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Abstract

In this manuscript, we design an efficient sixth-order scheme for solving nonlinear systems of equations, with only two
steps in its iterative expression. Moreover, it belongs to a new parametric class of methods whose order of convergence
is, at least, four. In this family, the most stable members have been selected by using techniques of real multidimensional
dynamics; also, some members with undesirable chaotic behavior have been found and rejected for practical purposes.
Finally, all these high-order schemes have been numerically checked and compared with other existing procedures of the
same order of convergence, showing good and stable performance.

Keywords: Nonlinear systems of equations; iterative methods; acceleration of convergence; real multidimensional
dynamics.

1. Introduction

New and efficient solution techniques are needed for obtaining the roots of a system of nonlinear equations of the form

F (x) = 0, (1)

where F : D ⊆ Rn → Rn, which partake of scientific, engineering and various other models. One of the best known one-
point optimal method is the classical Newton’s method [17]. Many other schemes have been developed which improve the
convergence rate of the Newton method at the expense of additional evaluations of the nonlinear function F , its associate
Jacobian matrix F ′ and more steps in the iterative expression. All these modifications are in the direction of increasing
the local order of convergence with the view of increasing their efficiency indices.

With the advances of computer algebra, a number of sixth-order methods are also appearing as extensions of Newton’s
method or Newton-like schemes (see for example [11, 16, 10, 12, 1, 13, 18]). In 2014, Sharma and Arora [16], suggested
a new efficient Jarratt-like method for solving nonlinear systems, which is defined as follows:

y(k) = x(k) − 2

3
F ′(x(k))−1F (x(k)),

z(k) = x(k) −
[

23

8
I − F ′(x(k))−1F ′(y(k))

(
3I − 9

8
F ′(x(k))−1F ′(y(k))

)]
F ′(x(k))−1F (x(k)),

x(k+1) = z(k) −
(

5

2
I − 3

2
F ′(x(k))−1F ′(y(k))

)
F ′(x(k))−1F (z(k)).

(2)

On the other hand, in 2015 Hueso et al. [10] and Lotfi [12] proposed three point sixth-order methods, which are given
by

y(k) = x(k) − 2

3
F ′(x(k))−1F (x(k)),

z(k) = x(k) −Gs(x(k), y(k))F ′(x(k))−1F (x(k)),

x(k+1) = z(k) −Gt(x(k), y(k))F ′(y(k))−1F (z(k)),

(3)
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and
y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = y(k) − 2
(
F ′(x(k)) + F ′(y(k))

)−1
F (x(k)),

x(k+1) = z(k) −
(

7

2
I − 4F ′(x(k))−1F ′(y(k)) +

3

2

(
F ′(x(k))−1F ′(y(k))

)2)
F ′(x(k))−1F (z(k)),

(4)

whereH(x(k), y(k)) = F ′(x(k))−1F ′(y(k)),Gs(x(k), y(k)) = s1I+s2H(y(k), x(k))+s3H(x(k), y(k))+s4H(y(k), x(k))2,
Gt(x

(k), y(k)) = t1I + t2H(x(k), y(k)) + t3H(y(k), x(k)) + t4H(x(k), y(k))2 and the values of disposable parameters
given in [10].

Recently in 2016, Abbasbandy et al. [1] and Narang et al. [13], presented new efficient three-points methods for
solving nonlinear systems

y(k) = x(k) − 2

3
F ′(x(k))−1F (x(k)),

z(k) = x(k) −
[
I +

21

8
µ− 9

2
µ2 +

15

8
µ3
]
F ′(x(k))−1F (x(k)),

x(k+1) = z(k) −
(

3I − 5

2
µ+

1

2
µ2
)
F ′(x(k))−1F (z(k)),

(5)

being µ = F ′(x(k))−1F ′(y(k)) and

y(k) = x(k) − 2

3
F ′(x(k))−1F (x(k)),

z(k) = x(k) −

[
I +

1

2β

(
I − λ

β
G(x(k))

)−1
G(x(k))

]
H
(
G(x(k))

)
u(x(k)),

x(k+1) = z(k) −
(
pI + qG(x(k))

)
F ′(x(k))−1F (z(k)),

(6)

where G(x(k)) = I − F ′(x(k))−1F ′(y(k)), H
(
G(x(k))

)
= I + 3β−2

4β G(x(k)) + 9β2−3β−4λ+2
8β2 G(x(k))2, u(x(k)) =

F ′(x(k))−1F (x(k)), p = 1 and q = 3
2 . Scheme (6) has sixth-order of convergence for all λ, β ∈ R except β = 0.

More recently, in 2017, Wang and Li in [18] have proposed an efficient three-point sixth-order method, which is
defined as follows:

y(k) = x(k) − F ′(x(k))−1F (x(k)),

z(k) = y(k) −
(

2I − F ′(x(k))−1F ′(y(k))
)
F ′(x(k))−1F (y(k)),

x(k+1) = z(k) −
(

2I − F ′(x(k))−1F ′(y(k))
)
F ′(x(k))−1F (z(k)).

(7)

Obtaining new two-point methods of order six is a very important and interesting task from the practical point of
view. In this way, we can attain sixth-order convergence with two steps per iteration, instead of three ones. Motivated
and inspired in this way, we propose a two-point sixth-order family of schemes having simpler body structure than the
existing three-point families of sixth-order methods. Further, our class of iterative schemes is more competent in all the
tested examples than the existing three-point sixth-order methods available in the literature. The dynamic study of these
methods supports the theoretical aspects and show the dependence on initial estimations of the different members of the
new family.

The following section of this manuscript is devoted to the design of the class of iterative methods for solving nonlinear
systems and shows the analysis of its convergence. Section 3 deals with the study of the stability of the proposed family by
using techniques of real multidimensional discrete dynamics. The class is found to be very stable and some elements with
particular good performance are obtained. They are used in the numerical Section 4 and their performance is compared
with those of existing methods.

