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ABSTRACT 

Terrestrial laser scanners (TLSs) offer a possibility for more automated and efficient deformation monitoring 
of civil engineering structures with higher spatial resolution than standard methods, as well as without the 
necessity of permanently installing the monitoring equipment. In such applications, scanners are usually placed 
so that the lines of sight are roughly aligned with the main directions of the expected deformations, and the 
deformations are estimated from point cloud differences between multiple epochs. This allows high sensitivity 
in the direction of the surface normal, but deformations along the surface are often undetected or hard to 
precisely quantify. In this work, we propose an algorithm based on the detection and matching of keypoints 
identified within TLS intensity images. This enables precise quantification of deformations along the scanned 
surfaces. We also present the application of the algorithm for monitoring a bridge pier of the Hochmoselbrücke 
in Germany, as a case study. Deformations up to about 4 cm due to thermal expansion and bending of the pier 
were successfully detected from scans taken throughout the day from a single location, up to 180 m from the 
monitored surfaces. The results agreed within a few millimeters to independent monitoring using state-of-the-
art processing of TLS point clouds obtained from a different location and using a different type/brand of 
instrument. The newly proposed algorithm can either be used to complement existing TLS-based deformation 
analysis methods by adding sensitivity in certain directions, or it can be valuable as a standalone solution. 

 
I. INTRODUCTION 

Terrestrial laser scanners (TLSs) are increasingly used 
for deformation monitoring of structures and 
landmasses (Mukupa et al., 2017). The deformations 
are characterized as differences between point clouds 
represented in a common coordinate system. These 
differences are often defined as Euclidean distances 
between nearest neighbors in certain directions, e.g., 
along the local surface normals. Commonly used 
algorithms are the cloud-to-cloud (C2C), cloud-to-mesh 
(C2M), and Multiscale Model-to-Model Cloud 
Comparison (M3C2) algorithm (Lague et al., 2013), see 
e.g. (Holst et al., 2017). Comparable alternatives are 
using patch-wise ICP (Iterative Closest Point) to 
estimate 3d displacement vectors (Friedli and Wieser 
2016; Wujanz et al., 2016) and parametric modeling of 
point cloud surfaces, where deformations are 
represented by parameter changes (Neuner et al., 
2016). Most of these methods are relatively insensitive 
(i.e. “blind”) to deformations occurring along the 
surface of the observed object. 

A few algorithms were proposed to overcome these 
limitations (Gojcic et al., 2020; 2021; Holst et al., 2021). 
They substitute comparing nearest neighbors in 
Euclidian space by searching the corresponding points 
in a high-dimensional feature space. Feature 

description algorithms are used to encode the 
geometry or structure of the neighborhood of the 
individual points in the point clouds. This allows finding 
the correct point correspondences, even if the 
deformations occurred along the surface of the 
observed object. The latter algorithms were 
successfully used in geomonitoring, where the irregular 
structure of landmasses provided a sufficient amount of 
details for unambiguous point description and 
matching. However, these algorithms cannot resolve 
the problem of detecting deformations along surfaces 
that lack (sufficiently pronounced and unique) 
geometric features which would characterize the 
neighborhood of the individual points unambiguously. 
This limits their use for structural monitoring where the 
surfaces are often smooth or composed of repetitive 
structure. 

This problem can be solved by placing artificial laser-
scanning targets at the surfaces. However, this will 
often be labor intensive –if not impossible (e.g., with 
surfaces out of reach)–, and additionally questions the 
application of a scanner in the first place. Nevertheless, 
scanning targets often feature specific radiometric 
patterns and are used by processing the intensity data 
provided by the scanner rather than just the geometry. 
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Picking up this idea, we propose herein to substitute 
feature descriptors based on the geometric surface 
structure with a descriptor based on the intensity 
values of the returned laser beams. Although this could 
be combined with geometric features for monitoring, 
we will investigate the intensity-based approach on its 
own, herein. Instead of trying to find correspondences 
for all points in the point cloud (as in, e.g. Gojcic et al., 
2021), we adopt the approach of considering only 
keypoints, i.e. points that can be well located in the scan 
and whose neighborhood can be unambiguously 
described. The corresponding points are found 
automatically in the scene using the existing feature 
description and matching algorithms for 2D local image 
keypoints (Jing et al., 2021). To achieve this, we exploit 
the regular and nearly continuous TLS scanning pattern 
to map the 3D TLS measurements onto 2D intensity 
images. To find multiple keypoint correspondences 
with sufficient localization accuracy for deformation 
monitoring, it is necessary to avoid strong changes in 
the measurement configuration, as they cause image 
distortions and changes in the intensity values. Hence, 
we limited our approach to deformation monitoring 
from a single scanner station herein and leave 
generalization for future work. 

