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1 Introduction

One of the major public health threats today is antibiotic resistance, i.e. the ability of certain
bacteria to genetically adapt and resist antibiotic treatment [12,14]. The evolution of antibiotic
resistance has been particularly worrying in recent years, and the latest forecasts estimate that by
the year 2050, resistance will cause around 10 million deaths annually and an annual cost of 100
billion USD [7]. In the face of this challenge, mathematical modeling can provide great value in
predicting, monitoring and aiding public health policy decisions.

On the evolution of the dynamics of antibiotic resistance, is well-known that antibiotic consump-
tion increases bacterial resistance [3]. This evidence is based on the fact that, in an environment
with the presence of antibiotic, resistance is a competitive advantage for the bacteria and, conse-
quently, resistant bacteria survive in greater proportion than sensitive bacteria [9]. However, in
the absence of antibiotic, there is no clear consensus on whether maintaining resistance is a disad-
vantage for the resistant bacteria and, then, whether antibiotic resistance can be reversed [2,10].

In this work, a general random mathematical model that describes the evolution over time of the
proportion of a resistant microorganism against an antibiotic have been proposed. The equation
depends on the antibiotic consumption. Using real available data on antibiotic consumption and
the proportion of resistance, the random model parameters have been calibrated using the Multi-
Objective Particle Swarm Optimization (MOPSO) bio-inspired evolutionary algorithm [5] and the
Monte Carlo method. In this way, the probability distributions of the parameters that best capture
the uncertainty of the time series of data have been obtained.
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2 Methods

2.1 Model description

The proposed random mathematical model describes the evolution of bacterial resistance to an
antibiotic in a population over time. This equation has been derived from a compartmental micro-
biological model with three species (subpopulations): resistant bacteria, sensitive bacteria and free
space left by dying bacteria [11]. The random equation for the proportion of resistant bacteria in
a population is given by:

67’A(t)—Ant+90
p(t) = eTA(t)—AmH-@o + 1 € (07 1)7 (1)

where 7 € RT is the antibiotic kill rate, Ax € RT is the difference between resistant and sensitive
bacterial mortality rates, and 6y € R is the ratio 6(t), which is defined as 6(t) = log (1f S()t)>’ at
time ¢t = 0. The three parameters are considered in this model as random variables. The cumulative
antibiotic consumption function, defined as A(t) = [} a(u)du € RT (where a(t) is the antibiotic

consumption registered at time t), is considered as a known deterministic function.

2.2 Data

The random model has been applied to study the resistance evolution of the Acinetobacter bau-
mannii (or A. baumannii) bacterium, which is one of the most problematic microorganisms in
hospitals. As antibiotic, we have chosen colistin because is one of the last efective antibiotics
against A. baumannii [4,8]. For our application, the data series of interest have been (i) the
proportion p = {p; : t = 0,1,...,107} of A. baumannii colistin-resistant monthly cases in the
2012-2020 period [13], and (i) the yearly colistin consumption & = {a; : t = 47,...,107} [1] in
the 2016-2020 period. As consumption data between 2012 and 2015 are not registered in antibiotic
consumption database, and a linear growth have been observed, the 2012-2015 period monthly
consumption data have been interpolated by a linear regression model, obtaining an estimation
function a(t) = Bt + P = 0.000525¢ + 0.031625 for the 2012-2020 entire period.

2.3 Model calibration

The first step in the calibration process is to specify the family distribution of the model param-
eters. From the data we do not have any information about the effect of decreased resistance to
a reduction in consumption. Consequently, we assume the worst possible scenario: resistance is
not a competitive disadvantage in the absence of antibiotic, or, Ax = 0. On the other hand, the
remaining parameters 7 € RT and 6y € R can be considered as random variables with log-normal
and Gaussian distributions respectively, so that

T~ lOg-N(HT, 0'7-), 90 ~ N(NQaneo)a

Once defined the random model parameters, the calibration goal is to find the parameter set
© = (lr, 4oy, Or, 0g,) that best captures the uncertainty of the data within a specific (1 — «)-
confidence region. A significance level of @ = 0.05 has been chosen. To calibrate the model, the
Multi-Objective Particle Swarm Optimization (MOPSO) bioinspired evolutionary algorithm have
been applied [5]. The algorithm follows these steps:

1. Generate L particles. Each particle represents a set of parameters @ = (fr, 1oy, 0+, 0g,),
which characterizes 7 ~ log-N(ur, 07) and 6y ~ N (ug,,06,) random model parameters.
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2. Generate a set P = {p'(t;m): t=0,...,107; i =1,...,n} of n model simulations using the
random model in Equation (1) with n sampled pairs {7,600} ; from the model parameters
distributions (Monte Carlo sampling), and considering Ax = 0.

3. Compute the objetive functions with set P and real data P, and the time instants set T =
{0,...,107}. Two orthogonal or antagonistic objective functions have been applied:

o Inside-outside error function: if we define ¢¢ = q(t; P) and Q; = Q(t; P) as the a/2
and 1 — «/2 quantiles, respectively, of the set {p'(t;7)}_; given a time instant ¢, the
inside-outside error function Fj, is defined as

Fio (0, P) =Y _min{|p; — @], 1Pt — Qel} Lp,¢(gr.01] - (2)
teT
where ﬂﬁté[qt,Qt] is the indicator function.

o Standard deviation error function: if we define o, = o(t; P) as the standard deviation
of the set {p'(¢t; )}, given a time instant ¢, the standard deviation error function F,
is defined as

Fy(P) =) o(t; P). (3)

teT
As both functions are orthogonal, we are facing a multi-objective optimization problem.

