
Engineering Applications of Artificial Intelligence 119 (2023) 105758

P
A
f
U
I

A

K
M
M
T
P
M
W
R

1

t
p
t
I
t
c
r
e
s
c
u
u
r
i
c
t
o
t

h
R
A
0
(

Contents lists available at ScienceDirect

Engineering Applications of Artificial Intelligence

journal homepage: www.elsevier.com/locate/engappai

arameter uncertainty modeling for multiobjective robust control design.
pplication to a temperature control system in a proton exchange membrane

uel cell
. Veyna ∗, X. Blasco, J.M. Herrero, A. Pajares

nstituto de Automática e Informática Industrial - Universitat Politècnica de València, Camino de Vera S/N, Valencia, 46022, Spain

R T I C L E I N F O

eywords:
odeling
ultiobjective optimization
emperature control
arameter uncertainties
icro-CHP system
orst-case
obustness

A B S T R A C T

Advanced control systems are tuned using dynamic models and optimization techniques. This approach
frequently involves satisfying multiple conflicting objectives. Tuning robust controllers requires considering
a framework that represents the system uncertainties, and its definition is not a trivial task. When dealing
with a nonlinear model with many parameters, a high-quality representation requires a massive sampling of
variations. In many cases, this represents an inaccessible computational cost for the optimization process.

This work presents a new methodology for parameter uncertainty modeling that is oriented to tuning robust
controllers based on multiobjective optimization techniques. The uncertainty modeling formulated represents
a feasible computational cost and leads to robust solutions without attributing excessive conservatism. The
novelty of this process consists in using the multiobjective space to define a set of scenarios with highly
representative properties of the global uncertainty framework that formulate the control problem under a
predefined minimization strategy.

To demonstrate the effectiveness of this methodology, we present a temperature control design in a micro-
CHP system under worst-case minimization. Based on the results, particular interest is given to verifying the
appropriate formulation of the uncertainty modeling, which represents a 92.8% reduction of the computational
cost involved in solving the robust optimization problem under a global uncertainty framework.
. Introduction

Dynamic process models are currently used to adjust control sys-
ems and optimization techniques are often involved. These dynamic
rocesses are often modeled by differential equations with parameters
hat are usually identified from experimental data (Godfrey, 2000).
n practice, parameter models are subject to variations and uncertain-
ies. Aerodynamic coefficients, reaction rates, inertias, masses, spring
onstants, and friction coefficients are common examples of these pa-
ameters in engineering processes. In an optimization control problem,
ven a slight modification of parameters can cause drastic effects on the
olutions obtained, resulting in non-optimal performance or infeasible
ontrol (Shang et al., 2017). However, deterministic models are often
sed to solve control tuning problems without considering parameter
ncertainties. These models become less reliable because they cannot
eflect real conditions in practical applications. As a consequence, there
s a need to use uncertainty models that improve the reliability of
ontrollers and achieve performing system responses despite fluctua-
ions (Helton, 1993). The literature shows several application examples
f this approach. Robust optimization is used in Assis et al. (2018)
o solve the minimization problem of the economic load dispatch of
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fuel required to generate electricity in a power plant. In Shang et al.
(2017), the complex process of radioactive waste disposal involving
significant uncertainties is assessed. In Kuo et al. (2008), a sliding
mode adaptive control using the PID tuning method is proposed for
trajectory tracking to control a brushless DC motor that seeks to achieve
a robust system against parameter variations and external disturbances.
In Kristiansson and Lennartson (2002), the design problem of robust
and optimal PID controllers for a linear time invariant plant is con-
sidered based on a linear programming characterization of stabilizing
PID controllers obtained by classical tuning methods. In Tan et al.
(2002), a PID controller is designed to deal with performance and
robust stability specifications for multivariable processes. The whole
procedure is computationally simple and involves selecting several
parameters. Examples show that the resulting PID settings have good
time-domain performance and robustness. Fuzzy controllers are being
widely used today and their applications have achieved great impact in
real-world applications. In works such as Cuevas et al. (2022), Bernal
et al. (2020), the optimization of a type-2 fuzzy controller for the
tracking of the trajectory of an autonomous mobile robot is addressed.
In this work, type-2 fuzzy controllers show a satisfactory performance
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due to their ability to handle high levels of uncertainty. In papers such
as Chen et al. (2020), the heuristic tuning of a fuzzy logic controller is
described to guarantee stability in a T-S fuzzy system with discrete time
delay in the presence of parametric uncertainties. In Jahanshahi et al.
(2020), a sliding adaptive fuzzy control design technique is proposed.
The control defined is oriented to the application of four-dimensional
fractional-order chaotic systems in the face of dynamic uncertainties
and external disturbances.

It is possible to find works in the literature regarding different
methods and techniques related to uncertainty modeling. In Gorissen
et al. (2015), Assis et al. (2018), Yang et al. (2019) the use of surro-
gate parameter models that represent specific regions within a global
uncertainty framework is encouraged. In Mckay et al. (1979), Ibrahim
et al. (2019) different techniques such as pseudo random samples (PSE)
or Latin hypercube samples (LHS) are described to sample variables
in defined domain ranges. Defining the uncertainty framework of a
system to formulate a robust optimization problem is not a simple
task. In Steiner et al. (2004), Shang et al. (2017), some of the most
relevant criteria to be considered in this process are discussed. It is
expected that the approach explores the global framework of possible
scenarios in the real system, and simultaneously represents a feasible
computational cost for the optimization process. The use of methods
for data model reduction and simplification is encouraged. In control
problems, sensitivity analysis has been widely used to evaluate system
performance under variations in the model parameter (Pianosi et al.,
2016). The use of techniques for dimensional reduction (Ben-Tal and
Nemirovski, 2002) such as principal component analysis (PCA) or
partial least squares analysis (PLS) is also recurrent. As argued in
works such as Gorissen et al. (2015), Wang and Curry (2012), the
intention is to exclude uncertainty scenarios with a low probability of
existing leads to the design of conservative controllers with reduced
performance. A set of highly representative models of the system is
required to formulate a robust control problem adequately. To take this
into account, the use of different constraints that focus on the domain
of uncertainties in a probabilistic region of interest must be considered
in the modeling process.

In engineering processes, to represent the uncertainty framework
of a system, it is often possible to describe the plant with a set of
parameter models for different operating or failure conditions (Acker-
mann, 1985). A multi-model approach is often used to define nonlinear
models as a convex combination of local models. The set of local
models is combined to define a global model that is valid in the
region of interest (Johansen and Murray-Smith, 1997). In papers such
as Slupphaug and Foss (2000), the use of multi-models to represent
partially unknown nonlinear systems is discussed. Under this concept,
a control design based on LMI/BMI for a simplified Van de Vusse
reactor model with parameter uncertainty is carried out. In Puschke
et al. (2016), the multi-model approach to formulate a robust dynamic
optimization problem using a heuristic method is addressed. With this
method, the parameter models are defined according to the sensitivity
of the uncertain parameters. Subsequently, this approach is applied to
two case studies: a complex emulsion copolymerization process and the
penicillin formation. In Gorinevsky and Stein (2003), the application of
structured uncertainty modeling is presented to address robust stability
analysis in a computationally efficient way. As an application, the paper
formulates multidimensional models of the process, its controller, and
structured uncertainty for the closed-loop control of a multidirectional
paper machine process.

As previously described in most of the papers discussed above, a
great effort is being made to adequately formulate control problems
under the consideration of uncertainties. Since most model parameters
have a real physical meaning, the importance of an appropriate repre-
sentation of the uncertainties has been highlighted in the literature as
an important aspect. Regarding the challenge involved in this complex
task, the principal motivation for this work lies in robust control design
applications. The main interest is to provide an effective method to
 (

2

assist the process of modeling parametric uncertainties in multivariable
nonlinear systems. The aim is to define an uncertainty modeling that
satisfies the essential requirements for an appropriate formulation of a
control problem. These requirements are related to a low computational
cost representation, the definition of highly probable scenarios, and
a limitation of conservatism. Special interest is given to focus the
uncertainty formulation achieved for robust controller tuning under
the multiobjective optimization approach. In this paper, we propose a
methodology to accomplish this task. The uncertainty representation
obtained is defined by a set of models describing the different prob-
able cases in the real application due to parameter fluctuations. The
following three stages primarily describe this methodology:

In Stage 1, sensitivity analyzes are used to identify the model
parameters with the most significant influence on the system perfor-
mance when variations occur. This analysis derives a binary sensitivity
classification of relevant and non-relevant parameters. In addition,
the operating ranges in which these variations occur in the system
are determined for each parameter. The justification for this stage is
based on adequately defining the parameter variation ranges to avoid
improbable models.

Stage 2 consists of creating a set of models focused on representing
the global uncertainty framework of the system. A set of random
models that entirely explores the domain of uncertainties is generated
by sampling the relevant sensitivity parameters within their operat-
ing ranges. A sequence of filters is then applied to exclude models
with a low probability of occurrence. This additionally reduces the
computational cost of representing the uncertainty set. These filters
are defined based on a deviation analysis in parameter space and an
error discrepancy analysis between model and experimental system
response. The exclusion of improbable models is carried out to prevent
over-conservatism in the tuned controllers.

Finally, Stage 3 aims to define a representative subset of models
from the set obtained in Stage 2 that improves the feasibility of the
optimization approach concerning the computational cost but without
reducing the quality of the uncertainty representation. For this purpose,
a new strategy is used to select the most representative parameter mod-
els adequate for the uncertainty domain in a region that satisfies the
robustness criterion required by the formulation of the multiobjective
control problem. This sub-modeling of the uncertainty frame represents
a computationally feasible cost for the optimization process.

This methodology is applied to formulate the robust temperature
control problem of a proton exchange membrane fuel cell (PEMFC)
stack based on multiobjective optimization. This stack is the prime
mover of a micro-combined heat and power system (micro-CHP) lo-
cated in our laboratory.1 For a detailed description of the experimental
equipment, see Navarro et al. (2019). A PEMFC system is a reliable
and clean alternative for many power generation applications (Gimenez
et al., 2020). The main advantage of these systems is the use of the ther-
mal energy produced as a result of electricity generation that increases
the overall performance of the system (Navarro et al., 2019). The
electrical efficiency, lifetime of the stack, and the micro-CHP system’s
overall efficiency depend on correct temperature control. For proper
operation, the temperature of the stack must be kept within defined
limits (Zhang et al., 2013), requiring a cooling system (Wan Daud et al.,
2017) to maintain its temperature at its optimum value. This cooling
system must also enable the recovery of thermal energy. The durability,
cost, reliability, and energy efficiency of the stack largely depend on the
correct design of this cooling control system (Huang et al., 2018).

As part of a series of published papers, in Navarro et al. (2019), a
nonlinear model of the cooling system of a PEMFC-based micro-CHP
system is presented. This model is based on first principles, dynamic,
nonlinear, and has been validated against the experimental data. The

1 Predictive Control and Heuristic Optimization Group (CPOH), Instituto de
utomática e Informática Industrial (ai2), Universitat Politècnica de València

UPV), Spain. http://cpoh.upv.es.

http://cpoh.upv.es
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results show that the model can faithfully represent the dynamics of
the micro-CHP cooling system. In Ferrando et al. (2020), the parametric
identification of the cooling system is carried out using a multiobjective
optimization approach. To develop this task, the experimental data
and nonlinear model described in Navarro et al. (2019) are employed.
This work highlights, as a novelty, the relevance of considering nearly
optimal models nondominated in their neighborhood in problems of
parametric identification. In Gimenez et al. (2020), a multiloop PID
control of a PEMFC stack’s temperature is designed and validated ex-
perimentally. A multiobjective optimization methodology is applied for
this task, and the nonlinear model developed in Navarro et al. (2019)
is used. The results obtained in these previous works provide evidence
of uncertainties in several model parameters and suggest exploring a
robust control approach.

As a continuation of this sequence of papers, the present work seeks
to define the uncertainty modeling of the micro-CHP system oriented
to the formulation of the robust control problem for the temperature
control design. The PID-type control structure proposed in Gimenez
et al. (2020) is implemented for this development since it is a widely
used industrial control that can be easily implemented and achieves
good performance. However, the uncertainty modeling methodology is
independent and can be applied independently of the adopted control
structure. The rest of the article is structured as follows: In Section 2, we
briefly describe the problem and the properties required by uncertainty
modeling to solve the robust control problem. In Section 3, we de-
scribe the proposed methodology for uncertainty modeling in nonlinear
systems. In Section 4, we describe the multiobjective optimization
problem formulation for the micro-CHP system’s temperature control.
In Section 5, we define the set of uncertainty models based on the
methodology presented in this paper. In Section 6, robust control tuning
is performed and the results are discussed. Finally in Section 7 we
present the conclusions.

