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ON THE CHANGE OF THE WEYR CHARACTERISTICS OF
MATRIX PENCILS AFTER RANK-ONE PERTURBATIONS\ast 

ITZIAR BARAGA\~NA\dagger AND ALICIA ROCA\ddagger 

Abstract. The change of the Kronecker structure of a matrix pencil perturbed by another
pencil of rank one has been characterized in terms of the homogeneous invariant factors and the
chains of column and row minimal indices of the initial and the perturbed pencils. We obtain here
a new characterization in terms of the homogeneous invariant factors and the conjugate partitions
of the corresponding chains of column and row minimal indices of both pencils. We also define the
generalized Weyr characteristic of an arbitrary matrix pencil and obtain bounds for the change of it
when the pencil is perturbed by another pencil of rank one. The results improve known results on
the problem and hold for arbitrary perturbation pencils of rank one and for any algebraically closed
field.

Key words. matrix pencil, Jordan chain, rank perturbations

AMS subject classifications. 15A22, 47A55, 15A18

DOI. 10.1137/21M1416497

1. Introduction. Much has been said about perturbations of matrix operators.
In particular, changes of the Jordan structure of a square matrix or of the Weierstrass
structure of a regular pencil under bounded rank perturbations have been studied,
for example, in [6, 7, 15, 17, 18] from a generic point of view and in [1, 3, 19, 20, 21]
for general perturbations. Results on perturbations of arbitrary pencils can be found
in [2, 5, 9]. See also the references therein.

Recently, there have been obtained bounds for the changes of the generalized Weyr
characteristic of a complex square matrix pencil (see Remark 3.8 below) perturbed
by another pencil of the form w(su\ast  - v\ast ) ([13, Theorem 7.8]). This has been done
relating the Jordan chains of a square pencil with those of a linear relation. In this
paper we extend the notion of a Jordan chain to possibly nonsquare matrix pencils
and express the generalized Weyr characteristic of a pencil in terms of its Kronecker
structure.

Observe that complex pencils of rank one can also be of the form (su - v)w\ast . We
also obtain bounds for the change of the generalized Weyr characteristic of a matrix
pencil perturbed by another arbitrary matrix pencil of rank one over an algebraically
closed field, improving the bounds of [13, Theorem 7.8].

Important to the present work is the characterization in [2, Theorem 5.1] of the
changes of the Kronecker structure of a pencil perturbed by another pencil of rank
one (see also [9]). We express here this characterization in terms of the conjugate
partitions of the corresponding chains of column and row minimal indices of the
pencils involved (Theorem 4.8 below). Although Theorem 5.1 in [2] and the current
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982 ITZIAR BARAGA\~NA AND ALICIA ROCA

result in Theorem 4.8 hold for pencils over arbitrary fields, to simplify the analysis
we only state here both (Theorem 5.1 in [2] and Theorem 4.8) for algebraically closed
fields.

To achieve our results we have introduced two types of sequences of integers:
partitions and chains. The partitions can be finite or infinite. We will identify two
partitions if they only differ in the number of zeros. The chains are of fixed length.
This distinction has to be kept in mind throughout the paper.

The paper is organized as follows: in section 2 we present the notation and some
preliminary results, including [2, Theorem 5.1]. In section 3 we recall the definition
of a Jordan chain, extend it to arbitrary matrix pencils, define the generalized Weyr
characteristic of a pencil, and express it in terms of the Kronecker invariants. Section 4
is devoted to translating [2, Theorem 5.1] into terms of the conjugate partitions of
the minimal indices of the pencils involved. The main result of the paper is presented
in subsection 5.2. It requires several technical results which appear in subsection 5.1.
Finally, the paper ends with a conclusion section.

2. Preliminaries. Let \BbbF be an algebraically closed field. \BbbF [s] denotes the ring
of polynomials in the indeterminate s with coefficients in \BbbF , and \BbbF [s, t] denotes the
ring of polynomials in two variables s, t with coefficients in \BbbF . We denote by \BbbF p\times q,
\BbbF [s]p\times q, and \BbbF [s, t]p\times q the vector spaces of p \times q matrices with elements in \BbbF , \BbbF [s],
and \BbbF [s, t], respectively. Glp(\BbbF ) will be the general linear group of invertible matrices
in \BbbF p\times p.

A matrix pencil is a polynomial matrix A(s) \in \BbbF [s]p\times q of degree at most one
(A(s) = A0 + sA1 with A0, A1 \in \BbbF p\times q). The normal rank of A(s), denoted by
rank(A(s)), is the order of the largest nonidentically zero minor of A(s); i.e., it is the
rank of A(s) considered as a matrix on the field of fractions of \BbbF [s]. The pencil is
regular if p = q = rank(A(s)). Otherwise it is singular.

Two matrix pencils A(s) = A0 + sA1, B(s) = B0 + sB1 \in \BbbF [s]p\times q are strictly

equivalent (A(s)
s.e.\sim B(s)) if there exist invertible matrices P \in Glp(\BbbF ), Q \in Glq(\BbbF )

such that A(s) = PB(s)Q. By A(s) \not s.e.\sim B(s) we will understand that A(s) and B(s)
are not strictly equivalent.

Given the pencil A(s) = A0+sA1 \in \BbbF [s]p\times q of rankA(s) = \rho , a complete system of
invariants for the strict equivalence is formed by a chain of homogeneous polynomials
\phi 1(s, t) | \cdot \cdot \cdot | \phi \rho (s, t), \phi i(s, t) \in \BbbF [s, t], 1 \leq i \leq \rho , called the homogeneous invariant
factors, and two collections of nonnegative integers c1 \geq \cdot \cdot \cdot \geq cq - \rho and u1 \geq \cdot \cdot \cdot \geq 
up - \rho , called the column and row minimal indices of the pencil, respectively. In turn,
the homogeneous invariant factors are determined by a chain of polynomials \alpha 1(s) | 
. . . | \alpha \rho (s) in \BbbF [s], called the invariant factors, and a chain of polynomials tk1 | . . . | tk\rho 

in \BbbF [t], called the infinite elementary divisors (see [10, Chapter 2] or [11, Chapter 12]).
In fact, we can write

\phi i(s, t) = tkitdeg(\alpha i(s))\alpha i

\Bigl( s
t

\Bigr) 
, 1 \leq i \leq \rho .

We will refer to the complete system of invariants for the strict equivalence as the
Kronecker structure of the pencil.

The sum of the degrees of the homogeneous invariant factors plus the sum of the
minimal indices is equal to the rank of the pencil. Also, if B(s) = A(s)T , then A(s)
and B(s) share the homogeneous invariant factors and have interchanged minimal
indices; i.e., the column (row) minimal indices of B(s) are the row (column) minimal
indices of A(s). If A(s) \in \BbbF [s]p\times q and rank(A(s)) = p (rank(A(s)) = q), then A(s)

D
ow

nl
oa

de
d 

07
/1

2/
22

 to
 8

1.
9.

23
3.

20
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEYR CHARACTERISTICS OF PERTURBED MATRIX PENCILS 983

does not have row (column) minimal indices. As a consequence, the invariants for the
strict equivalence of regular matrix pencils are reduced to the homogeneous invariant
factors.

Denote by \BbbF = \BbbF \cup \{ \infty \} . The spectrum of A(s) = A0 + sA1 \in \BbbF [s]p\times q is defined
as \Lambda (A(s)) = \{ \lambda \in \BbbF : rank(A(\lambda )) < rank(A(s))\} , where we agree that A(\infty ) = A1.
The elements \lambda \in \Lambda (A(s)) are the eigenvalues of A(s).

Let \alpha 1(s) | \cdot \cdot \cdot | \alpha \rho (s) and \phi 1(s, t) | \cdot \cdot \cdot | \phi \rho (s, t), \rho = rankA(s), be the invariant
factors and the homogeneous invariant factors of A(s) = A0 + sA1 \in \BbbF [s]p\times q, respec-
tively. Factorizing both the invariant factors and the homogeneous invariant factors
we can write

\alpha \rho  - i+1(s) =
\prod 

\lambda \in \Lambda (A(s))\setminus \{ \infty \} 

(s - \lambda )ni(\lambda ,A(s)), 1 \leq i \leq \rho ,

\phi \rho  - i+1(s, t) = tni(\infty ,A(s))
\prod 

\lambda \in \Lambda (A(s))\setminus \{ \infty \} 

(s - \lambda t)ni(\lambda ,A(s)), 1 \leq i \leq \rho .

