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Abstract
Let A ∈ R

n×n be an irreducible totally nonnegative matrix with rank r and principal rank
p, that is, A is irreducible with all minors nonnegative, r is the size of the largest invertible
square submatrix of A and p is the size of its largest invertible principal submatrix. We
consider the sequence {1, i2, . . . , i p} of the first p-indices of A as the first initial row and
column indices of a p × p invertible principal submatrix of A. A triple (n, r , p) is called
(1, i2, . . . , i p)-realizable if there exists an irreducible totally nonnegative matrix A ∈ R

n×n

with rank r , principal rank p, and {1, i2, . . . , i p} is the sequence of its first p-indices. In
this work we study the Jordan structures corresponding to the zero eigenvalue of irreducible
totally nonnegative matrices associated with a triple (n, r , p) (1, i2, . . . , i p)-realizable.

Keywords Totally nonnegative matrix · Irreducible matrix · Totally nonpositive matrix ·
Triple realizable · Jordan canonical form · Linear algebra

Mathematics Subject Classification 15A03 · 15A15 · 65F40

1 Introduction

A matrix A ∈ R
n×n is called totally nonnegative (totally positive) if all its minors are

nonnegative (positive) and it is abbreviated as TN (TP). These classes of matrices have
been studied by several authors [1, 8–10, 13] obtaining properties, the Jordan structure
and characterizations by applying the Gaussian or Neville elimination with applications
in algebra, geometry, differential equations, economics and other fields. We recall that
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A ∈ R
n×n , n ≥ 2, is an irreducible matrix if there is not a permutation matrix P such

that PAPT =
[
X Y
O Z

]
, where O is an (n − q) × q zero matrix (1 ≤ q ≤ n − 1)). If n = 1,

A = (a) is irreducible when a �= 0.
In [8, p. 87] the authors denoted by ITN the irreducible TN matrices. The rank of A,

denoted by rank(A), is the size of the largest invertible square submatrix of A. The principal
rank of A, denoted by p-rank(A), is the size of the largest invertible principal submatrix of A.
If there exists an ITNmatrix A ∈ R

n×n with rank(A) = r and p-rank(A) = p, then the triple
(n, r , p) is called realizable [10, p. 709], and A is considered as an ITNmatrix associatedwith
the triple (n, r , p). Since the nonzero eigenvalues of A are positive and distinct [10,Theorem
3.3], the set of eigenvalues {λi }ni=1 of A satisfies that λ1 > λ2 > · · · > λp > 0, and
λp+1 = λp+2 = · · · = λn = 0, that is, if A is an associated matrix with a realizable
triple (n, r , p) then p is the number of nonzero eigenvalues of A and n − p is the algebraic
multiplicity of its zero eigenvalue. The matrix A has n−r zero Jordan blocks whose sizes are
given by the Segre characteristic of A corresponding to its zero eigenvalue [14]. Moreover,
since rank(Ap) = p the size of its zero Jordan blocks is at most p. Now, we consider the
next definition.

Definition 1 A Jordan structure corresponding to the zero eigenvalue (zero-Jordan structure)
is called admissible for a realizable triple (n, r , p) if there exists an ITN matrix A ∈ R

n×n

with rank(A) = r , p-rank(A) = p, and A has the given Jordan structure.

From this definition, if A ∈ R
n×n is an ITN matrix associated with the realizable triple

(n, r , p) and S = (s1, s2, . . . , sn−r ) is the Segre characteristic corresponding to its zero
eigenvalue, then this Segre characteristic is a zero-Jordan structure admissible for (n, r , p).
That is, the zero-Jordan structure admissible for the realizable triple (n, r , p) is the same
concept as the Segre characteristic corresponding to the zero eigenvalue of an ITN matrix
associated with the realizable triple (n, r , p). We will talk about zero-Jordan blocks if we do
not need to specify the size of the Jordan blocks, and about the Segre characteristic in the
opposite case.

Now, our question is how to be sure if a decreasing sequence of positive integers gives
a zero-Jordan structure admissible for a realizable triple. The answer is that the sequence
denoted by S = (s1, s2, . . . , sq) is a zero-Jordan structure admissible for a realizable triple
(n, r , p) if si represents the size of each zero Jordan block, i = 1, 2, . . . , q and the following
inequalities hold: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

q = n − r

s1 ≤ min{r − p + 1, p}
si ≤ si−1, i = 2, . . . , n − r
∑n−r

i=1 si = n − p.

The problem to characterize completely all possible Jordan structures admissible for a
realizable triple has been studied by several authors (see for instance [5, 8, 10]) extending
the classical result of [11] who introduced the total positivity and studied the eigenvalues
of the oscillatory matrices. These results are related to the relationship between the Jordan
structure of two matrices sufficiently close, deflation problems, the pole assignment problem
and the stability in control systems (see [2] and references therein).

In [5] the authors have obtained the number of zero-Jordan structures admissible for
a realizable triple (n, r , p), the Segre characteristics corresponding to these zero-Jordan
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structures and an algorithm to compute them. Since the zero-Jordan structures admissible
for a realizable triple (n, r , p) can be interpreted as the number of partitions of n − p into
exactly n − r parts with the largest part at most p, then the following properties hold:

1. If (n, r , p) is a realizable triple and S = (s1, s2, . . . , sn−r−1, sn−r ) is a zero-Jordan
structure admissible for this triple, then S′ = (s1, s2, . . . , sn−r−1, sn−r , 1) is a zero-
Jordan structure admissible for the realizable triple (n + 1, r , p).

2. If (n, r , p) is a realizable triple and S = (s1, s2, . . . , sn−r−1, sn−r ) is a zero-Jordan
structure admissible for this triple, we have the following options:

(a) If sn−r = 1, then S′ = (s1, s2, . . . , sn−r−1) is a zero-Jordan structure admissible for
the realizable triple (n − 1, r , p).

(b) If sn−r > 1 and
(i)

∑n−r−1
i=1 si + sn−r − 1 ≤ (n − r − 1)p, then si , i = 1, 2, . . . , n − r can

be redistributed in S′ = (s′
1, s

′
2, . . . , s

′
n−r−1, 1) such that

∑n−r
i=1 si = 1 +∑n−r−1

j=1 s′
j , being S′ another zero-Jordan structure admissible for the triple

(n, r , p). So, by Property 2.(a), S′′ = (s′
1, s

′
2, . . . , s

′
n−r−1) is a zero-Jordan

structure admissible for the realizable triple (n − 1, r , p).
(ii)

∑n−r−1
i=1 si + sn−r − 1 > (n − r − 1)p, then the triple (n − 1, r , p) is not

realizable.

We follow the notation of [1], that is, for k, n ∈ N, 1 ≤ k ≤ n, Qk,n denotes the set
of all increasing sequences of k natural numbers less than or equal to n. If A ∈ R

n×n ,
α = (α1, α2, . . . , αk) ∈ Qk,n and β = (β1, β2, . . . , βk) ∈ Qk,n , then A[α|β] denotes the
k × k submatrix of A lying in rows αi and columns βi , i = 1, 2, . . . , k and the principal
submatrix A[α|α] is abbreviated as A[α] and we give the following definition

Definition 2 [4,Definition 1] Let A ∈ R
n×n be a matrix with p-rank(A) = p. We say that

the sequence of integers α = {i1, i2, . . . , i p} ∈ Qp,n is the sequence of the first p-indices of
A if for j = 2, . . . , p we have

det(A[i1, i2, . . . , i j−1, i j ]) �= 0,

det(A[i1, i2, . . . , i j−1, t]) = 0, i j−1 < t < i j .

Note that if A is TNwithout null rows or columns, then i1 = 1. In [4,Section 2] the authors
use this sequence to study the linear dependence relations between rows or columns of TN
matrices.

Definition 3 [4,Definition 2] A triple (n, r , p) is called (1, i2, . . . , i p)-realizable if there
exists an ITN matrix A ∈ R

n×n with rank(A) = r , p-rank(A) = p, and {1, i2, i3, . . . , i p}
as the sequence of its first p-indices.

If a matrix A satisfies the conditions of Definition 3 we say that A is a matrix associated
with the triple (n, r , p) (1, i2, . . . , i p)-realizable.

We recall that a matrix is an upper block echelon matrix if the first nonzero entry in each
row (leading entry) is to the right of the leading entry in the row above it and all zero rows are
at the bottom. A matrix is upper block echelon if each nonzero block, starting from the left,
is to the right of the nonzero blocks below and the zero blocks are at the bottom. A matrix is
a lower (block) echelon matrix if its transpose is an upper (block) echelon matrix.