4. Check if [F;, (P, P), F,(P)] is a local best and/or a global best. It is considered as local best
if the particle is not Pareto dominated by any of the previous local bests, and global best if
the solution is not Pareto dominated by any of the previous global bests.

5. Update particle randomly or via the velocity term, using the classical PSO implementation [6].

6. Repeat from 2 until convergence is achieved.

Generally, the result of optimization a set of solutions (the Pareto front) called Pareto-optimal
solutions, which are not dominated by any other solution.

3 Results

After the application of the optimization algorithm on the model and the data, a Pareto front has
been obtained, from which a good solution has been chosen, preferring solutions with a low inside-
outside error Fj,, ensuring that the majority of the data are within the 95%-confidence interval.
Based on these criteria, the chosen solution has been

7 = (lry Ors 1, 06,)" = (—1.1507,0.0210, —3.9327, 0.4523) ,
7 ~ log-N(—1.1507,0.0210), 6y ~ N (—3.9327,0.4523), (4)
[F, F*] = [0.3233,2.6597).

107

The probability distributions of the model parameters and the fit to the data are shown in
Figure 1.
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Figure 1: Random model expected value and 95%-confidence interval (left) and model parameters
PDFs (right).
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Conclusions

A general model for antibiotic resistance proportion dynamics considering antibiotic consumption
have been analyzed and successfully applied to a real-world case of antibiotic resistance: the colistin-
resistant A. baumannii. Additionally, a complete random calibration method based on the MOPSO
algorithm and Monte Carlo method have been performed to find the random model parameters
that best fit to real resistance data series, successfully capturing the randomness within a 95%-
confidence interval.

References

[1]

2]

3]

European Center of Disease Prevention and Control (ECDC), https://www.ecdc.europa.eu.
[Accessed: 14/06/2022].

T. M. Barbosa and S. B. Levy. The impact of antibiotic use on resistance development and
persistence. Drug resistance updates, 3(5):303-311, 2000.

B. G. Bell, F. Schellevis, E. Stobberingh, H. Goossens and M. Pringle. A systematic review and
meta-analysis of the effects of antibiotic consumption on antibiotic resistance. BMC' Infectious
Diseases, 14(1):1-25, 2014.

Y. Cai, D. Chai, R. Wang, B. Liang and N. Bai. Colistin resistance of acinetobacter bau-
mannii: clinical reports, mechanisms and antimicrobial strategies. Journal of Antimicrobial
Chemotherapy, 67(7):1607-1615, 2012.

C. A. Coello Coello and M. S. Lechuga. MOPSO: a proposal for multiple objective particle

swarm optimization. Proceedings of the 2002 Congress on Evolutionary Computation. CEC’02
(Cat. No.02TH8600). IEEE, 2002.

F. Marini and B Walczak. Particle swarm optimization (PSO). a tutorial. Chemomeltrics and
Intelligent Laboratory Systems, 149:153-165, December 2015.

J. O’Neill. Antimicrobial resistance: tackling a crisis for the health and wealth of nations.
Technical report, Review on Antimicrobial Resistance, UK Governement, 07 2016. [Accessed:
31/10/2021].

10



Modelling for Engineering & Human Behaviour 2022

8]

[12]

[13]

[14]

A. Pormohammad, K. Mehdinejadiani, P. Gholizadeh, M.J. Nasiri, N. Mohtavinejad, M.
Dadashi, S. Karimaei, H. Safari and T. Azimi. Global prevalence of colistin resistance in
clinical isolates of acinetobacter baumannii: A systematic review and meta-analysis. Microbial

Pathogenesis, 139:103887, 2020.

R. A. Smith, N. M. M’ikanatha and F. Read Andrew. Antibiotic resistance: a primer and call
to action. Health Communication, 30(3):309-314, 2015.

M. Sundqvist. Reversibility of antibiotic resistance. Upsala Journal of Medical Sciences,
119(2):142-148, 2014.

M. Sundqvist, P. Geli, D.I. Andersson, M. Sjillund-Karlsson, A. Runehagen, H. Cars, K.
Abelson-Storby, O. Cars and G. Kahlmeter. Little evidence for reversibility of trimethoprim
resistance after a drastic reduction in trimethoprim use. Journal of antimicrobial chemother-
apy, 65(2):350-360, 2010.

F. C. Tenover. Mechanisms of antimicrobial resistance in bacteria. The American Journal of
Medicine, 119(6):53-S10, 2006.

Valencian Government. Microbiological Surveillance Network of the Valencian community.
http://www.sp.san.gva.es/sscc/. [Accessed: 31/10/2021].

World Health Organization (WHO). Antimicrobial resistance. https://www.who.int/
news-room/fact-sheets/detail /antimicrobial-resistance, 2020. [Accessed: 21/07/2022].

11