The integers n1(\lambda ,A(s)) \geq \cdot \cdot \cdot \geq n\rho (\lambda ,A(s)) are called the partial multiplicities of \lambda 
in A(s). For \lambda \in \BbbF \setminus \Lambda (A(s)) we take n1(\lambda ,A(s)) = \cdot \cdot \cdot = n\rho (\lambda ,A(s)) = 0. We agree
that ni(\lambda ,A(s)) = +\infty for i < 1 and ni(\lambda ,A(s)) = 0 for i > \rho , for \lambda \in \BbbF . We also
agree that \alpha i(s) = \phi i(s, t) = 1 for i < 1 and \alpha i(s) = \phi i(s, t) = 0 for i > \rho .

A canonical form for the strict equivalence of matrix pencils is the Kronecker
canonical form. It is a matrix pencil of the form\left[   J(s) 0 0 0 0

0 N(s) 0 0 0
0 0 L(s) 0 0
0 0 0 R(s) 0
0 0 0 0 0

\right]   \in \BbbF [s]p\times q,

where J(s) is a diagonal of Jordan blocks (here J\lambda 0,k(s) corresponds to the elementary
divisor (s - \lambda 0)

k),

(2.1) J\lambda 0,k(s) =

\left[    
s  - \lambda 0 1

. . .
. . .

. . . 1
s  - \lambda 0

\right]    \in \BbbF [s]k\times k,

N(s) = diag(Nk1
(s), . . . , Nk\rho 

(s)), where tk1 | \cdot \cdot \cdot | tk\rho are the infinite elementary
divisors and (the block will be empty if k = 0)

(2.2) Nk(s) =

\left[    
1 s

. . .
. . .

. . . s
1

\right]    \in \BbbF [s]k\times k,

L(s) = diag(Lc1(s), . . . , Lcr (s)), where c1 \geq \cdot \cdot \cdot \geq cr > 0 = cr+1 = \cdot \cdot \cdot = cq - \rho are the
column minimal indices and

(2.3) Lk(s) =

\Biggl[ 
s 1

. . .
. . .

s 1

\Biggr] 
\in \BbbF [s]k\times (k+1),

R(s) = diag(Ru1
(s), . . . , Rur\prime (s)), where u1 \geq \cdot \cdot \cdot \geq ur\prime > 0 = ur\prime +1 = \cdot \cdot \cdot = up - \rho are

the row minimal indices and Rk(s) = Lk(s)
T \in \BbbF [s](k+1)\times k, understanding that the
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984 ITZIAR BARAGA\~NA AND ALICIA ROCA

nonspecified components are zero. For details see [10, Chapter 2] or [11, Chapter 12]
for infinite fields and [16, Chapter 2] for arbitrary fields.

The results in this paper are strongly linked to some properties of collections of
nonnegative integers. We will distinguish two notions.

We call a partition of a positive integer n a finite or infinite sequence of nonnegative
integers a = (a1, a2, . . .), almost all being zero, such that a1 \geq a2 \geq \cdot \cdot \cdot and a1 +
a2 + \cdot \cdot \cdot = n. The number of nonzero components of a is the length of a (denoted
\ell (a)). Notice that \ell (a) \leq n. Given a finite partition a = (a1, a2, . . . , an), if necessary,
we consider ai = 0 if i > n. We identify two partitions that differ only in the
number of components equal to zero. Given two partitions a = (a1, a2, . . . , an) and

b = (b1, b2, . . . , bn), a is majorized by b (denoted a \prec b) if
\sum k

i=1 ai \leq 
\sum k

i=1 bi for
1 \leq k \leq n - 1 and

\sum n
i=1 ai =

\sum n
i=1 bi.

The conjugate partition of a, a = (\=a1, \=a2, . . .), is defined as \=ak := \#\{ i : ai \geq 
k\} , k \geq 1. We define a \cup b to be the partition whose components are those of a and
b arranged in decreasing order (perhaps not strictly), and a+ b will be the partition
whose components are the sums of the corresponding components of a and b. The
following properties are satisfied: a \prec b \leftrightarrow b \prec a and a \cup b = a+ b.

We call a chain a finite sequence of integers c = (c1, c2, . . . , cm) such that c1 \geq 
c2 \geq \cdot \cdot \cdot \geq cm. When necessary, we will consider ci = +\infty if i < 1 and ci =  - \infty when
i > m. We remark that a chain has a fixed number of integer components.

Definition 2.1 (1step-generalized majorization).1 Given two chains of integers
c = (c1, . . . , cm) and d = (d1, . . . , dm+1), we say that d is 1step-majorized by c
(denoted d \prec \prime c) if

ci = di+1, h \leq i \leq m,

where h = min\{ i : ci < di\} (cm+1 =  - \infty ).

All throughout this paper, the chains involved have nonnegative components.
We define the conjugate of a chain of nonnegative integers c = (c1, . . . , cm) as the
partition \=c = (\=c1, . . .), where \=ck := \#\{ i : ci \geq k\} , k \geq 1. When necessary, we
will consider the term \=c0 = \#\{ i : ci \geq 0\} = m. Notice that if c is the partition
c = (c1, . . . , cm, 0, . . . ), then \=c = \=c and \=\=c = c.

In the next theorem the change of the Kronecker structure of a pencil perturbed
by another pencil of rank one is characterized. The result was independently obtained
in [9] and [2].

Theorem 2.2 ([2, Theorem 5.1, Corollary 5.4]). Let A(s), B(s) \in \BbbF [s]p\times q be

matrix pencils such that A(s) \not s.e.\sim B(s). Let rankA(s) = \rho 1, rankB(s) = \rho 2, and
let \phi 1(s, t) | \cdot \cdot \cdot | \phi \rho 1

(s, t), c1 \geq \cdot \cdot \cdot \geq cq - \rho 1
\geq 0, and u1 \geq \cdot \cdot \cdot \geq up - \rho 1

\geq 0 be the
homogeneous invariant factors, column minimal indices, and row minimal indices,
respectively, of A(s), and let \psi 1(s, t) | \cdot \cdot \cdot | \psi \rho 2

(s, t), d1 \geq \cdot \cdot \cdot \geq dq - \rho 2
\geq 0, and

v1 \geq \cdot \cdot \cdot \geq vp - \rho 2 \geq 0 be the homogeneous invariant factors, column minimal in-
dices, and row minimal indices, respectively, of B(s). Let c = (c1, . . . , cq - \rho 1), d =
(d1, . . . , dq - \rho 2

), u = (u1, . . . , up - \rho 1
), v = (v1, . . . , vp - \rho 2

) (c0 = d0 = u0 = v0 = +\infty ),
and \rho = min\{ \rho 1, \rho 2\} .

1. If c = d, u = v, then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1

such that A(s) + P (s)
s.e.\sim B(s) if and only if

(2.4) \psi i - 1(s, t) | \phi i(s, t) | \psi i+1(s, t), 1 \leq i \leq \rho .

1Particular case of generalized majorization [8, Definition 2].
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2. If c \not = d, u = v, let
\ell = max\{ i : ci \not = di\} ,

f = max\{ i \in \{ 1, . . . , \ell \} : ci < di - 1\} , f \prime = max\{ i \in \{ 1, . . . , \ell \} : di < ci - 1\} ,

G = \rho  - 1 - 
\rho  - 1\sum 
i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))) - 
p - \rho \sum 
i=1

ui.

Then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1 such that A(s)+

P (s)
s.e.\sim B(s) if and only if (2.4) holds and

G \leq 
q - \rho \sum 
i=1

min\{ ci, di\} +max\{ cf , df \prime \} .

3. If c = d, u \not = v, let
\=\ell = max\{ i : ui \not = vi\} ,

\=f = max\{ i \in \{ 1, . . . , \=\ell \} : ui < vi - 1\} , \=f \prime = max\{ i \in \{ 1, . . . , \=\ell \} : vi < ui - 1\} ,

\=G = \rho  - 1 - 
\rho  - 1\sum 
i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))) - 
q - \rho \sum 
i=1

ci.

Then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1 such that A(s)+

P (s)
s.e.\sim B(s) if and only if (2.4) holds and

\=G \leq 
p - \rho \sum 
i=1

min\{ ui, vi\} +max\{ u \=f , v \=f \prime \} .

