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Abstract 11 

Background and Objective: In silico tools are known to aid in drug cardiotoxicity 12 

assessment. However, computational models do not usually consider electrophysiological 13 

variability, which may be crucial when predicting rare adverse events such as drug-14 

induced Torsade de Pointes (TdP). In addition, classification tools are usually binary and 15 

are not validated using an external data set. Here we analyze the role of incorporating 16 

electrophysiological variability in the prediction of drug-induced arrhythmogenic-risk, 17 

using a ternary classification and two external validation datasets. 18 

Methods: The effects of the 12 training CiPA drugs were simulated at three different 19 

concentrations using a single baseline model and an electrophysiologically calibrated 20 
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population of models. 9 biomarkers related with action potential (AP), calcium dynamics 21 

and net charge were measured for each simulated concentration. These biomarkers were 22 

used to build ternary classifiers based on Support Vector Machines (SVM) methodology. 23 

Classifiers were validated using two external drug sets: the 16 validation CiPA drugs and 24 

81 drugs from CredibleMeds database. 25 

Results: Population of models allowed to obtain different AP responses under the same 26 

pharmacological intervention and improve the prediction of drug-induced TdP with 27 

respect to the baseline model. The classification tools based on population of models 28 

achieve an accuracy higher than 0.8 and a mean classification error (MCE) lower than 0.3 29 

for both validation drug sets and for the two electrophysiological action potential models 30 

studied (Tomek et al. 2020 and a modified version of O’Hara et al. 2011). In addition, 31 

simulations with population of models allowed the identification of individuals with 32 

lower conductances of IKr, IKs, and INaK and higher conductances of ICaL, INaL, and INCX, 33 

which are more prone to develop TdP. 34 

Conclusions: The methodology presented here provides new opportunities to assess drug-35 

induced TdP-risk, taking into account electrophysiological variability and may be helpful 36 

to improve current cardiac safety screening methods. 37 

1 Introduction 38 

Drug-induced Torsade de Pointes (TdP) is a special form of polymorphic ventricular 39 

tachycardia. It is one of the most frightening adverse drug reactions because it can 40 

precipitate ventricular fibrillation and cause sudden death. Although it is a rare adverse 41 

event, accounting for less than one case out of 100,000 exposures, several compounds, 42 

including antidepressants, pain medications, antihistamines, etc., have been withdrawn 43 

from the market because of their risk of inducing TdP [1,2]. Over the last years, new 44 
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strategies for the assessment of drug induced TdP-risk have been proposed with the aim 45 

of complementing and improving current regulatory guidelines [3]. One remarkable 46 

example is the Comprehensive In Vitro Proarrhythmia Assay (CiPA) initiative, which 47 

considers that in silico simulations of proarrhythmic effects for different compounds are 48 

essential to improve arrhythmogenicity prediction. 49 

Most of the mathematical and biophysical cardiac models used in in silico studies 50 

typically represent the average behavior of a group of cells characterized experimentally. 51 

Therefore, these models do not take into account electrophysiological variability [4]. 52 

However, it is well-known that identical pharmacological interventions produce different 53 

responses between individuals. When taking a certain drug, most of the individuals may 54 

not suffer any side effects while some of them may undergo TdP. For this reason, 55 

accounting for electrophysiological variability may help better estimate drug-induced 56 

proarrhythmicity. A useful strategy to account for variability in in silico models are 57 

population of models [5,6]. Briefly, to build a population of models, a certain number of 58 

model parameters are randomly varied, generally the conductance of different ion 59 

channels, thus creating a variety of cellular behaviors. 60 

Other limitations of some in silico classifications tools that have been published are 61 

that: i) they are usually based on two-class categorization systems (TdP+ and TdP-), and 62 

ii) they use cross-validation methods (e.g., leave-one-out-cross-validation), in which the 63 

data used to train the model are also used to validate the model. The White Paper 64 

published by Li and colleagues [7] recommends the use of a three-class system (high-65 

risk, intermediate-risk, and low-risk), which represents a compromise between 66 

quantitative and qualitative risk assessment. First non-binary in silico drug induced TdP-67 

