by the StaMPS/MTI software, where 
point processing was performed in order to extract 
subsidence values for the area of interest. No point 
weeding was undertaken. After processing, the data 
was inverted in order to convert from multi-master to 
single-master displacement estimation. 

The points from StaMPS/MTI processing were 
exported in a tabular data format for post-processing 
compatible with the StaMPS-Visualizer application. 
Average velocity and displacement time series were 
achieved for each point. 

 
B. Time series clustering 

The goal of the post-processing of the InSAR data was 
the identification of spatiotemporal patterns in the 
behavior of the distributed scatterers, by clustering 
them according to the similarity between their 
displacement time series. The clustering algorithm was 
composed by several steps and was implemented in R 
software (R Core Team, 2021). 

1)  Input data: InSAR displacement time series 
were the only data required for the algorithm 
application, with a displacement observation for each 
SAR image acquisition date. Gaps in the acquisition 
were filled with interpolated values. 

The displacement time series were complemented by 
auxiliary (and optional) information achieved in the 
InSAR processing, but also by external data provided as 

raster files. In this study, InSAR derived velocities and 
slope data were considered. 

 
2)  Removal of reference point effect: In case the 

point used as reference presented some movement, its 
displacements influenced the time series of all the 
other points. In this study, an adaptation of the method 
presented in Notti et al. (2015) was applied in order to 
remove this effect. The points presenting absolute 
value of average velocity lower or equal than 0.5 
mm/year were considered to be stable and the average 
of their displacement time series, which corresponded 
to the effect of the reference point on the other points, 
was removed from the displacement time series of all 
points in the AOI. 

 
3)  Correction of unwrapping errors: Unwrapping 

errors were detected in the displacement time series 
and were corrected following Notti et al. (2015). Time 
series were searched for consecutive displacement 
values with absolute difference larger than ¼ of the SAR 
signal wavelength. In such cases, the second 
displacement value in the pair might be affected by an 
unwrapping error and became a candidate to a 
potential correction. However, the displacement value 
was corrected only if an external factor capable of 
causing a large displacement occurred at that date. 
Rainfall is an external factor that frequently works as a 
trigger to landslides. Therefore, daily rainfall data were 
collected from a meteorological station near the AOI for 
the same time interval of the displacement analysis. 
Dates were eligible for unwrapping error correction in 
case the amount of rainfall in that day was greater or 
equal than the 90% percentile of the daily rainfall in the 
whole time interval. The correction was applied on the 
displacement values if the displacement and rainfall 
conditions were both met for the same date. If the 
displacement value to be corrected was greater than 
that from the previous epoch, ½ of the SAR signal 
wavelength was subtracted to that displacement value. 
On the other hand, if the displacement value to correct 
was lower than the previous one, ½ of the SAR signal 
wavelength was added to it (Figure 1). 

 

 
Figure 1. Displacement time series obtained during InSAR 

processing (black), displacement time series ±½ of the SAR 
signal wavelength (dark blue) and corrected displacement 

time series (cyan). 
 

4)  Time series cut: Previous studies have shown 
that the time series post-processing method was little 
sensitive to small magnitude changes in long time series 
(Roque, 2020).  
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In order to increase its sensitivity to signs of instability 
on the AOI around the time of the landslide, temporal 
subsets of the time series were considered. The 
removal of the reference point effect and the 
unwrapping error correction were performed on the 
complete displacement time series; however, they 
were later cut into a smaller time interval, narrowing 
down the analysis to the approximate date of the 
landslide occurrence (Section III). 

 
5)  Compute dissimilarity matrix: The clustering 

procedure was applied on the cut displacement time 
series. A hierarchical agglomerative clustering was 
used. In the first step, each point was considered as an 
individual cluster. The similarities between each pair of 
groups were computed and the most similar ones were 
merged. This procedure was performed iteratively until 
all clusters were aggregated into a single one. The 
similarities were the distances between the 
displacement time series, which were determined 
through the Dynamic Time Warping (DTW) method 
(Berndt and Clifford, 1994). DTW distance between two 
time series corresponds to the minimum cumulative 
path among several possibilities of connecting the data 
points (displacement observations in this case) from 
both series (Figure 2). Connections are not required to 
be between data points from the same epochs. 

 

 
Figure 2. Connections between the data points from the 

template time series T and a generic time series S. 
 

The aggregation method used in the clustering was 
the complete linkage, which considers the farthest 
elements in a pair of clusters to determine the distance 
between the two groups, i.e., in this study, the distance 
between a pair of clusters was calculated as the DTW 
distance between the most dissimilar displacement 
time series from both groups. This method formed 
homogeneous clusters and was sensitive to the 
presence of outliers. The distances between each pair 
of clusters, in each iteration, were organized in a 
dissimilarity matrix, which provided the information for 
the cluster formation. 

 
 

6)  Selection of the number of clusters: For each 
iteration, the pair of clusters presenting the smallest 
value in the dissimilarity matrix was merged. The 
distance between two merged clusters is called linkage 
distance. 