2. Uncertainty modeling approach facing the robust optimization
problem

2.1. Control design problem description under multiobjective optimization
approach

A classic control problem is usually aimed to control or improve
the performance of a certain process during a transitory or steady state,
but aspects such as minimization of control times, energy consumption,
and cost reduction are not taken into account. In this situation, the
optimal control design represents a very interesting alternative. Besides
satisfying certain established performance conditions, it also aims for
the process to achieve its best possible performance relative to a defined
performance index (Ogata, 2010.). However, engineering problems
continuously require situations where it is desired to optimize multiple
objectives simultaneously where these objectives present some type
of conflict between them (improving some objectives worsens others).
This approach can be addressed using multiobjective optimization tech-
niques. A multiobjective optimization problem (MOP) can be stated as
(1)–(4) (Marler and Arora, 2004).

min
𝒙

𝒇 (𝐱) = min
𝐱

[𝑓1(𝐱), 𝑓2(𝐱)] (1)

subject to:

(𝐱) ≤ 0 (2)

(𝐱) = 0 (3)

≤ 𝐱 ≤ 𝐱 (4)

In contrast to an optimization problem where the minimization of
single cost index is considered and a single solution is determined,

he development of an MOP leads to the definition of a set of optimal
3

olutions with different trade-offs between the design objectives, where
one is better than others. This set of Pareto optimal solutions is known
s the Pareto front (Huilcapi et al., 2019). The Pareto optimal set, is
ased on the definition of Pareto dominance (Miettinen et al., 2016)
nd consists of a set of solutions that are not dominated by others.
n practice, optimization algorithms find a set of Pareto solutions
atisfactorily. From this set, the designer can select a solution according
o his preferences or design specifications.

.2. Robust control design problem under a multiobjective optimization
pproach

Control tuning under a multiobjective optimization approach seeks
he best system performance for multiple design objectives. Tradition-
lly, deterministic dynamic models are used to carry out this design,
ssuming a level of certainty about the model parameter values. How-
ver, when the design approach intends to minimize objectives for a set
f parameter uncertainties, it is possible to find sub-optimal solutions
hat are more interesting from a robustness perspective. As an example,
ig. 1 shows the result of an optimization problem that seeks control
uning for 2-objective minimization under consideration of a nominal
arameter model 𝐩0 as indicated in (5). Where 𝐱 is the parameter vector

of the controller, and the functions 𝑓1 and 𝑓2 are the objectives to be
minimized simultaneously.

min
𝒙

𝒇 (𝐱,𝐩0) = min
𝐱

[𝑓1(𝐱,𝐩0), 𝑓2(𝐱,𝐩0)] (5)

In Fig. 1, the red dots represent the Pareto front 𝒇 (𝐗1,𝐩0) of the
solution set 𝐗1 = {𝐱1, 𝐱2,… , 𝐱10} obtained. The blue dot represents the
sub-optimal solution 𝐱∗ which is omitted by the optimization process.
However, the relevance of this controller is highlighted when robust-
ness under parameter uncertainties is analyzed. The upper right corner
of this figure compares the degradation of the controllers 𝐱6 and 𝐱∗

under the set of uncertainty models 𝐀 = {𝐩1,𝐩2,… ,𝐩50} generated
by random parameter variations of 𝐩0. The light red circles represent
the objective degradation 𝒇 (𝐱6,𝐀) and the light blue circles represent
the objective degradation 𝒇 (𝐱∗,𝐀). It is evident how the controller 𝐱6
achieves worse objective values in comparison to 𝐱∗ for some models
of set 𝐴.

Usually, finding robust solutions for nonlinear systems with many
parameters requires considering a set of uncertainty models represent-
ing the different scenarios the system faces in the actual application.
The definition of this framework involves adequate sampling to prop-
erly represent the system’s uncertainties. On this basis, the following
challenges to designing uncertainty modeling are derived:

1. Define a scanning space that thoroughly explores the domain of
expected uncertainty in the system parameters.

2. Limit the inclusion of improbable models that produce over-
conservative performances in the control design.

3. Define an uncertainty modeling representing a feasible compu-
tational cost for the optimization problem.

2.3. Conservatism criterion

In many situations, as shown in Fig. 1, defining more robust so-
lutions can potentially reduce the control efficiency for system per-
formance in the nominal case. An appropriate robustness adjustment
demands a proper design of the uncertainty framework. One of the
challenges of uncertainty modeling is the exclusion of improbable
models that may lead to defining over-conservative controllers. To
prevent the inclusion of improbable models, two criteria can be taken
into account in the modeling process:

(a) The imposition of constraints on the parameter space for simul-
taneous variations (probabilistic criterion). As argued in works such

as Gorissen et al. (2015), Shang et al. (2017), setting constraints to
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Fig. 1. Pareto front 𝒇 (𝐗1 ,𝐩0) and robustness comparison between controllers 𝐱6 and 𝐱∗ under parameter uncertainties.
d
p
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Fig. 2. Definition of function 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) based on the error discrepancy between model
nd process responses.

efine a domain 𝐷𝑝𝑟𝑜𝑏 for simultaneous deviation of uncertainties en-
ourages discerning the more probable scenarios existing in the system.
ome classical geometrical shapes used in the literature to design the
omain 𝐷𝑝𝑟𝑜𝑏 where variations take place in the parameter space are
he: box uncertainty set (Soyster, 1973); the Ellipsoidal uncertainty
et (Ben-Tal et al., 1998); the interval + polyhedral uncertainty set; the
amma uncertainty set (Bertsimas and Sim, 2004); and the polyhedral
ncertainty set (Bertsimas et al., 2010), etc.

(b) The definition of an error degradation limit 𝑓𝑒𝑚𝑎𝑥 (experimental
riterion). As described in Spear et al. (1994), one criterion for evalu-
ting whether a parameter model 𝐩 is certain to exist is estimating the

model error 𝑒𝑚(𝑡,𝐩) between the model output �̂�(𝑡,𝐩) and the system
esponse 𝑦(𝑡) given an input signal 𝑢(𝑡) (see Fig. 2). In this sense, a

tolerance restriction 𝑓𝑒 < 𝑓𝑒𝑚𝑎𝑥 for defining scenarios most likely to
exist is established in relation to experimental data from the validation
process.

To show the application of these two criteria in the reliability
validation of a model, the following example is presented: given a
nonlinear 2-parameter system defined by a nominal model 𝐩0 =
[𝑝01, 𝑝

0
2], an uncertainty set of 50 surrogate models is defined as 𝐂 =

{𝐩1,𝐩2,𝐩𝑠,… ,𝐩50}. Where the model 𝐩𝑠 = [𝑝𝑠1, 𝑝
𝑠
2] represents a random

arameter variation from the nominal model 𝐩0 within the variation
anges 𝑝1 ≤ 𝑝𝑠1 ≤ 𝑝1 and 𝑝2 ≤ 𝑝𝑠2 ≤ 𝑝2. Based on this example,

Fig. 3 shows the different cases that can be presented when uncertainty
modeling is analyzed under criteria (a) and (b). The graph on the
left shows the location of the models {𝐩0,𝐩4,𝐩12,𝐩15,𝐩23} ∈ 𝐂 in the
parameter space [𝑝1, 𝑝2]. The red perimeter represents a theoretical
domain 𝐷𝑝𝑟𝑜𝑏 which contains the expected simultaneous deviation of
uncertainties that identifies properly probable models. Models located
outside this area are classified as improbable. The right graph shows
the function 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) that quantifies the discrepancy based on the
error between the response of a model 𝐩𝑠 and the system response
4

obtained in experimental tests (see Fig. 2). The 𝑥-axis and 𝑦-axis show
the parameter space [𝑝1, 𝑝2]. The light red plane indicates a limit
efined 𝑓𝑒(𝐩) = 𝑓𝑒𝑚𝑎𝑥 to consider probable models according to the
erformance of each model. Models with a very high discrepancy
oncerning experimental data are discarded by this criterion.

The conclusion of applying this analysis to the models {𝐩0,𝐩4,𝐩12,
𝐩15,𝐩23} ∈ 𝐂 is as follows:

• Nominal model 𝐩0 and model 𝐩4 satisfy both criteria.
• Model 𝐩12 satisfies criterion (a) but does not satisfy criterion (b).
• Model 𝐩15 does not satisfy either criterion (a) or criterion (b).
• Model 𝐩23 satisfies criterion (b) but does not satisfy criterion (a).

By applying these mechanisms to validate confidence in uncer-
tainty models, it is possible to exclude improbable cases that lead to
conservative controllers.

2.4. Uncertainty modeling focused on multiobjective design

In many cases, the formulation of a robust optimization problem is
inaccessible due to the computational cost involved in processing the
uncertainty modeling, and it becomes more complex when dealing with
systems with a huge number of parameters. However, if homogeneous
simplification is pursued to reduce uncertainty modeling, the quality
required by the control problem approach may be excessively degraded.
We propose considering the multiobjective approach in the uncer-
tainty modeling process to define a feasible framework with valuable
properties from the perspective expected by the control problem.

In works such as Cavaliere et al. (2003), Steiner et al. (2004), the
Monte Carlo analysis is emphasized as the principal test to compare the
robustness quality of Pareto optimal solutions. This analysis evaluates
a controller under a set of uncertainty models defining control per-
formance degradation in objective space. For modeling purposes, the
principle of Monte Carlo analysis can be used to characterize surrogate
models for the degradation performance they exhibit in objective space
when evaluated for a set of reference controllers. To describe this
approach, we present the following example: define an optimization
problem that seeks control tuning for the minimization of two objec-
tives 𝒇 = [𝑓1, 𝑓2] under the consideration of a nominal model 𝐩0, the
Pareto set 𝐗2 = {𝐱1, 𝐱2, 𝐱3} is obtained. To represent the parameter
uncertainties of the system, the set of models 𝐁 = {𝐩1,𝐩2,… ,𝐩10} is
created. In Fig. 4 the objective degradation of each controller 𝐱 ∈ 𝐗2 is
shown. The dotted ovals encapsulate the local degradation 𝒇 (𝐱,𝐁) for

0
each controller (represented by color circles). The nominal model 𝐩
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Fig. 3. Identification of reliable models. Analysis by parameter deviation is shown on the left. Analysis by discrepancy error between model and system response is shown on the
ight.
Table 1
Relative deviations of objective degradation in each controller 𝐱 ∈ 𝐗2.

Model 𝛥𝑓1(𝐱1 ,𝐩) 𝛥𝑓2(𝐱1 ,𝐩) 𝛥𝑓1(𝐱2 ,𝐩) 𝛥𝑓2(𝐱2 ,𝐩) 𝛥𝑓1(𝐱3 ,𝐩) 𝛥𝑓2(𝐱3 ,𝐩)

𝐩0 0 0 0 0 0 0
𝐩1 0.015 0.034 0.057 0.146 −0.028 0.016
𝐩2 0.136 0.192 0.141 0.231 0.120 0.143
𝐩3 −0.053 −0.056 −0.044 −0.015 −0.032 −0.056
𝐩4 0.094 0.186. 0.048 0.084 0.061 0.217
𝐩5 0.007 −0.051 0.015 −0.054 0.073 0.086
𝐩6 0.061 0.146 0.007 0.056 0.009 0.063
𝐩7 0.120 0.262 0.098 0.187 0.076 0.176
𝐩8 0.035 0.064 0.039 0.033 0.036 0.033
𝐩9 −0.039 0.008 −0.034 −0.089 0.017 −0.028
𝐩10 0.093 0.113 0.094 0.121 0.049 0.139
Fig. 4. Objective performance analysis for the set of optimal controllers 𝐗2 under 𝐁.

sed to determine 𝐗2 in the optimization problem is represented by a
lue star.

Based on this analysis, we define a sub-representation of the frame-
ork 𝐁 that contains the most relevant models that best satisfy the
roperties required for the optimization strategy associated with the
ormulation of the control problem. These models are identified with
espect to their performance in the degradation analysis. The relative
eviations 𝛥𝑓𝑖(𝑥,𝐩) = 𝑓𝑖(𝑥,𝐩) − 𝑓𝑖(𝑥,𝐩0) are estimated for each un-
ertainty model 𝐩 in the analysis of each controller. For the example
hown in Fig. 4, the values of these deviations are presented in Table 1.
o characterize uncertainty models based on their performance in the
bjective space, we propose alternative indices to identify models in
pecific regions of the degradation zone (Ide and Schöbel, 2016). Once
his is achieved, the uncertainty sub-modeling is formulated and this is
ocused on a particular robustness strategy.
1. Worst-case uncertainty modeling
This approach aims to define a subset of models 𝐁𝑤𝑐 ⊂ 𝐁 for which
he control system shows the worst performance concerning the design

5

Fig. 5. Analysis for the characterization of models based on worst-case strategy.

objectives. In Fig. 5, the example of this model characterization is
shown.