4. If c \not = d, u \not = v, then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1

such that A(s)+P (s)
s.e.\sim B(s) if and only if (2.4) and one of the four following

conditions hold:
(a)

(2.5) c \prec \prime d, u \prec \prime v,

(2.6)
\rho \sum 

i=1

deg(lcm(\phi i(s, t), \psi i(s, t))) \leq x \leq 
\rho \sum 

i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))),

where x = \rho  - 
\sum q - \rho 1

i=1 ci  - 
\sum p - \rho 2

i=1 vi.
(b)

(2.7) d \prec \prime c, v \prec \prime u,

(2.8)
\rho \sum 

i=1

deg(lcm(\phi i(s, t), \psi i(s, t))) \leq y \leq 
\rho \sum 

i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))),

where y = \rho  - 
\sum q - \rho 2

i=1 di  - 
\sum p - \rho 1

i=1 ui.
(c) (2.5) and (2.8) hold.
(d) (2.7) and (2.6) hold.
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986 ITZIAR BARAGA\~NA AND ALICIA ROCA

3. Jordan chains of matrix pencils. The definition of Jordan chain can be
found in [12, section 1.4] for square regular matrix polynomials and in [13, Definition
7.1] for square matrix pencils (both regular and singular) over \BbbC . On the other hand,
the notion of Weyr characteristic of an eigenvalue of a pencil was introduced in [4] as
the conjugate partition of that of the partial multiplicities of the eigenvalue.

The target of this section is to generalize to arbitrary matrix pencils the notions
of Jordan chains and Weyr characteristics of pencils and to express the generalized
Weyr characteristic in terms of the Kronecker invariants of the pencil. The results
hold over arbitrary fields.

Definition 3.1. Given a matrix pencil A(s) = A0 + sA1 \in \BbbF [s]p\times q, an ordered
set (xk, . . . , x0) in \BbbF q is a right Jordan chain of A(s) at \lambda \in \BbbF , of length k + 1, if
x0 \not = 0 and

\lambda \in \BbbF : A(\lambda )x0 = 0, A(\lambda )xi =  - A1xi - 1, 1 \leq i \leq k,
\lambda = \infty : A1x0 = 0, A1xi =  - A0xi - 1, 1 \leq i \leq k.

The set (xk, . . . , x0) in \BbbF p is a left Jordan chain of A(s) at \lambda \in \BbbF , of length k+1,
if it is a right Jordan chain of A(s)T at \lambda .

In what follows we will deal with right Jordan chains, and we will refer to them
just as Jordan chains, omitting the term ``right."" It can be easily seen that the results
obtained for right Jordan chains hold for left Jordan chains by transposition.

Following [13], we denote by \scrL \ell 
\lambda (A(s)) the subspace spanned by the vectors of

the Jordan chains at \lambda \in \BbbF , up to length \ell \geq 1. We agree that \scrL 0
\lambda (A(s)) = \{ 0\} . If

rank(A(\lambda )) = q, then there is no Jordan chain at \lambda for A(s), and we take \scrL \ell 
\lambda (A(s)) =

\{ 0\} for \ell \geq 0. Observe that, for \lambda \in \BbbF , \scrL i - 1
\lambda (A(s)) \subseteq \scrL i

\lambda (A(s)) for i \geq 1 and
\scrL i - 1
\lambda (A(s)) = \scrL i

\lambda (A(s)) for i > q. Again as in [13], we denote by wi(\lambda ,A(s)) the

dimension of the quotient space
\scrL i

\lambda (A(s))

\scrL i - 1
\lambda (A(s))

; i.e.,

wi(\lambda ,A(s)) = dim\scrL i
\lambda (A(s)) - dim\scrL i - 1

\lambda (A(s)), 1 \leq i \leq q.

The following theorem was obtained in [13].

Theorem 3.2 (see [13, Theorem 7.8]). Given a matrix pencil A(s) \in \BbbC [s]n\times n,
let P (s) \in \BbbF [s]n\times n be a rank-one matrix pencil of the form

P (s) = w(su\ast + v\ast ), u, v, w \in \BbbC n, (u, v) \not = (0, 0), w \not = 0.

For \lambda \in \BbbC = \BbbC \cup \{ \infty \} and i \geq 1, the following statements hold:
(i) If both pencils A(s) and A(s) + P (s) are regular, then

| wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) | \leq 1.

(ii) If A(s) is regular but A(s) + P (s) is singular, then

 - i \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1.

(iii) If A(s) is singular and A(s) + P (s) is regular, then

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq i.

(iv) If both A(s) and A(s) + P (s) are singular, then

| wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) | \leq i.

D
ow

nl
oa

de
d 

07
/1

2/
22

 to
 8

1.
9.

23
3.

20
0 

. R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

s:
//e

pu
bs

.s
ia

m
.o

rg
/te

rm
s-

pr
iv

ac
y



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

WEYR CHARACTERISTICS OF PERTURBED MATRIX PENCILS 987

In this paper we obtain bounds for wi(\lambda ,A(s) +P (s)) - wi(\lambda ,A(s)) for arbitrary
matrix pencils A(s) and arbitrary rank-one perturbations P (s).

Since the relation between the Kronecker invariants of a pencil and those of the
pencil obtained by a rank-one perturbation of it is known (see Theorem 2.2), we are
going to relate the values of wi(\lambda ,A(s)) with the Kronecker invariants of A(s). This
relation can also be obtained from [13, Theorem 8.1], but to improve the readability
of the paper, a short proof of it is included here.

First, in the next lemma we state that to compute dim\scrL i
\lambda (A(s)) we can substitute

A(s) by a strictly equivalent pencil.

Lemma 3.3. Let A(s), \=A(s) \in \BbbF [s]p\times q be matrix pencils, and let \lambda \in \BbbF . If A(s)
and \=A(s) are strictly equivalent, then

dim\scrL i
\lambda (A(s)) = dim\scrL i

\lambda ( \=A(s)), i \geq 0.

Proof. The proof is straightforward.

In the next proposition we analyze dim\scrL i
\lambda (A(s)) under certain structures of A(s):

when A(s) has a diagonal decomposition and when it has zero columns or zero rows.

Proposition 3.4.
1. Let C(s) \in \BbbF [s]p1\times q1 , D(s) \in \BbbF [s]p2\times q2 be matrix pencils, A(s) =

\Bigl[ 
C(s) 0
0 D(s)

\Bigr] 
,

and \lambda \in \BbbF . Then

dim\scrL i
\lambda (A(s)) = dim\scrL i

\lambda (C(s)) + dim\scrL i
\lambda (D(s)), i \geq 0.

2. Let C(s) \in \BbbF [s]p\times q1 be a matrix pencil, A(s) = [C(s) 0 ] \in \BbbF [s]p\times (q1+q2), and
\lambda \in \BbbF . Then

dim\scrL i
\lambda (A(s)) = dim\scrL i

\lambda (C(s)) + q2, i \geq 1.

3. Let C(s) \in \BbbF [s]p1\times q be a matrix pencil, A(s) =
\bigl[ 
C(s)
0

\bigr] 
\in \BbbF [s](p1+p2)\times q, and

\lambda \in \BbbF . Then

dim\scrL i
\lambda (A(s)) = dim\scrL i

\lambda (C(s)), i \geq 0.

Proof.
1. The set ([ xk

yk ], . . . , [
x0
y0 ]) is a Jordan chain of A(s) at \lambda if and only if (xk, . . . , x0)

is a Jordan chain of C(s) at \lambda and (yk, . . . , y0) is a Jordan chain of D(s) at
\lambda . Therefore, for i \geq 0, \scrL i

\lambda (A(s)) = (\scrL i
\lambda (C(s))\times \{ 0\} )\oplus (\{ 0\} \times \scrL i

\lambda (D(s)).
2. The set ([ xk

yk ], . . . , [
x0
y0 ]) is a Jordan chain of A(s) at \lambda if and only if (xk, . . . , x0)

is a Jordan chain of C(s) at \lambda . Therefore, for i \geq 1, \scrL i
\lambda (A(s)) = \scrL i

\lambda (C(s))\times 
\BbbF q2 .

3. The set (xk, . . . , x0) is a Jordan chain of A(s) at \lambda if and only if (xk, . . . , x0)
is a Jordan chain of C(s) at \lambda . Therefore, for i \geq 0, \scrL i

\lambda (A(s)) = \scrL i
\lambda (C(s)).

The next step is to compute wi(\lambda ,A(s)) when A(s) is a block component of a
pencil in Kronecker canonical form.

Proposition 3.5.
1. Let \lambda 0 \in \BbbF and \lambda \in \BbbF \setminus \{ \lambda 0\} . Let J\lambda 0,k(s) be the pencil defined in (2.1). Then

wi(\lambda 0, J\lambda 0,k(s)) = 1, 1 \leq i \leq k,

wi(\lambda , J\lambda 0,k(s)) = 0, 1 \leq i \leq k.
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2. Let \lambda \in \BbbF . Let Nk(s) be the pencil defined in (2.2). Then

wi(\infty , Nk(s)) = 1, 1 \leq i \leq k,
wi(\lambda ,Nk(s)) = 0, 1 \leq i \leq k.

