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ABSTRACT 

Development of automated and remotely controlled procedures for accurate crack detection and analysis is 
an advantageous solution when compared to time-consuming and subjective crack examination conducted by 
operators. Recent studies have demonstrated that Machine Learning (ML) algorithms have sufficient potential 
for crack measurements. However, training of large amount of data is essential. When working on single sites 
with permanently installed fixed cameras adoption of ML solutions may be redundant. The purpose of this work 
is to assess the performance of a procedure for crack detection based on an easy to implement workflow 
supported by the use of ML and image processing algorithms. The datasets used in this work are composed of 
temporal sequence of single digital images. The workflow proposed includes three main modules covering 
acquisition, optimization and crack detection. Each module is automated and basic manual input by an operator 
is only required to train the classifier. The processing modules are implemented in modular open-source 
programs (e.g., ImageJ and Ilastik). Results obtained in controlled conditions led to a satisfactory level of 
detection (about 99% of the crack pattern detected). Experiments conducted on real-sites highlighted variable 
detection capabilities of the proposed approach (from 12 to 96%). The main limitation of the approach is the 
production of false-positive detection due to significant variation in illumination conditions. Further work is 
being conducted to define scalability of the approach and to verify deformation detection capabilities. 

 
I. INTRODUCTION 

Aging of the built environment worldwide demands 
for the adoption of cost-effective structural health 
monitoring approaches to ensure long-term integrity 
and adequate levels of safety. Crack patterns initiation 
and propagation are indicators of the structural 
integrity and health of a built element. Traditional crack 
visual inspections are conducted on the site by 
operators using conventional tools (such as measuring 
magnifiers, strain gauges, crack rulers, etc.). This task 
can produce subjective judgment on the state of the 
crack and introduces gross errors in the measurement. 

Recent technological advances in software and 
sensors offer the unprecedented opportunity to 
acquire considerable amount of high-quality optical 
data and process them in real-time with less subjective 
methods (Nex et al., 2019). For example, adoption of 
image processing (IP) techniques has been employed in 
the past for a range of monitoring applications (e.g., 
Deshmukh and Mane, 2020; Garrido et al., 2019; Guidi 
et al., 2014). Many researchers have proposed valid IP-
based solutions for accurate segmentation of the crack 
from digital images (Mohan and Poobal, 2018). 
However, the main limitation of detecting a set of 
cracks though IP algorithms lies in the little scalability of 
the approach that is usually only tailored for a certain 
application or for a limited dataset. When exporting the 

approach to real-world sites a range of challenges (e.g., 
light variations, shadows, stains, scratching, camera 
position, etc.) can severally reduce the efficiency of the 
detection approach. 

Machine learning (ML) algorithms have been 
extensively applied to buildings research for the past 
decades. ML-based solutions allow to minimize human 
involvement and overcome some limitations 
encountered by solutions based solely on IP methods. 
Recent studies have demonstrated that sub-branch of 
ML (such as Convolutional Neural Networks, CNN) 
algorithms have sufficient potential for crack 
measurements (Teng et al., 2021). When consistent 
amount of data is available, ML algorithms can 
automatically digest intrinsic knowledge of the data 
(such as hidden structures or relationships) and 
automatically perform difficult tasks such as localization 
and classification of different damages (e.g., cracks, 
spalling, corrosion, etc.). Detailed reviews of research 
papers focusing on crack detection through ML 
algorithms are presented by Azimi et al. (2020) and 
Hsieh and Tsai (2020). 

Working with ML algorithms certainly represent a 
suitable solution to the binary classification problems 
that include distinguishing ‘crack’ and ‘non-crack’ 
regions or pixels. A prerequisite to obtain an accurate 
and robust crack detection solution based on ML 
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algorithms is the availability of large datasets for 
training. Training can require a considerably long time. 
Also, skills and experience in computer vision and 
machine learning is required to set up proper crack 
detection solution. Furthermore, when working on 
single sites with permanently installed fixed cameras 
the need for training of large datasets may be 
unnecessary. 

Another interesting point is that most of the past 
research works in the field of crack monitoring 
implemented solutions in controlled laboratory 
environments (Mohan and Poobal, 2018). Only recently 
research efforts are being addressed to develop 
solutions for real-world applications. 