Similar approaches were used for the registration of 
TLS point clouds (Urban and Weinmann, 2015) and TLS 
calibration (Medić et al., 2019). Moreover, a 
comparable approach was already described for 
deformation monitoring with scanning total stations, 
where feature description is based on RGB images 
taken by the internal camera (Wagner et al., 2017). The 
approach proposed in this work deviates from the latter 
one, as it relies only on active sensing with an electronic 
distance measurement (EDM) unit. This offers some 
advantages such as insensitivity to ambient illumination 
allowing operations in changing visibility conditions, 
during the night and observing the objects that are 
partially in bright sunlight and partially in shadows. 

We tested the algorithm on a particular case study of 
monitoring a bridge pier deformation from a single 
scanner station over several hours. In this paper, we 
compare the results to deformations estimated using 
the established M3C2 algorithm using point clouds 
acquired with another TLS from a different location. The 
presented results are an outcome of the initial analysis 
and the process is still a work in progress. 

 

II. IMPLEMENTED ALGORITHM 

The inputs of the implemented algorithm1 are 
registered point clouds, acquired at several epochs 
from a single scanner station. They refer to a common 
Cartesian Coordinate system and contain intensity 
information for each point. To use image processing 
algorithms for keypoint detection, description and 

 
1 Source-code available at https://github.com/ruttnerp/ikptlsdm 

matching, the 3D TLS point cloud data needs to be 
mapped onto an intensity and range image. 

We use the approach described in Medić et al. (2019), 
which relies on spherical image representation. 
Therein, the point cloud Cartesian coordinates are 
transformed into spherical ones (range, horizontal and 
vertical angle). Then, the spherical intensity and range 
images are generated by linearly interpolating the 
scanner measurements with a regular spacing, so that 
the pixel coordinates correspond to the scanner's 
horizontal and vertical angles and the pixel values 
correspond to the intensity and range measurements. 
The image resolution is made equal to the scanning 
resolutions (angular step sizes) to avoid information 
loss. It should be noted that such spherical 
representation has a disadvantage of strong image 
distortions at high elevation angles. However, such high 
elevation angles are rarely observed in deformation 
monitoring, making the approach largely applicable. 

Within the spherical intensity images, the keypoints 
are automatically detected using the Speeded Up 
Robust Features (SURF) algorithm (Bay et al., 2008) and 
described using the Binary Robust Invariant Scalable 
Keypoints (BRISK) algorithm (Leutenegger et al., 2011). 
The choice is made based on our simplified analysis of 
different feature detectors and descriptors (Jing et al., 
2021), where the selected algorithms outperformed the 
rest (the differences were in some cases marginal). 

The correspondences are searched in 64-dimensional 
feature space between the first point cloud in the series 
(epoch 0) and all following 𝑛 point clouds (epochs 𝑖, 
where 𝑖 1,2, … , 𝑛). The points with the minimum 
Euclidean distance (highest similarity) in the feature 
space are matched together. We use the prior 
knowledge that the expected deformations are small 
(several centimeters), and, therefore, that the 
corresponding keypoints should be close in space. 
Hence, only keypoints within a pre-defined 
neighborhood are considered. The extent of the 
neighborhood is defined with a spherical distance, 
corresponding to the pixel-wise distance in the 
spherical intensity image. We chose this over Euclidean 
distance in 3D space to avoid using interpolated range 
values, which could be erroneous when the keypoints 
are defined on corners and edges. The neighborhood 
extent is defined by a task-specific user-defined 
threshold (in this case study 0.05° based on an educated 
guess). 