3. Let \lambda \in \BbbF . Let Lk - 1(s) be the pencil defined in (2.3). Then

wi(\lambda , Lk - 1(s)) = 1, 1 \leq i \leq k.

4. Let \lambda \in \BbbF , and let Rk - 1(s) = Lk - 1(s)
T . Then

wi(\lambda ,Rk - 1(s)) = 0, 1 \leq i \leq k  - 1.

Proof. Let e1, . . . , ek be the columns of Ik.
1. For 1 \leq i \leq k, \scrL i

\lambda 0
(J\lambda 0,k(s)) = span\{ e1, . . . , ei\} ; hence dim\scrL i

\lambda 0
(J\lambda 0,k(s)) = i,

from where we obtain wi(\lambda 0, J\lambda 0,k(s)) = 1. If \lambda \in \BbbF \setminus \{ \lambda 0\} , rank J\lambda 0,k(\lambda ) = k;
hence wi(\lambda , J\lambda 0,k(s)) = 0 for 1 \leq i \leq k. Analogously, for 1 \leq i \leq k, we obtain
wi(\infty , J\lambda 0,k(s)) = 0.

2. As in the previous case, for 1 \leq i \leq k, \scrL i
\infty (Nk(s)) = span\{ e1, . . . , ei\} , and

rankNk(\lambda ) = k for \lambda \in \BbbF .
3. We have \scrL i

\infty (Lk - 1(s)) = span\{ ek, ek - 1, . . . , ek - i+1\} for 1 \leq i \leq k. If \lambda \in 
\BbbF , then

\scrL 1
\lambda (Lk - 1(s)) = span

\left\{     
\left[   

1
 - \lambda 
\lambda 2

...
( - \lambda )k - 1

\right]   
\right\}     ,

and for 2 \leq i \leq k,

\scrL i
\lambda (Lk - 1(s)) = span

\left\{               

\left[        

1
 - \lambda 
\lambda 2

...
( - \lambda )i - 1

...
( - \lambda )k - 1

\right]        ,
\left[        

0
 - 1
x32

...
xi - 1,2
xi2

...
xk2

\right]        ,
\left[       

0
0
1
...

xi - 1,3
xi3

...
xk3

\right]       , . . . ,
\left[        

0
0
0
...
0

( - 1)i - 1

...
xki

\right]        

\right\}               
,

where xuj are recursively defined as

xuj =  - xu - 1,j - 1  - \lambda xu - 1,j , 3 \leq u \leq k, 2 \leq j \leq u - 1.

Therefore, dim\scrL i
\lambda (Lk - 1(s)) = i for 0 \leq i \leq k.

4. For \lambda \in \BbbF , we have rank(Rk - 1(\lambda )) = k  - 1. Hence, wi(\lambda ,Rk - 1(s)) = 0 for
1 \leq i \leq k. Analogously, we obtain wi(\infty , Rk - 1(s)) = 0 for 1 \leq i \leq k  - 1.

Corollary 3.6. With the notation of Proposition 3.5, do the following:
1. Let \lambda 0 \in \BbbF and \lambda \in \BbbF \setminus \{ \lambda 0\} . Then

(k) = (w1(\lambda 0, J\lambda 0,k(s)), . . . , wk(\lambda 0, J\lambda 0,k(s))),

(0) = (w1(\lambda , J\lambda 0,k(s)), . . . , wk(\lambda , J\lambda 0,k(s))).

2. Let \lambda \in \BbbF . Then

(k) = (w1(\infty , Nk(s)), . . . , wk(\infty , Nk(s))),

(0) = (w1(\lambda ,Nk(s)), . . . , wk(\lambda ,Nk(s))).
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3. Let \lambda \in \BbbF . Then

(k) = (w1(\lambda , Lk - 1(s)), . . . , wk(\lambda , Lk - 1(s))).

4. Let \lambda \in \BbbF . Then

(0) = (w1(\lambda ,Rk - 1(s)), . . . , wk - 1(\lambda ,Rk - 1(s))).

The next theorem relates the values of wi(\lambda ,A(s)) with the Kronecker invariants
of A(s).

Theorem 3.7. Let A(s) \in \BbbF [s]p\times q be a matrix pencil such that rank(A(s)) = \rho ,
and \lambda \in \BbbF . Let n1(\lambda ,A(s)) \geq \cdot \cdot \cdot \geq n\rho (\lambda ,A(s)) \geq 0 be the partial multiplici-
ties of \lambda in A(s), and let c1 \geq \cdot \cdot \cdot \geq cq - \rho and u1 \geq \cdot \cdot \cdot \geq up - \rho be the column
and row minimal indices of A(s), respectively. Let (wR

1 (\lambda ,A(s)), . . . , w
R
q (\lambda ,A(s))) =

(n1(\lambda ,A(s)), . . . , n\rho (\lambda ,A(s)), (r1, . . . , rq) = (c1, . . . , cq - \rho ), and r0 = q  - \rho . Then

wi(\lambda ,A(s)) = wR
i (\lambda ,A(s)) + ri - 1, 1 \leq i \leq q.

Proof. By Lemma 3.3, we can assume that A(s) is in Kronecker canonical form.
By Propositions 3.4 and 3.5, for \lambda \in \BbbF ,

\rho \sum 
i=1

(ni(\lambda ,A(s)) +

r1\sum 
i=1

(ci + 1)+ (q - \rho  - r1, 0, . . . , 0) = (w1(\lambda ,A(s)), . . . , wq(\lambda ,A(s))).

Since \sum \rho 
i=1 (ni(\lambda ,A(s)) = \cup \rho 

i=1(ni(\lambda ,A(s)) = (n1(\lambda ,A(s)), . . . , n\rho (\lambda ,A(s))

= (wR
1 (\lambda ,A(s)), . . . , w

R
q (\lambda ,A(s)))

and (q  - \rho  - r1, 0, . . . , 0) =
\sum q - \rho 

i=r1+1 1 =
\sum q - \rho 

i=r1+1 (ci + 1), we obtain

\sum r1
i=1 (ci + 1) + (q  - \rho  - r1, 0, . . . , 0) =

\sum q - \rho 
i=1 (ci + 1) = \cup q - \rho 

i=1 (ci + 1)

= (c1, . . . , cq - \rho ) + (1, (q - \rho ). . . , 1) = (c1, . . . , cq - \rho ) \cup (1, (q - \rho ). . . , 1)
= (r1, . . . , rq) \cup (q  - \rho ) = (q  - \rho , r1, . . . , rq).

Remark 3.8.
\bullet Let A(s) \in \BbbF [s]p\times q be a matrix pencil and \lambda \in \BbbF . Then, by Theorem 3.7, we

have
w1(\lambda ,A(s)) \geq w2(\lambda ,A(s)) \cdot \cdot \cdot \geq wq(\lambda ,A(s)).

We call the partition

w(\lambda ,A(s)) = (w1(\lambda ,A(s)), w2(\lambda ,A(s)), . . . , wq(\lambda ,A(s)))

the generalized Weyr characteristic of the pencil A(s) at \lambda .
\bullet Notice that, by Theorem 3.7,

w(\lambda ,A(s)) = (wR
1 (\lambda ,A(s)), . . . , w

R
q (\lambda ,A(s))) + (r0, r1, . . . , rq - 1), \lambda \in \BbbF ,
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where (wR
1 (\lambda ,A(s)), . . . , w

R
q (\lambda ,A(s))) is the Weyr characteristic at \lambda of the

regular part of A(s) and (r0, r1, . . . , rq - 1) is that of the column minimal in-
dices block. Observe that the row minimal indices do not play any role in the
calculation of w(\lambda ,A(s)).
In [4], (wR

1 (\lambda ,A(s)), . . . , w
R
q (\lambda ,A(s))) is called the Weyr characteristic of the

pencil for \lambda \in \BbbC , and (r1, . . . , rq - 1) is called the partition of the r-numbers
of the pencil. Notice also that, if the pencil does not have column mini-
mal indices, the Weyr characteristic and the generalized Weyr characteristic
coincide.
In the next example we compute the Weyr and the generalized Weyr charac-
teristics of a pencil.

Example 3.9. The spectrum of the pencil

A(s) =

\left[        
1 s

1
1

s 1
s 1

0

\right]        \in \BbbC [s]6\times 7

is \Lambda (A(s)) = \{ \infty \} . The partial multiplicities of \infty in A(s) are n1(\infty , A(s)) =
2 \geq n2(\infty , A(s)) = 1. The column and row minimal indices of A(s) are
c1 = 2 \geq c2 = 0 and u1 = 0, respectively.
In [4], the Weyr characteristic of A(s) for \infty is

(wR
1 (\infty , A(s)), . . . ) = (2, 1) = (2, 1, 0, . . . ).