risk classifier was published by Mirams and colleagues[8] in 2011, but since then few 68 

non-binary pro-arrhythmic classifiers have been proposed. Furthermore, the White Paper 69 
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also stresses that a validation of the tool with a “hidden” test data set, i.e. data not used 70 

during the training phase, provides higher confidence on the performance of the tool. To 71 

the best of our knowledge, there are only two studies that follow these two principles 72 

published to date: a publication by Li and co-workers [9], which uses the “torsade metric 73 

score” to classify 16 drugs according to their TdP-risk; and a work by Yoo and 74 

collaborators [10], which proposes an artificial neural network using nine features related 75 

with  charge,  action potential, and calcium transient morphology. 76 

The aim of this study is to analyze the role of incorporating electrophysiological 77 

variability in the prediction of drug-induced arrhythmogenic-risk. Specifically, the effects 78 

of the 12 training CiPA drugs are simulated on a single baseline model and on an 79 

electrophysiologically calibrated population of models. Ternary classifiers are built using 80 

biomarkers extracted from the simulations of these 12 drugs and are validated with the 81 

result from the simulations of 2 drugs datasets: one containing the 16 validation CiPA 82 

drugs and the other containing 81 drugs from CredibleMeds. In addition, to evaluate the 83 

influence of the action potential model, the same strategy was performed using two 84 

different action potential models. 85 

2 Materials and Methods 86 

2.1 In Silico population of models 87 

The electrophysiological characteristics of human ventricular cells were simulated 88 

taking as reference two of the latest human endocardial ventricular action potential (AP) 89 

models: the model published by Tomek and colleagues [11] (TorORd) with the dynamic 90 

intracellular chloride and a modified version of the widely used AP model developed by 91 

O’Hara’s group [12] (ORdmD). The modifications applied to the O’Hara et al. model are 92 

described in a previous study [13]. In short, model modifications include the modulation 93 

of six channel conductances (IKr multiplied by a factor of 1.119, IKs by 1.648, IK1 by 1.414, 94 
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ICaL by 1.018, INaL by 2.274, and INa by 0.4) and a reformulation of the activation and 95 

inactivation gates of INa. These modifications were designed to better reproduce 96 

experimental data on drug effects. 97 

To account for electrophysiological variability, two populations of models were built 98 

using the aforementioned models as a template. The methodology for constructing the 99 

population was the same for both models. First, an initial population of 1,000 models was 100 

generated. These models were obtained by randomly and simultaneously modifying the 101 

conductances of the ionic currents of the AP model (15 parameters in the case of ORdmD 102 

and 17 in the case of TorORd). These scale factors modifying the channel conductances 103 

were randomly sampled from a normal distribution with mean 1 and standard deviation 104 

0.2, thus assuring that the majority of the population (>99%) was in a range between 105 

±60% with respect to the baseline model. To model non-diseased healthy 106 

cardiomyocytes, the results of previous modelling studies [14,15] suggest that a variation 107 

bigger than ±50% in conductance values (from the value of the parameter in the baseline 108 

model) would allow substantial variability. 109 

After running the simulations using the initial populations in control conditions, a 110 

calibration was performed. Models with electrophysiological biomarkers not fulfilling the 111 

calibration requirements were discarded. Plausible electrophysiological properties were 112 

defined according to acceptable ranges, found in the literature, for 15 characteristics 113 

related to AP duration, amplitude of membrane potential, and calcium dynamics 114 

[6,12,16–20]. Limits of acceptance for the 15 electrophysiological properties considered 115 

are shown in Table 1. Simulations were run at 37ºC and at the following extracellular 116 

concentrations: [Na+]=140 nM, [Ca2+]=1.8 nM and [K+]=5.4 nM in order to replicate the 117 

experimental conditions of the in vitro experiments. 118 
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Table 1. Action Potential and Ca2+-related biomarkers ranges used to calibrate the control 119 

population of human ventricular AP in silico models. 120 

Biomarker Min 

Value 
Max Value 

APD40 (ms) [6] 85 320 
APD50 (ms) [6] 110 350 
APD90 (ms) [6] 180 440 
Tri 90-40 (ms) [6,12] 50 150 
dV/dt (mV/ms) [12] 150 1000 
Vpeak (mV) [6,12] 10 55 
RMP (mV) [6,12] -95 -80 
CTD50 (ms) [20] 120 420 
CTD90 (ms) [20] 220 785 
Ca