The keypoint detection returns the keypoint positions 
as pixel-wise 2D image coordinates. These coordinates 
are transformed into 3D spherical coordinates by linear 
interpolation based on the known direct 
correspondences between row vs. vertical and column 
vs. horizontal angle, and by directly interpolating ranges 
from spherical range images (see Medić et al., 2019). 
Finally, we transform the spherical to Cartesian 
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coordinates and estimate deformation vectors 𝒗𝒊
𝒋
 for 

each pair of matched keypoints as (Eq. 1): 
 

𝒗𝒊
𝒋 ∆𝑋, ∆𝑌, ∆𝑍 𝒌 𝑋, 𝑌, 𝑍 𝒌 𝑋, 𝑌, 𝑍  (1) 

 

where 𝒌 𝑋, 𝑌, 𝑍  are the coordinates of a keypoint 𝑗 

(𝑗 1,2, … , 𝑤; 𝑤  𝑛𝑟. 𝑜𝑓 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑘𝑒𝑦𝑝𝑜𝑖𝑛𝑡𝑠) in 

epoch 𝑖, and ∆𝑋, ∆𝑌, ∆𝑍  are the corresponding 

coordinate differences relative to the position of the 

keypoint 𝑗 at epoch 0 (𝒌 .  
 
As the implemented keypoint matching strategy can 

still cause incorrect matches (Szeliski, 2022), we 
implemented an outlier removal strategy based on the 
local rigidity presumption. We presume that all 
keypoint coordinate differences within a predefined 
neighborhood should be similar. For this particular case 
study, the point cloud of the bridge pier is separated 
vertically into 5° segments over the spherical intensity 
images, resulting in overall 10 segments. The segment 
extent is based on the educated guess with the goal of 
assuring a sufficient number of matches for the outlier 
removal. The outliers are determined using the 2 times 
median absolute deviation from the median (MAD) 
threshold, multiplied by the scaling factor of 1.4826. 
The outliers are searched for the following quantities: 
2D image coordinate differences, 3D coordinate 
differences (for each Cartesian and spherical 
coordinate), 3D vector magnitude and direction (cosine 
between individual vector to median vector). An 
example of the output within our case study is 
presented in Figure 1 (right). 

Following the outlier removal step, we refine 
deformation estimates by averaging all deformation 

vectors 𝒗𝒊
𝒋 for each segment and for each epoch 

separately (Eq. 2): 
 

𝒗  ∆𝑋, ∆𝑌, ∆𝑍
∑ ∆𝑋

𝑤
,
∑ ∆𝑌

𝑤
,
∑ ∆𝑍

𝑤
 

(2) 

 
where 𝒗  is mean deformation vector of segment 𝑠 in 
epoch 𝑖;   denotes a subset of keypoint coordinate 
differences of epoch 𝑖 falling within segment 𝑠 (𝑠
1,2, … , 𝑚; 𝑚 𝑛𝑟. 𝑜𝑓 𝑠𝑒𝑔𝑚𝑒𝑛𝑡𝑠); 𝑤  is a number of 
matched keypoints in segment 𝑠 at epoch 𝑖. We set a 
user-defined threshold for a minimum number of 
keypoint matches per segment for computing 𝒗  
(default value 10 based on initial testing). If the 
threshold is not reached, we assume that the number 
of keypoint matches is inadequate for estimating 𝒗  
with sufficient precision. Hence, for such segments 𝒗   
is not defined.  

 

 
Figure 1. Left - Monitored bridge pier (≈ 140 x 15 x 7 m), 

Image source: wikipedia.org; Right – Intensity images with 
keypoints distribution along the "S" side of the bridge pier 
after matching and outlier removal (red points - epoch 0, 

green points epoch i, yellow lines – correct matches). 
 

