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Abstract: We present a new Jarratt-type family of optimal fourth- and sixth-order iterative methods
for solving nonlinear equations, along with their convergence properties. The schemes are extended
to nonlinear systems of equations with equal convergence order. The stability properties of the
vectorial schemes are analyzed, showing their symmetric wide sets of converging initial guesses.
To illustrate the applicability of our methods for the multidimensional case, we choose some real
world problems such as kinematic syntheses, boundary value problems, Fisher’s and Hammerstein’s
integrals, etc. Numerical comparisons are given to show the performance of our schemes, compared
with the existing efficient methods.
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1. Introduction

Constructing a family of iterative schemes to solve nonlinear problems is widely ap-
plied in science and engineering. This has led to the design of many numerical procedures.
In this manuscript, we analyze the problem of solving the system of nonlinear equations
defined by F : D ⊆ Rn → Rn,

F(X) = 0.

Our interest is to estimate a zero of a multivariate vector-valued function or an ap-
proximated value of the root X of a nonlinear equation F(X) = 0. We frequently call such
kind of problems root-finding problems. One of the best known schemes to solve nonlinear
systems is the second-order Newton–Raphson method, expressed as

X(n+1) = X(n) − [F′(X(n))]−1F(X(n)),

where F′(X(n)) is the Jacobian matrix of function F(X). In terms of computational cost,
Newton’s scheme needs the functional evaluation of F and the Jacobian F′ evaluation for
finding the solution of a nonlinear system, per iteration.

With the aim of improving the convergence order of Newton’s scheme, various third
and fourth order methods have been proposed. During the past years, researchers offered
some point-to-point and multipoint techniques for solving nonlinear scalar equations but
not every scheme for the scalar equations is extendable to systems of nonlinear equations.
This demands extra effort to give specially-designed schemes that can be applied to scalar
problems as well as to systems of nonlinear equations. In 1960, Ostrowski [1] presented a
fourth order Steffensen-type method for systems of equations. In 1966, Jarratt [2] gave a
derivative-based fourth order multipoint numerical method for solving scalar nonlinear
equations. In 2007, Chun [3], developed the fourth order method as a new variant of King’s
fourth-order family of schemes for solving the scalar and multidimensional cases. Simi-
larly, in 2012, a pseudo-composition technique was introduced in [4]; Soleymani et al. [5],

Symmetry 2022, 14, 1742. https://doi.org/10.3390/sym14081742 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14081742
https://doi.org/10.3390/sym14081742
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0002-7462-9173
https://orcid.org/0000-0002-9893-0761
https://orcid.org/0000-0003-0552-2783
https://doi.org/10.3390/sym14081742
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14081742?type=check_update&version=1


Symmetry 2022, 14, 1742 2 of 20

Junjua et al. [6] and Xiao [7] presented the new families of Jarratt-type fourth-order schemes.
Matrix weight functions were used by Artidiello et al. in [8] to design efficient classes
of procedures to solve nonlinear systems. Recently, Behl et al. [9] developed respective
sixth-order iterative methods for solving nonlinear systems. As there are few high-order
methods for solving systems of nonlinear equations [10–14], in comparison with their scalar
partners, there is a need to develop methods that are extendable to the vectorial case, are
simple, cost effective and of high order.

Qualitative Study of Vectorial Iterative Methods

The stability of a scalar iterative method is usually analyzed by the analysis of the
rational function got when it is applied on a polynomial [15–18]. Often, the vectorial
schemes are turned into the scalar case in order to study their dependence on initial
estimations. However, by using the procedure defined in [19] and afterwards used in [20],
any multidimensional method can be formulated as a discrete real vectorial dynamical
system, and therefore its qualitative performance can be studied.

From a rational function T : Rn → Rn, obtained by application of the vectorial iterative
method on a polynomial system s(x), a discrete vectorial dynamical system is defined in
Rn. In what follows, we introduce some dynamical concepts that can be considered as a
direct extension of those used in complex dynamics [21].

Let us consider a fixed point x̄ ∈ Rn of the operator T; if s(x̄) 6= 0, it is named a strange
fixed point. Moreover, the orbit of x̄ ∈ Rn can be defined asO(x̄) = {x̄, T(x̄), . . . , Tm(x̄), . . .}.
A point x∗ ∈ Rn is a k-periodic point if Tk(x∗) = x∗ and Tp(x∗) 6= x∗, for p = 1, 2, . . . , k− 1.

Moreover, the stability of a point of Rn can be studied by using the result appearing
in [22]. It establishes that a fixed or periodic point is attracting if all the eigenvalues of
the Jacobian matrix evaluated at the point are, in absolute value, lower than one. If all
these eigenvalues are greater than one, the point is classified as repelling and, in other
cases, unstable.

Moreover, a fixed point x∗ is said to be hyperbolic if all the eigenvalues of T′(x∗)
satisfy |λj| 6= 1. Specifically, if there exists any eigenvalue λi such that |λi| < 1 and another
one λj satisfying |λj| > 1, then it is called a saddle point.

Let us consider a periodic or fixed point x∗ that is an attractor of operator T; its basin
of attraction B(x∗) is defined as

B(x∗) = {x0 ∈ Rn : Tm(x0) = x∗, for any m ∈ N}.

Critical points of a rational function T are also an important tool in the study of an
iterative scheme: they are defined as those points satisfying det(G′(x)) = 0. Moreover,
a critical point c such that s(c) 6= 0, is called a free critical point. This information can also
be inferred from those points making null the eigenvalues of T′, or even those making
the Jacobian matrix null. If critical points are also fixed, they are called superattracting; if
not, they are called free critical points. Julia and Fatou [21] stated that there is at least one
critical point embedded in each basin of attraction. Then, by calculating the orbit of these
free critical points, all the attracting elements can be found.

In this paper, we give a family of fourth order methods for solving systems of equations
that is optimal in the scalar case. We, further, extend this family to a sixth order scheme.
The rest of the manuscript is organized as follows. Section 2 is devoted to the design of
optimal fourth-order scheme and its analysis of convergence. Some special cases of the
family are also defined. In Section 3, a sixth-order scheme is constructed and its convergence
order is proven and some special cases of the family are presented. In Section 4, we perform
a stability analysis of the particular cases extracted from the previous classes, focused on the
fixed and critical points of the related vectorial rational functions. In Section 5 we analyze
numerical Examples for confirming the theoretical results and comparing the numerical
performance of the new methods with the existing ones. In Section 6, some concluding
remarks are given.
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2. Development of Fourth-Order Scheme

Let us first define a new family of optimal fourth-order schemes for solving nonlinear
equations, i.e., f (x) = 0, being f : I ⊆ R→ R defined on an open interval I. The iterative
expression of this class is given by:

yn = xn − α
f (xn)

f ′(xn)
, n > 0.

xn+1 = yn − H(un)
f (xn)

f ′(yn)
, (1)

where the weight function H : R → R, is a continuous and differentiable function in the
neighborhood of 1 with un = f ′(yn)

f ′(xn)
, and α is a free disposable parameter. It is noteworthy

that this scheme is a two-point optimal (in the sense of the Kung–Traub conjecture) fourth
order family for computing simple roots of scalar problems.