In the objective degradation of controller 𝐱𝟐, the model 𝐩2 is the
worst-case for objectives 𝑓1 and 𝑓2. For both controllers 𝐱𝟏 and 𝐱𝟑 a
worst-case front is identified by the models {𝐩2,𝐩7} and {𝐩2,𝐩4,𝐩7}
respectively. The set 𝐁𝑤𝑐 that represents the global worst-case modeling
for the control system is defined from the union of the worst-case
subsets defined by the analysis of each controller, therefore 𝐁𝑤𝑐 =
{𝐩2,𝐩4,𝐩7}.

2. Goal based uncertainty modeling
This approach aims to define the subset 𝐁𝑠𝑑 ⊂ 𝐁 that characterizes

the models with degradation quality close to a fixed position 𝐝𝐱𝑡 defined
within the degradation zone of a controller 𝐱𝑡. As an example to
describe this approach, in the left graph of Fig. 6 we propose to define
the set point 𝐝𝑥𝑡 = [𝑑𝑥𝑡1 , 𝑑𝑥𝑡2 ] as the mean of the relative deviations
for each objective, so that for the first objective 𝑑 𝑡 = 𝑓 (𝐱𝑡,𝐩0) +
𝑥1 1
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Fig. 6. Analysis for the identification of models based on goal based and weighted case strategy.
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1∕10
∑10

𝑠=1 𝛥𝑓1(𝐱
𝑡,𝐩𝑠) and for the second objective 𝑑𝑥𝑖2

= 𝑓2(𝐱𝑡,𝐩0) +
∕10

∑10
𝑠=1 𝛥𝑓2(𝐱

𝑡,𝐩𝑠).
In this figure, the black asterisk denotes the fixed points 𝐝𝑡𝑥 and the

ray rectangles represents the domain that exceeds this position. For
ontroller 𝐱𝟏, the models 𝐩6 and 𝐩10 minimize the approximation to
oint 𝐝𝑥1 . For controller 𝐱𝟐, the model 𝐩4 is the best approximation for
oth objectives. For controller 𝐱𝟑, the models 𝐩5 and 𝐩10 are the closest
o 𝐝𝑥3 . The subset 𝐁𝑠𝑑 ⊂ 𝐁 representing this approach is composed of
he union 𝐁𝑠𝑑 = {𝐩4,𝐩5,𝐩6,𝐩10}.
3. Weighted case uncertainty modeling
Under this approach, the sub-modeling 𝐁𝑤𝑞 ⊂ 𝐁 is created from

he selection of the most relevant models based on a performance-
eighted ranking defined by a cost index. As an example to describe

his approach, the cost index 𝐼𝑐 = 0.6𝛥𝑓1(𝐱,𝐩)+0.4𝛥𝑓2(𝐱,𝐩) is proposed
to identify the worst-case scenario by giving more relevance to the
degradation of objective 1 in relation to objective 2. If the measurement
of the objectives have significantly different orders of magnitude, a
normalization can be considered in the index’s formulation. The right
graph of Fig. 6 shows the representative models under this approach.
The model 𝐩7 maximizes the index 𝐼𝑐 for controller 𝐱𝟏. For both con-
trollers 𝐱𝟐 and 𝐱𝟑, the model that maximizes the index is 𝐩2. Note that
the model selected in 𝐱𝟏 predominates as the worst-case in objective
2, while the model selected in 𝐱𝟐 predominates as the worst-case in
objective 1. The subset 𝐁𝑤𝑞 ⊂ 𝐁 represents the uncertainty framework
under this approach and is the union 𝐁𝑤𝑞 = {𝐩2,𝐩7}.

3. Methodology for parameter uncertainty modeling

The methodology proposed below seeks to define an uncertainty
framework to address the robust control tuning problem. Given a
nonlinear system defined by a vector 𝐩 = [𝑝1, 𝑝2,… , 𝑝𝑘] of 𝑘 parameters,
the definition of an uncertainty framework can be represented by a set
of surrogate models {𝐩𝑠|𝑠 ∈ Z} derived from variations in 𝐩. In this
context, a surrogate model 𝐩𝑠 is defined as (6).

𝐩𝑠 = [𝑝𝑠1, 𝑝
𝑠
2, 𝑝

𝑠
𝑖 ,… , 𝑝𝑠𝑘] (6)

Where 𝑝𝑠𝑖 such as 1 ≤ 𝑖 ≤ 𝑘 denotes the variation value of parameter
𝑝𝑖 defined in the surrogate model 𝐩𝑠. These variations occur in the
operating range 𝑝𝑖 ≤ 𝑝𝑠𝑖 ≤ 𝑝𝑖, where [𝑝𝑖, 𝑝𝑖] are the lower and upper
ixed limits of sampling variations.
Initial elements. To develop this methodology, the following three

lements are required:
1. Nominal model 𝐩0.
The model 𝐩0 with the nominal parameter values resulting from the

dentification process is expressed as:
0 = [𝑝01, 𝑝

0
2,… , 𝑝0𝑘] (7)

2. Error degradation limit 𝑓𝑒𝑚𝑎𝑥 .
The error degradation limit 𝑓𝑒𝑚𝑎𝑥 is used to characterize probable

ncertainty models concerning the error discrepancy between model
6

nd system response when evaluating a defined open-loop experiment.
ts value is established based on empirical knowledge or experimental
ata used in the validation process when identifying nominal model 𝐩0.

It represents a degree of tolerance for accepting surrogate models 𝐩𝑠 as
possible cases in the actual application. Beyond this value, degradation
is quite unlikely.

3. Initial ranges of parameter variation [𝑝𝑝𝑖, 𝑝𝑝𝑖].
The ranges of variation [𝑝𝑝𝑖, 𝑝𝑝𝑖] for 𝑖 = {1,… , 𝑘} are used to

initially explore the possible domain of variation in each parameter.
Subsequently, these limits are fitted to the probabilistic domain of
uncertainty, so their definition does not require high precision.

In Freer et al. (1996), the use of physical significance found in the
existing literature is encouraged to estimate these limits. In Shang et al.
(2017), it is proposed to define these limits based on a deviation from
the nominal parameter values 𝑝0𝑖 as indicated in (8)–(9). The constant
𝜂𝑖 is a deviation factor defined by design criteria where variations are
estimated to occur.

𝑝𝑝𝑖 = 𝑝0𝑖 − 𝜂𝑖𝑝
0
𝑖 (8)

𝑝𝑝𝑖 = 𝑝0𝑖 + 𝜂𝑖𝑝
0
𝑖 (9)

Methodology stages.
Once these three elements are defined, it is possible to develop the

methodology. Fig. 7 shows a diagram with the steps, inputs, and out-
puts that define each stage. For better understanding, the description
of each stage is detailed below.

3.1. Stage 1. Definition of operating ranges and determination of relevant
and non-relevant sensitivity parameters

Objective: Estimate the operating ranges [𝑝𝑖, 𝑝𝑖] for 𝑖 = {1,… , 𝑘}
and identify the parameters of relevant and non-relevant sensitivity for
the system.

Stage description: A sensitivity analysis is carried out to evaluate
the individual effect of parameter variations in the model performance.
Based on this analysis, the initial ranges [𝑝𝑝𝑖, 𝑝𝑝𝑖] for 𝑖 = {1,… , 𝑘} are
djusted to obtain more realistic operating ranges [𝑝𝑖, 𝑝𝑖]. The diagram

in Fig. 8 describes the inputs and outputs of the steps that integrate this
stage.

Step development:

• Step 1.1: Uncertainty model definition for local sensitivity
analysis.
As described in Pianosi et al. (2016), Helton (1993) a regional
sensitivity analysis involves analyzing the performance of the
system’s response to variations attributed to its input factors
(inputs, parameters, etc.). A wide set of guidelines for performing
sensitivity analysis on a system is given in Pianosi et al. (2016).
These guidelines indicate the number of models to be generated,
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Fig. 7. General description of the steps, inputs, and outputs of the methodology for uncertainty modeling.
Fig. 8. Descriptive flowchart of Stage 1.
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variable sampling techniques, etc. To formulate the sensitivity
analysis at this stage, the set of models P expressed in (10) is
defined.

P = {𝐏𝑖
|𝑖 = {1,… , 𝑘}} (10)

Where 𝐏𝑖 represents the set of surrogate models defined in (11)–
(12), designed to analyze the individual effect of the parameter
𝑝𝑖. The constant ℎ sets the number of surrogate models used to
discretize the scanning range [𝑝𝑝𝑖, 𝑝𝑝𝑖], where the deviations take
place.

𝐏𝑖 = {𝐩𝑖,𝑠|𝑠 ∈ Z,−ℎ ≤ 𝑠 ≤ ℎ, 𝑠 ≠ 0} (11)

such that,

𝐩𝑖,𝑠 =
⎧

⎪

⎨

⎪

⎩

[𝑝𝑠1, 𝑝
0
2,… , 𝑝0𝑘] if 𝑖 = 1

[𝑝01,… , 𝑝0𝑖−1, 𝑝
𝑠
𝑖 , 𝑝

0
𝑖+1,… , 𝑝0𝑘] if 1 < 𝑖 < 𝑘

[𝑝01,… , 𝑝0𝑘−1, 𝑝
𝑠
𝑘] if 𝑖 = 𝑘

(12)

If a uniform discretization of the uncertainty domain is pursued,
then 𝑝𝑠𝑖 can be defined as indicated in (13).

𝑝𝑠𝑖 =

⎧

⎪

⎨

⎪

⎩

𝑝0𝑖 + 𝑠(
𝑝𝑝𝑖−𝑝0𝑖

ℎ ) if 𝑠 > 0

𝑝0𝑖 + 𝑠(
𝑝0𝑖 −𝑝𝑝𝑖

ℎ ) if 𝑠 < 0
(13)

• Step 1.2: Sensitivity local analysis of parameters.
Given a model 𝐩, the function 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) evaluates the represen-
tative model quality based on the error between the model output
�̂�(𝑡,𝐩) and the measured system response 𝑦(𝑡) in an open-loop
experiment (see Fig. 2). In this context, the function 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝑖))
evaluates the performance degradation due to the deviations
formulated in the set 𝐏𝑖.
From the rate of change exhibited by the function 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝐢)),
the index 𝑞𝑖 is defined. This index characterizes the sensitivity
degree of the system due to the individual effect of variations
in the parameter 𝑝𝑖. An extended review of several methods for
defining the index 𝑞𝑖 is given in Pianosi et al. (2016). Some
of these are linearizations of degradation functions (Borgonovo,
2010), degradation limit approximations, multiple aggregations
of individual sensitivities, and the Morris method.
If desired, a relative sensitivity ranking for the most sensitive
parameter can be set by 𝛥𝑞𝑖 = 𝑞𝑖∕𝑚𝑎𝑥(𝐪). Where 𝐪 = {𝑞𝑖|𝑖 =
{1,… , 𝑘}}.
 i

7

• Step 1.3: Determination of relevant and non-relevant param-
eters.
Given the set of numerical sub-indices 𝜋 = {𝑖|𝑖 = {1,… , 𝑘}}
which identify the system parameters involved in (6), a binary
characterization between relevant and irrelevant parameters is
created by defining the subsets 𝜋𝑟 ⊂ 𝜋 and 𝜋𝑛 ⊂ 𝜋.
The subset 𝜋𝑟 denotes the relevant sensitivity parameters and is
defined as 𝜋𝑟 = {𝑖|𝑖 ∈ 𝜋, 𝑞𝑖 > 𝑞𝑚𝑖𝑛}. Where 𝑞𝑚𝑖𝑛 is a constant fixed
by the designer and indicates the minimum value to characterize
the sensitivity of a parameter as relevant or irrelevant. In contrast,
the set 𝜋𝑛 with the sub-indices of the irrelevant parameters is
identified such that 𝜋𝑛 = 𝜋∖𝜋𝑟.

• Step 1.4: Operating range limits definition.
From the function 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝑖)) and the fixed value of 𝑓𝑒𝑚𝑎𝑥, the
parameter variation limits [𝑝𝑖, 𝑝𝑖] are estimated as described in
(14)–(15) for the relevant parameters (𝑖 ∈ 𝜋𝑟). These limits are
set to avoid creating uncertainty models of implausible quality,
assuming that a degradation greater than 𝑓𝑒𝑚𝑎𝑥 is unlikely.