To further improve the quality of deformation 
estimates, we introduced an additional step of 
functionally approximating deformations based on 
case-specific prior knowledge. For our task, the 
deformation magnitudes smoothly change along the 
surface of the measured object (highest at the top, zero 
at base), and with time (zero at epoch 0, maximal at 
epoch n). The implemented functional approximation 
of the deformations rests upon the assumption that 
each pier segment is translated and not deformed over 
time, while the pier as a whole is deformed due to 
different translation magnitudes for different 
segments. The approximation is realized as a 
robustified best-fit algorithm (least absolute residual - 
LAR), with a 3rd degree polynomial for a function model 
(Eq. 3): 

 
𝑑 𝑡 , 𝑧 𝑐 𝑐 𝑡 𝑐  𝑧 𝑐  𝑡  𝑧

𝑐 𝑡 𝑐  𝑧
𝑐 𝑡𝑡 𝑧 𝑐 𝑡 𝑧
𝑐 𝑡 𝑐  𝑧   

(3) 

 
where 𝑑 𝑡 , 𝑧  are the deformation magnitudes 
(observations) per pier segment 𝑠 and per epoch 𝑖, 𝑡  – 
time of the epoch 𝑖 (given values), 𝑧  - mean height of 
the pier segment 𝑠 (given values), 𝑐  - polynomial 
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coefficients (estimated parameters). The weight matrix 
is realized as a unit matrix. The deformation magnitudes 
𝑑  are calculated as norms of mean deformation 
vectors per segment (Eq. 4): 

 

𝑑 ‖𝒗 ‖ ‖ ∆𝑋, ∆𝑌, ∆𝑍 ‖ (4) 

 
The final output of the algorithm are estimated 

deformation magnitudes as a function of time and 
height along the pier. Such deformation representation 
reduces the amount of information to only the most 
relevant dimension (deformation magnitude). 
However, the keypoint-based deformation monitoring 
allows for generating 3D vector fields, which can also 
reveal the direction of deformations, de-compose the 
magnitude along different directions (e.g., horizontally 
and vertically along the scanned surface or 
perpendicular to the surface) and uncover eventual 
inhomogeneities in the object's behavior. However, 
such interpretation is out of the scope of this work. 

 

III. EXPERIMENT 

The implemented algorithm was tested in a case 
study of monitoring pier deformations of the 
Hochmosel-bridge in western Germany. The bridge was 
opened in 2019, is 1700 m long and is supported by ten 
reinforced concrete piers (heights ranging from 20 to 
140 m). The experiment aimed to investigate daily 
deformation patterns of the highest bridge pier (Figure 
1, left) with approximate dimensions: 140 m (height) x 
15 m (width at west/east side) x 7 m (width at 
south/north side). For this purpose, the pier was 
measured from two perpendicular sides using two high-
end TLSs (Figure 2): Leica ScanStation P50 and a 
Zoller+Fröhlich Imager 5016 (ZF5016). The main 
deformations are expected in the west-east direction 
(along the bridge). 

 

 
Figure 2. Sketch of the measurement setup (red rectangle 
- monitored pier, yellow rectangles - scanner positions). 

Image source: geoportal.de. 

For both scanners, the highest scanning resolution 
(0.8mm@10m) was used with the lowest measurement 

quality (= no internal point averaging). Furthermore, 
the in-built dynamic dual axis compensators were used 
to assure the verticality of the instruments. 

The measurements were conducted on 26 August 
2020. The temperature changes of 13.4°C to 21.4°C 
during the day were expected to induce deformations 
due to thermal expansion in for us detectable range - 
up to 15 mm of the pier length extension (Brooks, 2014) 
accompanied with additional unknown shape 
deformations. However, due to a cloudy sky, which 
hinders direct and uneven material heating, the 
deformations were expected to be far from the extreme 
values. Namely, the bridge bearings are designed for 
the maximum pier movement of ±550 mm at the 
highest elevation (Kuschnerus et al., 2021). 

The P50 was placed south of the pillar, perpendicular 
to the expected deformations, reaching measurement 
distances of 100-180 m. The measurements were taken 
between 11:37 and 18:02, where 26 epochs were 
measured with 15 min intervals. The ZF5016 was 
positioned west of the pillar, in line with the expected 
movement, being approximately 80 m away. The 
measurements were taken from 09:53 until 16:24, also 
with approximately 15 minutes intervals, resulting in 27 
epochs. 