In this context, this paper presents the methodology 
and initial results of our recent research that is 
addressed at implementing an automated, cost-
effective and user-friendly procedure to monitor cracks 
over time. The purpose is to implement and test the 
efficiency of a crack detection solution based on 
modern open-source image processing and ML 
software. A cost-effective commercial solution for data 
collection and transmission with a single digital camera 
is presented also. The overall system, based on the 
combination of the data collection solution with the 
crack detection solution, is intended for a diffuse 
exploitation among technicians in the AEC (Architecture 
Engineering Construction) market. 

 

II. METHODOLOGY 

The proposed algorithm for automatic crack 
detection (summarized in Figure 1) consists of three 
main modules including photo acquisition (PAM), photo 
optimization (POM) and crack detection (CDM). 

 

 
Figure 1. A summarization of the three modules proposed 

in this study that include image acquisition and transferring, 
image pre-processing and crack detection. 

 

The PAM kit includes a single digital single-lens reflex 
(DSLR) camera, an intervalometer and a protective case 
(Figure 2). Specifically, a Canon 2000D (~24 megapixels, 
sensor APS-C CMOS and equipped with 18–55 mm 
lenses) was mounted in a protective case and installed 

in a fixed location with the camera axis perpendicular to 
the photographed crack. Acquired images can be 
transferred using an FTP server or saved on a cloud 
storage service in just a few seconds for a near real-time 
data processing. The whole PAM kit used in this study 
was provided by the company Bixion 
(www.bixion.com). 

 

 
Figure 2. The acquisition kit provided by the company 

Bixion. 
 

After acquisition, the POM conducts a radiometric 
optimization that is implemented using an open-source 
image-processing software, namely ImageJ (2021). 
Initial tests showed the presence of illumination-
dependent deformation. Adoption of pre-processing 
steps (such as radiometric optimization) improves the 
repeatability of the implemented crack analysis 
workflow avoiding the estimation of false 
deformations. The output generated after the POM 
steps is a corrective image with a smoother distribution 
of pixel intensity that presents a decreased level of 
noise while maintaining information related to the 
crack patterns. The optimized image is passed to the 
CDM, which classifies the image pixels in classes. This 
module runs a semantic segmentation via an active 
learning system (Kan, 2017) and is completely 
implemented in Ilastik (2021), an open-source software 
that allows even unexperienced operators to adopt ML-
based algorithms to classify image regions in different 
classes. More detailed information about the software 
is provided in Berg et al. (2019). For this work an 
innovative single-acquisition machine learning-based 
training method is proposed. With this method, user 
work is only required to train the model based on the 
first acquisition. The operator uses a mouse interface to 
label two classes on the image (namely “crack” and 
“background”). The software, based on the user-based 
selected classes, assigns labels to each pixel 
interactively based on a Random Forest non-linear 
classifier. The work by Geurts et al. (2009) is suggested 
for more technical information about this classifier. 
With such an approach, training is only required once 
on the first image. Images acquired subsequently are 
classified in batch mode by the trained classifier 
allowing for automatic crack detection. 

The proposed modules were tested on three different 
sites to investigate the crack detection capabilities in a 
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range of conditions including controlled (namely 
‘Test1’) and real-world sites (namely ‘Test2’ and ‘Test3’) 
conditions. 

Test1 was carried indoor with stable light condition 
and the camera fixed at 4 m from the object during 
acquisition. Camera focal length was fixed at 27 mm. A 
simulated cracked wall was used to reduce challenges 
in the detection phase. A drawing representing a total 
of seven multi-scale and multi-orientation cracks was 
generated in AutoCAD, printed and attached on the 
photographed wall (Figure 3). Cracks width varies from 
a maximum of 1.75 to 0.05 cm. A total of three images 
(three epochs) are considered. 

 

 
Figure 3. The seven artificial cracks used in Test1. 

 

For Test2 a small portion of an indoor wall of a 
residential building was selected. The wall is 
characterized by the presence of multiple cracks with 
width <0.5 mm and two areas of plaster removed 
(Figure 4). During acquisition the camera with focal 
length fixed at 37 mm was installed perpendicular to 
the cracked wall at about 4 m. For Test2 the proposed 
approach was tested on a total of six epochs. 

 

 
Figure 4. Test2: the acquisition kit and the area of interest 

(red box). 
 