𝑝𝑖 =
{

𝑝𝑠𝑖 |𝐩
𝑖,𝑠 ∈ 𝐏𝑖,−ℎ ≤ 𝑠 < 0, 𝑓𝑒(𝑒(𝑡,𝐩𝑖,𝑠)) ≈ 𝑓𝑒𝑚𝑎𝑥 if 𝑖 ∈ 𝜋𝑟

𝑝0𝑖 if 𝑖 ∈ 𝜋𝑛 (14)

𝑝𝑖 =
{

𝑝𝑠𝑖 |𝐩
𝑖,𝑠 ∈ 𝐏𝑖, 0 < 𝑠 ≤ ℎ, 𝑓𝑒(𝑒(𝑡,𝐩𝑖,𝑠)) ≈ 𝑓𝑒𝑚𝑎𝑥 if 𝑖 ∈ 𝜋𝑟

𝑝0𝑖 if 𝑖 ∈ 𝜋𝑛 (15)

The non-relevant sensitivity parameters are established as con-
stants at their nominal value for the rest of the analysis since
their contribution to the degradation of the system response is
relatively low. Therefore 𝑝𝑖 = 𝑝𝑖 = 𝐩0𝑖 such that 𝑖 ∈ 𝜋𝑛

3.2. Stage 2. Parameter uncertainty design from conservative approach

Objective: Define the set 𝐏𝛼 = {𝐩1,𝐩2,… ,𝐩𝑚𝛼 } constituted by
surrogate models 𝐩 that represents the general uncertainty framework
of the system under an approach that seeks to constrain conservatism.

Stage description:
The set of models 𝐏𝜙1 that explores the entire domain of uncer-

ainties based on sampling the relevant parameters is initially defined.
ubsequently, a series of filters are applied to adjust the degree of
onservatism and reduce the computational cost representation. Fi-
ally, the subset of models 𝐏𝛼 ⊂ 𝐏𝜙1 is determined as the uncertainty
ramework of the system. Fig. 9 shows the steps, inputs, and outputs

nvolved in this stage.
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Fig. 9. Descriptive flowchart of Stage 2.
t
c

a
T
i

S

Step development:

• Step 2.1: Uncertainty model definition for global sensitivity
analysis
In this step, the set of models 𝐏𝜙1 = {𝐩1,𝐩2,… ,𝐩𝑚1} is created
by simultaneous sampling of the relevant parameters (𝑖 ∈ 𝜋𝑟)
such that 𝑝𝑖 ≤ 𝑝𝑠𝑖 ≤ 𝑝𝑖. Where 𝑚1 denotes the number of
models that constitute 𝐏𝜙1 , and is defined by the designer on the
number of parameters involved and the desired precision of the
sampling (Steiner et al., 2004).
We encourage establishing 𝑚1 and the sampling technique ac-
cording to the guidelines for global sensitivity analysis stated
in Pianosi et al. (2016). These guidelines are based on the anal-
ysis of various case studies. Some of the sampling techniques
mentioned here are pseudo random samples (PSE), Latin hyper-
cube samples (LHS), and the quasi-Monte Carlo samples with
Hammersley sequence sampling (HSS).

• Step 2.2: Model filtering by parameter space analysis
By applying the filter defined in (16), the subset of models 𝐏𝜙2 ⊂
𝐏𝜙1 is obtained. This filter seeks to dismiss models outside of a
probability domain 𝐷𝑝𝑟𝑜𝑏 (see Fig. 3).

𝐏𝜙2 = {𝐩 ∈ 𝐏𝜙1
|𝐩 ∈ 𝐷𝑝𝑟𝑜𝑏} (16)

To define the probability domain 𝐷𝑝𝑟𝑜𝑏, a set of constraints is
imposed for limiting the simultaneous deviation between param-
eter uncertainties in the parameter space. The designer defines
these constraints based on probabilistic criteria on which it is
estimated that the parameters may deviate from each other. To
facilitate this task, the use of different classical constraints is
encouraged (Wang and Curry, 2012; Shang et al., 2017; Gorissen
et al., 2015). Some of these reported in the literature are: the
box uncertainty set (Soyster, 1973); the ellipsoidal uncertainty
set (Ben-Tal et al., 1998); the interval+ polyhedral uncertainty
set; the gamma uncertainty set (Bertsimas and Sim, 2004); and
the polyhedral uncertainty set (Bertsimas et al., 2010).

• Step 2.3: Model filtering by system response analysis.
By applying the filter defined in (17), the subset 𝐏𝜙3 ⊂ 𝐏𝜙2

is determined. This filter aims to exclude improbable models
by analyzing the error degradation between system and model
response in a defined open-loop experiment (see Fig. 2). Where
the function 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) is the same as the one used in step 1.2.

𝐏𝜙3 = {𝐩 ∈ 𝐏𝜙2
|𝑓𝑒(𝑒𝑚(𝑡,𝐩)) < 𝑓𝑒𝑚𝑎𝑥} (17)

The approach of using this filter to discard non-reliable models in
the modeling process can be found in works such as Spear et al.
(1994).

• Step 2.4: Model filtering for computational cost reduction.
By using a technique for data reduction existing in the literature,
we define the subset 𝐏𝛼 ⊂ 𝐏𝜙2 . The purpose of this latter filtering
is to reduce the number of models in the set 𝐏𝜙3 (based on
the designer’s criteria) to obtain a suitable cost representation of
uncertainties without compromising quality. The degree of reduc-
tion of this filter depends on the designer’s criteria in relation
to the desired computational cost. Some of the most interesting
methods for data reduction are presented in Maitra and Yan
(2008), such as principal component analysis (PCA) and partial

least squares analysis (PLS). P

8

At the end of this stage, the set 𝐏𝛼 = {𝐩1,𝐩2,… ,𝐩𝑚𝛼 } that represents
he system uncertainty framework under an approach that constrains
onservatism and is computationally feasible is defined, where 𝑚𝛼 is the

number of models contained in 𝐏𝛼 and depends on the last modeling
step of this stage.

3.3. Stage 3. Parameter uncertainty model design from multiobjective ap-
proach

Objective: Determine the subset of models 𝐏𝛽 ⊂ 𝐏𝛼 with the most
relevant cases concerning the formulation of the multiobjective robust
control problem.

Stage description:
Using the set of reference controllers 𝐗𝑛𝑜𝑚, we characterize the

performance of the uncertainty set 𝐏𝛼 in the objective space. The set
𝐗𝑛𝑜𝑚 is defined by solving the multiobjective optimization problem
formulated for the nominal model 𝐩0. Based on this analysis, the subset
𝐏𝛽 ⊂ 𝐏𝛼 with the most representative model is identified according to

predefined strategy that formulates the robust optimization problem.
he diagram in Fig. 10 describes the inputs and outputs for the steps

nvolved in this last stage.

tep development:

• Step 3.1: MOP solving considering nominal model
To characterize the uncertainty models in the multiobjective
space, it is necessary to define a set of reference controllers
with good performance. In this context, the Pareto set
𝐗𝑛𝑜𝑚 = {𝐱1, 𝐱2,… , 𝐱𝑛1} and its corresponding Pareto front 𝐅𝑛𝑜𝑚 =
{𝒇 (𝐱,𝐩0) ∶ 𝐱 ∈ 𝐗𝑛𝑜𝑚} are obtained by solving the optimization
problem for the nominal model as indicated in (18).

min
𝐱

𝒇 (𝐱,𝐩0) (18)

Where 𝑛1 is the number of solutions that constitute the Pareto
set approximation.2, 𝐱 is the decision vector (containing the con-
troller parameters), and 𝒇 are the objectives to be minimized as
defined by the designer.

• Step 3.2: Degradation analysis in the objective space
Once 𝐗𝑛𝑜𝑚 is determined, the degradation of the Pareto front
𝒇 (𝐗𝑛𝑜𝑚,𝐏𝛼) is analyzed. Where the set 𝒇 (𝐱,𝐏𝛼) = {𝒇 (𝐱,𝐩𝟏),𝒇 (𝐱,𝐩𝟐),
… ,𝒇 (𝐱,𝐩𝐦𝛼 )} describes the objective degradation of a given
controller 𝐱 ∈ 𝐗𝑛𝑜𝑚 under the uncertainty framework 𝐏𝛼 .

• Step 3.3: Model selection based on robustness strategy.
Based on the degradation analysis 𝒇 (𝐱𝑡,𝐏𝛼), we determine the
subset 𝐏𝛽,𝑡 ⊂ 𝐏𝛼 with the most relevant models in relation to its
performance in the objective space concerning controller 𝐱𝑡.
The subset of models 𝐏𝛽,𝑡 is defined in the degradation analysis
for each controller 𝐱𝑡 ∈ 𝐗𝑛𝑜𝑚 such that 𝑡 = {1,… , 𝑛1} according
to one of the proposed strategies shown in Section 2.3 for model
selection.
The set of models 𝐏𝛽 = {𝐩1,𝐩2,… ,𝐩𝑚𝛽 } is made from the union of
the subsets 𝐏𝛽,𝑡 as indicated in (19). This set represents the most
relevant models concerning degradation analysis 𝒇 (𝐗𝑛𝑜𝑚,𝐏𝛼) with
the most relevant models 𝐩 ∈ 𝐏𝛼 for the formulation of the robust

2 Multiobjective optimization algorithms obtain an approximation to the
areto set.
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Fig. 10. Descriptive flowchart of Stage 3.
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Fig. 11. Black box diagram of the model.

optimization problem under a predefined minimization strategy.
Where 𝑚𝛽 is the total number of models that constitutes 𝐏𝛽 and
is defined by the characterization process.

𝐏𝛽 = 𝐏𝛽,1 ∪ 𝐏𝛽,2∪,… ,𝐏𝛽,𝑛1 (19)

4. Multiobjetive control problem formulation under parameter
uncertainties

4.1. PEMFC model description

The PEMFC stack that is located in our laboratory, is supplied
with hydrogen and air to generate electrical energy and heat. A pro-
grammable electronic load is used to emulate a residential consumption
of electricity (electrical appliances). A radiator simulates the heat en-
ergy consumption (hot water and heating) by extracting heat when
activated. Additionally, thermal energy can be stored in a water tank.

For the PEMFC stack temperature control design, a model of the
cooling circuit of the micro-CHP system was used. Fig. 11 shows a black
box diagram of the model detailed in Gimenez et al. (2020). The model
has two outputs related to the liquid coolant: the stack water outlet and
inlet temperatures 𝑇𝑤𝑜𝑢𝑡

and 𝑇𝑤𝑖𝑛
. The control actions are 𝑢𝑇𝑤𝑜𝑢𝑡

, which
represents the water flow rate in the primary cooling circuit, and 𝑢𝑇𝑤𝑖𝑛

,
which is the water flow rate in the secondary cooling circuit (for more
details see Gimenez et al. (2020)). The only disturbance considered is
the electric current (𝐼) demanded by the stack. This nonlinear dynamic
model is built from first principles and was experimentally validated
with a wide operating range (from 140 to 200𝐴).

The model has 30 parameters that represent the physical mag-
nitudes of the plant. This nonlinear dynamic model is used for the
design of temperature control. In Navarro et al. (2019), details of the
parameter identification and validation of a nominal model for the
cooling system can be found. In Ferrando et al. (2020), near-optimal
models are analyzed, and an approximation of the operating ranges
for the parameter uncertainties when the system operates around its
set-point is presented.

4.2. Temperature control structure

The aim of the control system is to keep 𝑇𝑤𝑜𝑢𝑡
and 𝑇𝑤𝑖𝑛

at their
corresponding setpoints while changes in the electrical current demand
(𝐼) produce undesirable transient fluctuations in the stack temperature,
resulting in a loss of electrical efficiency or in an increased deterioration

of the stack. The temperature control must respond disturbances to c

9

Fig. 12. Multiloop PI control structure for temperatures 𝑇𝑤𝑜𝑢𝑡 and 𝑇𝑤𝑖𝑛.

inimize the excursions of 𝑇𝑤𝑜𝑢𝑡
and 𝑇𝑤𝑖𝑛

from their setpoints, 𝑟𝑇𝑤𝑜𝑢𝑡
=

5◦C and 𝑟𝑇𝑤𝑜𝑢𝑡
= 60◦C, respectively. Gimenez et al. (2020) proposes a

ultiloop control structure (see Fig. 12), this structure consists of two
I controllers with anti-windup, one for the control of 𝑇𝑤𝑜𝑢𝑡

(by using
𝑇𝑤𝑜𝑢𝑡

) and the other for the control of 𝑇𝑤𝑖𝑛
(by using 𝑢𝑇𝑤𝑖𝑛

). Therefore,
he controller has four parameters to adjust (two for each PI), 𝐱 =
𝐾𝑐1, 𝑇𝑖1, 𝐾𝑐2, 𝑇𝑖2], where 𝐾𝑐1 and 𝐾𝑐2 are in ((l/min)/◦C) and 𝑇𝑖1 and
𝑇𝑖2 in (s).