The changes of atmospheric conditions through the 
measurement campaign had a systematic impact of up 
to 1 mm on the measured distances (1 ppm per 1°C), 
which is within the expected noise level. Hence, no 
atmospheric corrections were applied. To account for 
eventual instrument instability over time, which was 
reported in previous studies (Janßen et al., 2020; 
Kuschnerus et al., 2021), four dedicated BOTA8 
scanning targets (Janßen et al., 2019) were placed on 
tripods around the scanner stations at distances of 
approximately 30 m. In the case of ZF5016, the targets 
were visible within each scan of the object of interest. 
Hence, all consecutive scans were registered to the 
local scanner coordinate system of the first scan (epoch 
0). 

For the point clouds acquired with P50 the same was 
not possible because: A) the scanner software does not 
allow simultaneous scanning in the front and the back 
without selecting a full panoramic scan, which would 
drastically increase scanning time and; B) it was not 
possible to place the targets in a way to circumvent the 
latter problem in the given surrounding. Hence, for 
efficiency, the targets were measured only at the very 
beginning and the end of the scanning campaign, to 
check for the eventual instrument instability. This 
solution was suboptimal, with an impact on the 
following analysis (see Section IV). However, it was a 
necessary compromise between the temporal 
resolution of consecutive scans and the assurance of 
instrument stability. 

The target centers were estimated using the template 
matching algorithm described in (Janßen et al., 2019), 
while the target-based point cloud registration was 
done in Leica Cyclone, using the in-built functionalities. 
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A. Compared deformation magnitudes 

As the ZF5016 was placed with the line of sight 
parallel to the direction of the expected pier 
deformations (Figure 2), its measurements were 
processed with the established M3C2 algorithm, which 
provides signed magnitudes as deformation estimates, 
with the sign depending on the deformation direction 
relative to the surface normal. These values served as 
an independent reference for validating the keypoint-
based algorithm. 

The P50 scans covered two perpendicular pier walls 
(Figure 2), the south wall with a 2.5° angle of incidence 
at instrument height and the east wall with an 85° 
incidence angle. As the line of sight was nearly 
perpendicular to the expected deformations (west-east 
direction, along the south wall), its scans were primarily 
used for testing the keypoint-based algorithm. 

To get an additional (but not independent!) validation 
of the keypoint-based algorithm, the east wall surface 
was separated from P50 scans and additionally 
processed with the M3C2 algorithm. Hence, the three 
estimates of the pier deformation magnitudes were 
compared and analyzed: M3C2 differences of ZF5016 
point clouds (west wall), M3C2 differences of P50 point 
clouds (east wall) and keypoint-based deformation 
estimates (Section II) from P50 point clouds (south 
wall). 

The M3C2 deformation magnitude estimates are 
defined along the normal of the observed pier wall 
surfaces. As the east wall observed with P50 and the 
west wall observed with ZF5016 are parallel, both M3C2 
deformation estimates can be directly compared. The 
deformation vectors retrieved with the keypoint-based 
approach have, however, arbitrary direction in space 
(Eq. 2). To compare their magnitudes to the M3C2 
estimates, we first estimated the mean normal vector 
of the pier's east wall 𝒏   (from P50 scans), along which 
M3C2 differences are estimated. Then we projected the 
vectors estimated with keypoint-based approach (𝒗  in 
Eq. 2) onto this normal vector by (Eq. 5): 

 
𝒑 𝒗 ∙  𝒏 𝒏  (5) 

 
where 𝒑  is the projected vector of deformations. To 
finally get signed deformation magnitudes comparable 
to M3C2 values, 𝑑  are estimated as 𝑑 ‖𝒑 ‖ instead 
of 𝑑 ‖𝒗 ‖ (Eq. 4). And each 𝑑  was given a positive 
sign for deformation in the west direction and a 
negative for the east. This strategy disregards the fact 
that the normals of the pier's east wall vary by 
maximally 2° over the whole surface. However, these 
changes influence the estimated deformation 
magnitudes by maximally 0.06 % of their value, which is 
negligible. Moreover, the angle between the Z-axis and 
normal vector 𝒏  is 89.3°. Hence, all compared 
deformation magnitudes can be considered as 
horizontal. 