2+
 syst (µM) [17] 0.262 2.23 

Ca
2+

 diast (µM) [17] -- 0.40 
Na

+
 (mM) [19] -- 39.27 

ΔAPD90 (%) under 90% IKs [12]  -54.4 62 
ΔAPD90 (%) under 70% IKr [18] 32.25 91.94 
ΔAPD90 (%) under 50% IK1 [16] -5.26 14.86 

After calibration, 810 models of the TorORd-based population and 860 models of the 121 

ORdmD-based population presented a plausible electrophysiological behavior according 122 

to experimental data. AP and calcium transient traces of the TorORd-based population 123 

are shown in Figure 2. As shown in the Figure the population of models presents 124 

electrophysiological variability. For example, the APD90 of the baseline model yields 125 

272.25 ms, and the population of models presents APD90s varying between 185.78 and 126 

406.3 ms. This electrophysiological variability can also be observed in calcium dynamics, 127 

where systolic [Ca2+] varies between 0.263 µM and 1.195 µM. The ORdmD population 128 

is shown in the Supplementary Material, Figure S1. Distributions of the biomarkers 129 

used for calibration across each population of models (TorORd and ORdmD) are 130 

represented in Figure S2 and S3. 131 
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 132 
Figure 1. Action potentials (A) and calcium transient (B) traces of the calibrated 133 

population (810 models). Solid black lines represent TorORd baseline model. 134 

2.2 Drug Data Set and Drug Effect Simulation 135 

Drug effects on the AP were simulated via the simple pore block model. Thus, the block 136 

produced on each current was simulated by scaling the channel’s maximal conductance 137 

(𝑔𝑖). This scaling factor was calculated using the standard Hill equation (eq. 1): 138 

 

𝑔𝑖,𝑑𝑟𝑢𝑔 =  𝑔𝑖  [1 + (
𝐷

𝐼𝐶50,𝑖
)

ℎ

]

−1

 (1) 

where 𝑔𝑖,𝑑𝑟𝑢𝑔 is the maximal conductance of channel 𝑖 in the presence of the drug, D 139 

is the drug concentration, 𝐼𝐶50,𝑖 is the half-maximal response dose for that drug and 140 

current through channel 𝑖 and ℎ is the Hill coefficient, which indicates the number of 141 

molecules of drug that are assumed to be sufficient to block one ion channel. 142 

In this work we considered drug effects on the seven ionic currents selected by the Ion 143 

Channel Working Group of the CiPA initiative [21]. These currents play the most 144 

important role in the generation of the AP and cardiac arrhythmias (INa, INaL, IKr, Ito, ICaL, 145 

IK1, and IKs). 146 
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Here, we study and assess the proarrhythmic-risk of the 28 CiPA drugs [21] and an 147 

extra set of 81 drugs. The IC50 values, Hill coefficients (h) and human effective free 148 

therapeutic plasma concentrations (EFTPC) for each drug were obtained following the 149 

methodology described in previous studies [13,22]. In summary, for each value data were 150 

collected from public databases and from the scientific literature and the median value 151 

(i.e., the center of the distribution of all published data) was selected.  Therefore, previous 152 

drug datasets [13,22] were reviewed and updated with recently published data. The 153 

EFTPC, IC50, and Hill coefficient values for the 109 drugs are listed in the 154 

Supplementary Material, Table S1. 155 

Each drug was simulated at three different concentrations: at the EFTPC, at 5 times 156 

EFTPC, and at 10 times EFTPC. All simulations were carried out with a basic cycle length 157 