2. Development of the scheme for multi-dimensional case

In this section, we propose a new two-point high-order family, which is given by

y(k) = x(k) − F ′(x(k))−1F (x(k)),

x(k+1) = y(k) −
(
αI + βµ(k) + γµ(k)2 + µ(k)(µ(k) − I)(I − η(k))

)
F ′(y(k))−1F (y(k)),

(8)
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where α, β and γ are free disposable parameters with µ(k) = F ′(x(k))−1F ′(y(k)) and η(k) = F ′(x(k))−1[y(k), x(k);F ],
being I the identity matrix of size n× n. In addition, [y(k), x(k);F ] is a finite difference of order one.

In Theorem (1), we demonstrate the fourth-convergence order of the class of iterative schemes (8), which has a member
of order six. In the proof of this result, we use the tools and procedure introduced in [3] which we recall briefly.

Let F : D ⊆ Rn −→ Rn be sufficiently differentiable in D. The qth derivative of F at u ∈ Rn, q ≥ 1, is the q-linear
function F (q)(u) : Rn × · · · × Rn −→ Rn such that F (q)(u)(v1, . . . , vq) ∈ Rn. It is easy to observe that

1. F (q)(u)(v1, . . . , vq−1, ·) ∈ L(Rn),

2. F (q)(u)(vσ(1), . . . , vσ(q)) = F (q)(u)(v1, . . . , vq), for all permutation σ of {1, 2, . . . , q}.

From the above properties we can use the following notation, where vq = (v, v, . . . , v), q-times :

(a) F (q)(u)(v1, . . . , vq) = F (q)(u)v1 . . . vq ,

(b) The element of L(Rn), F (q)(u)vq−1 acting on F (p)vp are denoted by

F (q)(u)vq−1F (p)vp = F (q)(u)F (p)(u)vq+p−1.

On the other hand, for ξ∗ + h ∈ Rn lying in a neighborhood of a solution ξ∗ of F (x) = 0, we can apply Taylor’s
expansion and assuming that the Jacobian matrix F ′(ξ∗) is nonsingular, we have

F (ξ∗ + h) = F ′(ξ∗)

[
h+

p−1∑
q=2

Cqh
q

]
+O(hp), (9)

where Cq = (1/q!)[F ′(ξ∗)]−1F (q)(ξ∗), q ≥ 2. We observe that Cqhq ∈ Rn since F (q)(ξ∗) ∈ L(Rn× · · ·×Rn,Rn) and
[F ′(ξ∗)]−1 ∈ L(Rn).

In addition, we can express F ′ as

F ′(ξ∗ + h) = F ′(ξ∗)

[
I +

p−2∑
q=2

qCqh
q−1

]
+O(hp−1), (10)

where I is the identity matrix. Therefore, qCqhq−1 ∈ L(Rn). From (10), we obtain

[F ′(ξ∗ + h)]−1 =
[
I +X2h+X3h

2 +X4h
4 + · · ·

]
[F ′(ξ∗)]−1 +O(hp), (11)

where

X2 = −2C2,

X3 = 4C2
2 − 3C3,

X4 = −8C3
2 + 6C2C3 + 6C3C2 − 4C4,

...

We denote e(k) = x(k) − ξ∗ the error in the kth-iteration in the multidimensional case. The equation

e(k+1) = Me(k)
p

+O(e(k)
p+1

)

whereM is a p-linear functionM ∈ L(Rn×· · ·×Rn,Rn), is called the error equation and p is the order of convergence.
Let us observe that e(k)

p
is (e(k), e(k), · · · , e(k)).

Theorem 1. Let F : D ⊆ Rn → Rn be a sufficiently differentiable function in an open neighborhood D of its zero ξ∗.
Let us consider that F ′(x) is continuous and nonsingular in ξ∗. In addition, we assume the initial guess x(0) is close
enough to ξ∗ for the guaranteed convergence. Then, the parametric iterative schemes of class (8) satisfying

β = 2− 2α and γ = α− 1, (12)

have fourth-order of convergence. In particular, the method resulting for α = 7
4 has sixth-order of convergence, being its

error equation

e(k+1) =

(
14C5

2 − 7C3C
3
2 + C4C

2
2 −

3

4
C2

3C2

)
e(k)

6
+O(e(k)

7
).
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Proof. Let e(k) = x(k) − ξ∗ be the error of the kth-iteration. Developing F (x(k)) and F ′(x(k)) in a neighborhood of
ξ∗, we write

F (x(k)) = F ′(ξ∗)
[
e(k) + C2e

(k)2 + C3e
(k)3 + C4e

(k)4 + C5e
(k)5 + C6e

(k)6
]

+O(e(k)
7
) (13)

and
F ′(x(k)) = F ′(ξ∗)

[
I + 2C2e

(k) + 3C3e
(k)2 + 4C4e

(k)3 + 5C5e
(k)4 + 6C6e

(k)5
]

+O(e(k)
6
), (14)

where I is the identity matrix of size n× n and Ck = 1
k!F
′(ξ∗)−1F (k)(ξ∗), k ≥ 2.

With the help of above expression (14), we have

F ′(x(k))−1 =
[
I − 2C2e

(k) + Ω0e
(k)2 + Ω1e

(k)3 + Ω2e
(k)4 + Ω3e

(k)5 + Ω4e
(k)6 +O(e(k)

7
)
]
F ′(ξ∗)−1 (15)

where Ωi = Ωi(C2, C3, ..., C6), for example Ω0 = 4C2
2−3C3, Ω1 = −(8C3

2−6C2C3−6C3C2+4C4), Ω2 = 8C2C4+
9C2

3+8C4C2−12C2
2C3−12C2C3C2−12C3C

2
2+16C4

2−5C5, Ω3 = 10C2C5+12C3C4+12C4C3+10C5C2−16C2
2C4−

18C2C
2
3−16C2C4C2−18C3C2C3−18C2

3C2−16C4C
2
2 +24C3

2C3+24C2
2C3C2+24C2C3C

2
2 +24C3C

3
2−32C5

2−6C6,
etc.