 

IV. RESULTS AND DISCUSSION 

The following section covers the results of the first 
analysis and the whole process is still a work in 
progress. Figure 3. presents the estimated signed 
deformation magnitudes relative to the pier height and 
time passed from epoch 0 (dt in hours). The data points 
are presented for every 10 m of the height and every 
0.5 h for the passed time dt (lines of different colors). 
The values of the signed keypoint magnitudes are 
generated by evaluating the approximation function 
(Eq. 3), while the M3C2 values are estimated at 
specified heights and linearly interpolated considering 
scanning time. 

 

 
Figure 3. Pier deformation estimates (signed magnitudes) 

relative to the height and time passed from epoch 0: 
proposed approach (top) vs. reference values (middle and 

bottom). 
 

The figure refers to the full scanning time series of 
both scanners (approx. 6 hours), with only partially 
overlapping scanning time (3 h overlap), where dt for 
each scanner refers to the different epoch 0 (ZF5016 
09:53, P50 11:37). It serves only for a rough comparison 
of the algorithms and illustration of the range and form 
of the pier deformations over an extended period. 
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It can be observed that the pier exhibited non-linear 
deformations and bending over time due to 
temperature-related material expansion (an increase of 
tilt and curvature with time dt), reaching the 
magnitudes of approximately 40 mm at the pier top 
after 6 h. The form and range of deformations are 
directly comparable for the proposed algorithm and 
M3C2 estimates. The latter holds true, although the 
scanning times of P50 and ZF5106 are not directly 
comparable. This is explainable by nearly linear 
temperature increase during the whole measurement 
campaign, reaching the highest point of 21.4°C 
somewhat before 18:00 (see Section II.). 

To assure adequate quantitative evaluation of the 
approaches the following analysis focuses only on the 
overlapping time window of both scanners (from 13:00 
until 16:15, presented in Figure 4). The reference epoch 
0 used to define the initial state of the bridge pier is 
similar, but not perfectly matching between the 
scanners (12:57 for P50, 12:59 for ZF5016). To achieve 
a direct comparison, the deformation estimates refer to 
the same pillar heights and times of the day (evaluating 
an approximation function for the keypoints and 
linearly interpolating for M3C2). 

 

 
Figure 4. Pier deformation estimates (signed magnitudes) 

relative to the height and scanning time – focusing on the 
overlapping scanning times of ZF5016 and P50: proposed 
approach (top) vs. reference values (middle and bottom) 

 

The mismatches between the estimated 
deformations of all 3 solutions (P50 keypoints vs. 
ZF5016 M3C2 and P50 M3C2) were calculated as the 
differences of the corresponding data points in Figure 4. 
The mean differences between the corresponding data 
points were 2.4 mm for ZF5016 M3C2 and 0.4 mm for 
P50 M3C2 respectively, while the maximal differences 
reached almost 10 mm between P50 and ZF5016. These 
large differences between the keypoint-based solution 
to the independent reference (ZF5016 M3C2) indicates 
a systematic bias. As the differences between P50 
keypoint-based and P50 M3C2-based estimates are 
much smaller, it seems that the observed bias is due to 
the scanner, and not the estimation method. We 
assume that the source of the error is instrument 
instability, and we attribute it to the scans of P50 rather 
than ZF5016 due to the lack of an adequate registration 
regime for all scans (see Section III). 

The standard deviation (std) between the P50 
keypoint-based solution and ZF5016 M3C2 was 1.4 mm, 
and compared to P50 M3C2 was 0.9 mm. These values 
are within the expected range. Namely, the keypoint 
based deformation magnitudes 𝑑  are estimated from 
the mean of approx. 40 keypoint matches (average of 
all segments and epochs), while the std of the 

coordinate differences ∆𝑋, ∆𝑌, ∆𝑍  was on average 

2.4 mm for ∆𝑋 and ∆𝑌, and 3.5 mm for ∆𝑍. This results 

in a single vector (𝒗𝒊
𝒋) magnitude uncertainty of approx. 

5 mm. By using simple variance propagation by the 
square root of n matches, the expected std of the 
averaged deformation magnitude is 0.8 mm, falling 
close to the previously presented values. 