Let us extend this class of iterative schemes for estimating the solution of a system of
nonlinear equations F(X) = 0 defined by F : D ⊆ Rn → Rn. For this purpose, we write (1)
in vectorial form as:

Y(n) = X(n) − α[F′(X(n))]−1F(X(n)),

X(n+1) = Y(n) − H(Un)[F′(Y(n))]−1F(X(n)), (2)

where H : Mn×n(R)→ L(Rn) and

Un = [F′(X(n))]−1F′(Y(n)).

Due to the variable of the weight function being a matrix, some notation must be in-
troduced in order to set the conditions to be satisfied to guarantee the order of convergence.
In this context, the weight function H satisfies

(i) H′(u)(v) = H1uv, being H′ : Mn×n(R) → L(Mn×n(R)) the first derivative of H,
L(Mn×n(R)) denotes the space of linear mappings from Mn×n(R) to itself and H1 ∈ R.

(ii) H′′(u, v)(w) = H2uvw, being H′′ : Mn×n(R)×Mn×n(R)→ L(Mn×n(R)) the second
derivative of H and H2 ∈ R.

Then, the Taylor expansion of H around I (identity matrix) up to second order gives

H(Un) ≈ H(I) + H1(Un − I) +
1
2

H2(Un − I)2.

To analyze the convergence of class (2), we state and prove the next result.

Theorem 1. Let us consider that F : D ⊆ Rn → Rn is a sufficiently differentiable function on a
closed neighborhood D of its root W. Let F′(X) be continuous and non-singular at W. In addition,
let us consider that initial guess X(0) is close enough to W, then, for α = 2

3 , class (2) we have
fourth-order convergence under conditions:

H(I) =
1
3

I, H1 = − 5
12

, H2 =
3
4

, |H3| < ∞.

Proof. We denote by
En = X(n) −W,

the error at n− th step such that W is the real root. By using Taylor’s expansion of F(X(n))
and F′(X(n)) around W, we have:

F(X(n)) = F′(W)(En + C2E2
n + C3E3

n + C4E4
n + O

(
E5

n

)
). (3)
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and,
F′(X(n)) = F′(W)(1 + 2C2En + 3C3E2

n + 4C4E3
n + 5C5E4

n + O
(

E5
n

)
), (4)

respectively, where:

Cj =
1
j!
[F′(W)]−1F(j)(W).

By using Equations (3) and (4) in scheme (2), we have:

Y(n) =
1
3

En +
2
3

C2E2
n +

(
4
3

C3 −
4
3

C2
2

)
E3

n +

(
2C4 −

14
3

C2C3 +
8
3

C3
2

)
E4

n + O
(

E5
n

)
. (5)

In a similar way, by using the Taylor expansion of F
(

Y(n)
)

and F
′
(

Y(n)
)

about W,

Un = U(X(n)) = F′(X(n))−1F′(Y(n)) is given by:

Un = I − 4
3

C2En +

(
−8
3

C3 + 4C2
2

)
E2

n

+

(
−104

27
C4 + 2C2(

4
3

C3 −
4
3

C2
2) +

16
3

C2C3 + 2(
8
3

C3 − 4C2
2)c2

)
E3

n

+

(
−400

81
C5 + 2C2(2C4 −

14
3

C2C3 +
8
3

C3
2) + 3C3(

8
9

C3 −
4
9

C2
2) +

56
9

C2C4

+3(
8
9

C3 − 4C2
2)C3 + 2(

104
27

C4 −
40
3

C2C3 +
32
3

C3
2)C2

)
E4

n + O
(

E5
n

)
,

and,

H(Un) = H(I)− 4
3

H1C2En +

(
−8

3
H1C3 + 4H1C2

2 +
8
9

H2C2
2

)
E2

n

+

(
−104

27
H1C4 +

40
3

H1C2C3 −
32
3

H1C3
2 −

32
81

H3C3
2 +

32
9

H2C2C3 −
16
3

H2C3
2

)
E3

n

+

(
−400

81
H1C5 +

484
27

H1C2C4 −
148

3
H1C3C2

2 +
80
3

H1C4
2 +

32
3

H1C2
3 +

416
81

H2C2C4

−256
9

H2C3C2
2 +

200
9

H2C4
2 +

32
9

H2C2
3 +

32
243

H2C4
2 −

64
27

H2C2
2C3 +

32
9

H2C4
2

)
E4

n

+O(E5
n).

Finally, using Equations (3), (5) and (6) in scheme (2) and for H(I) =
1
3

I, H1 = − 5
12

,

H2 =
3
4

, the error equation is given as:

En+1 =

(
−1

9
C4 + C2C3 +

7
3

C3
2 +

32
81

H3C3C3
2

)
E4

n + O
(

E5
n

)
.

This proves the fourth-order of convergence.

A Particular Case of Weight Function for the Fourth Order Scheme

Let us take a particular case of our proposed class (2) obtained by choosing weight
function H(Un).

Case 1. We take weight function H(Un) in the form of a polynomial of degree three such that:

H(Un) = a0 + a1Un + a2U2
n + a3U3

n,
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with
a0 =

9
8
− a3, a1 = −7

6
+ 3a3, a2 =

3
8
− 3a3.

In case we choose a3 = 0, we have:

a0 =
9
8

, a1 = −7
6

, a2 =
3
8

.

Then, we obtain a fourth-order scheme, namely SF1, by using the above weight function in the
new scheme (2), i.e.,

Y(n) = X(n) − 2
3
[F′(X(n))]−1F(X(n)), n > 0.

X(n+1) = Y(n) −
(

9
8

I − 7
6

Un +
3
8

U2
n

)
[F′(Y(n))]−1F(X(n)). (6)

3. Development of Sixth-Order Schemes

Let us further increase the order of convergence of the class (2) by adding one more
step. Then, we propose the following three step family of iterative schemes:

Y(n) = X(n) − 2
3
[F′(X(n))]−1F(X(n)),

Z(n) = Y(n) − H(Un)[F′(Y(n))]−1F(X(n)),

X(n+1) = Z(n) − K(Un)[F′(X(n))]−1F(Z(n)), (7)

where H, K : Mn×n(R)→ L(Rn), with

Un = [F′(X(n))]−1F′(Y(n)).