From expressions (13) and (15), we further yields

F ′(x(k))−1F (x(k)) =e(k) + ∆0e
(k)2 + ∆1e

(k)3 + ∆2e
(k)4 + ∆3e

(k)5 + ∆4e
(k)6 +O(e(k)

7
), (16)

where ∆j = ∆j(C2, C3, ..., C6), for example ∆0 = −C2, ∆1 = 2C2
2 − 2C3, ∆2 = −(4C3

2 − 4C2C3 − 3C3C2 +
3C4), ∆3 = 6C2C4 + 6C2

3 + 4C4C2−8C2
2C3−6C2C3C2−6C3C

2
2 + 8C4

2 −4C5, ∆4 = 8C2C5 + 9C3C4 + 8C4C3 +
5C5C2 − 12C2

2C4 − 12C2C
2
3 − 8C2C4C2 − 12C3C2C3 − 9C2

3C2 − 8C4C
2
2 + 16C3

2C3 + 12C2
2C3C2 + 12C2C3C

2
2 +

12C3C
3
2 − 16C5

2 − 5C6, etc.
By inserting the above expression (16) in the first substep of (8), we obtain

y(k) − ξ∗ = −∆0e
(k)2 −∆1e

(k)3 −∆2e
(k)4 −∆3e

(k)5 −∆4e
(k)6 +O(e(k)

7
), (17)

which further produce

F (y(k)) =F ′(ξ∗)
[
−∆0e

(k)2 −∆1e
(k)3 + (C2∆2

0 −∆2)e(k)
4

+ (2C2∆0∆1 −∆3)e(k)
5
+

−
(
C3∆3

0 − C2

(
∆2

1 + 2∆0∆2

)
+ ∆4

)
e(k)

6
+O(e(k)

7
)
] (18)

and

F ′(y(k)) =F ′(ξ∗)
[
1− 2C2∆0 − 2C2∆1e

(k)3 +
(
3C3∆2

0 − 2C2∆2

)
e(k)

4
+ (6C3∆0∆1 − 2C2∆3) e(k)

5

+
(
−4C4∆3

0 + 3C3

(
∆2

1 + 2∆0∆2

)
− 2C2∆4

)
e(k)

6
+O(e(k)

7
)
]
.

(19)

From expressions (18) and (19), we further obtain

F ′(y(k))−1F (y(k)) = −∆0e
(k)2 −∆1e

(k)3 −
(
C2∆2

0 + ∆2

)
e(k)

4
− (2C2∆0∆1 + ∆3) e(k)

5
+O(e(k)

6
), (20)

[
y(k), x(k);F

]
=1 + C2e

(k) + (C3 − C2∆0) e(k)
2
− (C3∆0 + C2∆1 − C4) e(k)

3

+
(
C3∆2

0 − C4∆0 − C3∆1 − C2∆2 + C5

)
e(k)

4
+O(e(k)

5
).

(21)

By using the expressions (13) – (21) in the scheme (8), we have

e(k+1) − ξ∗ = Θ0e
(k)2 + Θ1e

(k)3 + Θ2e
(k)4 + Θ3e

(k)5 + Θ4e
(k)6 +O(e(k)

7
). (22)

where Θi = Θi(∆0,∆1, . . . ,∆4, C2, C3, . . . , C6, α, β, γ), for example Θ0 = (α+ β + γ − 1)∆0, Θ1 = (α+ β + γ −
1)∆1 − 2(β + 2γ)C2∆0, etc.

From equation (22), it is clear that by substituting the following value

γ = 1− α− β, (23)

4



we get at least third-order convergence.
Further, by using (23) into Θ1 = 0, we have

2α+ β − 2 = 0,

which further yields
β = 2− 2α. (24)

By using the values of ∆0, ∆1 and equations (23) and (24) into (22), we get the fourth-order of the family,

e(k+1) = (7− 4α)C3
2e

(k)4 + (4α− 7)C2
2

(
8C2

2 − 5C3

)
e(k)

5
+ Θ̄4e

(k)6 +O(e(k)
7
). (25)

It is clear from the above expression (25) that we have sixth-order convergence when we choose

α =
7

4
. (26)

Finally, by adopting the expressions (23), (24) and (26) into (25), we obtain the following error equation

e(k+1) =
1

4
C2

(
−4C2 (2C4 + ∆2) + 40C4

2 − 3C2
3

)
e(k)

6
+O(e(k)

7
). (27)

Therefore, the particular scheme of (8) has sixth-order convergence with two substeps.

3. Stability analysis

Now, let us recall some concepts about real multidimensional discrete dynamics that we use along this manuscript.
Let us denote with G(x) the vectorial fixed-point rational function associated to the iterative method applied to n-

variable polynomial system p(x) = 0, p : Rn → Rn. Most of the following concepts are direct extensions of those
considered in complex dynamics (see, for example, [4, 15] for more explanations).

The orbit of x(0) ∈ Rn is defined as
{
x(0), G(x(0)), . . . , Gm(x(0)), . . .

}
. A point x∗ ∈ Rn is a fixed point of G if

G(x∗) = x∗, and it is called strange fixed point when it is not a root of p(x) = 0. The stability of the fixed points is
characterized in a result by Robinson ([15], page 558), stating that the character of a k-periodic point x∗ depends on the
eigenvalues of G′(x∗), λ1, λ2, . . . , λn. It is attracting if all |λj | < 1, repelling if all |λj | > 1 (j = 1, 2, . . . , n)), and
unstable or saddle if at least one λj0 exists such that |λj0 | > 1. In addition, a fixed point is called hyperbolic if all the
eigenvalues λj of G′(x∗) have |λj | 6= 1.