In [6] is presented an algorithm to obtain an upper block echelon TN matrix U of size
n × n, with rank(U ) = r , p-rank(U ) = p and one of the zero-Jordan structure admissible
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for the triple (n, r , p). This algorithm also computes the sequence of the first p-indices of
U . With the obtained matrix U the authors construct an ITN matrix A associated with the
realizable triple (n, r , p) and with the same zero-Jordan structure and sequence of the first
p-indices as matrix U .

On the other hand, if we add the sequence of the first p-indices H = {1, i2, i3, . . . , i p} to
the triple (n, r , p) in [7] is given an algorithm to obtain an upper block echelon TN matrix
U of size n × n, with rank(U ) = r , p-rank(U ) = p and with H as its sequence of the first
p-indices. From this matrix U the authors construct an ITN matrix A associated with the
triple (n, r , p)(1, i2, . . . , i p)-realizable.

The difference between prescribing or not the sequence of the first p-indices is that some
properties that the ITN matrices satisfy without prescribed p-indices, are not satisfied when
they are prescribed. For instance:

1. By [9], the upper bound for the maximum rank of an ITN matrix A associated with a

realizable triple (n, r , p) is n−
⌈
n − p

p

⌉
, but this bound can be lower when the sequence

of the first p-indices is prescribed (see [4]). For example, if we consider the realizable
triple (15, r , 3), then by [9] we have that r ≤ 11. If we prescribed {1, 2, 7} as the sequence
of its first 3-indices, then r ≤ 7. As a conclusion, the triple (15, r , 3) is realizable for
r = 3, 4, . . . , 11, but it is not (15, r , 3) (1, 2, 7)-realizable for r = 8, 9, 10, 11.

2. If the sequence of the first p-indices is prescribed, then the number of the zero-Jordan
structures admissible for a realizable triple (n, r , p) is less than or equal to this num-
ber when the sequence is not prescribed. For example, applying [5,Algorithm 3] to the
realizable triple (15, 7, 3), the zero-Jordan structures admissible for this triple are:

S1 = (3, 3, 1, 1, 1, 1, 1, 1), S2 = (3, 2, 2, 1, 1, 1, 1, 1), S3 = (2, 2, 2, 2, 1, 1, 1, 1),

if we prescribe the sequence of the first 3-indices as {1, 2, 7}, then the unique zero-Jordan
structure admissible is S3.

In this workwe obtain the zero-Jordan structures admissible for a realizable triple (n, r , p)
with a sequence of the first p-indices {1, i2, . . . , i p} and we give a method to construct an
ITN matrix associated with this triple (n, r , p) (1, i2, . . . , i p)-realizable and with one of
the zero-Jordan structure admissible. For that, in Sect. 2 we study some properties of the
zero-Jordan structures for an upper block echelon TN matrix U ∈ R

n×n , with rank(U ) = r ,
p-rank(U ) = p in function of its sequence of the first p-indices. In Sect. 3 we construct
Algorithm 4 to obtain howmany andwhat are explicitly the zero-Jordan structures admissible
for a triple (n, r , p)(1, i2, . . . , i p)-realizable. In Sect. 4we present a procedure to obtain paths
of pairs associated with the zero-Jordan structure obtained in Sect. 3 and, using these paths
we present an algorithm to obtain an upper block echelon TN matrix U ∈ R

n×n , with
rank(U ) = r , p-rank(U ) = p, a prescribed sequence of its first p-indices and with one of
the zero-Jordan structures. Finally, we obtain some matrices associated with a triple (n, r , p)
(1, i2, . . . , i p)-realizable and with one of the zero-Jordan structures obtained in Sect. 3.

From now on and for simplicity, we use the following MatLab notation: A(i, :) denotes
the i th row of A and A(:, j) denotes its j th column; ones(n,m) denotes the n ×m matrix of
ones; triu(ones(n,m)) denotes the upper triangular part of ones(n,m); zeros(n,m) denotes
the n ×m zero matrix; diag(v) denotes a square matrix of order n, with the elements of v on
the main diagonal, where v is a vector of n components; tril(ones)(n, n) denotes the lower
triangular part of ones(n, n).
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2 Properties on the zero-Jordan structure of the upper block echelon
TNmatrices

In this section we study some properties of the zero-Jordan structures for an upper block
echelon TN matrix in function of the sequence of its first p-indices. Concretely, we consider
the following upper block echelon TNmatrixU ∈ R

n×n , with rank(U ) = r , p-rank(U ) = p
and H = {1, 2, . . . , j + 1, i j+2, . . . , i p}, i j+2 > j + 2, as the sequence of its first p-indices

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U11 U12 U13 U14 . . . U1,p− j U1,p+1− j

O O U23 U24 . . . U2,p− j U2,p+1− j

O O O U34 . . . U3,p− j U3,p+1− j
...

...
...

...
...

...

O O O O . . . Up−1− j,p− j Up−1− j,p+1− j

O O O O . . . O Up− j,p+1− j

O O O O . . . O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(1)

whose partition in blocks by rows and columns is, respectively

j + 1, i j+2 − ( j + 1), i j+3 − i j+2, . . . , i p − i p−1, n − i p
j + 1, i j+2 − ( j + 1) − 1, i j+3 − i j+2, . . . , i p − i p−1, n + 1 − i p

and where [
U11 U12 U13 . . . U1,p− j U1,p+1− j

]

=

⎡
⎢⎢⎢⎣
1 1 · · · 1 1 · · · 1 1
0 1 · · · 1 1 · · · 1 1
...

...
...

...
...

...

0 0 · · · 1 1 · · · 1 1

⎤
⎥⎥⎥⎦ = triu(ones( j + 1, n)).

Following the steps (a), (b) and (c) of the process described in [6,Theorem 1], we transform
the matrix U , by similarity and permutation similarity, into the matrix T = XU X−1

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 O O O . . . O O O
O O T23 T24 . . . T2,p−1− j T2,p− j T2,p+1− j

O O O T34 . . . T3,p−1− j T3,p− j T3,p+1− j
...

...
...

...
...

...
...

O O O O . . . O Tp−1− j,p− j Tp−1− j,p+1− j

O O O O . . . O O Tp− j,p+1− j

O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T11 O
O T2

]
(2)

where the block partition by rows and columns is

p, i j+2 − ( j + 1) − 1, i j+3 − i j+2 − 1, . . . , i p − i p−1 − 1, n − i p

and the similarity matrix X

X =
[
I j+1 X12

O X22

]
(3)
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is obtained as a product of matrices, being one of them the permutation matrix

P = [
e1, e2, . . . , e j+1, ei j+2 , . . . , ei p , e j+2, . . . , ei j+2−1, ei j+2+1, . . . , en

]
where ei is the i th vector of the canonical basis of Rn .

Remark 1 Consider the matrix T given in (2),

1. T11 ∈ R
p×p is a non-derogatory nonsingular matrix, with one Jordan block of size p

corresponding to its unique eigenvalue λ = 1.
2. T2 is a nilpotent matrix. The number of blocks Ts,s+1 of the superdiagonal of T2 depends

on the number and the distribution of the p-indices thatU has after the j first consecutive
indices.

(a) If there are nonconsecutive indices in {i j+2, i j+3, . . . , i p}, then T2 has p − ( j + 1)
blocks in the superdiagonal, being (i j+s − i j+s−1 − 1) × (i j+s+1 − i j+s − 1) the
size of the block Ts,s+1, for s = 2, 3, . . . , p − j , with i p+1 = n. As a result, the
maximum size of the zero Jordan blocks of T2, and therefore of U , is p − j .

(b) If there are r blocks with consecutive indices in {i j+2, i j+3, . . . , i p}, then T2 has
r + w blocks in the superdiagonal, being w the number of nonconsecutive indices.
In this case, the maximum size of the zero Jordan blocks of U is r + w + 1.

3. SinceU and T are similar we have that the zero-Jordan structure ofU and T2 is the same.
Therefore, for simplicity, we use T2 to study the zero-Jordan structure of U .

Example 1 Consider the upper block echelon TN matrix U ∈ R
11×11 with rank(U ) = 8,

p-rank(U ) = 5 and whose sequence of its first 5-indices is H = {1, 2, 3, 7, 9},

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1 1 1
0 0 0 0 0 0 1 1 1 1 1
0 0 0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 1 2 3 3 3
0 0 0 0 0 0 1 2 4 5 5
0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 1 2 3
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
U11 U12 U13 U14

O O U23 U24

O O O U34

O O O O

⎤
⎥⎥⎦ .