Let us remark that this class needs one more functional evaluation of F as compared
to the fourth-order family (2). By doing so, our aim is to increase the convergence order of
the method as well as the efficiency. The class of methods has sixth order of convergence,
under some conditions, as it is proven as follows.

Theorem 2. Let us consider that F : D ⊆ Rn → Rn is a sufficiently differentiable function in a
closed neighborhood D of its root W. We assume that F′(X) is continuous and non-singular at W.
Moreover, we consider an initial guess X(0) close enough to W. Then the convergence is guaranteed
and the class of numerical schemes (7) has sixth order of convergence satisfying the conditions:

H(I) =
1
3

I, H1 = − 5
12

, H2 =
3
4

, |H3| < ∞

and,

K(I) = I, K1 = −3
2

, |K2| < ∞.

Proof. Again, by using Taylor development of F(X(n)) and F′(X(n)) about W, we have:

F(X(n)) = F′(W)(En + C2E2
n + C3E3

n + C4E4
n + C5E5

n + C6E6
n) + O

(
E7

n

)
(8)

and,

F′(X(n)) = F′(W)(I + 2C2En + 3C3E2
n + 4C4E3

n + 5C5E4
n + 6C6E5

n) + O
(

E6
n

)
, (9)

respectively.
By using (8) and (9) in class (7) we have:
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Y(n) =
1
3

En +
2
3

C2E2
n +

(
4
3

C3 −
4
3

C2
2

)
E3

n +

(
2C4 −

14
3

C2C3 +
8
3

C3
2

)
E4

n

+

(
8
3

C5 −
20
3

C2C4 − 4C2
3 +

40
3

C3C2
2 −

16
3

C4
2

)
E5

n (10)

+

(
−34

3
C3C4 + 22c2C2

3 −
104

3
C3C3

2 +
56
3

C4C2
2 −

26
3

C2C5 +
10
3

C6 +
32
3

C5
2

)
E6

n + O
(

E7
n

)
.

Consequently, from the Taylor’s series expansions of F
(

Y(n)
)

and F′
(

Y(n)
)

about W,

Un = [F′(Y(n))]−1F(X(n)) is expanded as:

Un = 1− 4
3

C2En +

(
−8
3

C3 + 4C2
2

)
E2

n

+

(
−104

27
C4 + 2C2(

4
3

C3 −
4
3

C2
2) +

16
3

C2C3 + 2(
8
3

C3 − 4C2
2)C2

)
E3

n

+

(
−400

81
C5 + 2C2(2C4 −

14
3

C2C3 +
8
3

C3
2) + 3C3(

8
9

C3 −
4
9

C2
2) +

56
9

C2C4

+3(
8
9

C3 − 4C2
2)C3 + 2(

104
27

C4 −
40
3

C2C3 +
32
3

C3
2)C2

)
E4

n + · · ·+ O
(

E7
n

)
,

and

H(Un) = H(I)− 4
3

H1C2En +

(
−8

3
H1C3 + 4H1C2

2 +
8
9

H2C2
2

)
E2

n

+

(
−104

27
H1C4 +

40
3

H1C2C3 −
32
3

H1C3
2 −

32
81

H3C3
2 +

32
9

H2C2C3 −
16
3

H2C3
2

)
E3

n

+

(
−400

81
H1C5 +

484
27

H1C2C4 −
148
3

H1C3C2
2 +

80
3

H1C4
2 +

32
3

H1C2
3 +

416
81

H2C2C4

−256
9

H2C3C2
2 +

200
9

H2C4
2 +

32
9

H2C2
3 +

32
243

H3C4
2 −

64
27

H3C2
2C3 +

32
9

H3C4
2

)
E4

n + · · ·+ O(E7
n).

Using Equations (8)–(11) in class (7), we have:

Z(n) =

(
1
9

C4 − C2C3 +
7
3

C3
2 +

32
81

H3C3
2

)
E4

n

+

(
64
27

H3C2
2C3 −

32
243

H4C4
2 −

832
243

H3C4
2 −

20
9

C2C4 − 2C2
3

+16C2
2C3 −

116
9

C4
2 +

8
27

C3

)
E5

n + · · ·+ O(E7
n)

Similarly, we expand F(Z(n)), F′(Z(n)) and K(Un) to obtain the final error expression
by choosing K(I) = I and K1 = − 3

2 :

En+1 =

(
14C5

5 −
1
9

C3C4 + C2C2
3 −

25
3

C3C2
2 +

2
3

C4C2
2 −

32
81

H3C3C3
2

−256
729

H3K2C5
2 −

56
27

K2C5
2 +

8
9

K2C3C3
2 −

8
81

K2C4C2
2

)
E6

n + O
(

E7
n

)
.

This shows that the proposed class has sixth order of convergence.

Some Special Cases of Weight Functions for Sixth Order Scheme

Let us give a few particular cases of our suggested scheme (7) by using several
operators H(Un) and K(Un). These special cases are given as follows:
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Case 2. Choosing H(Un) and K(Un) as a polynomial operator of degree 2,

H(Un) = a0 I + a1U + a2U2,

K(Un) = b0 I + b1U + b2U2,

with
a0 =

9
8

, a1 = −7
6

, a2 =
3
8

,

b0 =
5
2
+ b2, b1 = −3

2
− 2b2,

which for b2 = 27
8 gives

b0 =
47
8

, b1 = −33
4

.

Then, we acquire another sixth-order scheme namely SF2 by using the above choices of weight
functions in the proposed class (7) as:

Y(n) = X(n) − α[F′(X(n))]−1F(X(n)), n ≥ 0

Z(n) = Y(n) −
(

9
8

I − 7
6

Un +
3
8

U2
n

)
[F′(Y(n))]−1F(X(n))

X(n+1) = Z(n) −
(

47
8

I − 33
4

Un +
27
8

U2
n

)
[F′(X(n))]−1F(Z(n)). (11)

Case 3. If we choose two rational weight functions H(Un) and K(Un):

H(Un) =
(

t0 I + t1Un + t2U2
n

)−1
,

K(Un) =
(

s0 I + s1Un + s2U2
n

)−1
,

with,

t0 =
9

16
, t1 =

9
8

, t2 =
21
16

.

s0 = −1
2
+ s2, s1 =

3
2
− 2s2.

For s2 = − 9
8 ,

s0 = −13
8

, s1 =
15
4

.