Test3 was conducted outdoor acquiring drone-based 
images (Figure 5). The considered site was a residential 
wall presenting a minor crack with width <0.5mm. The 
drone used for Test3 is a DJI mini 2 that incorporates a 
camera with a 1/2.3ʺ 12 Megapixel CMOS image sensor. 

The camera has an 83° FOV, 24 mm equivalent, fixed 
aperture F2.8 lens. A total of 4 images were acquired 
(Figure 5). Specifically, the first flight (epoch0) 
conducted on a sunny day at 11am, allowed to capture 
two images (epoch 0_A and 0_B) from slightly different 
positions but with the same illumination conditions 
(images were acquired within only a few seconds 
difference). The second flight (epoch1) was conducted 
on the same day at 3 pm. A further image (epoch2) was 
acquired the next morning at 9 am on a cloudy day. All 
images were acquired with the drone flying manually at 
about 1.5 m from the crack pattern. 

 

 
Figure 5. The four images acquired for Test3 with the 

drone-based approach. The red box is the area of interest. 
 

A summarization of the three tests carried out in this 
work is presented in Table 1. For all tests the CDM and 
POM were carried out on a laptop Windows 10 Pro with 
an Intel Core i7-10750H Processor, operating a 2.60 GHz 
CPU and using 16 GB of RAM. 

To validate the efficiency of the proposed crack 
detection both qualitative and quantitative assessment 
were carried out. Specifically, the assessment was 
conducted through a visual assessment of the multi-
epoch segmentation and by comparing the automatic 
segmentation to a ground-truth. The ground-truth was 
obtained by manually determining all pixels 
appertaining to the cracked surface. Thus, the 
quantitative analysis was carried out by counting the 
total number of automatically detected crack-pixels and 
estimating their percentage against the crack-pixels 
identified from the ground-truth. 

 

III. RESULTS AND DISCUSSION 

For each test described in this paper the training of 
the classifier was carried out in less than one hour while 
the subsequent processing in batch mode led to 
classification and segmentation of the defined classes 
(namely ‘crack’ and ‘background’) in only a few 
seconds. 

Pixel-level crack segmentation outputs returned by 
the CDM for the Test1 are shown in Figure 6. Results 
demonstrate that the proposed approach correctly 
detected all cracks. Noise effects, false detection or 
poorly segmented cracks were not observed. Test1 
results show that detection is not influenced by the 
crack orientation or size when using the proposed 
approach in controlled conditions. 
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Table 1. Summarization of the 3 tests main features 

Conditions 
 

Test1 Test2 Test3 

LocationI Indoor Indoor Outdoor 
Illumination Stable Variable Variable 
Object Only cracks Cracks and noise Cracks and noise 
Camera Canon 2000D Canon 2000D Built-in DJI Mini 2 
Acquisition set-up Ground- based fixed station;

Distance: 4m 
Ground-based fixed station;
Distance: 4m 

Aerial variable station; 
Average distance 1.5m 

 

 
Figure 6. Detection outputs obtained in Test1. 

 

Regarding Test2, the proposed crack detection 
method produced again acceptable results. Outputs of 
the CDM, plotted in Figure 7, are satisfactory 
considering that most of the cracks were correctly 
identified. Noise or other extraneous features were 
correctly classified as background while most of the 
crack patterns are detected. As illustrated in Table 2, for 
most epochs, a good level of completeness of 
automatically detected cracks is achieved (above 90%). 
On the other hand, with respect to the last two epochs 
the performance of the automatic detection was lower. 
In fact, only approximately between 65 and 69% of the 
crack pixels were correctly detected when compared to 
the ground-truth. 

 

 
a)                       b)                     c)                      d) 

Figure 7. Test2: a) and c) RGB acquisition; b) and d) 
Detection results generated with the proposed approach. 

 

According to results shown in Table 2 the proposed 
approach produced poor detection with images 
acquired for Test3. In fact, for this test, in epoch1 and 
epoch2 only <16% of the total crack-pixels were 
correctly identified. Figure 8 shows evidence of a 
moderate detection result when images are acquired 
with the same illumination condition (epoch0_A and 
epoch0_B). However, zooming in on the crack pattern 

Figure 8b indicates that epoch1 and epoch2 are not 
suited to the proposed detection approach. 