(BCL) of 1000 ms and a stimulus of 1.5-fold the diastolic threshold amplitude and a 158 

duration of 0.5 ms. The measurements of the biomarkers were done after 500 beats 159 

starting from control -no drug- initial values. Differences between biomarkers measured 160 

on two consecutives beats at this point was less than 0.5%. At each concentration, 9 161 

biomarkers related to TdP-induction risk were measured: action potential duration at 90% 162 

repolarization (APD90), triangulation 90-30, triangulation 90-50, net charge throughout 163 

the AP (qNet) [23], systolic and diastolic intracellular calcium concentration, calcium 164 

transient duration at 90% and 50% repolarization (CTD90 and CTD50), and the 165 

electromechanical window (EMw), defined as CTD90-APD90  [24]. 166 

A repolarization abnormality was defined as either: i) an Early After Depolarization 167 

(EADs), i.e. any event with a positive voltage gradient (dV/dt > 0 mV/ms) after 100 ms 168 

from the beginning of the AP; ii) a repolarization failure, i.e. the membrane voltage at the 169 

end of the beat being higher than resting membrane voltage (Vm > -40 mV); or iii) any 170 
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event with a positive calcium transient gradient (dCa2+/dt > 0 nM/ms) after 300 ms from 171 

the beginning of the AP. 172 

2.3 Drug-Induced TdP-Risk Assessment 173 

For the assessment of drug-induced TdP-risk we followed the same methodology for 174 

both AP models (ORdmD and TorORd). First, the 12 training CiPA drugs were simulated 175 

at three different concentrations using both: the baseline model and the population of 176 

models. As mentioned before, at each concentration, 9 biomarkers were measured, 177 

therefore the drug effect was characterized by 27 parameters in each model. In the case 178 

that a repolarization abnormality occurred during the last 3 beats, none of the biomarkers 179 

was measured and it was considered that the drug, for that specific model, poses high risk 180 

of inducing TdP. 181 

Using these 27 biomarkers as input, two ternary classifiers (high-risk, intermediate-182 

risk, and low-risk) were built: one for the baseline model and the other one for the 183 

population of models. In both cases, a ternary Support Vector Machines (SVM) model 184 

with a 1/3 hold out cross-validation was trained. For the training phase only the 185 

simulations of the 12 training CiPA drugs were used. For the SVM hyperparameters 186 

optimization, leave-p-out cross-validation (being p equal to a third of all the training 187 

simulations) was performed with 50 bootstrap repetitions, i.e., the training phase was 188 

repeated 50 times to avoid the influence of data partitioning. For the training of the 189 

classifier using the population of models, the cross-validation was applied using all the 190 

drugs on all models of the population (i.e. the number of training points was: 8 drugs* 191 

number of models of the population). 192 

In the case of the population of models, for each drug, the percentage of models or 193 

individuals that are classified as high, as intermediate, or as low-risk was calculated. Next, 194 
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to determine the risk category of the drug, two logistic regression (one for high-vs.-no 195 

high-risk prediction and other for low-vs.-no low-risk prediction) was applied on these 196 

percentages. This way, the classification tool built using the population of models yields 197 

the TdP-risk category of the drug, associated with the percentage of models in each 198 

category. 199 

Figure 2 shows a schematic representation of the overall method for constructing the 200 

baseline model-based classifier (Figure 2A) and the population of models-based 201 

classifier (Figure 2B) 202 

 203 
Figure 2. Schematic representation of the overall method to build the classifiers. (A) 204 

Baseline model-based classifier: the 12 CiPA training drug effects were simulated in the 205 

baseline model, then a SVM with 4 drugs held out was trained. (B) Population of models-206 

based classifier: the 12 CiPA training drug effects were simulated in the population of 207 

models and a SVM with 4 drugs held out was trained. The percentage of that are classified 208 

as high, as intermediate, or as low-risk was used as input of a logistic regression model 209 

to determine the overall risk category of the drug. Both classification tools were tested 210 

with two external datasets. 211 

The TdP-risk classifiers were built and evaluated using the Statistics and Machine 212 