 

The analysis of linkage distances from all iterations 
assisted the selection of the number of clusters to be 
considered for analysis. The largest values were 
observed at the last iterations (top of the chart in 
Figure 3), when the merged clusters were already 
distinct. The number of clusters to analyze was selected 
in order to assure that the linkage distances connecting 
the elements inside each group were low. This 
procedure led to the construction of clusters formed by 
points with similar displacement time series. It also 
assured the clusters had different behavior among each 
other.  

 

 
Figure 3. Chart of linkage distances (vertical black lines); 

the alphanumeric codes at the bottom of the chart 
correspond to the individual clusters in the first step. 

 

After the cluster formation, data for their 
interpretation were computed. The displacement time 
series representative of the behavior of each cluster 
were achieved by averaging the displacement time 
series of all points in each group. Furthermore, the 
values of the auxiliary variables were used to compute 
cluster centroids. Velocities were already associated to 
the points during the InSAR processing, while slope 
values from the raster file were attributed to each point 
according to their location. The values from both 
variables were averaged for each cluster. 

 

III. STUDY AREA AND DATASET 

The AOI for this study was a slope adjacent to a 
motorway, in Portugal. It was located at a granite area 
and it was built in the 2000 s. The slope occupies an area 
of approximately 10000 m2, it faces east and its average 
slope is 15° (Figure 4). 

For the blind test performed in this study, it was 
known in advance that a landslide occurred on part of 
the slope during March 2019. In order to identify the 
affected area and to narrow down the time interval of 
the event, InSAR displacements were computed 
through the InSAR processing platform from Section II A 
and then evaluated through the time series post-
processing method from Section II B. 

The SAR dataset was composed of 33 Sentinel-1 A SLC 
(Single Look Complex) products in IW (Interferometric 
Wide) swath mode, using a descending orbit, starting 
on 2nd of February 2018 and ending on the 29th of March 
2019, with a minimum interval of 12 days. The orbit 
path and frame of these products was 52 and 458, 
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respectively. ESA’s SNAP (Sentinel Application Platform) 
software was used to determine the ideal master 
product from the stack, based on satellite baselines and 
dates, which was the product corresponding to the 18th 
of September 2018. 

 

 
Figure 4. Slope adjacent to motorway. 

 

At the post-processing analysis, the time series were 
cut to the time interval between January and March 
2019 to increase the algorithm sensitivity to the 
displacements occurred in March 2019 (Section II B 4). 

 

IV. RESULTS 

A. InSAR processing 

The InSAR processing led to 116 points on the slope, 
with average velocities between 22.3 mm/year away 
from the sensor and 11.3 mm/year towards it, from 
February 2018 to March 2019 (Figure 5). 

 

 
Figure 5. Velocity map for the points on the slope. 

 

The velocity map presented several points with 
average velocities away from the sensor above 
10 mm/year at the southernmost area of the slope. 
However, there were other areas with similar velocity 
values. Furthermore, there were also points presenting 
velocities towards the sensor with magnitudes of 
centimeters per year, which might correspond to 
horizontal displacement from west to east, i.e., towards 
the motorway. 

 

B. Time series clustering 

The analysis of the linkage distance chart from 
Figure 3 led to the organization of the points into seven 
clusters, with a varying number of elements (Table 1). 

 
Table 1. Point distribution throughout the clusters 

Cluster
 

Points 

 Number Percentage (%) 
1 3 2.6 
2 54 46.6 
3 35 30.2 
4 16 13.8 
5 4 3.4 
6 3 2.6 
7 1 0.9 

 
Figure 6 presents the spatial distribution of the points 

throughout the clusters. Some of the groups were 
spatially cohesive (cluster 5 and most of clusters 4 and 
6), while the others were spread throughout the slope. 
Cluster 7 was formed by a single point, meaning it was 
the point identified in Figure 3 with the alphanumeric 
code X89. The chart shows this point had a 
displacement time series distinct from those of the 
remaining ones, as this was the last point being 
aggregated to the main cluster. 

 

 
Figure 6. Cluster spatial distribution. 

 

Displacement time series representative of each 
cluster behavior were determined for each group and 
they are presented in Figure 7. During the first three 
months of 2019, average displacements varied 
between 20 mm away from the sensor and 15 mm 
towards it. 

The centroids for velocity and slope were computed 
for each cluster and are presented in Figures 8 and 9, 
respectively. Although the clusters were built based on 
the displacement time series between January and 
March 2019, in order to increase the chances of 
isolating the area affected by the landslide in a single 
cluster, the velocity values in the chart correspond to 
the complete time interval of the analysis (February 
2018 – March 2019) to capture possible early signs of 
instability. 
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Figure 7. Displacement time series representative of 

cluster behavior. 
 

 
Figure 8. Centroids for velocity between February 2018 

and March 2019. 
 

 
Figure 9. Centroids for slope. 