 
Table 2. Detection quality results for Test2 and Test3 

Test
 

Epoch Total crack-pixels % 

2 Ground-truth 6972 100 
 1 6693 96 
 2 6321 90.7
 3 6365 91.3
 4 4796 68.8
 5 4528 64.9
3 Ground-truth 4501 100 
 0_B 3152 70 
 1 712 15.8
 2 547 12.1

 

 
a) 

 
b) 

Figure 8. Test3: a) Detection results overlaying the original 
RGB image; b) Zoom-in on the crack. In red the detected 

crack. 
 

Overall, the proposed method proved its efficiency in 
generating noise-free segmentation, avoiding the need 
for manual operations and further post-processing that 
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can affect the quality of the crack detection (Fujita and 
Hamamoto, 2011). This was possible thanks to the 
operator-based identification of not relevant features 
that is carried out on the first image of the dataset. 

It is suggested that when a uniform illumination on 
the site is guaranteed during the whole acquisition 
period, it can certainly favor the results in terms of 
segmentation (see for example Test1). When dealing 
with a set of images acquired with minor variation in 
illumination conditions, adopting radiometric 
corrections shows its potential to diminish the 
probability to generate inaccurate crack-pixel 
identification. However, for some epochs of Test2, 
erroneous classification of pixels leading mainly to false 
negative outputs was still observed. In fact, for the last 
two epochs (see Figure 7) the proposed approach tends 
to fail crack detection. Specifically, small regions of the 
cracks are classified as non-crack, resulting in loss of the 
connectivity of the crack pattern. This is a common 
issue with image processing and machine learning-
based detection algorithms (Weidner et al., 2019) that 
is usually faced with the adoption of morphological 
operators (Galantucci and Fatiguso, 2019). Such 
solutions were not initially considered for the current 
study but must be carefully implemented to achieve a 
reliable crack monitoring system. 

A different behavior was observed for results 
generated from Test3. For outdoor sites, images 
acquired on different days and times can present 
significant variation in illumination conditions 
(Figure 5). Furthermore, acquiring from similar 
positions flying the drone manually is a difficult task. As 
a consequence, drone-based acquisitions of this study 
were carried out with slightly different distances from 
the object affecting size of the field of view. Adoption 
of more stable and RTK-GNSS drones (Stott et al., 2020) 
and the use of distance sensors (Park et al., 2020) can 
support the operator in this task. Also, the proposed 
detection approach can potentially benefit from 
acquisition with a higher resolution camera. Previous 
suggested improvements can potentially lead to 
achieve a better level of detection even when dealing 
with highly variable light conditions. 

Processing of the last two epochs of the drone-based 
test (Test3) highlighted a very poor ability of the 
proposed approach to detect crack. It is suggested that 
variation in illumination is the main limitation of the 
approach. The limited size of the studied crack in Test3 
has potentially influenced the inadequate detection 
results also. 

In summary, the presented single-acquisition 
machine learning-based training is better suited for 
applications where the set of crack site is well defined 
and not affected by significant illumination variation 
(typical of outdoor sites). Thus, the presented 
procedure may be successfully applied in those cases 
requiring a multi-temporal crack detection in indoor 
scenarios allowing for a fixed installation of the 
equipment typical of several monitoring applications of 

the built environment. For different scenarios (e.g., 
multiple set of cracks with undefined locations, outdoor 
sites, etc.) other solutions based for example on CNN 
techniques may be more adequate. 

 

IV. CONCLUSION 

Current technological advancement offers the tools 
for the development of a simple near-real time long-
term monitoring approach based on a monoscopic 
system able to detect and analyse cracks with little 
operator intervention. This paper described an 
approach based on the combination of two open-
source software (ImageJ and Ilastik) and a smart data 
acquisition and transferring kit (Bixion). The proposed 
method can greatly reduce the crack inspection time 
and has the potential to achieve higher measurement 
accuracy for long-term monitoring when compared to 
traditional and subjective approaches. The study 
highlighted that in presence of significant variation in 
illumination conditions alternative crack detection 
approaches must be considered. For more information 
about Test1 and Test2, including an assessment of the 
accuracy and precision of the proposed method, the 
reader can refer to Parente et al. (2022). 
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