Hence, this simple analysis suggests that the 
uncertainty is primarily influenced by the observed bias, 
while the precision of the proposed approach is within 
the expected range of a few millimeters. We argue that 
the instrument instability is the main limiting factor of 
the overall accuracy of the proposed approach. Our 
initial results (based on this case study) suggest that the 
keypoints detected in the intensity images can be used 
as natural targets to detect centimeter-level 
deformations with millimeter-level uncertainty if we 
take care of the instrument instability. However, further 
experiments are necessary to support these claims. 

In the following sections, two aspects will be 
addressed, which we perceived as impactful and 
relevant for future applications of keypoint-based 
deformation monitoring: A - dealing with the 
abovementioned instrument instability, and B - specific 
adaptations and possible improvements of the 
implemented algorithm. 

 
A. Instrument instability 

To reach comparable deformations between ZF5016 
and P50 data (Figure 3 and 4) it was necessary to 
account for instrument instabilities that can occur 
during long-term TLS observations (Janßen et al., 2020; 
Kuschnerus et al., 2021). In the case of the reference 
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dataset acquired by the ZF5016 scanner, this was done 
by accurate target-based registration (Section III). 

In the case of P50 scans, such an approach was not 
possible (Section III). Instead, we used the presumption 
that the temperature-related material expansion 
during our measurements could not have caused the 
larger displacements of the pier just several meters 
above its 47 m deep and 20 m wide fundament 
(Schmidt-Hurtienne and Krumbein, 2019). The 
presumption is supported by the observation that the 
maximal M3C2 differences with ZF5016 were less than 
2mm at the pier bottom (Figure 3). However, definite 
proof of validity is missing. We numerically 
implemented this presumption by subtracting the 
deformation magnitudes estimated with M3C2 for the 
lowest pier segment from all segments within each 
point cloud acquired by P50. 

The M3C2 deformation estimates from P50 data 
initially indicated a slow movement (drift) of the bridge 
pier base reaching maximally 7.6 mm for the 8th scan in 
series (Figure 5, corresponds approximately to dt of 1.0 
h in Figure 3). Such behavior is unexpected, and it was 
not observed in the independent ZF5016 dataset. 
Additional investigation, using two BOTA8 laser-
scanning targets that were included in each of 26 P50 
scans, showed that this drift can be attributed to the 
scanner instability. Tracing the target center coordinate 
changes of two targets showed nearly identical drifting 
patterns over time (Figure 5), which can be explained by 
the scanner turning around its standing axis. 

 

 
Figure 5. Drift of P50 M3C2 deformation magnitudes at 

lowest segment of the bridge pier vs. drift of the BOTA8 
target coordinates (polar coordinate – horizontal angle, 

average of 2 targets). 
 

Within this work, we successfully mitigated some of 
the systematic bias due to scanner instability by 
leveraging prior presumption about the measurement 
object. Such a solution cannot be generalized and 
depending on the error source and its impact on the 
measurements it could be even impossible to separate 
it from the observed deformations. The non-zero mean 
differences between keypoint-based and M3C2 
solutions (particularly with ZF5016 data) point out that 
some systematic errors (e.g., scanner tilting 
perpendicular to the line of sight or instability of 
collimation and trunnion axis errors) are remaining in 

our data and that they are limiting the achievable 
sensitivity and accuracy of the TLS based deformation 
monitoring. 

The strategy we applied here can remove the impact 
of translational errors and the rotation around the 
instrument’s standing axis. However, other systematic 
influences could have impacted our measurements in 
such a way that this bias would be nearly perfectly 
correlated with the observed deformation pattern. 
Such systematic influences are for example: tilting of 
the instrument, changes in dynamic compensator zero 
value, and changes of the instrument’s internal 
systematic errors (e.g. trunnion or collimation axis 
error). All three effects can be induced by changes in 
the ambient and internal instrument temperature 
(Medić et al., 2020; Janßen et al., 2020). 

The abovementioned influences can have an impact 
both on M3C2 differences and the keypoint-based 
deformation estimates. However, the majority of the 
known systematic effects impact the coordinates in the 
direction perpendicular to the line of sight and minor 
parts along the line of sight. Hence, the keypoint-based 
deformation estimates are generally more sensitive, as 
M3C2 differences are commonly estimated 
approximately along lines of sight. In this particular 
study, the latter applies for M3C2 differences of 
ZF5016, but not of P50, as the observed pier surface 
with P50 has nearly perpendicular normal to the line of 
sight (observed with a high incidence angle of 85°). 
Hence, both keypoint-based and M3C2 deformation 
estimates with P50 are similarly systematically 
influenced, causing their good correspondence (better 
than with ZF5016 data). 