By similarity we obtain the matrix T = XU X−1

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 0 0 0 0 0 0
0 1 1 1 2 0 0 0 0 0 0
0 0 1 4 5 0 0 0 0 0 0
0 0 0 1 6 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 −1 0 0
0 0 0 0 0 0 0 0 0 1 3
0 0 0 0 0 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎣
T11 O O O
O O T23 T24
O O O T34
O O O O

⎤
⎥⎥⎦ .
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From Remark 1, T11 ∈ R
5×5 is nonsingular and has a Jordan block of size p = 5

corresponding to its unique eigenvalue λ = 1. Moreover, since there are nonconsecutive
indices in {7, 9}, T2 has p − ( j + 1) = 5− (2+ 1) = 2 blocks in the superdiagonal, and the
sizes of T23 and T34 are (i4−i3−1)×(i5−i4−1) = 3×1 and (i5−i4−1)×(i6−i5−1) = 1×2,
respectively. So, the maximum size of the zero Jordan blocks of U is p − j = 5− 2 = 3. In
this case, from T2 we conclude that the Segre characteristic of U corresponding to its zero
eigenvalue is S = (2, 2, 2).

Note that, if we apply [5,Algorithm 3] to the realizable triple (11, 8, 5) we have that the
zero-Jordan structures admissible are S1 = (4, 1, 1), S2 = (3, 2, 1) and S3 = (2, 2, 2). Next,
we use [6,Algorithm 3] for each zero-Jordan structure admissible and we construct an upper
block echelon TN matrix U , of size 11 × 11, rank(U ) = 8, p-rank(U ) = 5 and with one of
these 3 zero-Jordan structures. Now, if we add H = {1, 2, 3, 7, 9} as the sequence of the first
5-indices, we have shown that the maximum size of the zero Jordan blocks of U is 3. Then,
we can conclude that does not exist an upper block echelon TN matrix U of size 11 × 11,
rank(U ) = 8, p-rank(U ) = 5, H = {1, 2, 3, 7, 9} as the sequence of its first 5-indices and
with the Segre characteristic corresponding to its zero eigenvalue given by S1.

Theorem 1 Let U ∈ R
n×n be an upper block echelon TN matrix with rank(U ) = r ,

p-rank(U ) = p, H = {1, 2, . . . , j + 1, i j+2, . . . , i p} as the sequence of its first p-indices,
with i j+2 > j + 2, and S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to
its zero eigenvalue. Then, there exists an upper block echelon TN matrix Ũ ∈ R

(n− j)×(n− j)

with rank(Ũ ) = r − j , p-rank(Ũ ) = p − j and H = {1, i j+2 − j, i j+3 − j, . . . , i p − j}
as the sequence of the first (p− j)-indices, whose Segre characteristic corresponding to the
zero eigenvalue is S.

Proof Let U ∈ R
n×n be an upper block echelon TN matrix given in (1) with rank(U ) = r ,

p-rank(U ) = p and H = {1, 2, . . . , j+1, i j+2, . . . , i p} as the sequence of its first p-indices,
i j+2 > j + 2.

From the matrix U , we consider the TN matrix Ũ ∈ R
(n− j)×(n− j), such that, rank(Ũ ) =

r − j , p-rank(Ũ ) = p − j and {1, i j+2 − j, i j+3 − j, . . . , i p − j} as the sequence of the
first (p − j)-indices

Ũ = U ( j + 1 : n, j + 1 : n) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 Ũ12 Ũ13 . . . Ũ1,p− j Ũ1,p+1− j

O O U23 . . . U2,p− j U2,p+1− j

O O O . . . U3,p− j U3,p+1− j
...

...
...

...
...

O O O . . . Up−1− j,p− j Up−1− j,p+1− j

O O O . . . O Up− j,p+1− j

O O O . . . O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where [
1 Ũ12 Ũ13 Ũ14 . . . Ũ1,p− j Ũ1,p+1− j

] = ones(1, n − j)

and whose partition by blocks in rows and columns is, respectively

1, i j+2 − j − 1, i j+3 − i j+2, . . . , i p − i p−1, n − i p
1, i j+2 − ( j + 1) − 1, i j+3 − i j+2, · · · , i p − i p−1, n + 1 − i p.
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Now, we consider the similarity matrix

X̃ = X( j + 1 : n, j + 1 : n) =
[
1 X̃12

O X22

]

where X is the matrix given in (3) and X̃12 = X12( j +1, :). Taking into account the structure
of the matrices X and X̃ , we obtain

T̃ = X̃Ũ X̃−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T̃11 O O O . . . O O O
O O T23 T24 . . . T2,p−1− j T2,p− j T2,p+1− j

O O O T34 . . . T3,p−1− j T3,p− j T3,p+1− j
...

...
...

...
...

...
...

O O O O . . . O Tp−1− j,p− j Tp−1− j,p+1− j

O O O O . . . O O Tp− j,p+1− j

O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T̃11 O
O T2

]
,

being the partition by blocks in rows and columns

p − j, i j+2 − ( j + 1) − 1, i j+3 − i j+2 − 1, . . . , i p − i p−1 − 1, n − i p.

From similarity, the zero-Jordan structure of Ũ is equal to the zero-Jordan structure of the
nilpotent matrix T2, which is equal to the zero-Jordan structure of the matrix U . Thus, the
Segre characteristic of Ũ ∈ R

(n− j)×(n− j) corresponding to its zero eigenvalue is equal to
S = (s1, s2, . . . , sn−r ). ��
Theorem 2 Let U ∈ R

n×n be an upper block echelon TN matrix with rank(U ) = r ,
p-rank(U ) = p, H = {1, i2, i2 + 1, i2 + 2, . . . , i2 + j, i j+3, i j+4, . . . , i p} as the sequence
of its first p-indices and S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to
its zero eigenvalue. Then, there exists an upper block echelon TN matrix Ũ ∈ R

(n− j)×(n− j)

with rank(Ũ ) = r − j , p-rank(Ũ ) = p− j and H = {1, i2, i j+3 − j, i j+4 − j, . . . , i p − j}
as the sequence of the first (p− j)-indices, whose Segre characteristic corresponding to the
zero eigenvalue is S.

Proof From the matrix U and applying similarity we obtain the matrix T

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 O O O . . . O O O
O O T23 T24 . . . T2,p−1− j T2,p− j T2,p+1− j

O O O T34 . . . T3,p−1− j T3,p− j T3,p+1− j
...

...
...

...
...

...
...

O O O O . . . O Tp−1− j,p− j Tp−1− j,p+1− j

O O O O . . . O O Tp− j,p+1− j

O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T11 O
O T2

]

with the partition by blocks of rows and columns

p, i2 − 2, i j+3 − (i2 + j) − 1, i j+4 − i j+3 − 1, . . . , i p − i p−1 − 1, n − i p.
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Note that, the submatrix T2 can be obtained from an upper block echelon TN matrix
Ũ ∈ R

(n− j)×(n− j), with rank(Ũ ) = r − j , p-rank(Ũ ) = p− j , H = {1, i2, i j+3− j, i j+4−
j, . . . , i p − j} as the sequence of its first (p − j)-indices. Then, the Segre characteristic
corresponding to the zero eigenvalue of U and Ũ is the same. ��
Remark 2 1. Applying Theorem 1 we may assume, without loss of generality, that the first

elements of the sequence of the first p-indices of the matrix U are nonconsecutive. That
is, i2 > 2.

2. Applying Theorem 2 to each group of consecutive indices we can suppose, without loss of
generality, that in the sequence of the first p-indices of the matrix U there are not groups
of consecutive entries.

Example 2 Consider an upper block echelon TN matrix U ∈ R
25×25, with rank(U ) = r ,

p-rank(U ) = 12 and H = {1, 2, 3, 6, 7, 8, 10, 12, 13, 15, 16, 20} as the sequence of its first
12-indices. By the previous Remark, we study the Segre characteristic ofU corresponding to
its zero eigenvalue, using a smaller size matrix Ũ ∈ R

(25− j)×(25− j) with rank(Ũ ) = r − j ,
p-rank(U ) = 12− j and H̃ = {1, i2, . . . , i12− j } as the sequence of its first (12− j)-indices.
To obtain j and the sequence H̃ we proceed as follows:

1. Since the 3 first indices of U are consecutive, then we only consider the first one and
remove the indices 2 and 3. After this step, we subtract each remaining index larger than
3 by 2, that is {

1, 2, 3 , 6, 7, 8, 10, 12, 13, 15, 16, 20
}

⇓
{ 1, 4, 5, 6, 8, 10, 11, 13, 14, 18 }.