Learning Toolbox from MATLAB, version R2021b. The SVM kernels and 213 

hyperparameters were tuned using the Bayesian Optimization algorithm. We tested three 214 
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kernel functions: Gaussian, linear and polynomial. The margin C was selected from the 215 

range [10-4,104]. For the Gaussian kernel, the gamma parameter tested ranged from [10-4, 216 

104]. The polynomial order evaluated ranged from [2, 5]. The final SVM configuration 217 

for the different classifiers presented in this work are reported in Table S4. 218 

For visual interpretation of the classification results in the population, we defined a 219 

TdP-score. The TdP-score was calculated as the value of the high-vs.-no high-risk 220 

regression model minus the value of the low-vs.-no low-risk regression model. This score 221 

was normalized between 1 and -1. Thus, TdP-score ranges from 1 when all models are 222 

predicted as high-risk or -1 when all models are predicted as low-risk. 223 

Once the classifiers were built, both classifiers were tested using two different external 224 

datasets: 1) the 16 validation CiPA drugs; 2) 81 drugs whose torasodgenic-risk was taken 225 

from CredibleMeds [25]. CredibleMeds defines 4 TdP-risk categories, so in this work, 226 

for the evaluation of the ternary classifiers, we considered: class 1 (“known risk of TdP”) 227 

as high-risk; class 2 (“possible risk of TdP”) and class 3 (“conditional risk of TdP”) as 228 

intermediate-risk; and class 4 (“no known risk of TdP”) as low-risk. 229 

Finally, a feature selection algorithm was applied to reduce the number of needed 230 

biomarkers. Specifically, a sequential forward floating search (SFFS) algorithm [26] was 231 

used to identify the best subset of features differentiating the three TdP-risk categories. A 232 

feature was considered as a certain biomarker, for example APD90, at the three different 233 

concentrations. Therefore, the total number of biomarkers on which the SFFS algorithm 234 

was applied was 9. In brief, starting from an empty set of features, the feature Xi that 235 

maximizes the accuracy of the classifier when combined with the features Yk that have 236 

been previously selected, is added. After this forward step, SFFS performs backward 237 
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steps, removing features, provided that the objective function increases. A schematic 238 

representation of the algorithm is shown in Figure 3. 239 

 240 
Figure 3. Schematic representation of the SFFS algorithm, based on Corino et al. [27]. 241 

Each group of 9 bars represents the whole set of features, being a bar a feature. Each dark 242 

blue bar represents a chosen feature. Here, as an example, the algorithm starts with three 243 

features already selected that yield an accuracy Acc(3). Then, in the Forward Selection 244 

block a new feature is added (colored in green) and the corresponding accuracy measured 245 

(Acc(4)i). Not yet selected features are colored in light blue. The feature leading to the 246 

maximum accuracy is added to the selected set of features (purple bar). Following is the 247 

Backward Selection block, where each of the already selected features (except the last 248 

added) is removed (beige bar) from the set of selected features and the corresponding 249 

accuracy is computed (Acc(3)i). It the maximum accuracy Acc(3)i is bigger than the first 250 

Acc(3), then the feature is removed from the set of selected features. In case a feature is 251 

removed, Black Selection block is repeated, otherwise the next step is Forward Selection. 252 

Population of models parameter sets, the ORdmD CellML file and MALTAB code used 253 

in this work are available at: https://riunet.upv.es/handle/10251/182593 254 

3 Results 255 

3.1 Variability in drug response 256 

The population of models produces electrophysiological variability when simulating 257 

drug effects. As shown in Figure 4, the same pharmacological intervention, in this case 258 

https://riunet.upv.es/handle/10251/182593
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10 times EFTPC of vandetanib (high TdP-risk drug), droperidol (intermediate TdP-risk 259 

drug) or metoprolol (low TdP-risk drug), have very different effects throughout the 260 

population of TorORd models. For example, in the case of vandetanib there are some 261 

models, such as models number 32, 199, and 293, that prolong APD less than 40% with 262 

respect to control conditions, while others prolong it more than 130% or even develop 263 