The partitions of the r-numbers and of the s-numbers of A(s) are, respectively,

(r1, . . . ) = (2, 0) = (1, 1, 0, . . . ), (s1, . . . ) = (0) = (0, . . . ).

The generalized Weyr characteristic of A(s) at \infty is

w(\infty , A(s)) = (wR
1 (\infty , A(s)), . . . ) + (r0, r1, . . . )

= (2, 1, 0, . . . ) + (2, 1, 1, 0, . . . ) = (4, 2, 1, 0, . . . ).

4. Theorem 2.2 in terms of the conjugate partitions. The target of this
section is to rewrite the characterizations stated in Theorem 2.2 in terms of the
conjugate partitions of the corresponding chains of column and row minimal indices
of the pencils involved. To achieve it we previously prove some technical results.

We start with the introduction of a new majorization between partitions of non-
negative integers.

Definition 4.1. Given two partitions of nonnegative integers r = (r0, r1, . . . )
and s = (s0, s1, . . . ) such that r0 \geq r1 \geq \cdot \cdot \cdot and s0 \geq s1 \geq \cdot \cdot \cdot , we say that s is
conjugate majorized by r (denoted s \angle r) if r0 = s0 + 1 and

ri = si + 1, 0 \leq i \leq g,

where g = max\{ i : ri > si\} .
Remark 4.2. Let a = (a1, . . . ) be a partition of nonnegative integers, and let

(r1, . . . ) = (a1, . . . ) be its conjugate partition. In what follows we will frequently use
the following properties:
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\bullet rj = i for ai+1 < j \leq ai, i \geq 1. If ai+1 = ai there are no j such that rj = i.
\bullet For i \in \{ 1, . . . , \ell (a)\} we have rai

\geq i, and if j > ai, then rj < i. Recall that
\ell (a) is the length of the partition a, i.e., the number of nonzero elements of
a. In other words, \ell (a) = r1.

The proof of the next lemma is analogous to that of [14, Lemma 3.2].

Lemma 4.3. Let (a1, . . . ) and (b1, . . . ) be partitions of nonnegative integers. Let
p = (p1, . . . ) = (a1, . . . ) and q = (q1, . . . ) = (b1, . . . ) be the conjugate partitions. Let
k \geq 0 be an integer. Then

aj \geq bj+k for every j \geq 1

if and only if

pj \geq qj  - k for every j \geq 1.

Lemma 4.4. Given two chains of nonnegative integers c = (c1, . . . , cm+1) and
d = (d1, . . . , dm), let r = (r1, . . . ) = (c1, . . . , cm+1), s = (s1, . . . ) = (d1, . . . , dm), and
r0 = m+ 1 = s0 + 1. Let

g = max\{ i : ri > si\} , h = min\{ i : di < ci\} .

Then

(4.1) g = ch

and

(4.2)

g\sum 
j=1

(rj  - sj  - 1) =

m\sum 
j=h

(cj+1  - dj).

Proof. As dh < ch, we have sch < h \leq rch ; hence g \geq ch. Observe that g \leq \ell (r).
If \ell (r) \geq i > ch, then cri \geq i > ch; hence ri < h. By the definition of h, we have
dri \geq cri \geq i; hence \#\{ j : dj \geq i\} \geq ri; i.e., si \geq ri. Therefore, (4.1) holds. Then,

g\sum 
j=1

rj =

ch\sum 
j=1

rj = (m+ 1)cm+1 +

m\sum 
j=h

j(cj  - cj+1) = hch +

m\sum 
j=h

cj+1,

and, bearing in mind that dh < ch \leq ch - 1 \leq dh - 1,

g\sum 
j=1

sj =

dh\sum 
j=1

sj +

ch\sum 
j=dh+1

sj = mdm + (ch  - dh)(h - 1) +

m - 1\sum 
j=h

j(dj  - dj+1)

= hdh + (ch  - dh)(h - 1) +

m - 1\sum 
j=h

dj+1 = (h - 1)ch +

m\sum 
j=h

dj .

Therefore,

g\sum 
j=1

(rj  - sj  - 1) = ch  - g +

m\sum 
j=h

(cj+1  - dj) =

m\sum 
j=h

(cj+1  - dj).
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Proposition 4.5. Given two chains of nonnegative integers c = (c1, . . . , cm+1)
and d = (d1, . . . , dm), let (r1, . . . ) = (c1, . . . , cm+1), (s1, . . . ) = (d1, . . . , dm) be the
conjugate partitions, r0 = m+1 = s0+1, and r = (r0, r1, . . . ), s = (s0, s1, . . . ). Then
c \prec \prime d if and only if s \angle r.

Proof. Let g = max\{ i : ri > si\} and h = min\{ i : di < ci\} . Then, by Lemma 4.4,
(4.1) and (4.2) hold. Moreover, ri \leq si < si + 1 for i > g and di \geq ci \geq ci+1 for
1 \leq i < h.

Assume that c \prec \prime d; then di \geq ci+1 for 1 \leq i \leq m and
\sum m

j=h(cj+1  - dj) = 0.
From Lemma 4.3 we have ri \leq si + 1 for i \geq 1, and then from (4.2) we derive that
ri = si + 1 for 1 \leq i \leq g; i.e., s \angle r.

Conversely, assume that s \angle r; then ri \leq si+1 for i \geq 1 and
\sum g

j=1(rj - sj - 1) = 0.
From Lemma 4.3 we have di \geq ci+1 for 1 \leq i \leq m, and then from (4.2) we derive that
di = ci+1 for h \leq i \leq m; i.e., c \prec \prime d.

Lemma 4.6. Given two chains of nonnegative integers c = (c1, . . . , cm) and d =
(d1, . . . , dm) (d0 = c0 = +\infty ) such that c \not = d, let

\ell = max\{ i : ci \not = di\} ,

f = max\{ i \in \{ 1, . . . , \ell \} : ci < di - 1\} , f \prime = max\{ i \in \{ 1, . . . , \ell \} : di < ci - 1\} .

Let (r1, . . . ) = (c1, . . . , cm), (s1, . . . ) = (d1, . . . , dm), r0 = s0 = m,

x = min\{ i : ri \not = si\} ,

e = min\{ i \geq x - 1 : si+1 \geq ri+1\} , e\prime = min\{ i \geq x - 1 : ri+1 \geq si+1\} .

Then
e = cf , e\prime = df \prime .

Proof. Assume that d\ell < c\ell (if c\ell < d\ell the proof is analogous). As d\ell < c\ell \leq c\ell  - 1,
we have f \prime = \ell .

From the definition of \ell , ci = di, \ell + 1 \leq i \leq m; then ri = si, 1 \leq i \leq d\ell . From
d\ell < c\ell we also derive that sd\ell +1 < rd\ell +1; hence x = d\ell + 1 and, from the definition
of e\prime , e\prime = d\ell .

From the definition of f , cf < df - 1. If f < \ell , then df \leq cf+1 \leq cf < df - 1,
and if f = \ell , then df = d\ell < c\ell = cf < df - 1. Hence, rcf+1 \leq f  - 1 = scf+1 and
x - 1 = d\ell \leq e \leq cf . Moreover, by definition, ci \geq di - 1 for f + 1 \leq i \leq \ell .

We prove next that for d\ell \leq i \leq cf  - 1, ri+1 > si+1 holds. Let i be such that
cf \geq i > d\ell . If there exists j \in \{ f, . . . , \ell \} such that cj \geq i > cj+1 \geq dj , then
ri = j > j  - 1 \geq si. Otherwise, c\ell \geq i > d\ell ; then ri > si. Hence e = cf .

Lemma 4.7. Given two chains of nonnegative integers c = (c1, . . . , cm) and d =
(d1, . . . , dm), let xi = min\{ ci, di\} , 1 \leq i \leq m. Let (r1, . . . ) = (c1, . . . , cm), (s1, . . . ) =
(d1, . . . , dm), and yi = min\{ ri, si\} , i \geq 1. Then

(y1, . . . ) = (x1, . . . , xm).

Proof. For i \geq 1, let Ci = \{ j : cj \geq i\} , Di = \{ j : dj \geq i\} , Xi = \{ j : xj \geq i\} .
Then Xi = Ci \cap Di, ri = \#Ci, si = \#Di, i \geq 1. We must prove that yi = \#Xi

for i \geq 1. Let i \geq 1. If yi = ri, then Ci \subseteq Di and Xi = Ci; hence \#Xi = ri = yi.
Analogously, if yi = si, then \#Xi = si = yi.