2. Mark the first group of consecutive indices, {4, 5, 6}. Again, we only consider the first
one and remove the indices 5 and 6. After this step, we subtract each remaining index
larger than 6 by 2, that is {

1, 4, 5, 6 , 8, 10, 11, 13, 14, 18
}

⇓
{ 1, 4, 6, 8, 9, 11, 12, 16 }.

3. Repeating the previous step with each group of consecutive indices, we finally get the
sequence of indices:

H̃ = {1, 4, 6, 8, 10, 14} 
⇒ j = 6.

4. Thus, we will consider an upper block echelon TN matrix Ũ ∈ R
21×21 with rank(Ũ ) =

r − 6, p-rank(Ũ ) = 6 and H̃ = {1, 4, 6, 8, 10, 14} as the sequence of its first 6-indices.
Whenwe have an upper block echelon TNmatrixU with the sequence of the first p-indices

{1, 2, . . . , j + 1, i j+2 . . . , i p}, with i j+2 > j + 2, by Theorem 1 we can construct an upper
block echelon TN matrix Ũ with the sequence of the first p-indices {1, i j+2 − j, . . . , i p − j}
and with the same Segre characteristic asU . The following result considers the reverse case,
that is, from an upper block echelon TN matrix U with the sequence of the first p-indices
{1, i2, . . . , i p}, with i2 > 2, we construct an upper block echelon TN matrix Ũ with the
sequence of the first p-indices {1, 2, . . . , j, 1 + j, i2 + j, . . . , i p + j} and with the same
Segre characteristic.
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Theorem 3 Let U ∈ R
n×n be an upper block echelon TN matrix with rank(U ) = r ,

p-rank(U ) = p, H = {1, i2, . . . , i p−1, i p}, with i2 > 2, as the sequence of its first p-indices
and S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to its zero eigenvalue.
Then, there exists an upper block echelon TNmatrix Ũ ∈ R

(n+ j)×(n+ j) with rank(Ũ ) = r+ j ,
p-rank(Ũ ) = p+ j and H = {1, 2, . . . , j, 1+ j, i2 + j, i3 + j, . . . , i p + j} as the sequence
of the first (p − j)-indices, whose Segre characteristic corresponding to the zero eigenvalue
is S.

Proof Let U ∈ R
n×n be an upper block echelon TN matrix given in (1) with rank(U ) = r ,

p-rank(U ) = p and H = {1, i2, . . . , i p}, with i2 > 2, as the sequence of its first p-indices,
i j+2 > j + 2.

From the matrix U , we consider the TN matrix Ũ ∈ R
(n+ j)×(n+ j), such that, rank(Ũ ) =

r + j , p-rank(Ũ ) = p + j and H̃ = {1, 2, . . . , j, 1 + j, i2 + j, i3 + j, . . . , i p + j} as the
sequence of the first (p − j)-indices

Ũ =
[
Ũ11 Ũ12

O U

]

where

[ Ũ11 Ũ12 ] = triu(ones( j, n + j)).

By construction it is satisfied that

rank(Ũ t ) = j + rank(Ut ), t = 1, 2, 3, . . . , p.

Then, for t = 1, 2, 3, . . . , p,

n + j − rank(Ũ t ) = n + j − ( j + rank(Ut ))

⇓
dim(Ker(Ũ t )) = dim(Ker(Ut )).

So, the zero-Jordan structure of Ũ is equal to the zero-Jordan structure ofU . Thus, the Segre
characteristic of Ũ corresponding to its zero eigenvalue is equal to S = (s1, s2, . . . , sn−r ). ��

The following two results show how the rank, the principal rank, the sequence of the first
p-indices and the Segre characteristic of an upper block echelon TN matrix change when its
size increases by one unit.

Theorem 4 Let U ∈ R
n×n be an upper block echelon TN matrix with rank(U ) = r ,

p-rank(U ) = p, H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices and
S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to its zero eigenvalue.
Then, there exists an upper block echelon TN matrix Ũ ∈ R

(n+1)×(n+1) with rank(Ũ ) = r ,
p-rank(Ũ ) = p, H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices and whose
Segre characteristic corresponding to its zero eigenvalue is S′ = (s1, s2, . . . , sn−r , 1).
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Proof Consider the following upper block echelon TNmatrixU ∈ R
n×n , with rank(U ) = r ,

p-rank(U ) = p, H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 U12 U13 U14 . . . U1,p−1 U1,p U1p+1

0 O U23 U24 . . . U2,p−1 U2,p U2p+1

0 O O U34 . . . U3,p−1 U3,p U3p+1
...

...
...

...
...

...
...

0 O O O . . . O Up−1,p Up−1,p+1

0 O O O . . . O O Up,p+1

0 O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the block partition by rows and columns is, respectively

1, i2 − 1, i3 − i2, . . . , i p − i p−1, n − i p
1, i2 − 2, i3 − i2, . . . , i p − i p−1, n + 1 − i p.

By similarity we obtain T = XU X−1

T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 O O O . . . O O O
O O T23 T24 . . . T2,p−1 T2,p T2p+1

O O O T34 . . . T3,p−1 T3,p T3p+1
...

...
...

...
...

...
...

O O O O . . . O Tp−1,p Tp−1,p+1

O O O O . . . O O Tp,p+1

O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T11 O
O T2

]
(4)

whose block partition by rows and columns is

p, i2 − 2, i3 − i2 − 1, . . . , i p − i p−1 − 1, n − i p.

As the Jordan structure of T2 is the same as the zero-Jordan structure of U , the Segre char-
acteristic corresponding to its zero eigenvalue is S = (s1, s2, . . . , sn−r ). Now, we consider
the upper block echelon TN matrix Ũ ∈ R

(n+1)×(n+1), with rank(Ũ ) = r , p-rank(Ũ ) = p,
H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices given by

Ũ =
[
U U (:, n)

O 0

]
(n+1)×(n+1)

.

Applying the similarity X̃Ũ X̃−1 = T̃ , where

X̃ =
[
X X(:, n)

O 1

]
(n+1)×(n+1)

we obtain the matrix

T̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 O O O . . . O O O
O O T23 T24 . . . T2,p−1 T2,p T2,p+1 T2,p+1(:, n − i p)
O O O T34 . . . T3,p−1 T3,p T3,p+1 T3,p+1(:, n − i p)
...

...
...

...
...

...
...

O O O O . . . O Tp−1,p Tp−1,p+1 Tp−1,p+1(:, n − i p)
O O O O . . . O O Tp,p+1 Tp,p+1(:, n − i p)
O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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whose block partition by rows and columns is

p, i2 − i1 − 1, i3 − i2 − 1, . . . , i p − i p−1 − 1, n − i p.

Applying the similarity

Y =

⎡
⎢⎢⎢⎢⎢⎣

0

In
...

0
−1
1

⎤
⎥⎥⎥⎥⎥⎦

,

the matrix T̃ becomes

Y−1T̃ Y =
[
T O
O O

]
(n+1)×(n+1)

.

Thus, the Segre characteristic of Ũ corresponding to its zero eigenvalue is S′ = (s1, s2, . . .,
sn−r , 1). ��

Remark 3 Applying Theorem 4 recursively, we can assure that for all j > 1 there exists an
upper block echelon TN matrix Ũ ∈ R

(n+ j)×(n+ j), with rank(Ũ ) = r , p-rank(Ũ ) = p,
H = {1, i2, . . . , i p} as the sequence of its first p-indices and whose Segre characteristic
corresponding to its zero eigenvalue is S′ = (s1, s2, . . . , sn−r , 1, 1, . . . , 1︸ ︷︷ ︸

j

).

Theorem 5 Let U ∈ R
n×n be an upper block echelon TN matrix with rank(U ) = r ,

p-rank(U ) = p, H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices and
S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to its zero eigenvalue. Then,
there exists an upper block echelon TN matrix Ũ ∈ R

(n+1)×(n+1) with rank(Ũ ) = r + 1,
p-rank(Ũ ) = p+1, H = {1, i2, i3, . . . , i p, n+1} as the sequence of its first (p+1)-indices
and whose Segre characteristic corresponding to its zero eigenvalue is S.