4.3. Formulation of the multiobjective control problem under uncertainties

The multiobjective problem of temperature control tuning under
parameter uncertainties aims to minimize the objectives 𝑓1 and 𝑓2 as
formulated in Eqs. (20) and (21).

𝑓1(𝐱,𝐩) =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|𝑒𝑇𝑤𝑜𝑢𝑡

|𝑑𝑡 + 1
𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|𝑒𝑇𝑤𝑖𝑛

|𝑑𝑡 (20)

2(𝐱,𝐩) =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0

|

|

|

|

|

𝑑𝑢𝑇𝑤𝑜𝑢𝑡
(𝑡)

𝑑𝑡

|

|

|

|

|

𝑑𝑡 + 1
𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0

|

|

|

|

|

|

𝑑𝑢𝑇𝑤𝑖𝑛
(𝑡)

𝑑𝑡

|

|

|

|

|

|

𝑑𝑡 (21)

Where 𝐩 is the vector of model parameters defined in (22) and 𝐱 is
the decision vector (containing the controller parameters). 𝐱 and 𝐱 are
he lower and upper bounds for controller tuning (Eq. (24)).

= [𝑝1, 𝑝2,… , 𝑝𝑘] (22)

= [𝐾𝑐1, 𝑇𝑖1, 𝐾𝑐2, 𝑇𝑖2] (23)

𝐱 = [𝐾𝑐1, 𝑇𝑖1, 𝐾𝑐2, 𝑇𝑖2]; 𝐱 = [𝐾𝑐1, 𝑇𝑖1, 𝐾𝑐2, 𝑇𝑖2] (24)

Objective 𝑓1(𝐱,𝐩) evaluates the performance of the controllers by
adding the mean absolute errors of the stack output and input temper-
atures (in ◦C) concerning their setpoints (Eqs. (25) and (26)).

𝑒𝑇𝑤𝑜𝑢𝑡
= 𝑟𝑇𝑤𝑜𝑢𝑡

− 𝑇𝑤𝑜𝑢𝑡
(25)

𝑇𝑤𝑖𝑛
= 𝑟𝑇𝑤𝑖𝑛

− 𝑇𝑤𝑖𝑛
(26)

Objective 𝑓2(𝐱,𝐩) evaluates the control effort by adding the average
bsolute values of the rates of change of the control actions (𝑢𝑇𝑤𝑜𝑢𝑡

and
𝑇𝑤𝑖𝑛

) in (𝑙∕𝑚𝑖𝑛)∕𝑠. 𝑇𝑠𝑖𝑚 is the simulation time (3300s). The aim of the
bjectives 𝑓1 and 𝑓2 is to achieve an optimal electrical efficiency and
minimal deterioration of the stack and actuators.

The temperature control should respond to changes in the electric
urrent demand. Fig. 13 shows the electric current signal used for the
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f

𝒇

𝐱

𝐱

Fig. 13. Electric current demand signal used in the control design. The first step applied is at 𝑡 = 100 s, and the span of each step is 800 s. The total simulation time is 3300 s.
control design that presents steps and traverses through the full validity
range of the nonlinear model (from 140 to 200𝐴).

Given these conditions, the multiobjective optimization problem is
ormulated as follows:

min
𝐱

𝒇 (𝐱,𝐩0) (27)

(𝐱,𝐩0) = [𝑓1(𝐱,𝐩0), 𝑓2(𝐱,𝐩0)] (28)

subjet to:

≤ 𝐱 ≤ 𝐱 (29)

= [−8, 1,−8, 1] (30)

𝐱 = [−0.1, 120,−0.1, 120] (31)

|𝑒𝑇𝑤𝑜𝑢𝑡
(𝑛)| < 0.033 ◦C (32)

|𝑒𝑇𝑤𝑖𝑛
(𝑛)| < 0.033 ◦C (33)

The optimization problem must satisfy some additional settling time
constraints, which are formulated as shown in (32) and (33), where 𝑛
are the sampling times corresponding to 1 s before each change in the
disturbance signal. In Fig. 13, the location of the time intervals at which
these steady-state conditions are verified is marked with red squares.

For robust controller tuning, an uncertainty framework must be
considered. As proposed in the methodology, the most relevant un-
certainty models to address this formulation will be collected by the
set 𝐏𝛽 = {𝐩1,𝐩2,… ,𝐩𝑚𝛽 }. The multiobjective problem must then be
reformulated for robustness:

min
𝐱

𝒇𝑚𝑎𝑥(𝐱,𝐏𝛽 ) (34)

𝒇𝑚𝑎𝑥(𝐱,𝐏𝛽 ) = [𝑓1𝑚𝑎𝑥 (𝐱,𝐏
𝛽 ), 𝑓2𝑚𝑎𝑥 (𝐱,𝐏

𝛽 )] (35)

Where 𝑓1𝑚𝑎𝑥 (𝐱,𝐏
𝛽 ) and 𝑓2𝑚𝑎𝑥 (𝐱,𝐏

𝛽 ) define the robustness strategy.
For this particular case, we propose to pursue a minimization concern-
ing the worst-case index, so that:

𝑓1𝑚𝑎𝑥 (𝐱,𝐏
𝛽 ) = max

∀𝑝∈𝐏𝛽
(𝑓1(𝐱,𝐩)) (36)

𝑓2𝑚𝑎𝑥 (𝐱,𝐏
𝛽 ) = max

∀𝑝∈𝐏𝛽
(𝑓2(𝐱,𝐩)) (37)

This optimization problem is also subjected to constraints (29)–(33).

5. Definition of the uncertainty modeling of the PEMFC system

As described in the formulation of the robust control problem, it
is necessary to define the uncertainty set of models 𝐏𝛽 for tuning
control gains. This section shows the development of the methodology
presented in Section 3 applied to the PEMFC system. The three input
elements required are defined as follows:
10
5.1. Initial elements

1. The nominal parameter model
From the identification and validation process (Navarro et al.,
2019), the nominal model is defined by 𝑘 = 31 parameters
that constitute the vector 𝐩0 = [𝑝01, 𝑝

0
2,… , 𝑝031]. These values

are presented in Table 2. As consideration for this analysis, the
parameters 𝑐𝑎𝑙𝑇𝑎𝑜𝑢𝑡 , 𝑐𝑎𝑙𝑇𝑝4𝑜𝑢𝑡 , 𝑐𝑎𝑙𝑇𝑤𝑜𝑢𝑡

are considered fixed since
they belong to calibration constants and the parameter 𝑝𝑒𝑚𝑓𝑐𝑒𝑓𝑓
that characterizes the battery efficiency is added.

2. Degradation limit for system response
From the experiment performed in the validation process, an
average temperature error 𝑓𝑒(𝑒𝑚(𝑡,𝐩0)) = 0.26 ◦C is associated
with the identified nominal model (see the model validation
test in Navarro et al. (2019)). On the basis of this data, the
degradation limit 𝑓𝑒𝑚𝑎𝑥 = 0.5 ◦C is established as a degree
of tolerance for the classification of uncertainty models with
acceptable reliability.

3. Initial ranges of variation for each parameter
To define the scanning ranges [𝑝𝑝𝑖, 𝑝𝑝𝑖] on which the domain
of uncertainty is initially explored, we propose to use a range
defined by the deviation of ±95% of the nominal value of each
parameter. Using this range, we seek to ensure a full exploration
of the variations that enables determining the sensitivity and
appropriate operating ranges of each parameter. Therefore 𝑝𝑝𝑖 =
𝑝0𝑖 − 0.95𝑝0𝑖 and 𝑝𝑝𝑖 = 𝑝0𝑖 + 0.95𝑝0𝑖 for 𝑖 = {1,… , 𝑘}. For the
particular case of parameter 𝑝31 (battery efficiency degradation)
only variation in negative direction is considered, and therefore
𝑝𝑝31 = 0 is fixed.

Once these three input elements are defined, each stage of the
methodology is developed as follows.

5.2. Description of stage 1

• Step 1.1
Based on the guidelines established in Pianosi et al. (2016) for
performing local analysis, we set ℎ = 19 as the number of surro-
gate models used to uniformly discretize the range [𝑝𝑝𝑖, 𝑝𝑝𝑖] and
carry out the sensitivity analysis for each parameter. Therefore,
𝐏𝑖 for 𝑖 = {1,… , 𝑘} is defined as indicated in (38).

𝐏𝑖 = {𝐩𝑖,𝑠|𝑠 ∈ Z,−19 ≤ 𝑠 ≤ 19, 𝑠 ≠ 0} (38)

such that,

𝐩𝑖,𝑠 =
⎧

⎪

⎨

⎪

⎩

[𝑝𝑠1, 𝑝
0
2,… , 𝑝031] if 𝑖 = 1

[𝑝01,… , 𝑝0𝑖−1, 𝑝
𝑠
𝑖 , 𝑝

0
𝑖+1,… , 𝑝031] if 1 < 𝑖 < 31

[𝑝01,… , 𝑝0𝑘−1, 𝑝
𝑠
31] if 𝑖 = 31

(39)

and,

𝑝𝑠𝑖 =

⎧

⎪

⎨

⎪

𝑝0𝑖 + 𝑠(
𝑝𝑝𝑖−𝑝0𝑖
19 ) if 𝑠 > 0

𝑝0 + 𝑠(
𝑝0𝑖 −𝑝𝑝𝑖 ) if 𝑠 < 0

(40)
⎩

𝑖 19
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Table 2
Summary of nominal values 𝑝𝑠𝑖 , operating range limits [𝑝𝑖 , 𝑝𝑖] and relative sensitivity indices 𝛥𝑞𝑖 for each parameter 𝑝𝑖.

Parameter tag 𝑝𝑖 𝑝0𝑖 𝑝𝑖 𝑝𝑖 𝛥𝑞𝑖 𝜋𝑟∕𝜋𝑛

𝑐𝑎𝑙𝑇 𝑎𝑜𝑢𝑡 𝑝1 0.81 0.04 1.57 2e−4 Non-sensitive
𝑐𝑎𝑙𝑇 𝑝4𝑜𝑢𝑡 𝑝2 0.25 0.01 0.48 2e−4 Non-sensitive
𝑐𝑎𝑙𝑇𝑤𝑜𝑢𝑡

𝑝3 1.01 0.05 1.96 2e−4 Non-sensitive
ℎ𝑎𝑚𝑎𝑥 𝑝4 52.01 16.06 101.42 0.023 Sensitive
ℎ𝑎𝑚𝑖𝑛 𝑝5 26.13 5.94 50.95 0.015 Non-sensitive
ℎ𝑎𝑤 𝑝6 40.89 20.03 79.73 0.023 Sensitive
ℎ𝑓𝑐𝑙𝑜𝑠𝑠 𝑝7 3.39 1.67 5.39 0.023 Sensitive
ℎ𝑓𝑐2𝑚𝑎𝑥 𝑝8 44.78 2.23 87.32 6e−3 Non-sensitive
ℎ𝑓𝑐2𝑚𝑖𝑛 𝑝9 15.71 0.78 30.63 3e−4 Non-sensitive
ℎ𝑝1𝑙𝑜𝑠𝑠 𝑝10 8.11 6.46 9.73 0.06 Sensitive
ℎ𝑝4𝑙𝑜𝑠𝑠 𝑝11 8.28 6.11 10.40 0.046 Sensitive
ℎ𝑟𝑂𝐹𝐹𝑚𝑎𝑥

𝑝12 9.74 0.48 18.99 0.006 Non-sensitive
ℎ𝑟𝑂𝐹𝐹𝑚𝑖𝑛

𝑝13 8.17 2.35 15.03 0.016 Non-sensitive
ℎ𝑟𝑂𝑁𝑚𝑎𝑥

𝑝14 1.02e2 91.21 110.35 0.164 Sensitive
ℎ𝑟𝑂𝑁𝑚𝑖𝑛

𝑝15 59.33 52.24 64.71 0.132 Sensitive
ℎ𝑠𝑚𝑎𝑥 𝑝16 2.31e2 66.79 451.01 0.021 Sensitive
ℎ𝑠𝑚𝑖𝑛 𝑝17 54.07 10.82 105.45 0.022 Sensitive
ℎ𝑡𝑚𝑎𝑥 𝑝18 83.91 43.55 163.64 0.024 Sensitive
ℎ𝑡𝑚𝑖𝑛 𝑝19 22.02 1.10 42.93 0.28e−2 Non-sensitive
ℎ𝑤𝑚𝑎𝑥