In the following, we denote by G(x, α) = (g1(x, α), g2(x, α), . . . , gn(x, α)), the fixed point function associated to
(8) class, applied on n-dimensional quadratic polynomial p(x) = 0, where:

pi(x) = x2i − 1, i = 1, 2, . . . , n. (28)

As the polynomial system has separated variables, all the coordinate functions gj(x, α) have the same expression,
with the only difference of the sub-index j = 1, 2, . . . , n. These coordinate functions of the multidimensional rational
operator can be expressed as:

gj(x, α) =
(21− 4α)x10j + (16α+ 77)x8j − 6(4α− 7)x6j + 2(8α− 7)x4j + (1− 4α)x2j + 1

64x7j
(
x2j + 1

) , (29)

for j = 1, 2, . . . , n.
All the information about the stability of these fixed points appears in the next result.

Theorem 2. The rational function G(x, α) associated to the family of iterative methods (8) has 2n superattracting fixed
points whose components are roots of p(x). This operator also has a different number of real strange fixed points whose
components are found combining the roots of polynomial q(t) = t8(4α+43)+t6(30−12α)+t4(12α−12)+t2(2−4α)+1
depending on α, and the roots of p(x):

(a) If α < − 43
4 , two roots of polynomial q(t), denoted by qi(α), i = 1, 2 are real, being their respective eigenvalues

of the associate Jacobian matrix greater than one ( in absolute value). So, the strange fixed point expressed as
(qσ1 , qσ2 , . . . , qσn) being σi ∈ {1, 2}, are repulsive. Moreover, if at least one of the components of the strange fixed
point (but not all) are equal to 1 or −1, it will be a saddle fixed point.

5



(b) If− 43
4 ≤ α < t∗, being t∗ ≈ 2.99238 the biggest real root of polynomial 1225−3390t+2964t2−1304t3 +216t4,

then the roots of polynomial q(t) are complex and there not exist any real strange fixed point.

(c) If α = t∗, then q1(α) and q3(α) are real. Moreover, the strange fixed point (qσ1 , qσ2 , . . . , qσn) being σi ∈ {1, 3},
are non-hyperbolic as all the eigenvalues of the respective Jacobian matrices are equal to one in absolute value.
Indeed, if at least one of the components of the strange fixed point (but not all) are equal to ±1, it will be a saddle
fixed point.

(d) Finally, if α ≥ t∗, then four roots of q(t) are real, denoted by qi(α), i = 1, 2, 3, 4, and the strange fixed points
(qσ1 , qσ2 , . . . , qσn) being σi ∈ {1, 2, 3, 4} are all repulsive. If any of the components (but not all) of the strange
fixed point is equal to ±1, then it would be a saddle point.

Proof. The fixed points of the multidimensional rational function are obtained by solving gj(x, α) = xj , :

−(x2j − 1)(1 + x2j (2− 4α) + 12x4j (−1 + α)− 6x6j (−5 + 2α) + x8j (43 + 4α)) = 0, j = 1, 2, . . . , n,

i.e., the components of the fixed points are those of the roots of p(x), xj = ±1 and also the roots of the polynomial
q(t) = t8(4α+ 43) + t6(30− 12α) + t4(12α− 12) + t2(2− 4α) + 1, provided that t 6= 0.

Let us denote the roots of q(t) as qi(α), i = 1, 2, . . . , 8. As most four of the roots of q(t) are real, depending on the
value of α. The stability of the fixed points of G(x, α) is given by the absolute value of the eigenvalues of the associated
Jacobian matrix evaluated at the fixed points. Due to the nature of the polynomial system, these eigenvalues coincide with
the coordinate function of the rational operator:

Eigj(qj(α)) = −
(
qj(α)2 − 1

)3 (
(4α− 21)qj(α)6 + (40α− 49)qj(α)4 + 5(4α− 7)qj(α)2 − 7

)
64qj(α)8 (qj(α)2 + 1)

2 .

By taking into account the absolute value of this eigenvalues in the intervals where different fixed points are real, we
state that those fixed points whose components are ±1 are superattracting. As the roots of q(t) are real for α not in the
interval ]− 43

4 , t
∗[, being t∗ ≈ 2.99238 the biggest real root of polynomial 1225−3390t+2964t2−1304t3 +216t4, then

it can be checked that the respective eigenvalues are bigger than one in absolute value in all cases (see Figure 1), except
in case α = t∗, where they are equal to one. Therefore, all combinations among these roots of q(t) give rise to repulsive
strange fixed points (non-hyperbolic in case α = t∗). Moreover, all the fixed points whose components are ±1 and real
qj(α) are classified as saddle.

3.0 3.5 4.0 4.5 5.0

1

2

3

4

5

6

7

(a) Eigj(q1(α), q4(α), α)

3.5 4.0 4.5 5.0

-1000

-800

-600

-400

-200

(b) Eigj(q2(α), q3(α), α)

Figure 1: Stability of the fixed points for α > t∗ for j = 1, 2, . . . , n

3.1. Critical points and bifurcation diagrams

Firstly, we analyze the Jacobian matrix G′(x, α) of the rational function G(x, α) and its critical points. Let us recall
that, in this context, the critical points are the solutions of detG′(x, α) = 0. When the critical point is not a solution of
p(x) = 0, it is called free critical point.
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Theorem 3. The free critical points of operator G(x, α), (cσ1
(α), cσn

(α), . . . , cσn
(α)), σi ∈ {1, 2, . . . ,m} m ≤ 4, are

the only ones making null all the partial derivatives of gj(x, α), for j = 1, 2, . . . , n, whose components are different from
those of the roots of p(x), that is:

(a) If α ≤ 7
4 , there are no real free critical point.

(b) If 7
4 < α < 21

4 , c1(α) = −
√
r∗, c2(α) =

√
r∗, c3(α) = −

√
r∗∗,c4(α) =

√
r∗∗ are the different components of the

free critical points, being r∗ and r∗∗ the two positive roots of polynomial −7 + (−35 + 20α)t+ (−49 + 40α)t2 +
(−21 + 4α)t3.

(c) If α = 21
4 , the free critical points have as only different components −

√
1
23

(
4
√

3− 5
)

and
√

1
23

(
4
√

3− 5
)
.