repolarization abnormalities. These differences cannot be captured with the baseline 264 

model. 265 

 266 

Figure 4. Action potential traces of the calibrated population of models under vandetanib 267 

effect, a high TdP-risk drug (red lines), under droperidol effect, an intermediate TdP-risk 268 

drug (yellow lines) and metoprolol. Baseline model results for each drug are plotted in 269 

black lines. The drug concentration is 10 times EFTPC. 270 

Repolarization abnormalities observed across the simulations included early 271 

afterdepolarizations and repolarization failure. No depolarization failure nor delay 272 

afterdepolarizations were detected. Abnormalities in Ca2+ transient which did not affect 273 

the action potential were not observed either. 274 

The analysis of the population subgroups highlighted the ionic properties of those 275 

models more prone to develop repolarization abnormalities under the effects of different 276 

drugs. The most susceptible TorORd models presented significantly lower conductances 277 

of IKr, and IKb, and higher conductances of ICaL, INaL and INCX. Figure 5 shows the mean 278 



14 

 

scaling factor values of the different ionic conductances for the TorORd-models 279 

developing repolarization abnormalities and the TorORd-models without repolarization 280 

abnormalities. This information could be useful to further investigate and establish 281 

clusters of patients in which the dose of proarrhythmogenic drugs should be avoided or 282 

reduced. For example, patients with cardiovascular pathologies, such as heart failure, 283 

hypertrophic cardiomyopathy or ischemic cardiopathy, undergo a ionic remodeling 284 

process in which conductances of IKr and INaK decrease and conductances of ICaL and INCX 285 

increase [20,28,29], thus increasing their risk of suffering a drug-induced TdP. These 286 

patients require special attention in cardiac safety studies and high TdP-risk drugs should 287 

be administered with caution. 288 

 289 

Figure 5. Mean scaling factor values of the different ionic conductances for the TorORd-290 

models developing repolarization abnormalities (in red) and the TorORd-models without 291 

repolarization abnormalities (in green). 292 

ORdmD-based simulations produced similar results. Individuals with greater 293 

probability of developing repolarization abnormalities also showed higher conductance 294 

values of ICaL, INaL, and INCX, and lower IKr. ORdmD-subpopulation did not show 295 

significant differences in terms of IKb. This may be explained because IKb conductance is 296 

more than 6 times higher in TorORd model, so its contribution to the AP is higher. On 297 
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the other hand, ORdmD-subpopulations show lower conductances of IKs and INaK. Mean 298 

scaling factor values of the different ionic conductances for the ORdmD models 299 

depending on the presence of repolarization abnormalities are shown in Figure S4. 300 

3.2 TdP-risk classifiers 301 

Next, the simulations of the 12 training CiPA drugs were used to train two TdP-risk 302 

classifiers: one using the baseline model and the other classifier using the population of 303 

models to account for electrophysiological variability. Then, the classification tool was 304 

tested using two different external data sets: the 16 validation CiPA drugs and 81 305 

CredibleMeds drugs. 306 

Here we present the result of the simulations based on TorORd model, since it yields 307 

slightly superior results than ORdmD. For the results of the simulations based on the 308 

ORdmD model see the Supplemental Materials (Tables S2 and S3, Figures S5 and 309 

S6). Note, that the same methodology was followed for both AP models simulations 310 

(TorORd and ORdmD). 311 

Figure 6 shows, for the 16 validation CiPA drugs, the percentage of models of the 312 

TorORd population that the SVM classifies in each of the three TdP-risk categories. It 313 

can be observed, that for some drugs as disopyramide, tamoxifen, or loratadine, the 314 

different individuals of the population are assigned to the three TdP-risk categories. This 315 

is due to electrophysiological variability. 316 
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 317 

Figure 6. Percentage of models predicted as high (red bar), intermediate (yellow bar), or 318 

low (green bar) TdP-risk for the 16 validation CiPA drugs using the SVM method on the 319 

TorORd population of models. High-risk CiPA drugs are represented at the top, 320 

intermediate CiPA drugs in the middle, and low-risk drugs at the bottom. 321 

These percentages were the input for the logistic regression that predicts the overall 322 