𝑝20 66.37 16.75 129.42 0.020 Sensitive
ℎ𝑤𝑚𝑖𝑛

𝑝21 57.48 2.87 112.09 0.46e−2 Non-sensitive
𝑘𝑎 𝑝22 52.65e2 37.65e2 66.78e2 0.044 Sensitive
𝑇𝑎𝑚𝑏𝑟 𝑝23 27.17 26.06 28.09 0.356 Sensitive
𝑉𝑎 𝑝24 28.21e−4 27.87e−4 55.01e−4 1.00 Sensitive
𝑉𝑝1 𝑝25 4.8e−4 2.4e−5 93.6e−5 2e−4 Non-sensitive
𝑉𝑝4 𝑝26 15.7e−4 7.85e−5 30.61e−4 6e−4 Non-sensitive
𝑉𝑟 𝑝27 10.4e−4 5.2e−5 20.28e−4 13e−4 Non-sensitive
𝑉𝑡1 𝑝28 19.4e−4 9.7e−5 37.83e−4 21e−4 Non-sensitive
𝑉𝑡2 𝑝29 28.67e−3 12.11e−3 55.91e−3 0.021 Sensitive
𝑉𝑤 𝑝30 12.5e−4 6.25e−5 24.37e−4 0.001 Non-sensitive
𝑝𝑒𝑚𝑓𝑐𝑒𝑓𝑓 𝑝31 99.32e−2 96.05e−2 1.93 0.363 Sensitive
• Step 1.2
Based on the system model and the same open-loop experiment
used in the parameter validation process, the function 𝑓𝑒(𝑒𝑚(𝑡,𝐩))
is computed to evaluate the sets of models 𝐏𝑖 ∈ P. In this test
(see Fig. 2), both the model and the system are excited with
the same input signals (see Figure 5 of Navarro et al. (2019) to
view the input signals) for a simulation time of 𝑇𝑠𝑖𝑚 = 8087𝑠. As
introduced in Navarro et al. (2019), the output of the complete
model consists of the 6 temperatures 𝑇𝑤𝑜𝑢𝑡

, 𝑇𝑤𝑖𝑛
, 𝑇𝑡2, 𝑇𝑎𝑜𝑢𝑡 , 𝑇𝑠𝑖𝑛 and

𝑇𝑠𝑜𝑢𝑡 . Therefore, the average absolute error of the system output is
determined as indicated in (41), which represents the aggregated
error function for the comparison between the six model outputs
with the six real system outputs (42)–(47). The variables with
a cap denote the process outputs and the variables without cap
denote the model outputs.

𝑓𝑒(𝑒𝑚(𝑡,𝐩)) = (𝐽1 + 𝐽2 + 𝐽3 + 𝐽4 + 𝐽5 + 𝐽6)∕6 (41)

𝐽1 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑤𝑜𝑢𝑡

(𝑡) − 𝑇𝑤𝑜𝑢𝑡
(𝑡)|𝑑𝑡 (42)

𝐽2 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑤𝑖𝑛

(𝑡) − 𝑇𝑤𝑖𝑛
(𝑡)|𝑑𝑡 (43)

𝐽3 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑡2(𝑡) − 𝑇𝑡2(𝑡)|𝑑𝑡 (44)

𝐽4 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑎𝑜𝑢𝑡 (𝑡) − 𝑇𝑎𝑜𝑢𝑡 (𝑡)|𝑑𝑡 (45)

𝐽5 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑠𝑖𝑛 (𝑡) − 𝑇𝑠𝑖𝑛 (𝑡)|𝑑𝑡 (46)

𝐽6 =
1

𝑇𝑠𝑖𝑚 ∫

𝑇𝑠𝑖𝑚

0
|�̂�𝑠𝑜𝑢𝑡 (𝑡) − 𝑇𝑠𝑜𝑢𝑡 (𝑡)|𝑑𝑡 (47)

The function 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝐢)) defines the error degradation due to the
parameter deviations formulated in set 𝐏𝐢 to analyze the parame-
ter 𝑝 . As an example to illustrate this analysis, Fig. 14 exhibits the
𝑖
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functions 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝟐𝟐)) and 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝟏𝟖)). The performance of these
functions exhibits the sensitivity of the system output error due
to incremental deviations over the parameters 𝑝22 and 𝑝18. Where
the 𝑥-axis indicates the models 𝐩𝑖,𝑠 ∈ 𝐏𝑖 such that −ℎ ≤ 𝑠 ≤ ℎ and
𝑦-axis shows the average absolute error 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) in [◦C]. The red
dotted line indicates the degradation limit stated in 𝑓𝑒𝑚𝑎𝑥 = 0.5 ◦C.
From the performance shown in Fig. 14, it is possible to realize
that variations on 𝑝𝑠22 produce a higher rate of change in the
output error with respect to variations on 𝑝𝑠18 since the function
𝑓𝑒(𝑒𝑚(𝑡,𝐏22)) overshoots the limit 𝑓𝑒𝑚𝑎𝑥 for a model with lower
relative deviation than 𝑓𝑒(𝑒𝑚(𝑡,𝐏18)). This same analysis is carried
out to analyze the rate of change in each error degradation
function defined for the remaining sets 𝐏𝑖 ∈ P.
To characterize the degree of sensitivity, the coefficient 𝑞𝑖 =
𝑚𝑎𝑥(|𝑞𝑖|, |𝑞𝑖|) is determined for each parameter. Where 𝑞𝑖 and 𝑞𝑖
are defined as indicated in (48)–(49).

𝑞𝑖 =
{

𝛥𝑓𝑒
𝑠

| − ℎ ≤ 𝑠 < 0; 𝑓𝑒(𝑒𝑚(𝑡,𝐩𝑖,𝑠)) ≈ 𝑓𝑒𝑚𝑎𝑥

}

(48)

𝑞𝑖 =
{

𝛥𝑓𝑒
𝑠

|0 < 𝑠 ≤ ℎ; 𝑓𝑒(𝑒𝑚(𝑡,𝐩𝑖,𝑠)) ≈ 𝑓𝑒𝑚𝑎𝑥

}

(49)

The ratio 𝛥𝑓𝑒∕𝑠 represents a slope, where 𝛥𝑓𝑒 = 𝑓𝑒(𝑒𝑚(𝑡,𝐩𝑖,𝑠)) −
𝑓𝑒(𝑒𝑚(𝑡,𝐩0)) such that 𝑓𝑒(𝑒𝑚(𝑡,𝐩𝑖,𝑠)) ≈ 𝑓𝑒𝑚𝑎𝑥 . Given the set 𝐪 =
{𝑞𝑖|𝑖 = {1,… , 𝑘}, which contains the sensitivity coefficients of
all the parameters, we define the normalized coefficients 𝛥𝑞𝑖 =
𝑞𝑖∕𝑚𝑎𝑥(𝐪) concerning the coefficient of the parameter with the
highest degree of sensitivity. The values of coefficients 𝛥𝑞𝑖 are
shown in Table 2.

• Step 1.3
Based on a design criterion, non-relevant sensitivity parameters
are considered due to the fact that its sensitivity coefficients are
𝛥𝑞𝑖 < 0.02, which represents a significantly lower sensitivity
in relation to the most sensitive parameter. This condition is
established based on the observation that 15 parameters repre-
sent a relative sensitivity of less than 2% concerning the most
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5

Fig. 14. Analysis of the temperature error degradation due to the effect of variations on 𝑝𝑠18 and 𝑝𝑠22.
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sensitive parameter; this enables the uncertainty modeling to
focus on variations in the most sensitive parameters and reduce
computational cost. Therefore, the sets 𝜋𝑟 and 𝜋𝑛 are defined as
follows: 𝜋𝑟 = {4, 6, 10, 11, 14, 15, 16, 17, 18, 20, 22, 23, 24, 29, 31} and
𝜋𝑛 = {1, 2, 3, 5, 7, 8, 9, 12, 13, 19, 21, 25, 26, 27, 28, 30}.

• Step 1.4
From the analysis shown in Fig. 14, the operating range lim-
its [𝑝𝑖, 𝑝𝑖] are estimated for the relevant sensitivity parameters
(𝑖 ∈ 𝜋𝑟) by using Eqs. (15)–(14). These equations identify the
deviation 𝑝𝑠𝑖 that best approximates the limit 𝑓𝑒(𝑒𝑚(𝑡,𝐏𝑖)) ≈ 𝑓𝑒𝑚𝑎𝑥 .
In Fig. 14, the limits [𝑝𝑖, 𝑝𝑖] for 𝑝𝑠22 and 𝑝𝑠18 are marked with crosses
and circles respectively. The range of variation for the negligent
sensitivity parameters (𝑖 ∈ 𝜋𝑛) are restricted to the nominal value,
this is 𝑝𝑖 = 𝑝𝑖 = 𝑝0𝑖 .
Finally, Table 2 shows the conclusion of the analysis performed
at this stage. Where the upper and lower operating range limits
[𝑝𝑖, 𝑝𝑖] and the relative sensitivity index 𝛥𝑞𝑖 of the 𝑘 parameters
considered at the beginning of the analysis are shown.

.3. Description of stage 2

• Step 2.1
The set 𝐏𝜙1 = {𝐩1,𝐩2,… ,𝐩𝑚1} is created from the random sam-
pling of deviations 𝑝𝑠𝑖 ∈ 𝐩𝑠 such that 𝑝𝑖 ≤ 𝑝𝑠𝑖 ≤ 𝑝𝑖. The amount of
models 𝑚1 = 1500 is established based on the number of parame-
ters for which uncertainties are considered (100 models per each
relevant sensitivity parameter) according to the guidelines stated
for performing a sensitivity analysis for global mapping (these
guidelines are summarized in Figure 3 in Pianosi et al. (2016)).

• Step 2.2
The model filter indicated in (16) is applied to obtain the subset
𝐏𝜙2 ⊂ 𝐏𝜙1 with probable models that belong to the domain 𝐷𝑝𝑟𝑜𝑏
(see Fig. 3). To design the domain 𝐷𝑝𝑟𝑜𝑏, we use the classical el-
lipsoidal uncertainty set (Ben-Tal et al., 1998) chosen for geomet-
rically fitting the domain of the system parameter variations. By
using this concept, we define the model filter indicated in (50).

𝐏𝜙2 = {𝐩 ∈ 𝐏𝜙1
|𝜏𝑤𝑦 < 𝑟𝑚𝑎𝑥,∀𝑦,𝑤,𝑤 ≠ 𝑦} (50)

Where the coefficient 𝜏𝑤𝑦 indicated in (51) characterizes the
simultaneous parameter deviation of the uncertainties 𝑝𝑠𝑤 and 𝑝𝑠𝑦
in model 𝐩𝑠, for all 1 ≤ 𝑦,𝑤 ≤ 𝑘 such that 𝑤 ≠ 𝑦.

𝜏𝑠𝑤𝑦 =
√

(𝛿𝑠𝑤)2 + (𝛿𝑠𝑦)2 (51)

The coefficient 𝛿𝑠𝑖 is defined in (52) and represents the relative
parameter deviation of 𝑝𝑠𝑖 with respect to its operating range
[𝑝𝑖, 𝑝𝑖] such that 0 ≤ 𝛿𝑠𝑖 ≤ 1.

𝛿𝑠𝑖 =

⎧

⎪

⎨

⎪

(𝑝𝑠𝑖 − 𝑝0𝑖 )∕(𝑝𝑖 − 𝑝0𝑖 ) if 𝑝𝑠𝑖 − 𝑝0𝑖 > 0
(𝑝0𝑖 − 𝑝𝑠𝑖 )∕(𝑝

0
𝑖 − 𝑝𝑖) if 𝑝𝑠𝑖 − 𝑝0𝑖 < 0

0 if 𝑝𝑠 − 𝑝0 = 0

⎫

⎪

⎬

⎪

(52)
⎩ 𝑖 𝑖 ⎭
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To apply (50), we establish a limit of 𝑟𝑚𝑎𝑥 = 0.85
√

2, which
defines a relative deviation of 85% between any two parameters
simultaneously in a model uncertainty. A similar formulation can
be followed in Wang and Curry (2012).

• Step 2.3
In this step, the subset of models 𝐏𝜙3 ⊂ 𝐏𝜙2 is defined based on
the filter indicated in Eq. (17), which categorizes the probable
models based on the condition 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) < 0.5.

• Step 2.4
A last model reduction is applied to obtain the subset 𝐏𝛼 ⊂ 𝐏𝜙3 ,
which is defined as a representative sample of the uncertainty
framework 𝐏𝜙3 with a suitable computational cost. We choose
to use the PCA method, which enables us to obtain uniformly
distributed models in the range of the mapped variance and
identify regions in the sampling space where the model prediction
is representative of the global set (for details of its application,
see Kamali et al. (2007)). For this purpose, we reduced the size
of the set 𝐏𝜙3 to 140 models, since it represents approximately
one fourth of 𝑑𝑖𝑚(𝐏𝜙3 ).