(d) Finally, if α > 21
4 , c1(α) = −

√
r?, c2(α) =

√
r? are the different components of the free critical points, being r?

the only positive root of polynomial −7 + (−35 + 20α)t+ (−49 + 40α)t2 + (−21 + 4α)t3 in this interval.

Proof. The no null entries of the Jacobian matrix G′(x, α) are

∂gj(x, α)

∂xj
= −

(
x2j − 1

)3 (
(4α− 21)x6j + (40α− 49)x4j + 5(4α− 7)x2j − 7

)
64x8j

(
x2j + 1

)2 , j = 1, 2.

It is straightforward that the roots of polynomial (4α − 21)x6j + (40α − 49)x4j + 5(4α − 7)x2j − 7, when they are real,
are the components of the critical points.

The importance of knowing the critical points is in a classical result from Julia and Fatou (see, for example, [7]),
stating that in the immediate basin of attraction of any attracting point (fixed or periodic) there exist at least one critical
point. So, the existence of these free critical points states the possibility of another attracting behavior different from that
of the roots.

By using the information that gives us the iteration of the operator G(x, α) on the different free critical points, we
can deduce the global behavior of the family depending on the value of the parameter. When the complex dynamics of
iterative methods on polynomials is analyzed, the parameter plane plays an important role (see, for example, [6] or [2]).
We propose in Figures 2 to 3 a real parametric plot to show the orbits of each one of the free critical points (see Theorem
3) for n = 2. In each one of these pictures, a different free critical point is used as starting point of each member of the

family of iterative schemes, taking values of the parameter α in I1 =

]
7

4
,

21

4

[
and also in I2 =

]
21

4
, 10

[
(where the

components of the critical points are real, see Theorem 3). To plot these parameter lines, a mesh of 500 × 500 points is
made in the region [0, 1]× Ii, i = 1, 2. The unit interval correspond to the intention of fatten the interval where parameter
α is defined, allowing a better visualization. So, the color corresponding to each value of α is red if the corresponding
critical point converges to one of the roots of the polynomial system, blue in case of divergence and black in other cases.
This color is also assigned to all the values of [0, 1] with the same value of the parameter. The maximum number of
iterations used is 200 and the tolerance for the error estimation is 10−3, when the iterates tend to a fixed point.

We consider that this way to visualize the behavior of the critical points is more similar to that used in complex dynam-
ics and provides useful information in a more friendly way as that used in [4]. Both techniques are the only ones defined
until now (as far as the authors know) to manage the information provided by critical points in real multidimensional
dynamics.

In Figures 2 and 3, the parameter lines of all the pairs of free critical points with different or equal components are

presented, where
7

4
< α <

21

4
(due to the symmetry of the polynomial system). For values of parameter α >

21

4
,

there only exist two possible different components for free critical points (see Theorem 3). So, other parameter plots
can be obtained by combining them in pairs; they are shown in Figure 4. Let us notice that in all cases the most usual
behavior of the free critical points is the convergence to any of the four roots. No divergence behavior is observed (blue
color). However, there exist in all the parameter lines black bands corresponding to subintervals of I1 and I2 where the
corresponding critical points converge to attracting elements that are not roots of the polynomial system. The biggest
black areas appear for α ∈ [2.996, 3.003] and α ∈ [5.074, 5.144], although some other smaller intervals appear with
unstable performance. The values of α with change of stability are known as bifurcation values.

We use Feigenbaum diagrams to analyze the bifurcations of G(x, α) by using each one of the free critical points of
the map as a starting point and observing their behavior for different ranges of α. When the rational function is iterated
on these critical points, different behavior can be found after 1000 iterations of the method corresponding to each value of
α in a mesh of 3000 subintervals. The resulting behavior is from convergence to the roots to periodic orbits or even other
chaotic attractors.
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Figure 2: Parameter lines of G(x, α) involving c1(α) for
7

4
< α <

21

4

Figure 5 corresponds to the bifurcation diagrams in the common black areas of the parameter lines for α >
21

4
(see

Figure 4). In Figures 6a and 6b, the blue curves is the non-hyperbolic strange fixed point that bifurcates for bigger values
of α by a period-doubling cascade. However, in Figures 6c and 6d, when the critical point does not converge to the roots,
it converges to a periodic orbit of period 6, that for bigger values of α bifurcates in others of doubling periods.

Further, some blue regions appear in the bifurcation diagrams associated with chaotic behavior. In them, strange
attractors can be found (visualized in the bidimensional case, n = 2). To do it, we plotted in the (x1, x2)-space the
iteration of M ((x1, x2), α), for fixed values of α in the blue area. For each fixed value of parameter α, 1000 different
initial estimations have been used and, for each of them, the iterates have been plotted following this code color: The first
100 iterations are not plotted, while the following 400 are plotted in green color, the next 400 in blue color, and the last
hundred in magenta color. This can be observed in Figure 7 as a non-hyperbolic strange fixed point, after bifurcating in
periodic orbits of increasing periods, falls in a chaotic behavior where the orbits are dense in a small rectangular region of
the (x1, x2)-space.

4. Dynamical planes for n = 2

Now, the sensitivity of the members of class M4 to the initial estimation is checked, depending on some values
of the parameter α that have resulted to provide stable or unstable behavior in the previous dynamical analysis. This is
achieved by plotting the dynamical planes ofG(x, α) for different values of α. They have been obtained using the routines
appearing in [2] in the following way: a mesh of 400×400 points was used, the maximum number of iterations employed
was 80, and the stopping criterium has a tolerance of 10−3. We have painted a point of this mesh with different colors
depending on the root they converge to. This color is brighter when the number of iterations used is lower; moreover, it is
colored in black if it reaches the maximum number of iterations without converging to any of the roots.

The first dynamical plane corresponds to stable behavior, that is, there exist only convergence to the roots (see Figure
8). The unstable performance can be observed in Figure 9. For the particular value of α = 5.08, the dynamical plane in
Figure 9b shows the different basins of attraction of the roots and also a black area that is the basin of attraction of the
existing 4-periodic orbit that is attractive, appearing in yellow color.