Then, we obtain another sixth-order scheme, namely SF3, by using the above weight functions
in the suggested class (7), which is given by:

Y(n) = X(n) − α[F′(X(n))]−1F(X(n)), n > 0.

Z(n) = Y(n) − 8
(
−13I + 30Un − 9U2

n

)−1
[F′(Y(n))]−1F(X(n))

X(n+1) = Z(n) − 16
3

(
3I + 6Un + 7U2

n

)−1
[F′(X(n))]−1F(Z(n)). (12)

4. Dynamical Analysis of Proposed Classes

In this section, the dynamical concepts defined in the introductory section are used to
analyze the qualitative behavior of the proposed classes SF1, SF2 and SF3, with indepen-
dence of their order of convergence. In order to achieve this aim, they are applied on the
polynomial system of separate variables s(x) = 0, where

s(x) =
{

x2
1 − 1,

x2
2 − 1,
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and the corresponding vectorial rational functions are studied.

4.1. Stability of SF1

By applying SF1 on the polynomial system s(x) = 0, we obtain its rational vectorial
operator R(x) = (r1(x), r2(x))T , with j-th coordinate

rj(x) =
8a3

(
x2

j − 1
)4

+ 9
(

9x8
j + 39x6

j − x4
j + x2

j

)
144x5

j

(
2x2

j + 1
) , j = 1, 2. (13)

Then, the following result is proven.

Theorem 3. The rational operator R(x) related to the class of iterative schemes SF1 has, (1, 1),
(1,−1), (−1, 1), (−1,−1) as fixed points, being the roots of s(x), for any value of a3. Moreover,
they are superattracting. Indeed, there exist other fixed points of R(x), whose number depends on
the value of the parameter a3 as follows:

• If a3 < 0 or a3 > 207
8 , then each component of the fixed points can be ±1 or any of the two

real roots of polynomial p1(t) = −8a3 + (−9 + 24a3)t2 − 24a3t4 + (−207 + 8a3)t6.
• If 0 ≤ a3 ≤ 207

8 , the only fixed points are the roots of system s(x).

Proof. From the expression of the rational function R(x) and the separate variables of the
system, we deduce that a fixed point x = (x1, x2) must satisfy r1

j (x) = xj, j = 1, 2. So,

(−1 + x2
j )(8a3(−1 + x2

j )
3 − 9(x2

j + 23x6
j )) = 0, j = 1, 2. (14)

Then, values xj = ±1 satisfy this expression, and the roots of s(x): (1, 1), (1,−1),
(−1, 1), (−1,−1) are fixed points of the rational operator R(x). To analyze their stability,
we calculate R′(x),

R′(x) =


(x2

1−1)
3
(8a3(2x4

1+17x2
1+5)+27(6x4

1+x2
1))

144x6
1(2x2

1+1)
2 0

0 (x2
2−1)

3
(8a3(2x4

2+17x2
2+5)+27(6x4

2+x2
2))

144x6
2(2x2

2+1)
2

.

It is clear R′(x)(±1,±1) is the null matrix. Therefore, the fixed points are superattract-
ing. Moreover, there are (strange) fixed points different from the roots of s(x), satisfying
(8a3(−1 + x2

j )
3 − 9(x2

j + 23x6
j )) = 0. That is, the roots of p1(t), when they are real, are

components of the strange fixed points of R(x). It can be checked that when 0 ≤ a3 ≤ 207
8 ,

all the roots of p1(t) are complex; in other case, there are two real roots of p1(t), that by
themselves or combined with ±1, form the strange fixed points of R(x).

In addition to the calculation of fixed points of R(x), it is feasible that other attracting
elements there exist to be avoided. To detect them, if they exist, we calculate the free critical
points. The proof of the following result is straightforward from the eigenvalues of R′(x).

Theorem 4. The rational operator R(x) related to the iterative method SF1 has points (1, 1),
(1,−1), (−1, 1), (−1,−1), as critical points. However, depending on the value of a3, the number
of critical points of R(x) can be increased as follows:

• If a3 ∈
(
−∞,− 81

8

)⋃
(0,+∞), then exist free critical points whose components are the

different combinations among the roots of polynomial p2(t) = 40a3 + (27 + 136a3)t2 +
(162 + 16a3)t4 and ±1.

• For values of a3 ∈
[
− 81

8 , 0
]
, there are no free critical points.
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Proof. Critical points of R(x) are found as those cancelling the eigenvalues of the associated
Jacobian matrix, R′(x). Due to the separate variables of s(x), these eigenvalues are the
non-null components of R′(x). So, the components of critical points are ±1 and the real
roots of p2(t). It can be checked that the roots of p2(t) are all complex if a3 ∈

[
− 81

8 , 0
]

and
there exist two real roots in the other case.

From Theorem 4, we state that convergence of SF1 on s(x) is global if a3 ∈
[
− 81

8 , 0
]
,

as no other behavior than convergence to the roots is allowed. In Figure 1, some dynamical
planes can be seen. We use a mesh M with 400× 400 points, and every initial guess in this
mesh is iterated a maximum of 80 times with an exact error lower than 10−3.

Each point of M is colored depending on the root (presented as white stars) it converges
to. This color is brighter when the amount of iterations needed is lower. If the maximum
of iterations are reached and no convergence to the roots is achieved, then the point is
colored in black. In Figure 1a, the dynamical plane of the SF1 method acting on s(x) is
presented. Let us notice that, for a3 = 0, it has the same performance as Newton’s method,
but with fourth-order of convergence (see Figure 1a), it is still very stable for a3 = −5
where the basins of attraction of the roots have infinite components (Figure 1b) and in case
of a3 = −15 black regions of no convergence appear, but in this case they correspond to
slow convergence (Figure 1c).

(a) (b) (c)

Figure 1. Dynamical planes of SF1 on s(x). Blue, Orange, green and brown colors correspond to the
basins of attraction of fixed points (−1, 1), (1, 1), (−1,−1) and (1,−1), respectively. These points
appears marked with white asterisks. (a) a3 = 0. (b) a3 = −5. (c) a3 = −15.

In order to find undesirable values of the parameter, we look for those members of the
family that are able to converge to any other attracting element different from the roots of
s(x). In order to achieve this, we use the parameter line. To generate it, a free critical point
depending of a3 is used as initial guess for each value of a3 (see Figure 2). In the interval
a3 ∈

[
− 81

8 , 0
]
, where there exist free critical points, each point of the mesh of 500 points is

painted in red if the critical point converges to one of the roots or in black otherwise.