Finally, Fig. 15 shows the conclusion of the model reduction process
t this stage. Where the 𝑌 -axis denotes the evaluation of the function
𝑒(𝑒(𝑡,𝐩)) and the 𝑥-axis indicates the global relative deviation 𝛾(𝐩)
efined in (53).

𝑠 =

√

√

√

√

𝑘
∑

𝑖=1
(𝛿𝑠𝑖 )2 (53)

At first, the uncertainty modeling process begins with the set 𝐏𝜙1 ,
which is defined with 1500 models generated by random sampling
within the operating range established in the sensitivity analysis. In
Fig. 15 this set of models is represented for all the green, black and
red dots. By applying the first filter (step 2.2), improbable models
concerning the parameter space analysis are excluded. Therefore, the
set 𝐏𝜙2 of 1071 models (black and red dots) is defined. By applying the
econd filter (step 2.3) based on the analysis of the model’s performance
nd the constraint 𝑓𝑒(𝑒𝑚(𝑡,𝐩)) < 0.5 ◦C, the set 𝐏𝜙3 of 573 models (red
ots) is obtained.

Finally, the last filter is used to uniformly simplify the modeling
o a computationally acceptable representation for the next stage. We
onsider 140 models (approximately 25% of the size set 𝐏𝜙3 ) as a good
ize of representation to create the set 𝐏𝛼 (blue circles).

.4. Description of stage 3

• Step 3.1
The optimization problem described by the Eqs. (20)–(33) is
solved for the nominal model. As result, the Pareto set 𝐗𝑛𝑜𝑚 =
(𝐱1, 𝐱2,… , 𝐱11) is obtained. In Table 3, the parameter values of
each solution 𝐱 ∈ 𝐗𝑛𝑜𝑚 and the evaluation of the objective
functions 𝑓1(𝐱,𝐩0) and 𝑓2(𝐱,𝐩0) that constitute the Pareto front
𝐅𝑛𝑜𝑚 = 𝒇 (𝐗𝑛𝑜𝑚,𝐩0) are presented. In Fig. 20, the front 𝐅𝑛𝑜𝑚 is
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Fig. 15. Design process of set 𝐏𝛼 from set 𝐏𝜙1 .
Table 3
Control parameter results obtained for the Pareto set of solutions 𝐗𝑛𝑜𝑚.
𝐗𝑛𝑜𝑚 𝐾𝑐1 𝑇𝑖1 𝐾𝑐2 𝑇𝑖2 𝑓1(𝐱,𝐩𝟎) 𝑓2(𝐱,𝐩𝟎) 𝑓1𝑚𝑎𝑥 (𝐱,𝐏

𝛼 ) 𝑓2𝑚𝑎𝑥 (𝐱,𝐏
𝛼 )

𝐱1 −0.69 40.32 −4.90 64.19 0.165 6.9e−3 0.190 8.7e−3
𝐱2 −0.72 49.18 −4.12 69.14 0.200 6.3e−3 0.227 8.1e−3
𝐱3 −0.88 62.72 −3.73 76.78 0.223 6.3e−3 0.252 8.0e−3
𝐱4 −0.90 59.68 −4.07 61.83 0.189 6.5e−3 0.212 8.4e−3
𝐱5 −0.60 58.79 −4.30 75.72 0.258 6.2e−3 0.277 7.2e−3
𝐱6 −0.86 113.56 −3.95 112.88 0.365 6.0e−3 0.396 7.1e−3
𝐱7 −1.01 35.54 −6.98 57.04 0.124 11.5e−3 0.151 13.9e−3
𝐱8 −0.78 42.62 −4.50 49.45 0.150 7.2e−3 0.177 9.5e−3
𝐱9 −0.73 45.07 −4.42 66.84 0.180 6.5e−3 0.207 8.5e−3
𝐱10 −0.88 51.47 −4.70 71.75 0.175 6.7e−3 0.203 8.7e−3
𝐱11 −0.90 47.16 −5.59 52.30 0.144 7.9e−3 0.169 10.0e−3
Fig. 16. Dynamic response of the system controlled by 𝐱6 ∈ 𝐗𝑛𝑜𝑚(green) and 𝐱11 ∈ 𝐗𝑛𝑜𝑚(orange).
represented by red squares (some solutions are located outside the
scale of the graph). In addition, Table 3 also shows the evaluation
of robustness indices 𝑓1𝑚𝑎𝑥 (𝐱,𝐏

𝛼) and 𝑓2𝑚𝑎𝑥 (𝐱,𝐏
𝛼) which are further

analyzed in Section 6.
To contrast the performance of the solutions obtained in set 𝐗𝑛𝑜𝑚,
Fig. 16 shows the system response controlled by solutions located
at the extremes of the front 𝐅𝑛𝑜𝑚. The green function represents
the performance of solution 𝐱6 ∈ 𝐗𝑛𝑜𝑚 (good performance in
𝑓2, poor performance in 𝑓1). The orange function represents the
performance of the solution 𝐱11 ∈ 𝐗𝑛𝑜𝑚 (good performance in
𝑓1, poor performance in 𝑓2). The performance of the remaining
solutions with a better balance for both objectives takes place
between these two functions.
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• Step 3.2
By using the set of models, 𝐏𝛼 obtained in Stage 2, an objective
degradation analysis is carried out for each controller in 𝐗𝑛𝑜𝑚.
Fig. 17 shows the analysis for the controller 𝐱4 ∈ 𝐗𝑛𝑜𝑚, which is
a solution with a good balance between objectives 𝑓1(𝐱,𝐩0) and
𝑓2(𝐱,𝐩0) (see Table 3). In this figure, the nominal model 𝒇 (𝐱4,𝐩0)
is represented by a red dot and the objective degradation due
to uncertainties 𝒇 (𝐱4,𝐏𝛼) is represented by green circles. Fig. 18
shows the system response controlled by solution 𝐱4 ∈ 𝐗𝑛𝑜𝑚. The
red line represents the evaluation of the nominal model 𝐩0, and
the blue area represents the degradation of the performance under
the evaluation of the uncertainty framework 𝐏𝛼 .
• Step 3.3
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Fig. 17. Identification of worst-case models in the objective degradation analysis of controller 𝐱4 ∈ 𝐗𝑛𝑜𝑚 due to parameter uncertainties 𝐏𝛼 .
Fig. 18. Dynamic response of the system controlled by 𝐱4 ∈ 𝐗𝑛𝑜𝑚 under nominal model 𝐩0 (red) and under uncertainties 𝐏𝛼 (blue zone).
From the degradation analysis displayed in the previous step, we
define the subset 𝐏𝛽 ⊂ 𝐏𝛼 under the worst-case index as required
by the formulation defined in Eqs. (29)–(37) based on the model
characterization strategy shown in Fig. 5 using the Pareto domi-
nance concept. In Fig. 17 we show the identification of the worst-
case models found in the degradation analysis of the controller
𝐱4 ∈ 𝐗𝑛𝑜𝑚. Where the black dots represent the set of worst-
case models 𝐏𝑤𝑐,4 = {𝐩75,𝐩127} determined in this analysis. This
same approach is followed to define the sets 𝐏𝑤𝑐,𝑡 (such that 𝑡 =
{1,… , 11}) of the remaining controllers in 𝐗𝑛𝑜𝑚. The result of this
process is set 𝐏𝛽 = {𝐏𝑤𝑐,1∪𝐏𝑤𝑐,1∪,… ,𝐏𝑤𝑐,11}, which is finally con-
stituted by the models {𝐩37,𝐩41,𝐩50,𝐩75,𝐩99,𝐩127,𝐩133,𝐩134,𝐩138} ∈
𝐏𝛼 .
Table 5 shows the recurrence (number of times) that these models
have been identified in the degradation analysis 𝒇 (𝐗𝑛𝑜𝑚,𝐏𝛼) using
the worst-case concept. For example, model 𝐩127 was defined
as the worst-case in 9 of the 11 controllers analyzed, while
models {𝐩41,𝐩50,𝐩99,𝐩133,𝐩134} were only identified for one single
controller.

6. Discussion of results

This section focuses on analyzing the results obtained after solving
the robust optimization problem stated in Section 4 and emphasizes
14
the relevance of formulating an appropriate parameter uncertainty
modeling.

6.1. Robust controller analysis

By using the uncertainty set 𝐏𝛽 defined in Section 5 and solving
the Eqs. (29)–(37), the set of controllers 𝐗𝑤𝑐 = {𝐱1𝑤𝑐 , 𝐱

2
𝑤𝑐 ,… , 𝐱12𝑤𝑐}

is obtained. This set has good robustness characteristics (evaluated
as worst-case) without excessive loss of performance in the nominal
case. To carry out the optimization process, the evolutionary algorithm
evMOGA (Martínez et al., 2009) was used. In Table 4, the parameter
values of each solution 𝐱 ∈ 𝐗𝑤𝑐 are presented. Fig. 19 shows the
system response controlled by solution 𝐱4 ∈ 𝐗𝑤𝑐 (solution with a good
balance between objectives 𝑓1𝑚𝑎𝑥 and 𝑓2𝑚𝑎𝑥 ) under the evaluation of the
uncertainty framework 𝐏𝛼 . To analyze the performance and robustness
of the entire set of solutions, Table 4 also presents the evaluation of
the objective functions 𝑓1(𝐱,𝐩0) and 𝑓2(𝐱,𝐩0), and the evaluation of the
robustness index 𝑓1𝑚𝑎𝑥 (𝐱,𝐏

𝛼) and 𝑓2𝑚𝑎𝑥 (𝐱,𝐏
𝛼) calculated under consid-

eration of the uncertainty framework 𝐏𝛼 . The same index 𝑓𝑚𝑎𝑥(𝐱,𝐏𝛼) is
also calculated for the set of solutions 𝐗𝑛𝑜𝑚 and shown in Table 3.

A comparative analysis of control performance in the objective
space between the sets 𝐗𝑛𝑜𝑚 and 𝐗𝑤𝑐 is shown in Fig. 20. This analysis
contrasts two aspects; one is the performance of the controllers on the
nominal model 𝒇 (𝐱,𝐩0), represented by red squares and black stars for
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u

Fig. 19. Dynamic response of the system controlled by 𝐱4 ∈ 𝐗𝑤𝑐 under uncertainties 𝐏𝛼 .
Table 4
Control parameter results obtained for the set of solutions 𝐗𝑤𝑐 .
𝐗𝑤𝑐 𝐾𝑐1 𝑇𝑖1 𝐾𝑐2 𝑇𝑖2 𝑓1(𝐱,𝐩𝟎) 𝑓2(𝐱,𝐩𝟎) 𝑓1𝑚𝑎𝑥 (𝐱,𝐏

𝛼 ) 𝑓2𝑚𝑎𝑥 (𝐱,𝐏
𝛼 )

𝐱1 −0.86 113.56 −3.95 112.88 0.365 6.0e−3 0.396 7.1e−3
𝐱2 −0.71 44.88 −5.72 44.33 0.158 8.0e−3 0.176 8.8e−3
𝐱3 −0.68 42.85 −4.66 47.96 0.163 7.3e−3 0.181 8.4e−3
𝐱4 −0.83 55.09 −4.53 62.16 0.185 6.7e−3 0.200 7.6e−3
𝐱5 −0.55 47.34 −4.98 69.36 0.223 6.4e−3 0.238 7.3e−3
𝐱6 −0.75 45.46 −6.25 47.49 0.152 8.0e−3 0.170 9.2e−3
𝐱7 −1.01 35.54 −6.98 57.04 0.124 11.5e−3 0.151 13.9e−3
𝐱8 −0.79 50.00 −5.36 66.08 0.172 7.5e−3 0.189 8.2e−3
𝐱9 −0.81 45.79 −6.82 56.55 0.149 8.1e−3 0.165 9.9e−3
𝐱10 −0.57 43.02 −4.78 64.19 0.199 6.5e−3 0.215 7.5e−3
𝐱11 −0.67 43.71 −4.80 61.56 0.178 6.8e−3 0.194 7.7e−3
𝐱12 −0.56 59.12 −4.84 68.24 0.257 6.3e−3 0.273 7.2e−3
Fig. 20. Comparison between the set of controllers 𝐗𝑛𝑜𝑚 and 𝐗𝑤𝑐 under the nominal model and the worst-case index.
the sets 𝐗𝑛𝑜𝑚 and 𝐗𝑤𝑐 respectively. The second is the robustness to the
ncertainty framework 𝐏𝛼 evaluated by the worst-case index 𝒇𝑚𝑎𝑥(𝐱,𝐏𝛼)

and represented by red circles and black triangles for the sets 𝐗𝑛𝑜𝑚 and
𝐗𝑤𝑐 respectively. In this Figure, some controllers are located outside
the scale. The evaluation of all solutions shown in this figure for sets
𝐗𝑛𝑜𝑚 and 𝐗𝑤𝑐 have been presented above in Tables 3 and 4.