The conducted deformation monitoring experiment 
again highlights that great care should be placed in 
adequate registration and calibration of TLS point 
clouds to reach sufficient measurement accuracy for 
demanding deformation monitoring tasks. 

 
B. Aspects of the implemented algorithm 

The implemented algorithm can be simply adapted 
for a more general case of deformation monitoring. 
First, the current implementation models deformations 
as a function of time, which can be adapted to any 
quantity of interest (e.g., force or temperature). 
Second, introducing the local rigidity presumption and 
splitting the field of view into segments for outlier 
removal and averaging needs to be adapted according 
to the dimensions and expected behavior of the 
monitored object. Third, the functional approximation 
of the deformation behavior needs to be adapted to 
specific use cases. 

The implemented algorithm can be further improved 
in several ways: parameter tuning; testing different 
feature detectors, descriptors, and their combinations; 
considering different solutions for the functional 
approximation of keypoint-based deformation 
estimates; as well as including automated point cloud 
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registration and in-situ calibration routines within the 
workflow. Furthermore, the algorithm is currently 
limited to scanning with a single instrument from a 
single scanner station. This could be extended to 
multiple stations at different locations and with 
different instruments, if the scanner intensity values 
could be radiometrically calibrated to achieve good 
correspondence between the scans. Also, any change in 
relative geometry between scanner station and 
scanned object introduces distortions of the intensity 
and range images which should be correctly modeled 
and removed. Lastly, the current algorithm 
implementation searches for keypoint 
correspondences only between epoch 0 and epoch i. 
This could be extended to searching corresponding 
keypoints between all combinations of scans increasing 
the number of observations and, hence the precision of 
deformation estimates. 

The factors influencing the sensitivity of the 
implemented approach should be further investigated. 
Primarily this refers to the properties of the particular 
scanner and scanning settings. For example, the role of 
the footprint size and scanning resolution on the 
quantity and quality of the detected keypoints is 
unclear. 

Finally, the proposed algorithm can be used as a 
stand-alone alternative to existing monitoring 
approaches, targeting certain monitoring tasks. 
However, there is an unexploited potential in 
combining it with other complementary existing TLS-
based deformation analysis methods to increase 
sensitivity in certain directions. For example, combining 
it with M3C2 would assure sensitivity both in the 
directions parallel and perpendicular to the surface 
normal. Alternatively, the point clouds could be 
screened for regions with different geometric and 
radiometric properties and the choice of the 
deformation analysis method could be automatically 
adapted accordingly. 

 

V. CONCLUSION 

In this work, we demonstrated a new 2D keypoint-
based deformation monitoring algorithm for 
deformation monitoring with terrestrial laser scanners 
from a single scanner station. The algorithm relies on 
representing the series of TLS point clouds as spherical 
intensity and range images and using established 2D 
image feature detection and description algorithms. 
The approach was tested in a case study of monitoring 
daily deformations of a bridge pier due to temperature-
related material expansion. 

The achieved results show that the proposed method 
can be used to detect cm-level deformations with an 
uncertainty of several millimeters, even along the 
surface of the object of interest. This complements the 
established approaches for deformation monitoring 
with TLS point clouds, as they are mostly insensitive to 
deformations occurring laterally over the measured 

surface. This is especially true in the case of structural 
health monitoring, where measured objects often lack 
sufficiently indented surface structures. 

The analysis of the results indicated that the presence 
of systematic biases due to TLS instability is one of the 
main factors limiting the achievable accuracy. Hence, 
integrating adequate point cloud registration and TLS 
calibration routines is necessary to increase the 
achievable sensitivity of TLS-based deformation 
monitoring. Finally, we discussed in detail how the 
implemented algorithm can be further improved. Our 
future efforts will primarily focus on adapting the 
algorithm for a general case of TLS-based deformation 
monitoring. 
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