Figure 2. Parameter line of SF1 on s(x) for a3 ∈
[
− 81

8 , 0
]
. Red and black color correspond to values

of a3 where the scheme converges to the roots or not, respectively.
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In Figure 3, different unstable cases can be found: for a3 = −9.4, several black areas of
no convergence to the roots can be found, corresponding to four periodic orbits of period 4
(see Figure 3a)

{(−1.0000,−11.2191), (−1.0000,−0.4249), (−1.0000, 11.2191), (−1.0000, 0.4249)},
{(11.2191, 1.0000), (0.4249, 1.0000), (−11.2191, 1.0000), (−0.4249, 1.0000)}
{(1.0000,−11.2191), (1.0000,−0.4249), (1.0000, 11.2191), (1.0000, 0.4249)},

{(11.2191,−1.0000), (0.4249,−1.0000), (−11.2191,−1.0000), (−0.4249,−1.0000)}.

(15)

(a) (b)

Figure 3. Dynamical planes of unstable elements of SF1 on s(x). Blue, Orange, green and brown
colors correspond to the basins of attraction of fixed points (−1, 1), (1, 1), (−1,−1) and (1,−1),
respectively. These points appears marked with white asterisks. (a) a3 = −9.4. (b) a3 = −10.1.

Similar performance can be found in Figure 3b, where the black areas correspond to
periodic orbits of higher period. So, the only values of a3 where convergence to attracting
orbits is assured are those in black in the parameter line. In the rest of the real values,
the only possible behavior is convergence to the roots of s(x).

4.2. Stability of SF2

Now, let us apply the SF2 method on s(x) = 0 and obtain its rational vectorial operator
S(x) = (s1(x), s2(x))T , whose j-th coordinate is

sj(x) =
9Nj(xj)− 2b2

(
x2

j − 1
)6(

81x4
j + 2x2

j + 1
)

9216x11
j

(
2x2

j + 1
)2 , j = 1, 2, (16)

where Nj(xj) = 909x16
j + 6615x14

j + 609x12
j + 1491x10

j − 489x8
j + 85x6

j − 5x4
j + x2

j .
Therefore, we analyze the fixed points of S(x) in the next result. The proof is analogous

to that of SF1, so it is omitted.

Theorem 5. Rational operator S(x) related to the class of iterative methods SF2 has the roots of s(x),
(1, 1), (1,−1), (−1, 1), (−1,−1) as superattracting fixed points, but also some strange fixed points
exist, whose components are the real roots of polynomial q1(t) = t14(162b2 + 28683) + t12(6012−
806b2) + t10(1602b2 + 9747) + t8(−1590b2 − 3672) + t6(790b2 + 729) + t4(−162b2 − 36) +
t2(6b2 + 9)− 2b2 or the combination between one of these roots and +1 or −1. The number of real
roots of q1(t) depends on the value of b2:

• If b2 < − 3187
18 or b2 > 0, q1(t) has only two real roots and the strange fixed points are defined

by combining them with themselves or with ±1.
• If − 3187

18 ≤ b2 ≤ 0, q1(t) has not real roots and there are not strange fixed points.

Now, it is important to study if there exist free critical points, as it is stated in the next
result. Let us notice that, also in this case, there exist free critical points depending on the
value of b2 that can give rise to their own basins of attraction.
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Theorem 6. The rational operator S(x) related to the iterative method SF2 has points (±1,±1) as
critical points. Moreover, the following cases can be described depending on the value of b2:

• If b2 ≤ 0, b2 =
27
8

or b2 ≥
101

2
, then there are no free critical points.

• In other case, that is, if 0 < b2 < 27
8 or 27

8 < b2 < 101
2 , the components of the free critical

points are any of the two real roots of polynomial q2(t) = 22b2 + (−81 + 98b2)t2 + (−324 +
1238b2)t4 + (−3645 + 4366b2)t6 + (−16362 + 324b2)t8, or any of them combined with ±1.

From Theorem 6, we deduce that those elements of class SF2 with values of b2 satisfy-

ing b2 ≤ 0, b2 =
27
8

or b2 ≥
101
2

can only converge to the roots of the system, achieving
the most stable performance. In other cases, the parameter line help us to deduce their
behavior. In Figure 4a, the line shows convergence to the roots, for both free critical points
when 0 < b2 < 27

8 ; however, in Figure 4b two black areas of the parameter line show the
values where convergence to the roots is not guaranteed when 27

8 < b2 < 101
2 . In this case,

the same performance also appears for any free critical point in this interval.

(a) (b)

Figure 4. Parameter line of SF2 on s(x) for (a) 0 < b2 < 27
8 or (b) 27

8 < b2 < 101
2 .

So, we can isolate values of b2 in these areas of the parameter line looking for unstable
behavior and choose any other value of the parameter for the stable one. In Figure 5, we
observe the dynamical planes corresponding to SF2 method acting on s(x) (Figure 5a).
We observe that in both cases the complexity of the boundary between the basins of
convergence is higher than in stable elements of SF2 and, in the case of Figure 5b, a black
area of slower convergence (or even divergence) appears. The first case, for b2 = 45.5,
shows in yellow color a periodic orbit of period 4, close to one of the roots; specifically, this
orbit is {(−1.0000, 0.4919), (−1.0000,−11.7098), (−1.0000,−0.4919), (−1.0000, 11.7098)}
and there exist other three symmetrical ones for this value of b2. In Figure 5b, a similar
performance with black lines corresponding to the basin of attraction of the periodic orbit

{(−18.7737, 1.0), (−0.3175, 1.0), (2338.7, 1.0), (20.5559, 1.0), (0.3201, 1.0), (−2136.1, 1.0)}

of period 6 and other symmetric ones in the vertical lines containing the roots.
Nevertheless, the most common performance of this class of iterative methods is

stability, with convergence to the roots as the only possible performance. Some examples
of this behavior can be observed in Figure 6 for different values of b2 with no free critical
points (Figure 6a,b,d) or in the red areas of the parameter lines (Figure 6c).
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(a) (b)

Figure 5. Dynamical planes of SF2 on s(x) for unstable values of b2. Blue, Orange, green and brown
colors correspond to the basins of attraction of fixed points (−1, 1), (1, 1), (−1,−1) and (1,−1),
respectively. These points appears marked with white asterisks. (a) b2 = 45.5. (b) b2 = 48.5.