One of the eight attracting 2-period orbits existing for α = 3 is shown in Figure 9a, whose elements are

{(−1.0000,−0.4216), (−1.0000,−0.4308)}.
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Figure 3: Parameter lines of G(x, α) not involving c1(α) for
7

4
< α <

21

4

The rest of periodic orbits are {(−1, 0.4216), (−1, 0.4308)},
{(1,−0.4216), (1,−0.4308)}, {(1, 0.4216), (1, 0.4308)}, {(−0.4216,−1), (−0.4308,−1)}, {(0.4216,−1), (0.4308,−1)},
{(−0.4216, 1), (−0.4308, 1)} and {(0.4216, 1), (0.4308, 1)}.

In Figure 9c, a part of the strange attractor found for α = 5.14 can be observed; this dynamical plane have been
obtained by avoiding the lines in the orbit of the initial estimation selected in the black area and plotting by yellow circles
the elements of the orbit. It can be seen as the most this elements lay in the small area of the strange attractor.

Finally, in Figure 9d, the phase space for α = 7.7805 is represented. In it, the 8-period orbit
{(0.2271, 0.2271), (−139.7847,−139.7847), (22.8703, 22.8703), (−3.6004,−3.6004), (−0.2271,−0.2271),
(139.7847, 139.7847), (−22.8703,−22.8703), (3.6004, 3.6004)} appears in yellow.

To sum up, the main performance of the members of M4 class of iterative methods on this kind of polynomial systems
is stable. There are no attracting strange fixed points and the only attracting behavior different from the roots lay in very
small intervals of α. The most stable member of the class is exactly that providing sixth-order of convergence; many other

members of the class (all satisfying α <
7

4
) remain totally stable as there not exist free critical points giving rise to other

basins of attraction different from the roots, but their order of convergence is four. However, when the unstable behavior
appears, it yields to undesirable convergence performance that is interesting under the dynamical point of view.
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Figure 5: Feigenbaum diagrams of G(x, α) for
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5. Numerical experiments

Here, we check the efficiency and effectiveness of our scheme on real life and standard academic test problems.
Therefore, we consider five examples, whose details can be seen in Examples (1) – (5). Further, we also depict the
starting points and zeros of the considered nonlinear system in the Examples (1)–(5). Now, we employ our sixth-order

scheme (8) with α =
7

4
, called (OM ) to verify the computational performance of them with existing methods considered

in the Introduction.
Now, we compare (8) with two sixth-order families of iterative methods that have been recently designed by Abbas-

bandy et al. [1] and Hueso et al. [10]; out of them we choose their best expressions (8) and (14–15)
(
for t1 = − 9

4 and s2 = 9
8

)
,

respectively denoted by (AM) and (HM). Moreover, we also compare our scheme with sixth-order families of iterative
methods proposed by Sharma and Arora [16] and Wang and Li [18]; out of them we choose methods namely (13) and
(6), respectively, denoted by (SM) and (WM). Finally, we compare (8) with sixth-order methods suggested by Narang
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et al. [13] and Lotfi et al. [12], we consider methods (3.1)
(
for λ = 1, β = 2, p = 1 and q = 3

2

)
and (5), respectively,

denoted by (MM) and (LM).
In Tables 2–6, we mention the number of iteration indexes (n), residual error of the corresponding function (‖F (x(k))‖),

error between the two consecutive iterations ‖x(k+1) − x(k)‖, computational order of convergence

ρ =
log
[
‖x(k+1) − x(k)‖/‖x(k) − x(k−1)‖

]
log
[
‖x(k) − x(k−1)‖/‖x(k−1) − x(k−2)‖

] ,
introduced in [5], ‖x

(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 and η. Further, the value of η is the last calculated value of ‖x

(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 .

During the current numerical experiments with programming language Mathematica (Version 9), all the computations
have been done with multiple precision arithmetics with 1000 digits of mantissa, which minimize round-off errors. The
meaning of a (±b) is a× 10(±b) in all the tables.

Example 1. In this example, we consider the well-known Hammerstein integral equation (see [14, pp. 19-20] to check
the effectiveness and applicability of our method as compared to the other existing ones, is given as follows:

x(s) = 1 +
1

5

∫ 1

0

F (s, t)x(t)3dt, (30)
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Figure 7: Strange attractors of G(x, α) for α values in some period-doubling cascade regions

where x ∈ C[0, 1] s, t ∈ [0, 1] and the kernel F is

F (s, t) =

{
(1− s)t, t ≤ s,
s(1− t), s ≤ t.

We transform the above equation into a finite-dimensional problem by using Gauss-Legendre quadrature formula given

as
∫ 1

0
f(t)dt '

2∑
j=1

wjf(tj), where the abscissas tj and the weights wj are determined for n = 2 by Gauss-Legendre

quadrature formula. By denoting the approximations of x(ti) by xi (i = 1, 2), one gets the system of nonlinear equations

5xi − 5−
2∑
j=1

aijx
3
j = 0, where i = 1, 2 and

aij =

{
wjtj(1− ti), j ≤ i,
wjti(1− tj), i < j.

Here the abscissas tj and the weights wj are known and depicted in Table 2 when n = 2. The convergence of the
methods towards the root ξ∗ ≈ (1.022598 . . . , 1.022598 . . . )T , is tested in Table 2, on the basis of the initial guess
x(0) = (−1, −1)

T .
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Table 1: Abscissas and weights of Gauss-Legendre quadrature formula for n = 2

j tj wj
1 0.2113248654051871177454256. . . 0.5000000000000000000000000. . .
2 0.7886751345948128822545744. . . 0.5000000000000000000000000. . .