Proof Consider the matrix U and construct the following upper block echelon TN matrix,
Ũ ∈ R

(n+1)×(n+1) with rank(Ũ ) = r +1, p-rank(Ũ ) = p+1, H = {1, i2, i3, . . . , i p, n+1}
as the sequence of its first (p + 1)-indices,

Ũ =
⎡
⎣U

U (1 : p, n)

ones(n − p, 1)
O 1

⎤
⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 U12 U13 U14 . . . U1,p−1 U1,p U1p+1 U1p+1(:, n + 1 − i p)
0 O U23 U24 . . . U2,p−1 U2,p U2p+1 U2p+1(:, n + 1 − i p)
0 O O U34 . . . U3,p−1 U3,p U3p+1 U3p+1(:, n + 1 − i p)
...

...
...

...
...

...
...

...

0 O O O . . . O Up−1,p Up−1,p+1 Up−1p+1(:, n + 1 − i p)
0 O O O . . . O O Up,p+1 Upp+1(:, n + 1 − i p)
0 O O O . . . O O O ones(n − p, 1)
0 O O O . . . O O O 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.
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Applying the similarity XU X−1 we obtain thematrix T given in (4), being the block partition
by rows and columns

p, i2 − 2, i3 − i2 − 1, . . . , i p − i p−1 − 1, n − i p

and the Segre characteristic corresponding to its zero eigenvalue equal to S.
Now, we consider the matrix

X̃ =
⎡
⎣ X(1 : p, :) zeros(p, 1)

zeros(n, 1) 1
X(p + 1 : n, :) Z

⎤
⎦

and by similarity we obtain

T̃ = X̃Ũ X̃−1

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T11 O O O O . . . O O O
O 1 O O O . . . O O O
O O O T23 T24 . . . T2,p−1 T2,p T2p+1

O O O O T34 . . . T3,p−1 T3,p T3p+1
...

...
...

...
...

...
...

...

O O O O O . . . O Tp−1,p Tp−1,p+1

O O O O O . . . O O Tp,p+1

O O O O O . . . O O O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
[
T̃11 O
O T2

]

whose block partition by rows and columns is

p + 1, i2 − 2, i3 − i2 − 1, . . . , i p − i p−1 − 1, n + 1 − i p.

From similarity, the Jordan structure of T2 is the same as the zero-Jordan structure of
Ũ . Thus, the Segre characteristic corresponding to the zero eigenvalue of U and Ũ is the
same. ��

3 Zero-Jordan structure admissible for a triple (n, r,p)
(1, i2, . . . , ip)-realizable

In [5] given a realizable triple (n, r , p) the authors obtain the number of the zero-Jordan
structures admissible for a realizable triple (n, r , p), these zero-Jordan structures and an
algorithm to compute them.

Now, as noted in Sect. 1 a key objective is to obtain the zero-Jordan structures admissible
for a triple (n, r , p) (1, i2, . . . , i p)-realizable. That is, we want to answer how many and
what are the zero-Jordan structures admissible for a triple (n, r , p) (1, i2, . . . , i p)-realizable.

For that, we consider an upper block echelon TN matrix U ∈ R
n×n with rank(U ) = r ,

p-rank(U ) = p and H = {1, i2, i3, . . . , i p} as the sequence of its first p-indices. Recall that
in Sect. 2 we transform by similarity the matrixU into the matrix T given in (2). This matrix
T has a nilpotent upper block echelonmatrix T2 of size (n− p)×(n− p)with rank r− p, and
whose block partition by rows and columns is {i2 −2, i3 − i2 −1, . . . , i p − i p−1 −1, n− i p}
andwhose zero-Jordan structure is the same as the zero-Jordan structure ofU (see Remark 1).
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Given that the zero-Jordan structures admissible for a triple (n, r , p) (1, i2, i3, . . . , i p)-
realizable are the same as the zero-Jordan structures of an upper block echelon TN matrix
U of size n × n, with rank(U ) = r , p-rank(U ) = p and (1, i2, . . . , i p) as the sequence of
the first p-indices, we are going to study the different zero-Jordan structures that the matrix
T2 admits. These structures are obtained by Algorithm 4. This algorithm needs to know
all possible linearly independent combinations of r − p rows of T2 (note that the rows are
between the first one and the row i p− p). For each linearly independent combination of r− p
rows we apply Algorithm 3, which computes the zero-Jordan structures taking into account
all possible linearly independent combinations of r − p columns (note that the columns are
between the column i2 −1 and the last column). Algorithm 3 needs two auxiliary algorithms
to run correctly. Thus, we present these two algorithms.

Algorithm1obtains the conjugated sequence of a given sequence of nonincreasing positive
integers.

Algorithm 1 G = conjugated(R = (r1, r2, . . . , rb))
1: b = size(R, 2);
2: G(1) = b; X = R;
3: for j = 2 : R(1) do
4: T = X − ones(1, b); S = T > zeros(1, b); G( j) = S ∗ ones(b, 1); X = T ;
5: end for

Algorithm 2 identifies equal rows in a matrix Q and removes them.

Algorithm 2 J = reduced(Q)

1: z1 = size(Q, 1);
2: for j = 1 : z1 − 1 do
3: for i = j + 1 : z1 do
4: if Q( j, :) == Q(i, :) then
5: Q(i, :) = 0 ∗ Q(i, :);
6: end if
7: end for
8: end for
9: J (1, :) = Q(1, :); t = 2;
10: for j = 2 : z1 do
11: if Q( j, 1) > 0 then
12: J (t, :) = Q( j, :); t = t + 1;
13: end if
14: end for
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Algorithm 3 J = fjordan1(n, r , p, H = [1, i2, . . . , i p], F = [ f1, f2, . . . , fr−p])
1: C = combnk([H(2) − 1 : n − p], r − p); a2 = size(C, 1); g = [0];
2: for i = 1 : r − p do
3: for j = 1 : p − 1 do
4: m = ismember(F(1, i), [H( j(−( j − 1) : H( j + 1) − ( j + 1)]);
5: if m == 1 then
6: t2 = H( j + 1) − ( j + 1);
7: for q = 1 : a2 do
8: if C(q, 1) <= t2 then
9: C(q, i) = 0;
10: end if
11: end for
12: g = [g, i];
13: end if
14: end for
15: end for
16: v = size(g, 2);
17: for d = 2 : v do
18: k = find(C(:, g(d)); e = size(k, 1); H = zeros(1, r − p);
19: for j = 1 : e do
20: H = [H ; C(k( j, 1), :];
21: end for
22: w = size(H , 1); C = H(2 : w, :);
23: end for
24: m = size(C, 1); C = [zeros(1, r − p);C];
25: if C == zeros(1, r − p) then
26: disp(’there are not Jordan structures’)
27: J = [, ]
28: else
29: C = C(2 : m + 1, :);
30: for j = 1 : m do
31: T = zeros(n − p, n − p);
32: for i = 1 : r − p do
33: D = C( j, :); T (F(1, i), D(1, i)) = 1;
34: end for
35: R = [n − p − rank(T )];
36: for l = 2 : p do
37: R = [R n − p − rank(T l )];
38: end for
39: R1 = R − [0 R(1 : p − 1)]; x = R1 > zeros(1, p);
40: h = ones(1, p) ∗ x ′; W = conjugated(R1(1 : h)); Q( j, :) = [W ];
41: end for
42: end if
43: J = reduced(Q);
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Algorithm 4 [J , x] = fjordan(n, r , p, H = [1, i2, . . . , i p])
1: F = combnk([1 : H(p) − p], r − p); b1 = size(F, 1);
2: X = zeros(1, n − r);
3: for l = 1 : b1 do
4: J = fjordan1(n, r , p, H , F(l, :)); X = [X; J ; s = size(X , 1);
5: for i = 1 : s do
6: for j = i + 1 : s do
7: if X(i, :) == X( j, :) then
8: X( j, :) = 0 ∗ X( j, :);
9: end if
10: end for
11: end for
12: R = zeros(1, n − r); j = 1;
13: for i = 1 : s do
14: if X(i, :) > 0 then
15: R( j, :) = X(i, :); j = j + 1;
16: end if
17: end for
18: X = R;
19: end for
20: J = R; x = size(J , 1);

Example 3 Consider the triple (15, 12, 6). Applying [5, Algorithm1]we obtain 6 zero-Jordan
structures admissible

S1 = (6, 2, 1), S2 = (5, 3, 1), S3 = (5, 2, 2),

S4 = (4, 4, 1), S5 = (4, 3, 2), S6 = (3, 3, 3).

Now, we consider the triple (15, 12, 6) (1, 3, 6, 8, 10, 12)-realizable. Applying Algo-
rithm 4 we obtain that the number of the zero-Jordan structures admissible for this triple is
x = 4 and they are

J =

⎡
⎢⎢⎣
5 3 1
4 4 1
4 3 2
3 3 3

⎤
⎥⎥⎦ .