(a) (b)

(c) (d)

Figure 6. Dynamical planes of SF2 on s(x) for stable values of b2. Blue, Orange, green and brown
colors correspond to the basins of attraction of fixed points (−1, 1), (1, 1), (−1,−1) and (1,−1),
respectively. These points appears marked with white asterisks. (a) b2 = 0. (b) b2 = 27

8 . (c) b2 = 20.
(d) b2 = 60.
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4.3. Stability of SF3
Finally, let us apply the SF3 method on s(x) = 0 and obtain its rational multidimen-

sional operator T(x) = (t1(x), t2(x))T , whose j-th coordinate is

tj(x) =
2
(

s2

(
x2

j − 1
)2

m1(xj) + 3m2(xj)x2
j

)
3xj

(
2x2

j + 1
)2(

91x4
j + 46x2

j + 7
)2
(

2s2

(
x2

j − 1
)2

+ 9
(

x14 + x12
)) , j = 1, 2, (17)

where m1(xj) = 26936x14
j + 166132x12

j + 203838x10
j + 115793x8

j + 38344x6
j + 7842x4

j +

938x2
j + 49 and m2(xj) = 29452x16

j + 325588x14
j + 518017x12

j + 485983x10
j + 238015x8

j +

69238x6
j + 12091x4

j + 1183x2
j + 49. Therefore, the results that give us information about the

stability T(x) appear below. The proofs are omitted as they are similar to the previous ones.

Theorem 7. The rational operator T(x) related to the iterative method SF3 has only the roots
of s(x), (1, 1), (1,−1), (−1, 1) and (−1,−1) as fixed points (being superattracting) if s2 ≥ 0.
However, there exist also strange fixed points, depending on negative values of s2:

• If s2 < − 179409
36218 , the entries of the strange fixed points are the four real roots of polynomial

m3(t) = t16(144872s2 + 717636) + t14(1456980− 77464s2) + t12(1641285− 143110s2) +
t10(880986− 8836s2)+ t8(44822s2 + 280986)+ t6(29072s2 + 54612)+ t4(9062s2 + 6069)
+t2(1484s2 + 294) + 98s2, combined with ±1.

• If − 179409
36218 ≤ s2 < 0, the entries of the strange fixed points are the two real roots of m3(t),

combined with ±1.

Now, it is important to study if there exist free critical points, as it is stated in the next
result. In this case there also exist points, different from the roots of s(x), that make null
both eigenvalues of T(x)′.

Theorem 8. The rational operator T(x) related to the iterative method SF3 has points (±1,±1),
as the only critical points if s2 ≥ 0. In the other case, the number of free critical points depends of
the roots of polynomials of eighteenth degree.

In Figure 7, the dynamical planes corresponding to SF3 method acting on s(x) can
be observed. Stable behavior correspond to positive or null values of s2 (Figure 7a,b),
meanwhile stable or unstable performance is found for some negative values of s2, as can
be seen in Figure 7c,d. Several attracting strange fixed points have been found for s2 = −5.5,
whose components are ±5 and/or ±1, whose basins of attraction appear in black color.

(a) (b)

Figure 7. Cont.
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(c) (d)

Figure 7. Dynamical planes of SF3 on s(x) for stable and unstable cases. Blue, Orange, green and
brown colors correspond to the basins of attraction of fixed points (−1, 1), (1, 1), (−1,−1) and (1,−1),
respectively. These points appears marked with white asterisks. Black region is the basin of attraction
of attracting strange fixed points.(a) s2 = 0. (b) s2 = 10. (c) s2 = −10. (d) s2 = −5.5.

5. Numerical Results of Fourth Order Schemes

In this section , we work on some numerical examples. We assume four mathematical
problems. For the multidimensional case, the first is a kinematic synthesis problem [23,24],
the second is a boundary value problem, the third is 2D Bratu’s problem and the fourth is a
typical nonlinear problem [25]. We compare the behavior of SF1 with the behavior obtained
by the scheme proposed by Soleymani et al. [5], denoted as FS1

Y(n) = X(n) − 2
3
[F′(X(n))]−1F(X(n)),

X(n+1) = X(n) − 2G(ηn)H(λn)
[

F′(X(n)) + F′(Y(n))
]−1

F(X(n)),

where, ηn = [F′(X(n))]−1F
(

X(n)
)

and λn = [F′(X(n))]−1F′(Y(n)), with

G(ηn) = I

and
H(λn) = I +

1
4
(λn − I) +

3
4
(λn − I)2.

We have included the iteration index, (n), the approximated computational order
of convergence,

pn =
ln(incrn+1/incrn)

ln(incrn/incrn−1)
,

the residual error of the corresponding function
∥∥∥F(X(n+1))

∥∥∥, errors between the two

consecutive iterates incrn+1 =
∥∥∥X(n+1) − X(n)

∥∥∥ at each step, the numerical estimation of
asymptotic error estimation (AEC) and its last value, η. All computations have been done
by using the software Maple 16.

Example 1. We consider the kinematic synthesis for steering, that is described as the system of
nonlinear equations

[Ej(x2 sin(Ψj)− x3)− Fj(x2 sin(Φj)− x3)]
2 + [Fj(x2 cos(Φj) + 1)− Ej(x2 cos(Ψj)− 1)]2

−[x1(x2 sin(Φj)− x3)(x2 cos(Φj) + 1)− x1(x2 cos(Ψj)− x3)(x2 sin(Φj)− x3)]
2, (18)
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where X = X(n),

Ej = −x3x2(sin(Φj)− sin(Φ0))− x1(x2 sin(Φj)− x3) + x2(cos(Φj)− cos(Φ0)),

for j = 1, 2, 3 and

Fj = −x3x2 sin(Ψj) + (−x2) cos(Ψj) + (x3 − x1)x2 sin(Ψ0) + x2 cos(Ψ0) + x1x3,

j = 1, 2, 3. We present the value of Ψj and Φj in Table 1. We assume the seed X(0) = (0.7, 0.7.0.7)T

to approximate the solution W = (0.9051567 . . . , 0.6977417 . . . , 0.6508335 . . .)T . The numerical
results for this example are shown in Table 2.

Table 1. Value of Ψj and Φj for (18).

i Ψj Φj

0 1.39541700417470 1.74617564941508
1 1.74448285457357 2.03646911277919
2 2.06562343694053 2.23909778682659
3 2.46006784789125 2.46006784098093

Table 2. Comparison of fourth-order methods for Example 1.

Cases n X(n)
∥∥∥F1(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF1 1 0.920218 5.40036× 10−4 2.20218× 10−1

2 0.905232 3.81192× 10−6 1.49859× 10−3 4.54336 5326.035
3 0.905158 1.20000× 10−10 1.192189× 10−4 1.720052 5326.0353

FS1 1 0.914870 8.82812× 10−5 2.148701× 10−1

2 0.905186 9.51730× 10−7 9.68459× 10−3 4.5433 5325.93
3 0.905158 1.10000× 10−10 4.68410× 10−3 1.720058 5325.93

Example 2. Let we suppose a boundary value problem given by:

y′′ =
1
2

y3 + 3y′ − 3
2− x

+
1
2

, y(0) = 0, y(1) = 1.