The result of the next theorem is the target of the section.
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Theorem 4.8. Let A(s), B(s) \in \BbbF [s]p\times q be matrix pencils such that A(s) \not s.e.\sim 
B(s). Let rankA(s) = \rho 1, rankB(s) = \rho 2, and let \phi 1(s, t) | \cdot \cdot \cdot | \phi \rho 1

(s, t), c1 \geq 
\cdot \cdot \cdot \geq cq - \rho 1

\geq 0, and u1 \geq \cdot \cdot \cdot \geq up - \rho 1
\geq 0 be the homogeneous invariant fac-

tors, column minimal indices, and row minimal indices of A(s), respectively, and let
\psi 1(s, t) | \cdot \cdot \cdot | \psi \rho 2(s, t), d1 \geq \cdot \cdot \cdot \geq dq - \rho 2 \geq 0, and v1 \geq \cdot \cdot \cdot \geq vp - \rho 2 \geq 0 be the
homogeneous invariant factors, column minimal indices, and row minimal indices of
B(s), respectively.

Let \rho = min\{ \rho 1, \rho 2\} , \rho \prime = max\{ \rho 1, \rho 2\} , c = (c1, . . . , cq - \rho 1
), d = (d1, . . . , dq - \rho 2

),

u = (u1, . . . , up - \rho 1
), v = (v1, . . . , vp - \rho 2

), (r1, . . . ) = (c1, . . . , cq - \rho 1
), (s1, . . . ) =

(d1, . . . , dq - \rho 2), (r
\prime 
1, . . . ) = (u1, . . . , up - \rho 1), (s

\prime 
1, . . . ) = (v1, . . . , vp - \rho 2), r0 = q  - \rho 1,

s0 = q - \rho 2, r\prime 0 = p - \rho 1, s\prime 0 = p - \rho 2, r = (r0, r1, . . . ), s = (s0, s1, . . . ), r
\prime = (r\prime 0, r

\prime 
1, . . . ),

and s\prime = (s\prime 0, s
\prime 
1, . . . ).

1. If r = s, r\prime = s\prime , then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1

such that A(s) + P (s)
s.e.\sim B(s) if and only if (2.4) holds.

2. If r \not = s, r\prime = s\prime , let

(4.3) x = min\{ i : ri \not = si\} ,

(4.4)
e = min\{ i \geq x - 1 : si+1 \geq ri+1\} , e\prime = min\{ i \geq x - 1 : ri+1 \geq si+1\} ,

G = \rho  - 1 - 
\rho  - 1\sum 
i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))) - 
\rho \sum 

i=1

r\prime i.

Then, there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1 such that A(s)+

P (s)
s.e.\sim B(s) if and only if (2.4) holds and

(4.5) G \leq 
\rho \sum 

i=1

min\{ ri, si\} +max\{ e, e\prime \} .

3. If r = s, r\prime \not = s\prime , let
\=x = min\{ i : r\prime i \not = s\prime i\} ,

\=e = min\{ i \geq \=x - 1 : s\prime i+1 \geq r\prime i+1\} , \=e\prime = min\{ i \geq \=x - 1 : r\prime i+1 \geq s\prime i+1\} ,

\=G = \rho  - 1 - 
\rho  - 1\sum 
i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))) - 
\rho \sum 

i=1

ri.

Then, there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1 such that A(s)+

P (s)
s.e.\sim B(s) if and only if (2.4) holds and

\=G \leq 
\rho \sum 

i=1

min\{ r\prime i, s\prime i\} +max\{ \=e, \=e\prime \} .

4. If r \not = s, r\prime \not = s\prime , then there exists a pencil P (s) \in \BbbF [s]p\times q of rank(P (s)) = 1

such that A(s)+P (s)
s.e.\sim B(s) if and only if (2.4) and one of the four following

conditions hold:
(a)

(4.6) s \angle r, s\prime \angle r\prime ,
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and
(4.7)

\rho \sum 
i=1

deg(lcm(\phi i(s, t), \psi i(s, t))) \leq x \leq 
\rho \sum 

i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))),

where x = \rho  - 
\sum \rho \prime 

i=1 ri  - 
\sum \rho \prime 

i=1 s
\prime 
i.

(b)

(4.8) r \angle s, r\prime \angle s\prime ,

and
(4.9)

\rho \sum 
i=1

deg(lcm(\phi i(s, t), \psi i(s, t))) \leq y \leq 
\rho \sum 

i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))),

where y = \rho  - 
\sum \rho \prime 

i=1 si  - 
\sum \rho \prime 

i=1 r
\prime 
i.

(c) (4.6) and (4.9) hold.
(d) (4.8) and (4.7) hold.

Proof. The proof is a consequence of Theorem 2.2, Lemmas 4.6 and 4.7, and
Proposition 4.5.

5. Bounds. Given a pencil A(s) and a perturbation of it, A(s) + P (s), where
P (s) is a pencil of rank one, and given \lambda \in \BbbF , in this section we obtain bounds for
the differences between the generalized Weyr characteristics of A(s) and A(s) + P (s)
at \lambda . We include some technical lemmas in subsection 5.1 and prove the main result
in subsection 5.2.

The notation used in this section corresponds to that introduced in Theorem 4.8.
In particular, when r \not = s and r\prime = s\prime , the values of x, e, and e\prime are defined in (4.3)
and (4.4) (they also appear in Lemma 4.6). Notice that either e = x  - 1 < e\prime or
e\prime = x - 1 < e; therefore e \not = e\prime .

5.1. Technical lemmas.

Lemma 5.1. Assume that r \not = s, r\prime = s\prime , and (4.5) holds.
1. Case e > e\prime .

(a) Let i \in \{ x, . . . , e\} ; then

(5.1)  - x - 1 \leq si  - ri \leq  - 1.

Moreover, if si  - ri =  - x - 1, then

(5.2) \phi j(s, t) | \psi j(s, t), 1 \leq j \leq \rho .

(b) Let i > e; then

(5.3)  - x \leq si  - ri \leq e+ 1.

Moreover, if si  - ri = e+ 1, then

(5.4) \psi j(s, t) | \phi j(s, t), 1 \leq j \leq \rho .

2. Case e\prime > e.
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(a) Let i \in \{ x, . . . , e\prime \} ; then

 - x - 1 \leq ri  - si \leq  - 1.

If ri  - si =  - x - 1, then (5.4) holds.
(b) Let i > e\prime ; then

 - x \leq ri  - si \leq e\prime + 1.

If ri  - si = e\prime + 1, then (5.2) holds.

Proof. If r \not = s and r\prime = s\prime , then rankA(s) = rankB(s) = \rho , r0 = s0 = q - \rho , and
min\{ e, e\prime \} = x - 1 < max\{ e, e\prime \} .

As r \not = s, we have
\sum \rho 

i=1 ri \not = 0 or
\sum \rho 

i=1 si \not = 0; hence \phi 1(s, t) = 1 or \psi 1(s, t) = 1,
deg(gcd(\phi 1(s, t), \psi 1(s, t))) = 1, and

\rho  - 1\sum 
i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))) =

\rho \sum 
i=1

deg(gcd(\phi i(s, t), \psi i(s, t))).

Bearing in mind that r\prime = s\prime and

\rho \sum 
i=1

ri +

\rho \sum 
i=1

r\prime i +

\rho \sum 
i=1

deg(\phi i(s, t)) =

\rho \sum 
i=1

si +

\rho \sum 
i=1

s\prime i +

\rho \sum 
i=1

deg(\psi i(s, t)) = \rho ,

we have

G =

\rho \sum 
i=1

ri +

\rho \sum 
i=1

Xi  - 1 =

\rho \sum 
i=1

si +

\rho \sum 
i=1

Yi  - 1,

where for 1 \leq i \leq \rho , Xi = deg(\phi i(s, t))  - deg(gcd(\phi i(s, t), \psi i(s, t))) and Yi =
deg(\psi i(s, t)) - deg(gcd(\phi i(s, t), \psi i(s, t))). Hence condition (4.5) is equivalent to

(5.5)

\rho \sum 
i=1

(ri  - min\{ ri, si\} ) +
\rho \sum 

i=1

Xi \leq max\{ e, e\prime \} + 1

and to

(5.6)

\rho \sum 
i=1

(si  - min\{ ri, si\} ) +
\rho \sum 

i=1

Yi \leq max\{ e, e\prime \} + 1.