That is,

S2 = (5, 3, 1), S4 = (4, 4, 1), S5 = (4, 3, 2), S6 = (3, 3, 3).

4 Obtaining upper block echelon TNmatrices

In this section we present a method to construct an upper block echelon TNmatrixU ∈ R
n×n

with rank(U ) = r , p-rank(U ) = p, H = {1, i2, . . . , i p} as the sequence of its first p-indices
and S = (s1, s2, . . . , sn−r ) as the Segre characteristic corresponding to its zero eigenvalue.
With the following process we obtain paths of pairs, Pz = {(i, j)}, z = 1, 2, . . ., associated
with the zero-Jordan structure obtained in Algorithm 4. These paths are used to construct the
upper block echelon TN matrix U .

Procedure 1 Given the triple (n, r , p)-realizable, the sequence of the first p-indices H =
{1, i2, . . . , i p}, the number s of the consecutive first indices, and the number x of the
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zero-Jordan structures obtained in Algorithm 4, then the following steps obtain all paths
of pairs, Pz = {(i, j)}, z = 1, 2, . . . associated with these zero-Jordan structures.

1. For t = s, s + 1, . . . , p − s, obtain the subsets It , Jt , formed by the inputs i and j
respectively, where it < i ≤ it+1 and it+1 ≤ j < it+2, being i1 = s and i p+1 = n + 1.

2. Calculate b = r−s, that is, the number of pairs of each path, Pz = {(i, j)}, z = 1, 2, . . .
and let (ik, jk) be the last pair of Pz.

3. Obtain the pairs (i, j) matching the inputs of It with its corresponding Jt , t = s, s +
1, . . . , p − s in order of appearance. If the number of pairs obtained is greater than or
equal to b then,

3.1. choose the pairs whose j ∈ H;
3.2. choose the r − p pairs from the rest, in ascending order of i;
3.3. order the pairs (i, j) in ascending order of i;
3.4. obtain P1 = {(i, j)} and go Step 10.

4. Obtain the pairs (i, j) matching the inputs in order of appearance. In this case the
inputs of It can match with its corresponding Jt or with Jt+1, t = s, s + 1, . . . , p − s.
If the number of pairs obtained is greater than or equal to b then construct the path
P2 = {(i, j)} following Steps 3.1-3.3 and go Step 10.

5. z = 2. For f = s + 2, . . . , p − s,

5.1. P = Pz;
5.2. set the pairs of P, (i, j), with j = is+1, . . . i f ;
5.3. obtain the rest of the pairs from (i, i f ) replacing (i, j) by (i, j + 1), taking into

account that the pairs whose j ∈ H must be;
5.4. if jk ≤ n then z = z + 1, obtain Pz = {(i, j)} and go Step 10;
5.5. if jk > n then go Step 6;

6. For f = s + 2, . . . , p − s,

6.1. obtain the pairs (i, j) = (s + 1, is+1), (s + 2, is+2), . . . , ( f , i f );
6.2. obtain the rest of the pairs from ( f , i f ) in ascending order of i and j , taking into

account that the pairs whose j ∈ H must be;
6.3. if jk ≤ n then obtain Pz = {(i, j)}, z = 3, 4, . . . and go Step 10;
6.4. if jk > n then go Step 7.

7. Draw a diagram from P2, similar to the Hasse diagram (see [12]), according to these
rules:

(a) two inputs i and j are joined by an edge if and only if there exists a path from i to j;
(b) remove directions on edges assuming that they are oriented downwards. So, if i < j ,

then the vertex i appears above the vertex j .

If n − jk ≥ 0, then for l = 1, 2, . . . , n − jk + 1,

7.1. set the first pair of P2, (s + 1, is+1), and draw a new diagram with the rest of pairs
of P2 replacing j by j + l;

7.2. if the new edges cause that a vertex j ∈ H is not visited, then remove the new edge
(i, j + l) and recover the old edge (i, j);

7.3. if ik ≤ i p and jk ≤ n then obtain Pz = {(i, j)}, z = 3, 4, . . . and go Step 10.

8. Select the first pair of subsets It , Jt , t = s, s + 1, . . . , p− s where the number of inputs
of It is less than the number of inputs of its corresponding Jt and

123



   84 Page 18 of 27 B. Cantó et al.

8.1. for all Pz, z = 1, 2, . . . obtained in previous Steps, match the inputs of It with other
inputs of its corresponding Jt , taking into account that the pairs whose j ∈ H cannot
be modified and each j must be greater than its equivalent j in Pz;

8.2. obtain Pz = {(i, j)}, z = 3, 4, . . . and go Step 10.

9. Use the diagram for P2 obtained in Step 7,

9.1. denoted by am, m = 1, 2, . . . the vertices that are at the bottom of the diagram and
choose am ≤ i p;

9.2. denoted by bm,m < bm,m = 1, 2, . . ., the vertices that do not appear in the diagram;
9.3. create the pairs (am, bm), am < bm that preserve the ascending order of the path;
9.4. choose the pairs in the diagram such that j /∈ H and replace each pair by (am, bm),

m = 1, 2, . . .;
9.5. obtain Pz = {(i, j)}, z = 3, 4, . . . and go Step 10.

10. Create the sets IPz and JPz , for each path Pz = {(i, j)}, z = 1, 2, . . . , such that IPz is
made up of the inputs i /∈ H and the input i replaced in Step 9.4, and JPz is made up of
the inputs j /∈ H.

11. For the paths P1 = {(i, j)} obtained in Step 3 and its modified path obtained in Step 8,
create a partition P(IPz ), P(JPz ), (see [3]).

12. Match the inputs of IPz with JPz , or P(IPz ) with P(JPz ), in order of appearance, taking
into account that,

(a) the pair (i, j), i < j , does not appear in its associated Pz;
(b) each j is greater than its equivalent j in Pz;
(c) if IPz has more inputs than JPz match the last inputs of IPz with the last input of JPz

satisfying the above conditions;
(d) if there is a replacement and the replaced entry i ∈ IPz , then this input and the

previous one match with the same j; in this case there are two paths, one with each
pair;

(e) if there is a replacement and the replaced entry i /∈ IPz , then the front and back inputs
of replaced i match with the same j; in this case there are two paths, one with each
pair.

13. Draw diagrams with the obtained pairs. The length of each branch in the diagram is the
size of the zero Jordan blocks. Choose the diagram that makes the chain longer.

14. There are n − r zero Jordan blocks. Complete them with ones until reaching n − p and
obtain the zero-Jordan structure Sc, c = 1, 2, . . ..

15. If the number of Sc is equal to x, then stop this Procedure. You can check that Sc are the
same than zero-Jordan structure obtained in Algorithm 4.

16. If the number of Sc is not equal to x, then continue this Procedure. Go back at the Step
where you left it.

Remark 4 We can use Procedure 1 when the first indices of H are consecutive. If we apply
Theorem 1 then we use Procedure 1 with s = 1.

Next, we give an example to clarify Procedure 1.

Example 4 Given the triple (17, 13, 7)-realizable, the sequence of the first p-indices, H =
{1, 3, 6, 8, 10, 12, 15} and the number x = 9 of the zero-Jordan structures applying Algo-
rithm 4, then we obtain all paths of pairs, Pz = {(i, j)}, z = 1, 2, . . . associated with these
zero-Jordan structures.
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Fig. 1 Diagram from P2

1. For t = 1, 2, 3, 4, 5, 6, we have

I1 = {2, 3} I2 = {4, 5, 6} I3 = {7, 8}
I4 = {9, 10} I5 = {11, 12} I6 = {13, 14, 15}
J1 = {3, 4, 5} J2 = {6, 7} J3 = {8, 9}
J4 = {10, 11} J5 = {12, 13, 14} J6 = {15, 16, 17}

2. b = r − s = 12 and (ik, jk) is the last pair of Pz .
3. Obtain (2, 3), (3, 4), (4, 6), (5, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12), (12, 13),

(13, 15), (14, 16), (15, 17).
Number of pairs 13 > b = 12, choose 7 pairs such that j ∈ H and r − p = 13− 7 = 6
pairs from the rest.

P1 = {(2, 3), (3, 4), (4, 6), (5, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12),
(12, 13), (13, 15), (14, 16)}.

4. Obtain (2, 3), (3, 4), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12), (11, 13),
(12, 14), (13, 15). Number of pairs 12 = b.