Table 2: Convergence behavior of different methods on Example 1

Methods k ‖F (x(k))‖ ‖x(k+1) − x(k)‖ ρ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 η

AM

1 7.2(−10) 7.7(−10)

2 7.8(−60) 8.3(−60) 3.955178954(−5) 3.955178960(−5)

3 1.2(−359) 1.3(−359) 6.0000 3.955178960(−5)

HM

1 6.3(−9) 6.7(−9)

2 7.1(−46) 7.6(−46) 8.068403312(+4) 7.145579086(+40)

3 1.3(−230) 1.4(−230) 5.0000 7.145579086(+40)

SM

1 5.5(−10) 5.9(−10)

2 1.2(−60) 1.3(−60) 2.957756070(−5) 2.957756073(−5)

3 1.2(−364) 1.3(−364) 6.0000 2.957756073(−5)

WM

1 1.4(−10) 1.6(−10)

2 1.1(−64) 1.2(−64) 8.558182383(−6) 8.558182386(−6)

3 2.4(−389) 2.5(−389) 6.0000 8.558182386(−6)

MM

1 5.1(−10) 5.5(−10)

2 6.9(−61) 7.4(−61) 2.709163941(−5) 2.709163944(−5)

3 4.2(−366) 4.5(−366) 6.0000 2.709163944(−5)

LM

1 2.6(−10) 2.8(−10)

2 5.7(−63) 6.1(−63) 1.181398901(−5) 1.181398901(−5)

3 5.4(−379) 5.8(−379) 6.0000 1.181398901(−5)

OM

1 1.4(−10) 1.5(−10)

2 9.6(−65) 1.0(−64) 8.653105286(−6) 8.653105289(−6)

3 9.3(−390) 9.9(−390) 5.0000 8.653105289(−6)
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Figure 8: Stable dynamical planes of M4 on p(x)

Example 2. We assume the following nonlinear system of equations:

f1(x1, x2) = x1 + exp (x2)− cosx2 = 0

f2(x1, x2) = 3x1 − x2 − sinx2 = 0.
(31)

The required solution of the system is ξ∗ = (0, 0)T and we consider the initial guess x(0) = (0.5, 0.5)T . The obtained
results can be observed in Table 3.

Example 3. We assume a nonlinear system (selected from [8]), defined by the nonlinear function:

F (x) = xk − cos

(
2xk −

n∑
i=1

xi

)
, 1 ≤ k ≤ n. (32)

We choose n = 6 and the initial guess x(0) = (0.3, 0.3, 0.3, 0.3, 0.3, 0.3)T for this problem. The required solution is

ξ∗ ≈ (0.307733 . . . , 0.307733 . . . , 0.307733 . . . , 0.307733 . . . , 0.307733 . . . , 0.307733 . . . )T .
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Table 3: Convergence behavior of different methods on Example 2

Methods k ‖F (x(k))‖ ‖x(k+1) − x(k)‖ ρ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 η

AM

1 6.6(−3) 4.7(−3)

2 2.0(−14) 1.4(−14) 1.305023650 1.517979331

3 1.8(−83) 1.3(−83) 5.9926 1.517979331

HM

1 3.7(−3) 2.7(−3)

2 3.1(−14) 2.2(−14) 6.021334705(+1) 7.984925036(+12)

3 1.4(−69) 9.7(−70) 4.9946 7.984925036(+12)

SM

1 4.8(−3) 3.5(−3)

2 1.9(−15) 1.3(−15) 7.945105897(−1) 9.219151003(−1)

3 7.6(−90) 5.5(−90) 5.9931 9.219151003(−1)

WM

1 5.1(−3) 3.7(−3)

2 2.7(−15) 2.0(−15) 8.015635635(−1) 9.295921854(−1)

3 7.4(−89) 5.4(−89) 5.9925 9.295921854(−1)

MM

1 4.3(−3) 3.1(−3)

2 8.1(−16) 5.9(−16) 6.618188308(−1) 7.659557287(−1)

3 4.3(−92) 3.1(−92) 5.9934 7.659557287(−1)

LM

1 4.1(−3) 2.9(−3)

2 5.1(−16) 3.7(−16) 5.884542177(−1) 5.884542177(−1)

3 2.3(−93) 1.7(−93) 5.9946 6.647289210(−1)

OM

1 2.7(−3) 1.9(−3)

2 1.2(−15) 3.8(−16) 8.035052667 4.635630014(+7)

3 4.3(−85) 1.4(−85) 5.6309 4.635630014(+7)
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Figure 9: Unstable dynamical planes of M4 on p(x)

The numerical results are shown in Table 4.

Example 4. Let us consider the following system of nonlinear equations (chosen from Grau-Sánchez et al. [9]), defined
by the function

F (x) =

n∑
j=1,j 6=i

xj − e−xi, 1 ≤ i ≤ n. (33)

We choose n = 150 and the initial guess x(0) = (0.5, 0.5, 0.5, · · · , 0.5)T for this problem. The required solution of
this problem is

ξ∗ ≈ (0.5671433 . . . , 0.5671433 . . . , 0.5671433 . . . , · · · , 0.5671433 . . . )T .

Table 5 shows the numerical results obtained in this case.

Example 5. Let us consider the following nonlinear system

F (x) =

{
x2jxj+1 − 1 = 0, 1 ≤ j ≤ n,
x2nx1 − 1 = 0, otherwise.