1. Assume that e > e\prime . Then e\prime = x - 1 < e = max\{ e, e\prime \} \leq \rho .
(a) Let i \in \{ x, . . . , e\} . Then ri > si and the upper bound of (5.1) holds.

Moreover,\sum i
j=1(rj  - sj) =

\sum e
j=1(rj  - sj) - 

\sum e
j=i+1(rj  - sj)

\leq 
\sum e

j=1(rj  - sj) - (e - i)

\leq 
\sum \rho 

j=1(rj  - min\{ rj , sj\} ) - (e - i).

From (5.5) we derive
(5.7)\sum i

j=1(rj  - sj) \leq 
\sum \rho 

j=1(rj  - min\{ rj , sj\} ) +
\sum \rho 

j=1Xj  - (e - i)

\leq (e+ 1) - (e - i) = i+ 1;
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then

ri  - si =

i\sum 
j=1

(rj  - sj) - 
i - 1\sum 
j=x

(rj  - sj) \leq (i+ 1) - (i - x) = x+ 1,

and the lower bound of (5.1) holds.
In the case that si  - ri =  - x - 1, from (5.7),

i+ 1 \geq 
i\sum 

j=1

(rj  - sj) =

i - 1\sum 
j=x

(rj  - sj) + x+ 1 \geq (i - x) + x+ 1 = i+ 1.

Then, again from (5.7), we have

(i+1)+

e\sum 
j=i+1

(rj - sj)+
\rho \sum 

j=e+1

(rj - min\{ rj , sj\} )+
\rho \sum 

j=1

Xj - (e - i) \leq i+1;

i.e.,

e\sum 
j=i+1

(rj  - sj) - (e - i) +

\rho \sum 
j=e+1

(rj  - min\{ rj , sj\} ) +
\rho \sum 

j=1

Xj = 0.

From this equation we conclude that Xj = 0, 1 \leq j \leq \rho , which is
equivalent to condition (5.2).

(b) Let i \in \{ e+ 1, . . . , \rho \} . Then, from (5.6),

(5.8) si - ri \leq si - min\{ ri, si\} \leq 
\rho \sum 

j=1

(sj  - min\{ rj , sj\} )+
\rho \sum 

i=1

Yj \leq e+1,

and, from (5.5),

ri  - si \leq ri  - min\{ ri, si\} \leq 
\sum \rho 

j=e+1(rj  - min\{ rj , sj\} )
=

\sum \rho 
j=1(rj  - min\{ rj , sj\} ) - 

\sum e
j=x(rj  - sj)

\leq 
\sum \rho 

j=1(rj  - min\{ rj , sj\} ) +
\sum \rho 

i=1Xj  - (e - x+ 1)

\leq (e+ 1) - (e - x+ 1) = x.

Therefore (5.3) holds.
In the case that si  - ri = e+ 1, from (5.8) we obtain that Yj = 0, 1 \leq 
j \leq \rho , which is equivalent to (5.4).

2. The proof is analogous to that of case 1.

As a consequence of Lemma 5.1 we obtain the following result.

Lemma 5.2. Assume that r \not = s, r\prime = s\prime , and (4.5) holds. Let a\prime = min\{ e, e\prime \} =
x - 1 and b\prime = max\{ e, e\prime \} . Then

si  - ri = 0, 0 \leq i \leq a\prime ,
 - (a\prime + 2) \leq si  - ri \leq a\prime + 2, a\prime + 1 \leq i \leq b\prime ,
 - (b\prime + 1) \leq si  - ri \leq b\prime + 1, i \geq b\prime + 1.

Additionally the following holds:
If si  - ri =  - (a\prime +2) for some i \in \{ a\prime +1, . . . , b\prime \} or si  - ri =  - (b\prime +1) for some

i > b\prime , then (5.2) holds.
If si - ri = (a\prime +2) for some i \in \{ a\prime +1, . . . , b\prime \} or si - ri = b\prime +1 for some i > b\prime ,

then (5.4) holds.
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Lemma 5.3.
1. Assume that rank(A(s)) = \rho and rank(B(s)) = \rho + 1 and that (4.6) holds.

Let g = max\{ i : ri > si\} and i \in \{ g + 1, . . . , \rho + 1\} .
(a) If (4.9) holds, then 0 \leq si - ri \leq g. In addition, if si - ri = g, then (5.4)

is satisfied.
(b) If (4.7) holds, then 0 \leq si  - ri \leq g + 1. In addition, if si  - ri = g + 1,

then (5.4) is satisfied.
2. Assume that rank(A(s)) = \rho + 1 and rank(B(s)) = \rho and that (4.8) holds.

Let g = max\{ i : si > ri\} and i \in \{ g + 1, . . . , \rho + 1\} .
(a) If (4.7) holds, then 0 \leq ri - si \leq g. In addition, if ri - si = g, then (5.2)

is satisfied.
(b) If (4.9) holds, then 0 \leq ri  - si \leq g + 1. In addition, if ri  - si = g + 1,

then (5.2) is satisfied.

Proof.
1. Notice that, from the definition of g, we have si  - ri \geq 0.

(a) From (4.9) we derive that

\rho \sum 
j=1

deg(lcm(\phi j(s, t), \psi j(s, t))) \leq 
\rho \sum 

j=1

deg(\phi j(s, t)) +

\rho +1\sum 
j=1

(rj  - sj).

As a consequence,

si  - ri \leq 
\rho +1\sum 

j=g+1

(sj  - rj) \leq 
g\sum 

j=1

(rj  - sj) +

\rho \sum 
j=1

X \prime 
j \leq 

g\sum 
j=1

(rj  - sj) = g,

where for 1 \leq j \leq \rho , X \prime 
j = deg(\phi j(s, t)) - deg(lcm(\phi j(s, t), \psi j(s, t))).

If si  - ri = g, then
\sum \rho 

j=1X
\prime 
j = 0, and (5.4) is satified.

(b) From (4.7) we derive that
(5.9)
\rho +1\sum 
j=1

deg(\psi j(s, t))+

\rho +1\sum 
j=1

(sj  - rj) - 1 \leq 
\rho \sum 

i=1

deg(gcd(\phi i+1(s, t), \psi i+1(s, t))).

\bullet If deg(gcd(\phi 1(s, t), \psi 1(s, t))) = 1, then si = ri = 0 and g = 0.
\bullet If deg(gcd(\phi 1(s, t), \psi 1(s, t))) = 0, then, from (5.9),

si  - ri \leq 
\sum \rho +1

j=g+1(sj  - rj) \leq 
\sum g

j=1(rj  - sj) +
\sum \rho +1

j=1 Yj + 1

\leq 
\sum g

j=1(rj  - sj) + 1 = g + 1,

where Yj = deg(gcd(\phi j(s, t), \psi j(s, t)) - deg(\psi j(s, t)), 1 \leq j \leq \rho + 1.

If si  - ri = g + 1, then
\sum \rho +1

j=1 Yj = 0, and (5.4) is satisfied.
2. The proof is analogous to that of case 1.

5.2. Main theorem. We now prove the main theorem of the paper. Recall that
we use the notation of Theorem 4.8.

Theorem 5.4. Given a matrix pencil A(s) \in \BbbF [s]p\times q, let P (s) \in \BbbF [s]p\times q be a
matrix pencil of rank one. For \lambda \in \BbbF , the following statements hold:

(i) If both pencils A(s) and A(s) + P (s) are regular, then

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, i \geq 1.
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(ii) If A(s) is regular and A(s) + P (s) is singular, then, taking a = d1 + 1, we
have

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
 - 2 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 0, i \geq a+ 1.

(iii) If A(s) is singular and A(s) + P (s) is regular, then, taking a = c1 + 1, we
have

 - 1 \leq w1(\lambda ,A(s) + P (s)) - w1(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
0 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 2, i \geq a+ 1.

(iv) If both A(s) and A(s) + P (s) are singular the following holds:
\bullet Assume that rank(A(s)) = rank(A(s) + P (s)).

-- If A(s) and A(s)+P (s) have the same column minimal indices, then

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, i \geq 1.

-- If A(s) and A(s)+P (s) have different column minimal indices, then,
taking a = x and b = max\{ e, e\prime \} + 1 (notice that b > a \geq 1), we
have
(5.10)

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
 - (a+ 1) \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq a+ 1, a+ 1 \leq i \leq b,

 - b \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq b, i \geq b+ 1.

\bullet Assume that rank(A(s)) < rank(A(s) + P (s)). Let a = max\{ i : ri >
si\} + 1. Then

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
0 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq a+ 1, i \geq a+ 1.