In addition, we assume the following partition of [0, 1]:

x0 = 0 < x1 < x2 < x3 < . . . < xn = 1,

where xi+1 = xi + h, and h = 1
m such that

y0 = y(x0) = 0, y1 = y(x1), . . . , ym = y(xm) = 1.

Now, we discretize the above problem with the help of first and second divided difference for
approximating the derivatives.

y′′k =
yk+1 − yk−1

2h
, y′′ =

yk−1 − 2yk + yk+1

h2 , k = 1, 2, 3, . . . , m− 1.

In this way, we produce the (m− 1)× (m− 1) system of nonlinear equations(
1 +

3h
2

)
yk−1 − 2yk +

(
1 +

3h
2

)
yk+1 −

h2

2
y3

k =

(
1
2
− 3

2− xk

)
h2, k = 1, 2, 3, . . . , m− 1. (19)
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Let us assume initial guess,

y(0)k =

(
1
2

,
1
2

,
1
2

,
1
2

,
1
2

,
1
2

)T
.

In particular we solve this problem for n = 7 so that, we obtain 6× 6 system of nonlinear
equations. The solution of this problem is given by:

W = (0.07654393 . . . , 0.1658739 . . . , 0.2715210 . . . , 0.3984540 . . . , 0.5538864 . . . , 0.7486878 . . .)T .

The numerical results are shown in Table 3.

Table 3. Comparison of fourth-order methods for Example 2.

Cases n X(n)
∥∥∥F2(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF1 1 0.748682 4.32119× 10−6 4.23462× 10−1

2 0.748688 3.77602× 10−24 1.06282× 10−5 0.0003117 0.0015813
3 0.748688 6.47000× 10−50 1.40987× 10−23 3.8478801 0.0015813

FS1 1 0.748682 4.32119× 10−6 4.23462× 10−1

2 0.748688 3.77602× 10−24 1.062820× 10−5 0.0003117 0.0015813
3 0.748688 3.6400× 10−50 1.40987× 10−23 3.8478800 0.0015813

Example 3. The 2D Bratu’s problem is described as:

uxx + utt + Ceu = 0, (x, t) ∈ Ω, (20)

with
Ω = [0, 1]× [0, 1],

and boundary condition u = 0 on Ω. The solution of a nonlinear partial differential equation can
be estimated by means of a finite difference discretization. This reduces the problem to solving a
nonlinear system. Let us assume that wi,j = u(xi, tj) is the approximated solution at grid points
and that m and l are the number of steps in x and t directions, being h and k the step sizes. To solve
the given PDE, we can apply the central difference to uxx and utt respectively,

uxx =
ui+1,j − 2ui,j + ui−1,j

h2 , utt =
ui,j+1 − 2ui,j + ui,j−1

k2 .

Then, we have the equation:

ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1 + h2Ceui,j = 0,

with C = 0.1, t ∈ [0, 1] and we have the system:

ui+1,j + ui−1,j − 4ui,j + ui,j+1 + ui,j−1 + 0.1h2eui,j = 0. (21)

We have assumed that m = l = 4 with the initial vector of size 9,

X(0) = 0.1(sin(πh) sin(πk), sin(2πh) sin(2πk), . . . , sin(10πh) sin(10πk))T .

Numerical results are shown in Table 4.
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Table 4. Comparison of fourth-order methods for Example 3.

Cases n X(n)
∥∥∥F3(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF1 1 0.003526 2.07661× 10−9 9.65854× 10−2

2 0.003526 9.81449× 10−42 8.12024× 10−10 9.0723× 10−6 8.2× 10−6

3 0.003526 5.00000× 10−52 3.58063× 10−42 4.005219 8.2329× 10−6

FS1 1 0.003414 2.07596× 10−9 9.72579× 10−2

2 0.003526 9.79852× 10−10 8.11738× 10−10 9.0722× 10−6 8.4× 10−6

3 0.003526 7.0000× 10−52 3.57364× 10−42 4.005217 8.4233× 10−6

Example 4. Let us assume the nonlinear Fisher’s equation with homogeneous boundary conditions
of Neumann-type and the diffusion coefficient D is:

ut = Duxx + u(1− u),

u(x, 0) = 1.5 + 0.5 cos(πx), 0 ≤ x ≤ 1, (22)

ux(0, t) = 0, ∀ t ≥ 0,

ux(1, t) = 0, ∀ t ≥ 0,

Now we use finite difference discretization to reduce it to a system of nonlinear equations. Let
us assume that wi,j = u(xi, tj) is the approximated solution at grid points of the mesh, m and l are
the number of steps in x and t directions and h and k are step sizes. Let us apply the central difference
formula to uxx(xi, tj), backward difference to ut(xi, tj), and forward difference for ux(xi, tj), where
t ∈ [0, 1]. Then,

u2
i,j − 8D(ui+1,j − 2ui,j + ui−1,j) = ui,j−1.

In this Example, D = 1, then the problem becomes:

u2
i,j − 8(ui+1,j − 2ui,j + ui−1,j) = ui,j−1. (23)

For the solution of the system we have considered m = l = 4 which reduces to a nonlinear
system of size 9 with: x(0)i = i

(m−1)2 , i = 1, 2, . . . , m− 1. Numerical results are shown in Table 5.

Table 5. Comparison of fourth-order methods for Example 4.

Cases n X(n)
∥∥∥F4(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ COC AEC η

SF1 1 88.809964 20066.06× 10−1 887.09× 10−1

2 26.893604 1917.5× 10−1 619.16× 10−1 0.00075 0.00043
3 61.916359 182.88× 10−1 191.75× 10−1 5.9091609 0.00043

FS1 1 10.041642 272.96817× 10−1 99.41225× 10−1

2 2.619390 20.18571× 10−1 74.22055× 10−1 0.00075 0.00043
3 1.696888 2.04109× 10−2 13.19775× 10−1 5.9091764 0.00043

6. Numerical Comparison of Sixth-Order Schemes

Now, we compare the proposed schemes with those designed by Alzahrani et al. [26]
denoted as (JR1),

Y(n) = X(n) − 2
3
[F′(X(n))]−1F(X(n)),

T(n) = X(n) −Q(Γn)[F′(X(n))]−1F(X(n)),

X(n+1) = T(n) − [−2F′(X(n))−1 + 6(F′(X(n)) + F′(Y(n)))−1]F(T(n)),
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where the weight function Q : C → C is continuous given by Q(Γn) = 12Γ2
n − 9Γn +

5
2 and

differentiable function in the neighborhood of W with Γn = (F′(X(n))+ F′(Y(n)))−1F′(X(n))
and a1, a2 ∈ R.