P2 = {(2, 3), (3, 4), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12),
(11, 13), (12, 14), (13, 15)}.
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Fig. 2 Diagram when l = 1. Diagram when l = 2

5. z = 2. For f = 3, 4, 5, 6,
P = P2

f = 3 →
⎧⎨
⎩

5.1 (2,3),(3,4),(4,6)
5.2. (5,8),(6,9),(7,10),(8,11),(9,12),(10,13),(11,14),(12,15),(13,16)

jk = 16 < n = 17.

P3 = {(2, 3), (3, 4), (4, 6), (5, 8), (6, 9), (7, 10), (8, 11), (9, 12), (10, 13),
(11, 14), (12, 15), (13, 16)}.

P = P3,

f = 4 →
⎧⎨
⎩

5.1 (2,3),(3,4),(4,6),(5,8)
5.2. (6,10),(7,11),(8,12),(9,13),(10,14),(11,15),(12,16),(13,17)

jk = 16 < n = 17.

P4 = {(2, 3), (3, 4), (4, 6), (5, 8), (6, 10), (7, 11), (8, 12), (9, 13), (10, 14),
(11, 15), (12, 16), (13, 17)}.

P = P4,

f = 5 →
⎧⎨
⎩

5.1 (2,3),(3,4),(4,6),(5,8),(6,10)
5.2. (7,12),(8,13),(9,14),(10,15),(11,16),(12,17), (13,18)

jk = 18 > n = 17 → Stop item 5.
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6. For f = 3, 4, 5, 6,

f = 3 →
⎧⎨
⎩

6.1 (2,3),(3,6)
6.2. (4,7),(5,8),(6,9),(7,10),(8,11),(9,12),(10,13),(11,14),(12,15), (13,16)

jk = 16 < n = 17.

P5 = {(2, 3), (3, 6), (4, 7), (5, 8), (6, 9), (7, 10), (8, 11), (9, 12), (10, 13),
(11, 14), (12, 15), (13, 16)}.

f = 4 →
⎧⎨
⎩

6.1 (2,3),(3,6),(4,8)
6.2. (5,9),(6,10),(7,11),(8,12),(9,13),(10,14),(11,15),(12,16),(13,17)

jk = 17 = n.

P6 = {(2, 3), (3, 6), (4, 8), (5, 9), (6, 10), (7, 11), (8, 12), (9, 13), (10, 14),
(11, 15), (12, 16), (13, 17)}.

f = 5 →
⎧⎨
⎩

6.1 (2,3),(3,6),(4,8),(5,10)
6.2. (6,11),(7,12),(8,13),(9,14),(10,15),(11,16),(12,17),(13,18)

jk = 18 > n = 17 → Stop item 6.

7. Draw a diagram from P2 given in Fig. 1.
jk = 15, n = 17 − jk = 17 − 15 = 2.
For l = 1, 2, 3,

l =1 We obtain Fig. 2a. The vertex (4, 7) causes that j = 6 ∈ H is not visited, then
remove (4, 7) and recover (4, 6). As ik = 12 < i p = 15 and jk = 16 < n = 17
then

P7 = {(2, 3), (3, 5), (4, 6), (5, 8), (6, 9), (7, 10), (8, 11), (9, 12), (10, 13),
(11, 14), (12, 15), (13, 16)}.

l =2 We obtain Fig. 2b. As ik = 13 < i p = 15 and jk = 17 = n then

P8 = {(2, 3), (3, 6), (4, 8), (5, 9), (6, 10), (7, 11), (8, 12), (9, 13), (10, 14),
(11, 15), (12, 16), (13, 17)}.

l =3 Last pair is (13, 18). Then jk = 18 > n = 17 and Pz does not exist.

8. Select I1 = {2, 3} and J1 = {3, 4, 5}. To reduce the example, we only obtain the paths
Pz whose zero-Jordan structure are different from the obtained previously. In this case,
P9 and P10 are obtained from P1 and P2, respectively.

P9 = {(2, 3), (3, 5), (4, 6), (5, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12),
(12, 13), (13, 15), (14, 16)}.

P10 = {(2, 3), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12),
(11, 13), (12, 14), (13, 15)}.

9. a1 = 14 < i p = 15; a2 = 15 = i p; b1 = 16, b2 = 17; new pairs: (14, 16), (14, 17),
(15, 16), (15, 17); old pairs: (3, 4), (5, 7), (7, 9), (9, 11), (11, 13), (12, 14). To reduce
the example, we only write P16 which zero-Jordan structure is different from the obtained
previously.

P16 = {(2, 3), (3, 4), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (10, 12), (11, 13),
(12, 14), (13, 15), (14, 16)}.
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We only calculate S from the paths Pz obtained previously.

10-16. n − p = 10, n − r = 4.

In each case, the diagram is given in Figs. 3, 4 and 5.

P1 = {(2, 3), (3, 4), (4, 6), (5, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12),
(12, 13), (13, 15), (14, 16)}

P(IP1) = {{2}, {4, 5}, {7}, {9}, {11}, {13, 14}}
P(JP1) = {{4}, {7}, {9}, {11}, {13}, {16}}

(2, 4), (4, 7), (7, 9), (9, 11), (11, 13), (13, 16) → S = (7, 1, 1, 1).

Number of Sc = 1 �= 9 = x .

P2 = {(2, 3), (3, 4), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12),
(11, 13), (12, 14), (13, 15)}

IP2 = {2, 4, 5, 7, 9, 11, 13} JP2 = {4, 7, 9, 11, 13, 14}

(2, 4), (4, 7), (5, 9), (7, 11), (9, 13), (11, 14) → S = (5, 3, 1, 1).

Number of Sc = 2 �= 9 = x .

P3 = {(2, 3), (3, 4), (4, 6), (5, 8), (6, 9), (7, 10), (8, 11), (9, 12), (10, 13),
(11, 14), (12, 15), (13, 16)}

IP3 = {2, 4, 5, 7, 9, 11, 13} JP2 = {4, 9, 11, 13, 14, 16}

(2, 4), (4, 7), (5, 11), (7, 13), (9, 14), (11, 16) → S = (4, 3, 2, 1).

Number of Sc = 3 �= 9 = .x

P4 = {(2, 3), (3, 4), (4, 6), (5, 8), (6, 10), (7, 11), (8, 12), (9, 13), (10, 14),
(11, 15), (12, 16), (13, 17)}

IP4 = {2, 4, 5, 7, 9, 11, 13} JP4 = {4, 11, 13, 14, 16, 17}

(2, 4), (4, 11), (5, 13), (7, 14), (9, 16), (11, 17) → S = (4, 2, 2, 2).

Number of Sc = 4 �= 9 = x .

P5 = {(2, 3), (3, 6), (4, 7), (5, 8), (6, 9), (7, 10), (8, 11), (9, 12), (10, 13),
(11, 14), (12, 15), (13, 16)}

IP5 = {2, 4, 5, 7, 9, 11, 13} JP5 = {7, 9, 11, 13, 14, 16}

(2, 7), (4, 9), (5, 11), (7, 13), (9, 14), (11, 16) → S = (3, 3, 3, 1).
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Number of Sc = 5 �= 9 = x .

P8 = {(2, 3), (3, 6), (4, 8), (5, 9), (6, 10), (7, 11), (8, 12), (9, 13), (10, 14),
(11, 15), (12, 16), (13, 17)}

IP8 = {2, 4, 5, 7, 9, 11, 13} JP8 = {9, 11, 13, 14, 16, 17}

(2, 9), (4, 11), (5, 13), (7, 14), (9, 16), (11, 17) → S = (3, 3, 2, 2).

Number of Sc = 6 �= 9 = x .

P9 = {(2, 3), (3, 5), (4, 6), (5, 7), (7, 8), (8, 9), (9, 10), (10, 11), (11, 12),
(12, 13), (13, 15), (14, 16)}

P(IP9) = {{2}, {4, 5}, {7}, {9}, {11}, {13, 14}}
P(JP9) = {{5}, {7}, {9}, {11}, {13}, {16}}

(2, 5), (4, 7), (7, 9), (9, 11), (11, 13), (13, 16) → S = (6, 2, 1, 1).

Number of Sc = 7 �= 9 = x .

P10 = {(2, 3), (3, 5), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (9, 11), (10, 12),
(11, 13), (12, 14), (13, 15)}

IP10 = {2, 4, 5, 7, 9, 11, 13} JP10 = {5, 7, 9, 11, 13, 14}

(2, 5), (4, 7), (5, 9), (7, 11), (9, 13), (11, 14) → S = (4, 4, 1, 1).

Number of Sc = 8 �= 9 = x .