\bullet Assume that rank(A(s)) > rank(A(s) + P (s)). Let a = max\{ i : si >
ri\} + 1. Then

 - 1 \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
 - (a+ 1) \leq wi(\lambda ,A(s) + P (s)) - wi(\lambda ,A(s)) \leq 0, i \geq a+ 1.

Proof. We take B(s) = A(s) + P (s). Notice that  - 1 \leq \rho 2  - \rho 1 \leq 1. Let

(wR
1 (\lambda ,A(s)), . . . ) = (n1(\lambda ,A(s)), . . . , n\rho 1(\lambda ,A(s)),

(wR
1 (\lambda ,B(s)), . . . ) = (n1(\lambda ,B(s)), . . . , n\rho 2

(\lambda ,B(s)).

By Theorem 3.7, for i \geq 1,

(5.11) wi(\lambda ,B(s)) - wi(\lambda ,A(s)) = wR
i (\lambda ,B(s)) - wR

i (\lambda ,A(s)) + si - 1  - ri - 1.

By Theorem 4.8 condition (2.4) holds; then

ni+\rho 2 - \rho 1+1(\lambda ,B(s)) \leq ni(\lambda ,A(s)) \leq ni+\rho 2 - \rho 1 - 1(\lambda ,B(s)), i \geq 1,

and, by Lemma 4.3, this is equivalent to

(5.12) \rho 2  - \rho 1  - 1 \leq wR
i (\lambda ,B(s)) - wR

i (\lambda ,A(s)) \leq \rho 2  - \rho 1 + 1, i \geq 1.
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Additionally, if (5.4) holds, then

(5.13) \rho 2  - \rho 1  - 1 \leq wR
i (\lambda ,B(s)) - wR

i (\lambda ,A(s)) \leq \rho 2  - \rho 1, i \geq 1,

and if (5.2) holds, then

(5.14) \rho 2  - \rho 1 \leq wR
i (\lambda ,B(s)) - wR

i (\lambda ,A(s)) \leq \rho 2  - \rho 1 + 1, i \geq 1.

We analyze now the different cases enumerated in the statement of the theorem.
(i) If A(s) and A(s)+P (s) are regular, then p = q = \rho 1 = \rho 2. The result follows

from (5.11) and (5.12). This result was proven in [1, Corollary 4.7].
(ii) If A(s) is regular and A(s) + P (s) is singular, then p = q = \rho 1 = \rho 2 + 1,

r0 = 0, (s1, . . . ) = (d1) = (1, (d1). . . , 1, 0, . . . ), and s0 = 1. Taking into account
(5.11) and (5.12), we get

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq d1 + 1,

 - 2 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 0, i \geq d1 + 2.

(iii) If A(s) is singular and A(s) + P (s) is regular the proof is analogous to (ii),
exchanging the roles of A(s) and B(s).

(iv) If A(s) and A(s) + P (s) are singular, there are three possibilities: \rho 1 = \rho 2,
\rho 2 = \rho 1 + 1, or \rho 1 = \rho 2 + 1.

\bullet Let \rho 1 = \rho 2. As s0  - r0 = 0, from Theorem 4.8, necessarily r = s or
r\prime = s\prime (notice that if s \angle r, then r0 = s0 + 1).
-- If r = s, then from conditions (5.11) and (5.12) we get

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, i \geq 1.

-- If r \not = s, then r\prime = s\prime , and (4.5) holds. By Lemma 5.2, we have

(5.15)
si - 1  - ri - 1 = 0, 1 \leq i \leq a,

 - (a+ 1) \leq si - 1  - ri - 1 \leq a+ 1, a+ 1 \leq i \leq b,
 - b \leq si - 1  - ri - 1 \leq b, i \geq b+ 1.

Moreover, if (5.2) does not hold, then

(5.16)
 - a \leq si - 1  - ri - 1 \leq a+ 1, a+ 1 \leq i \leq b,
 - b+ 1 \leq si - 1  - ri - 1 \leq b, i \geq b+ 1,

and, if (5.4) does not hold, then

(5.17)
 - (a+ 1) \leq si - 1  - ri - 1 \leq a, a+ 1 \leq i \leq b,
 - b \leq si - 1  - ri - 1 \leq b - 1, i \geq b+ 1.

We obtain different results depending on the relation between the
homogeneous invariant factors of A(s) and B(s).
\ast If \phi i(s, t) = \psi i(s, t), 1 \leq i \leq \rho , then by (5.11), (5.13), (5.14),
and (5.15) we obtain

wi(\lambda ,B(s)) - wi(\lambda ,A(s)) = 0, 1 \leq i \leq a,
 - (a+ 1) \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq a+ 1, a+ 1 \leq i \leq b,

 - b \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq b, i \geq b+ 1.
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\ast If (5.4) holds and (5.2) does not hold, then by (5.11), (5.13),
and (5.16) we obtain

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 0, 1 \leq i \leq a,
 - (a+ 1) \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq a+ 1, a+ 1 \leq i \leq b,

 - b \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq b, i \geq b+ 1.

\ast If (5.2) holds and (5.4) does not hold, then analogously by (5.11),
(5.14), and (5.17) we obtain

0 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq a,
 - (a+ 1) \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq a+ 1, a+ 1 \leq i \leq b,

 - b \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq b, i \geq b+ 1.

\ast If neither (5.2) nor (5.4) is satisfied, then, by (5.11), (5.12),
(5.16), and (5.17), we obtain that (5.10) holds.

\bullet If \rho 2 = \rho 1+1, we have r0 = s0+1, and by Theorem 4.8, (4.6), and (4.7)
or (4.9), hold. Let g = max\{ i : ri > si\} ; then

si - 1  - ri - 1 =  - 1, 1 \leq i \leq g + 1.

-- If (4.9) holds, or (5.4) does not hold, then by Lemma 5.3,

0 \leq si - 1  - ri - 1 \leq g, i \geq g + 2.

Therefore, from (5.11) and (5.12) we obtain

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq g + 1,

0 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq g + 2, i \geq g + 2.

-- Alternatively, if (4.7) and (5.4) hold, then, by Lemma 5.3,

0 \leq si - 1  - ri - 1 \leq g + 1, i \geq g + 2.

Therefore, from (5.11) and (5.13) we obtain

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 0, 1 \leq i \leq g + 1,

0 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq g + 2, i \geq g + 2.

As a = g + 1, the result follows.
\bullet If \rho 1 = \rho 2 + 1, taking g = max\{ i : si > ri\} , the proof is analogous:

-- If (4.7) holds, or (5.2) does not hold, then

 - 1 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq g + 1,

 - g  - 2 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 0, i \geq g + 2.

-- Alternatively, if (4.9) and (5.2) hold, then

0 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 1, 1 \leq i \leq g + 1,

 - g  - 2 \leq wi(\lambda ,B(s)) - wi(\lambda ,A(s)) \leq 0, i \geq g + 2.

Remark 5.5. We would like to point out that the bounds obtained in Theorem 5.4
are sharp; i.e., there are examples showing that the bounds are attained. Concerning
the sufficiency, it is proven in [1, Corollary 4.14] that if A(s) and A(s) + P (s) are
regular, the conditions are sufficient, in the sense that if the bounds are satisfied for
some numbers w\prime 

i, then there exists a rank-one perturbation P (s) of A(s) such that
wi(\lambda ,A(s) + P (s)) = w\prime 

i. This property is immediately extended to the case where
r = s. On the other hand, there are examples showing that in the general case the
conditions are not sufficient.
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6. Conclusion. We have generalized the notion of a Weyr characteristic of an
eigenvalue of a pencil (see [4]) and have extended the definition of a Jordan chain of
square pencils ([13]) to arbitrary pencils. Out of them, we have obtained bounds for
the changes of the generalized Weyr characteristic of a matrix pencil perturbed by
another pencil of rank one. The results in this paper improve the bounds obtained in
[13, Theorem 7.8]. The bounds in Theorem 5.4 cases (ii) and (iii) are clearly sharper
than the corresponding ones in [13, Theorem 7.8]. Concerning the case (iv), at the
cost of splitting the range of indices into different parts, we obtain significantly better
bounds.

It must be remarked that our results hold for any algebraically closed field and
for arbitrary rank-one perturbations.

Additionally, we have translated the characterization obtained in [2, Theorem 5.1]
of the changes of the Kronecker structure of a pencil perturbed by another pencil of
rank one into terms of the conjugate partitions of the corresponding chains of column
and row minimal indices of the pencils involved.

Acknowledgments. We would like to thank the reviewers for their remarks and
comments, which have contributed to improving the presentation of the paper.
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