Furthermore, we have the scheme by Behl et al. [9] denoted by (JR2),

Y(n) = X(n) − 2
3
[F′(X(n))]−1F(X(n)),

T(n) = X(n) −
(

a1 + a2[F′(Y(n)]−1F′(X(n)))2
)
[F′(X(n))]−1F(X(n)),

X(n+1) = T(n) −
(
(b2F′(X(n)) + b3F′(Y(n)))−1F′(X(n)) + b1F′(Y(n))

)
F′(X(n))−1F(T(n))

where a1 = 5
8 , a2 = 3

8 , b1 = 2.6, b2 = −4.4 and b3 = 8.
All computations have been done using the software Maple 13 and we have included

in Tables 6–9 the same elements as in the fourth-order schemes.

Table 6. Comparison of sixth-order methods for Example 1.

Cases n X(n)
∥∥∥F1(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF2 1 0.908308 1.157258× 10−4 2.08308× 10−1

2 0.905158 3.11000× 10−10 3.21515× 10−3 1.90372 91.1777
3 0.905158 3.10000× 10−10 2.40000× 10−9 3.783584 91.1777

SF3 1 0.908833 5.57417× 10−5 2.08832× 10−1

2 0.905158 4.40000× 10−10 3.76250× 10−3 1.97828 26.9455
3 0.905158 3.20000× 10−10 5.40000× 10−9 3.3497758 26.9455

JR1 1 0.906593 3.83351× 10−4 2.06592× 10−1

2 0.905158 8.90000× 10−10 4.06564× 10−3 2.23190 41.6145
3 0.905158 2.20000× 10−10 1.13700× 10−8 3.2552278 41.6145

JR2 1 0.908646 5.63716× 10−5 2.086463× 10−1

2 0.905158 1.80000× 10−10 3.64084× 10−3 1.92113 5.69106
3 0.905158 3.20000× 10−10 1.0000× 10−9 3.731752734 5.69106

Table 7. Comparison of sixth-order methods for Example 2.

Cases n X(n)
∥∥∥F2(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ COC AEC η

SF2 1 0.748688 1.12585× 10−8 4.23456× 10−1

2 0.748688 4.00000× 10−50 2.90685× 10−8 0.5283261 0.000187
3 0.748688 6.58000× 10−50 4.0000× 10−50 5.8211310 0.0001870

SF3 1 0.748688 1.15735× 10−8 4.23456× 10−1

2 0.748688 6.00000× 10−50 2.76367× 10−8 0.0000052 0.000117
3 0.748688 4.00000× 10−50 7.00000× 10−50 5.8117811 0.0001176

JR1 1 0.748688 1.00615× 10−8 4.23456× 10−1

2 0.748688 8.00000× 10−50 2.35777× 10−8 0.0000041 0.000810
3 0.748688 4.00000× 10−50 1.20000× 10−49 5.6851001 0.0008101

JR2 1 0.748606 4.06025× 10−3 4.21306× 10−1

2 0.748688 3.55800× 10−7 2.62289× 10−3 0.0000054 0.000941
3 0.748688 6.31861× 10−15 3.50043× 10−7 5.82719 0.0009412
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Table 8. Comparison of sixth-order methods for Example 3.

Cases n X(n)
∥∥∥F3(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF2 1 0.003526 6.20× 10−15 9.66× 10−2

2 0.003526 8.0× 10−52 2.45× 10−15 2.73965× 10−11 2.7696
3 0.003527 6.0× 10−52 2.0× 10−52 2.7495174 2.76962

SF3 1 0.003526 6.20× 10−15 2.77× 10−2

2 0.003526 5.0× 10−51 2.45× 10−15 2.73939× 10−11 8.3119
3 0.003526 5.0× 10−52 3.0× 10−52 2.7144199 8.31199

JR1 1 0.003526 6.29× 10−15 9.73× 10−2

2 0.003526 5.0× 10−52 2.49× 10−15 2.78588× 10−11 7.7709
3 0.003526 3.0× 10−52 3.0× 10−52 2.7164170 7.77098

JR2 1 0.003526 6.20× 10−15 9.73× 10−2

2 0.003526 7.0× 10−52 2.45× 10−15 2.74005× 10−11 2.7680
3 0.003526 3.0× 10−52 1.0× 10−42 2.7495349 2.76800

Table 9. Comparison of sixth-order methods for Example 4.

Cases n X(n)
∥∥∥F4(X(n))

∥∥∥ ∥∥∥X(n+1) − X(n)
∥∥∥ pn AEC η

SF2 1 75875.046 234927.08× 10−1 758751.4× 10−1

2 16789.904 3430609.5× 10−1 590861.4× 10−1 6.3× 10−10 4.3× 10−10

3 3716.106 167959.14× 10−1 130737.9× 10−1 5.63157 4.3× 10−10

SF3 1 205.297 107037.10× 10−1 2052.97× 10−1

2 34.135 3215.6015× 10−1 1711.64× 10−1 9.6× 10−8 3.5× 10−8

3 3.862 110.1805× 10−1 302.72× 10−1 9.52711 3.5× 10−8

JR1 1 44.785 5208.084× 10−1 447.85× 10−1

2 9.297 258.2679× 10−1 354.88× 10−1 8.0× 10−5 4.0× 10−5

3 1.855 8.724381× 10−1 7.4423× 10−1 6.71356 4.0× 10−5

JR2 1 1.686 15.85787× 10−1 15.857× 10−1

2 1.697 3.119860× 10−9 2.2004× 10−5 1.16981 7.3× 10−8

3 1.697 3.1545310× 10−33 1.8000× 10−17 8.26277 7.3× 10−8

7. Conclusions

We have developed a fourth order optimal Jarratt-type family for solving nonlinear
equations. High-order schemes for solving system of nonlinear equations with simple
algorithmic structure are of much importance and demand. We have extended our fourth
order optimal Jarratt-type family for nonlinear equations to a sixth-order family by adding
only one substep and one function evaluation. We give the extension of our scheme
to the system of nonlinear equations. We choose those members of the family in terms
of simplicity and a vectorial stability analysis is made, showing their good properties.
The ability of these schemes is checked on different test problems and it is concluded that
they work better than several existing ones in the scalar case. In addition, we have also
tested their working for the multidimensional case on few real life problems. The scheme
SF1 works better in all cases.
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