P16 = {(2, 3), (3, 4), (4, 6), (5, 7), (6, 8), (7, 9), (8, 10), (10, 12), (11, 13),
(12, 14), (13, 15), (14, 16)}

IP16 = {2, 4, 5, 7, 9, 11, 13, 14} JP16 = {4, 7, 9, 13, 14, 16}
Chain 1: (2, 4), (4, 7), (5, 9), (7, 13), (11, 14), (13, 16)
Chain 2: (2, 4), (4, 7), (5, 9), (9, 13), (11, 14), (13, 16)

Longer chain : 1 → S = (5, 2, 2, 1).

Number of Sc = 9 = x . Stop Procedure.

We use the paths Pz = {(i, j)}, z = 1, 2, . . . obtained in Procedure 1 to construct an
upper block echelon TN matrix U ∈ R

n×n with rank(U ) = r , p-rank(U ) = p, H =
{1, i2, . . . , i p} as the sequence of its first p-indices and S = (s1, s2, . . . , sn−r ) as the Segre
characteristic corresponding to its zero eigenvalue.We calculateU using Algorithm 5 (which
is a generalization of [7,Algorithm 2] where the Segre characteristic is not prescribed).

The inputs of Algorithm 5 are the triple (n, r , p), the sequence of the first p-indices
H = {1, i2, . . . , i p} and a two column matrix Pz given by the inputs i and j of each path Pz .
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Fig. 3 Diagram for P1. Diagram
for P2. Diagram for P3

Fig. 4 Diagram for P4.
Diagram for P5. Diagram for P8

Fig. 5 Diagram for P9. Diagram for P10. Diagram for P16
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Algorithm 5 U = T PU (n, r , p, H , Pz)
1: c = H − [1 : p]; g = c > 0; h = g ∗ ones(p, 1); s = p − h;
2: V = [triu(ones(s, n)); zeros(n − s, n)]; [a, b] = size(Pz); S = [0 0]; L = [0 0];
3: for j = 1 : a do
4: m = ismember(Pz( j, b), H);
5: if m == 1 then
6: S = [S; Pz( j, 1) Pz( j, 2)];
7: else if m == 0 then
8: L = [L; Pz( j, 1) Pz( j, 2)];
9: end if
10: end for
11: [s1 s2] = size(S); S = S(2 : s1, :); [l1 l2] = size(L); L = L(2 : l1, :);
12: for j = 1 : s1 − 1 do
13: V (S( j, 1), S( j, 2) : n) = 1;
14: end for
15: for j = 1 : r − p do
16: V (L( j, 1), L( j, 2) : n) = 1;
17: end for
18: G = eye(n, n); x = 0;
19: for j = p : −1 : s + 1 do
20: E = eye(n, n); x = x + 1;
21: for i = H( j) : −1 : S(s1 − x, 1) + 1 do
22: E(i, i − 1) = −1;
23: end for
24: G = inv(E) ∗ G;
25: end for
26: U = G ∗ V

Example 5 Consider the triple (9, 7, 5) (1, 2, 3, 5, 7)-realizable. We can use two methods to
obtain an upper block echelon TNmatrixU ∈ R

9×9 with rank(U ) = 7, p-rank(U ) = 5, H =
{1, 2, 3, 5, 7} as the sequence of its first 5-indices and S = (3, 1) as the Segre characteristic
corresponding to its zero eigenvalue.

First, by Procedure 1 we obtain Pz = P1 = {(4, 5), (5, 6), (6, 7), (7, 8)} and S = (3, 1).
Applying Algorithm 5 we obtain

U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1
0 0 1 1 1 1 1 1 1
0 0 0 0 1 1 1 1 1
0 0 0 0 1 2 2 2 2
0 0 0 0 0 0 1 1 1
0 0 0 0 0 0 1 2 2
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (5)

Note that if we use Theorem 1, we reduce the problem to the triple (7, 5, 3) (1, 3, 5)-
realizable and applying Theorem 3 we obtain the same result.

Remark 5 By using the matrix U calculated in this section, we obtain some matrices associ-
ated with this triple and with one of the zero-Jordan structure obtained in Sect. 3. For that, we
consider the ITN matrices presented in Sect. 1 and the totally nonpositive matrices, denoted
as t.n.p., given in [7].
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Recall that a matrix A ∈ R
n×n is called type-I t.n.p. matrix if all its minors are nonpositive

and −a11 < 0 and it is called type-II t.n.p. matrix if all its minors are nonpositive, a11 = 0,
−a12 < 0 and −a21 < 0.

In the same way as in ITN matrices, a triple (n, r , p) is called (1, i2, . . . , i p)-negatively
realizable of the type-I (type-II) if there exists a type-I (type-II) t.n.p. matrix A = (−ai j ) ∈
R
n×n with rank(A) = r , p-rank(A) = p, and {1, i2, . . . , i p} (i2 = 2) as the sequence of its

first p-indices.
We present Algorithm 6 to construct some matrices associated with the realizable triple

(n, r , p). Concretely, we calculate an ITN matrix A1, a type-I t.n.p. matrix A2 and a type-II
t.n.p. matrix A3 using the same matrix U obtained in Algorithm 5. All these matrices have
the same sequence of its first p-indices and the same zero-Jordan structure (see [6, 7]).

Algorithm 6 A = Matri x(n, r , p, H , Pz)
1: type = input(’Type of matrix?(1 : T N ; 2 : T N P1; 3 : T N P I I )′);
2: U = T PU (n, r , p, H , Pz); D = eye(n, n); L = tril(ones(n, n)); t = [0, ones(1, n − 1)];
3: if type == 2 then
4: D(1, 1) = −(t + 1) ∗U (:, n);
5: else if type == 3 then
6: D(1, 1) = −t ∗U (:, n); D(2, 2) = −1;
7: L = [0 1 zeros(1, n−2); 1 0 zeros(1, n−2); ones(n−2, 1)− (ones(n−2, 1))tril(ones(n−2, n−2))];
8: end if
9: A = L ∗ D ∗U ;

Note that in Algorithm 6 we give a value to t , but in [7,Proposition 8] we can see that t

is a number such that satisfies t ≥ ∑i p
j=2 u jn .

Example 6 Consider the realizable triple (9, 7, 5) and H = {1, 2, 3, 5, 7} as the sequence of
the first 5-indices. From the matrixU constructed in Example 5 and by Algorithm 6 we have
the following matrices:

A1 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 1 1 1 1 1 1 1 1
1 2 2 2 2 2 2 2 2
1 2 3 3 3 3 3 3 3
1 2 3 3 4 4 4 4 4
1 2 3 3 5 6 6 6 6
1 1 3 3 5 6 7 7 7
1 1 3 3 5 6 8 9 9
1 1 3 3 5 6 8 9 9
1 1 3 3 5 6 8 9 9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, A2 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−17 −17 −17 −17 −17 −17 −17 −17 −17
−17 −16 −16 −16 −16 −16 −16 −16 −16
−17 −16 −15 −15 −15 −15 −15 −15 −15
−17 −16 −15 −15 −14 −14 −14 −14 −14
−17 −16 −15 −15 −13 −12 −12 −12 −12
−17 −16 −15 −15 −13 −12 −11 −11 −11
−17 −16 −15 −15 −13 −12 −10 −9 −9
−17 −16 −15 −15 −13 −12 −10 −9 −9
−17 −16 −15 −15 −13 −12 −10 −9 −9

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

A3 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 −1 −1 −1 −1 −1 −1 −1
−8 −8 −8 −8 −8 −8 −8 −8 −8
−8 −7 −6 −6 −6 −6 −6 −6 −6
−8 −7 −6 −6 −5 −5 −5 −5 −5
−8 −7 −6 −6 −4 −3 −3 −3 −3
−8 −7 −6 −6 −4 −3 −2 −2 −2
−8 −7 −6 −6 −4 −3 −1 0 0
−8 −7 −6 −6 −4 −3 −1 0 0
−8 −7 −6 −6 −4 −3 −1 0 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

– A1 is an ITN matrix associated with the triple (9, 7, 5) (1, 2, 3, 5, 7)-realizable with the
Segre characteristic S = (3, 1).

– A2 is a t.n.p. matrix associated with the triple (9, 7, 5) (1, 2, 3, 5, 7)-negatively realizable
of the type-I with the Segre characteristic S = (3, 1).
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– A3 is a t.n.p. matrix associated with the triple (9, 7, 5) (1, 2, 3, 5, 7)-negatively realizable
of the type-II with the Segre characteristic S = (3, 1).
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