 

From Figure 8, it was verified that cluster 5 presented 
the largest average velocity away from the sensor 
(more than 15 mm/year) and was followed by cluster 7, 
with average velocity around 5 mm/year. On the other 
hand, clusters 1 and 6 moved towards the sensor during 
the 14 months of the analysis. Clusters 2, 3 and 4 had 
average velocities close to 0 mm/year. Slope centroids 
in Figure 9 show that cluster 7 was the one located on 
the steepest slope region, followed by clusters 1 and 5. 
The three clusters all had average slope above 16ᵒ. 
Clusters 2, 3, 4 and 6 had slightly lower slopes, but still 
large enough for these areas to be susceptible to 
landslide occurrence. 

 

V. DISCUSSION 

The results presented in the previous section were 
analyzed in order to achieve the answers required for 

the blind test. The velocity map showed several points 
with velocities above 10 mm/year between February 
2018 and March 2019, either away from the sensor or 
towards it. On one hand, movement away from the 
sensor might correspond to settlement and could be a 
sign of slope instability. There were a few points with 
movement away from the sensor at the southernmost 
part of the slope forming a spatially cohesive group, 
which suggested the landslide might have occurred on 
that area. However, there were points on other areas of 
the slope with similar behavior. On the other hand, 
some points presented movement towards the sensor, 
which might also correspond to slope instability, as they 
were compatible to horizontal movement towards the 
motorway. Therefore, the analysis of the displacement 
time series was required to identify univocally the 
affected area. 

Seven distinct behavior patterns were identified on 
the slope through the clustering of the displacement 
time series. Clusters 2, 3 and 4 presented similar 
behavior, with the displacement time series showing 
identical trends. Together, the three clusters contained 
90.6% of the points on the slope. The representative 
displacement time series presented oscillations around 
0 mm, suggesting the three clusters mostly had a stable 
behavior from January to March 2019 and their 
movement could be considered as the expected 
behavior of the slope. The remaining clusters (1, 5, 6 
and 7) presented behavior distinct from the expected 
one, which might correspond to signs of instability 
(Figure 10). The analysis of velocity centroids from 
Figure 8 for clusters 1, 5, 6 and 7 revealed that cluster 5 
was the one with the largest velocity between February 
2018 and March 2019 (above 15 mm/year away from 
the sensor), i.e., the points in this cluster were already 
moving for several months before the landslide in 
March 2019. The slope centroids from Figure 9 showed 
all clusters were subjected to similar slope conditions; 
however, cluster 5 was located on one of the steepest 
areas of the slope, which might have contributed to 
increase the landslide susceptibility in the area. The 
aforementioned analysis suggested that the points 
forming cluster 5 were the most likely to be located on 
the area affected by the landslide. 

Analyzing the displacement time series 
representative of the behavior of cluster 5 (Figure 7), it 
was observed that it was very similar to that of 
cluster 4, following the expected behavior of the slope, 
until the 5th observation epoch (5th of March 2019). 
After this date, the points in cluster 5 began to move 
away from the sensor with a displacement rate of 
159 mm/year. This behavior was in accordance with the 
hypothesis that cluster 5 might be the one 
corresponding to the affected area. Furthermore, the 
representative displacement time series suggested that 
the landslide might have occurred between the 5th and 
the 6th observation epochs (5th of March and 17th of 
March, respectively), when the change in the cluster 
behavior was verified. Indeed, after the performed 
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analysis, the structural safety experts revealed the 
landslide occurred at the southernmost area of the 
slope (the location of cluster 5) on the 5th of March. 

 

 
Figure 10. Spatial distribution of clusters potentially 

corresponding to slope instability areas. 
 

Besides the correct identification of the landslide 
area, the performed analysis identified other areas of 
the slope presenting displacements deviating from the 
expected behavior (clusters 1, 6 and 7). These areas 
should keep being monitored through InSAR or in situ 
techniques, to detect eventual signs of instability in the 
future. 

 

VI. CONCLUSIONS 

This study intended to contribute to the uptake of 
InSAR technology by structural safety experts. The blind 
test was performed with the goal of verifying the 
capability of InSAR displacements to provide 
information about the slope behavior in the months 
before the landslide and the identifications of the 
affected area and of the approximate date of the event. 

InSAR technology allowed a large spatial coverage of 
the slope, with a small number of gaps without 
observations. The usage of archived images enabled the 
analysis of the slope behavior in the year before the 
landslide occurrence. InSAR data alone enabled the 
identification of a few areas on the slope showing signs 
of potential instability. However, only the post-
processing analysis of the displacement time series 
enabled the correct identification of the wanted 
answers. This strategy allowed the reduction of the data 
dimensionality into a small number of clusters, 
facilitating the detection of patterns in the points in 
both space and time. This led to the identification of 
deviations from the structure expected behavior, which 
can be used as early warning signs and trigger other 
monitoring activities, for example through in situ 
techniques. 

In conclusion, InSAR data is capable of providing 
valuable knowledge on structural safety, especially 
when complemented with post-processing strategies. 
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