(34)
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Table 4: Convergence behavior of different methods on Example 3

Methods k ‖F (x(k))‖ ‖x(k+1) − x(k)‖ ρ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 η

AM

1 6.9(−10) 1.4(−10)

2 4.0(−60) 8.4(−61) 9.404958387(−2) 9.404958401(−2)

3 1.6(−361) 3.3(−362) 6.0000 9.404958401(−2)

HM

1 5.5(−9) 1.1(−9)

2 2.5(−46) 5.2(−47) 2.286554826(+7) 5.046419320(+44)

3 4.8(−233) 9.9(−234) 5.0000 5.046419320(+44)

SM

1 5.2(−10) 1.1(−10)

2 6.0(−61) 1.3(−61) 7.370958415(−2) 7.370958423(−2)

3 1.4(−366) 2.9(−367) 6.0000 7.370958423(−2)

WM

1 1.1(−10) 2.3(−10)

2 8.8(−66) 1.8(−66) 1.317712273(−2) 1.317712273(−2)

3 2.4(−396) 4.9(−397) 6.0000 1.317712273(−2)

MM

1 4.8(−10) 1.0(−10)

2 3.5(−61) 7.2(−62) 6.878880403(−2) 6.878880410(−2)

3 4.2(−368) 9.6(−369) 6.0000 6.878880410(−2)

LM

1 2.9(−10) 6.1(−11)

2 1.2(−62) 2.5(−63) 4.845034257(−2) 4.845034256(−2)

3 5.7(−377) 1.2(−377) 6.0000 4.845034256(−2)

OM

1 9.0(−11) 1.9(−11)

2 1.7(−66) 3.5(−67) 8.043571822(−3) 8.043571826(−3)

3 7.0(−401) 1.5(−401) 6.0000 8.043571826(−3)
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Table 5: Convergence behavior of different methods on Example 4

Methods k ‖F (x(k))‖ ‖x(k+1) − x(k)‖ ρ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 η

AM

1 1.4(−6) 5.9(−9)

2 1.8(−55) 7.8(−58) 1.814507829(−8) 1.814507829(−8)

3 9.7(−349) 4.1(−351) 6.0000 1.814507829(−8)

HM

1 4.6(−6) 2.0(−8)

2 3.5(−44) 1.5(−46) 2.485682422 3.301595366(+38)

3 8.4(−235) 3.6(−237) 5.0000 3.301595366(+38)

SM

1 7.7(−7) 3.3(−9)

2 3.1(−57) 1.3(−59) 1.007050020(−8) 1.007050020(−8)

3 1.3(−359) 5.4(−362) 6.0000 1.007050020(−8)

WM

1 1.6(−6) 6.7(−9)

2 4.3(−55) 1.9(−57) 2.111852506(−8) 2.111852506(−8)

3 2.1(−346) 8.8(−349) 6.0000 2.111852506(−8)

MM

1 5.9(−7) 2.5(−9)

2 4.8(−58) 2.1(−60) 7.685599982(−9) 7.685599980(−9)

3 1.4(−364) 6.1(−367) 6.0000 7.685599980(−9)

LM

1 1.4(−6) 6.1(−9)

2 2.3(−55) 1.0(−57) 1.946645858(−8) 1.946645858(−8)

3 4.5(−348) 1.9(−350) 6.0000 1.946645858(−8)

OM

1 6.9(−8) 3.0(−10)

2 1.3(−64) 5.4(−67) 7.778375898(−10) 7.778375897(−10)

3 4.3(−405) 1.8(−407) 6.0000 7.778375897(−10)
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Table 6: Convergence behavior of different methods on Example 5

Methods k ‖F (x(k))‖ ‖x(k+1) − x(k)‖ ρ ‖x(k+1)−x(k)‖
‖x(k)−x(k−1)‖6 η

AM

1 5.5(−2) 1.8(−2)

2 8.2(−15) 2.7(−15) 7.599151595(−5) 7.695242316(−5)

3 9.5(−92) 3.2(−92) 5.9993 7.695242316(−5)

HM

1 3.0(−2) 1.0(−2)

2 2.0(−14) 6.7(−15) 6.625126396(−3) 9.962407479(+9)

3 2.7(−75) 8.9(−76) 4.9997 9.962407479(+9)

SM

1 3.9(−2) 1.3(−2)

2 6.4(−16) 2.1(−16) 4.636076578(−5) 4.674761498(−5)

3 1.3(−98) 4.3(−99) 6.0000 4.674761498(−5)

WM

1 4.2(−2) 1.4(−2)

2 1.2(−15) 3.9(−16) 5.254428593(−5) 5.303300859(−5)

3 5.7(−97) 1.9(−97) 5.9995 5.303300859(−5)

MM

1 3.4(−2) 1.1(−2)

2 2.6(−16) 8.5(−17) 3.831428538(−5) 3.858533300(−5)

3 4.4(−101) 1.5(−101) 5.9996 3.858533300(−5)

LM

1 3.4(−2) 1.1(−2)

2 2.3(−16) 7.7(−17) 3.721130070(−5) 3.746683848(−5)

3 2.3(−101) 7.6(−102) 5.9996 3.746683848(−5)

OM

1 2.1(−1) 7.1(−3)

2 7.6(−18) 2.5(−18) 2.039428975(−5) 2.047663387(−5)

3 1.6(−110) 5.3(−111) 5.9998 2.047663387(−5)

In order to obtain a large system of nonlinear equations, we choose n = 200 and the initial approximation x(0) =
(1.25, 1.25, 1.25, · · · , 1.25)T for this problem. The required solution of this problem is ξ∗ = (1, 1, 1, · · · , 1)T . The
obtained results can be observed in Table 6.

The numerical performance of the proposed and existing methods are similar in all examples. Our proposed scheme
improves slightly the results of other schemes in the third iteration. Moreover, the behavior is the same with independence
of the size of the system.

6. Concluding remarks

A parametric family of iterative methods with two steps for solving nonlinear systems has been designed. This class,
under standard conditions, converges to a solution of the system with order, at least, four. Moreover, one element of the
class reaches sixth-order of convergence. This element improves the efficiency regarding other known methods with the
same order, as it has only two steps in its iterative expression. As far as we know, all the sixth-order vectorial schemes
have three steps per iteration. A deep multidimensional dynamical analysis has been also developed on the fourth-order
family; one of the conclusions is that one of the most stable elements is that providing order six. Indeed, some values of
the parameter with chaotic behavior have been detected in order to avoid its use in practice. Finally, the numerical tests
confirm the theoretical results, showing that the proposed sixth-order scheme is robust, efficient and stable.
Acknowledgement: The authors would like to thank the anonymous reviewers for their valuable comments and sugges-
tions.
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