From this analysis, it can be noted that there is a slight loss of per-
formance of set 𝐗𝑤𝑐 compared to 𝐗𝑛𝑜𝑚 in the nominal model 𝐩𝟎. If only
the nominal scenario is considered, solutions 𝐗𝑤𝑐 would be identified
as sub-optimal. However, the set 𝐗𝑤𝑐 shows an evident improvement
in the minimization of the worst-case index, and there are no solutions
of set 𝐗𝑛𝑜𝑚 that can dominate them. Fig. 20 highlights the solutions
𝐱4 ∈ 𝐗𝑛𝑜𝑚 and 𝐱4 ∈ 𝐗𝑤𝑐 used as a reference in the simulations of
15
the system performance under uncertainties shown in Figs. 18 and 19.
Functions 𝒇 (𝐱,𝐩0) and 𝒇𝑚𝑎𝑥(𝐱,𝐏𝛼) for solution 𝐱4 ∈ 𝐗𝑛𝑜𝑚 are denoted
by a solid red square and a solid red circle respectively. The same
functions are marked for solution 𝐱4 ∈ 𝐗𝑤𝑐 by a solid black star and
a solid black triangle respectively. The selection of two solutions with
an equal balance of objectives is intended to make the performance
comparison as fair as possible. In Fig. 22, a comparison between the
system responses shown in Figs. 18 and 19 for these two solutions is
provided. The red area representing the performance of the controller
𝐱4 ∈ 𝐗𝑤𝑐 under uncertainties exhibits less degradation than the red area
(controller 𝐱4 ∈ 𝐗𝑛𝑜𝑚), particularly in the steady-state zones.

Using the set 𝐗𝐰𝐜 as reference controllers, we again perform the
model characterization process shown in Fig. 17 and described in step
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Fig. 21. Robustness comparison between sets 𝐗𝑛𝑜𝑚, 𝐗𝑤𝑐 , 𝐗𝑟𝑎𝑛 and 𝐗𝑔𝑙 under the worst-case index.
Fig. 22. Comparison between the dynamic response of the system under uncertainty 𝐏𝛼 controlled by 𝐱4 ∈ 𝐗𝑛𝑜𝑚 (blue) and 𝐱4 ∈ 𝐗𝑤𝑐 (red).
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Table 5
Recurrence of worst-case model identification in the degradation analysis 𝒇 (𝐗𝑛𝑜𝑚 ,𝐏𝛼 )
nd 𝒇 (𝐗𝑤𝑐 ,𝐏𝛼 ).
Recurrence Worst-case models identified Worst-case models identified

in 𝑓 (𝐗𝑛𝑜𝑚 ,𝐏𝛼 ) in 𝑓 (𝐗𝑤𝑐 ,𝐏𝛼 )

11 times none 𝐩127
9 times 𝐩127 none
5 times 𝐩75 𝐩75
4 times none 𝐩133, 𝐩138
3 times none 𝐩37, 𝐩134
2 times 𝐩37 ,𝐩138 𝐩50
1 time 𝐩41, 𝐩50, 𝐩99, 𝐩133, 𝐩134 𝐩41, 𝐩99, 𝐩109

3.3 of the methodology. The set of worst-case models identified in the
degradation analysis 𝒇 (𝐗𝐰𝐜,𝐏𝛼) is {𝐩37,𝐩41,𝐩50,𝐩75,𝐩99,𝐩109,𝐩127,𝐩133,
134,𝐩138} ∈ 𝐏𝛼 . The recurrence of model identification in the degrada-
ion analysis for all the controllers in 𝐗𝐰𝐜 is presented in the second

column of Table 5. Based on this analysis, we can observe that the
worst-case models identified in the degradation analysis 𝒇 (𝐗𝑛𝑜𝑚,𝐏𝛼)
with the highest recurrence coincide with the worst-case models of the
highest recurrence identified in the degradation analysis 𝒇 (𝐗𝑤𝑐 ,𝐏𝛼).
This fact is the indicator to confirm that the set of models used to
address the robust control design has been adequately selected since
the characterization of the uncertainty models with different reference
controllers provides similar results.

6.2. Repercussion of appropriate uncertainty modeling on robust control
design

To highlight the importance of defining a good set that should ade-
quately represent the global set showing the robustness characteristics
to be evaluated, the problem of Eqs. (29)–(37) is again solved under
the worst-case minimization for the following uncertainty cases: (a) the

𝛼 𝑟𝑎𝑛
uncertainty framework 𝐏 and (b) the low relevant model set 𝐏 .

16
Therefore, we will see that 𝐏𝛽 clearly shows the robustness of 𝐏𝛼

and that a random 𝐏𝛼 sample of the same size as 𝐏𝛽 is not good for
robustness assessment.

Approach (a) consists of solving the robust control problem under
the consideration of the set 𝐏𝛼 , which represents the entire uncertainty
ramework of the system. Approach (b) formulates the robust control
roblem under a subset of nine randomly models selected from 𝐏𝛼

same size than 𝐏𝛽), such that 𝐩 ∉ 𝐏𝑤𝑐 .
As a result of the control tuning under the approaches (a) and (b),

he sets of controllers 𝐗𝑔𝑙 and 𝐗𝑟𝑎𝑛 are obtained respectively. Fig. 21
resents a robustness comparison between the sets 𝐗𝑛𝑜𝑚, 𝐗𝑤𝑐 , 𝐗𝑔𝑙 and
𝑟𝑎𝑛 under the worst-case index when the uncertainty framework 𝐏𝛼 is
onsidered. From this analysis, we notice that the sets of solutions 𝐗𝑛𝑜𝑚

(red circles) exhibit the worst evaluation of the worst-case index. The
sets 𝐗𝑔𝑙 (blue dots) and 𝐗𝑤𝑐 (black asterisks) show the best minimiza-
tion of this index. Some controllers of set 𝐗𝑟𝑎𝑛 (green stars) minimize
the index worst-case with respect to 𝐗𝑛𝑜𝑚, but it is not even close to the
result exhibited by 𝐗𝑤𝑐 .

Since the set 𝐗𝑤𝑐 manages to minimize the worst-case index al-
most as much as 𝐗𝑔𝑙, it provides evidence confirming the excellent
representative quality of the set of models 𝐏𝛽 regarding the uncertainty
framework 𝐏𝛼 for addressing the robust control problem. In addition,
the fact that the set 𝐗𝑟𝑎𝑛 shows an intermediate performance between
𝐗𝑛𝑜𝑚 and 𝐗𝑤𝑐 suggests that an inappropriate definition of the uncer-
tainty models used for formulating the control problem may lead to an
inadequate tuning of robust controllers.

6.3. Computational cost associated with the uncertainty modeling method-
ology

The simulation cost is the most significant computational cost in-
volved in applying the methodology for uncertainty modeling. Table 6
summarizes the sets of models used and the representation of the com-
putational cost in the modeling process. Stages 1 and 2 are necessary
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Table 6
Comparison of the uncertainty sets used in the modeling process.

Set Set size Computational cost
(number of models) (number of simulations)

P 589 589
𝐏𝜙1 1500 No simulations
𝐏𝜙2 1071 1071
𝐏𝜙3 573 No simulations
𝐏𝛼 140 1540
𝐏𝛽 9 No simulations

Table 7
Summary of the computational cost involved in processing each set of
models in uncertainty modeling.

Set Set size Computational cost
(number of controllers) (number of simulations)

𝐗𝑛𝑜𝑚 11 20000
𝐗𝑤𝑐 12 201540
𝐗𝑔𝑙 14 2800000

to define the framework 𝐏𝛼 under a representative uncertainty domain
hat should not lead to conservative controllers. These stages involve
he simulation of the sets P and 𝐏𝜙2 in an open loop, which represents a
ost of 589 and 1071 simulations respectively. Stage 3 is used to define
he set of models 𝐏𝛽 that formulates the robust control problem. This
tage involves the simulation of set 𝐏𝛼 for each controller defined in
𝑛𝑜𝑚 in closed loop. This process represents 1540 simulations. Based on

his, the total simulation cost for defining the uncertainty framework
𝛼 is 1660 simulations, and the cost for defining the set 𝐏𝛽 from 𝐏𝛼 is
540 simulations.

For the computational cost involved in the robust control problem,
e present in Table 7 a comparison between using the sets 𝐏𝛼 and
𝛽 in the optimization process. To make the comparison as fair as
ossible, the evolutionary algorithm evMOGA (Martínez et al., 2009)
as used under the same configuration (same population size, same
enerations, etc.). The optimization process to determine 𝑋𝑛𝑜𝑚 under
he nominal model 𝐩0 was carried out with only 20,000 evaluations
f the objective function. The optimization process to determine 𝑋𝑔𝑙

nder the uncertainty framework 𝐏𝛼 (140 models) needed 2,800,000
valuations. The computational cost to determine 𝑋𝑤𝑐 under the set
𝛽 (nine models) involved 201,540 evaluations. This cost includes the
0,000 evaluations needed to determine 𝑋𝑛𝑜𝑚, the 1540 evaluations
epresenting the cost of the degradation analyses used to determine 𝐏𝛽

rom 𝐏𝛼 and 180,000 evaluations of the optimization process to solve
he robust control problem. As can be seen, tackling the robust control
roblem under the set 𝐏𝛽 represents an approximate cost reduction of
2.8% compared to using 𝐏𝛼 in the optimization process.

. Conclusions

Formulating a robust control problem usually requires defining the
et of uncertainty scenarios facing the system. When dealing with
on-linear systems involving many parameters, inappropriate modeling
f uncertainties may lead to a highly conservative performance in
he control design. To address this problem, this paper presents a
ew methodology for modeling parameter uncertainty. This modeling
s distinguished by representing a computationally feasible cost and
imiting conservatism to uncertainty cases with higher probabilities.
he novelty of this process consists in using the multiobjective space to

dentify a set of scenarios with properties that are highly relevant for
he robust control design. A minimization strategy for robust controller
uning must be pre-established. The advantages of this methodology
nable the designer to define a region of interest in the domain of
ncertainties and obtain a reduced computational cost representation.
ts application is not restricted to the number of parameters in which
ncertainties are considered or the use of linear or nonlinear models.
17
To describe the methodology, the temperature control design of a
EMFC system is presented in this work. This approach is used to mini-
ize the worst-case index within an uncertainty framework defined for

his system. The dynamic model has been identified and experimentally
alidated in Navarro et al. (2019), Ferrando et al. (2020). In addition,
multiloop PID design under a multiobjective optimization approach

o control the temperature of the PEMFC stack is addressed in Gimenez
t al. (2020). The results of these papers suggest exploring a robust
ontrol approach due to the presence of uncertainties in the model
arameters.

After applying our methodology for uncertainty modeling, two sets
f models are defined. The first is the uncertainty framework of the
ystem 𝐏𝛼 with 140 models, the second is the set 𝐏𝛽 with nine models.
his second set is a representative sample of 𝐏𝛼 representing 7.2% of
he computational cost and addresses the robust control problem under
orst-case minimization.

A robust control design is carried out while considering the set of
odels 𝐏𝛽 . Theoretical results obtained in simulations (as can be seen

n Figs. 19–22) show that the robust controllers obtained attenuate
he effect of uncertainties and despite a slight performance loss on
he nominal model, present an evident minimization of the worst-
ase index compared to non-robust controllers. Moreover, based on the
erformance analysis of robust controllers, we can verify that 𝐏𝛽 is an
ppropriate representation of the uncertainty framework 𝐏𝛼 according
o the following aspects: (1) the characterization process of the worst-
ase models in 𝐏𝛼 provides results with a high percentage of similarity
hen using 𝐗𝑛𝑜𝑚 or 𝐗𝑤𝑐 as reference controllers; (2) the minimization
egree of the worst-case index achieved by 𝐗𝑤𝑐 is similar to that
xhibited by 𝐗𝑔𝑙, which was tuned after solving the robust control
roblem under the consideration of the uncertainty framework 𝐏𝛼 .
rom these results, it is evidenced that model characterization in the
bjective space represents a very efficient approach for defining highly
epresentative uncertainty models.

Finally, the results obtained provide a basis for future work and
ines of research: (1) experimental validation of the robust control
esign achieved in this work in the PEMFC system; (2) optimization
f the control design by addressing various concepts and strategies
such as predictive control, nonlinear methods, and fuzzy control) for
mproving current system performance; (3) Uncertainty modeling and
obust control design under the minimization approach for different
obustness indices.
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