TdP-risk class of the drug. The output of the logistic regression was summarized in the 323 

“TdP-score”. TdP-scores for the 16 CiPA validation drugs are shown in Figure 7. It can 324 

be seen that high-risk drugs have TdP-score values close to 1, intermediate-risk drugs 325 

take values close to 0, and low-risk drugs take values close to -1. The thresholds for 326 

separation between the three classes were determined in the training phase. For TorORd-327 

population, the optimal threshold between high and intermediate-risk is 0.21 and the 328 

optimal threshold between intermediate and low-risk is -0.45. Out of the 16 drugs, 14 are 329 

correctly classified with this population-based classifier. The two misclassified drugs are: 330 

domperidone, an intermediate-risk drug, which is predicted as a high-risk drug; and 331 

tamoxifen, a low-risk drug, that is predicted as an intermediate-risk drug. When testing 332 

the classification tool with the 81-drug set from CredibleMeds, 16 drugs were 333 

misclassified. Namely, 3 high TdP-risk drugs (cilostazol, dronedarone an procainamide) 334 

were classified as intermediate risk drugs. Donepezil, a high TdP-risk drug, was 335 
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misclassified as a low TdP risk drug. From the intermediate TdP-risk drugs, lapatinib, 336 

nilotinib, paliperidone, sunitinib and tolterodine were predicted as high risk drugs; while 337 

desipramine, saquinavir, famotidine, propafenone and quetiapine were misclassified as 338 

low TdP-risk drugs. Finally, the low risk drugs cibenzoline and darunavir were 339 

miclassified as intermediate risk drugs. 340 

 TdP-scores representations for the 81 CredibleMeds drugs for both population of 341 

models (TorORd and ORdmD) are shown in Figure S7 and S8. 342 

 343 

Figure 7. TdP-score for the 16 CiPA validation drugs simulated on the TorORd 344 

population of models. Actual high-risk CiPA drugs are represented in red bars, 345 

intermediate-risk drugs in yellow and low-risk drugs in green. The dashed lines are the 346 

TdP-score threshold. Threshold1 is equal to 0.21 and all drugs with a higher TdP-score 347 

are predicted as high-risk. Threshold2 is equal to -0.45 and all drugs with a lower TdP-348 

score are predicted as low-risk. TdP-score values comprised between both thresholds are 349 

considered as intermediate-risk. 350 

The performance of the classifier using TorORd baseline model and the classifier using 351 

the population of TorORd models are shown in Table 2. The population-based classifier 352 

outperforms the baseline model-based classifier with both validation datasets. For both 353 

datasets, when using the population of models, the accuracy improves around 20 354 

percentual points and the mean classification error (MCE) is reduced to the half 355 
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approximately. In the case of the CiPA validation dataset, risperidone and droperidol 356 

(intermediate-risk drugs) and loratadine and droperidol (low-risk drugs) are classified 357 

correctly only if the population of models is used. In the case of the CredibleMeds data 358 

set, 7 high-risk, 2 intermediate-risk, and 7 low-risk drugs are misclassified if population 359 

of models is not considered. These results reflect the importance of taking into account 360 

electrophysiological variability when simulating the effects of drugs. Training and test 361 

accuracy of the different classifiers using the population of models are shown in 362 

Supplementary Material, Table S5. 363 

Table 2. Confusion matrices and performance metrics (accuracy, mean classification 364 

error -MCE-, and Matthew correlation coefficient -MCC-) of the classifier using  TorORd 365 

baseline model and the classifier using the population of TorORd models for both external 366 

validation datasets: the 16 CiPA drugs and for the 81 CredibleMeds drugs. 367 

Baseline TorORd model 

CiPA 

drugs 
High Int. Low  

CredibleMeds 

drugs 
High Int. Low 

Pred. High 4 2 1  Pred. High 9 6 0 

Pred. Int. 0 4 2  Pred. Int. 9 11 9 

Pred. Low 0 1 2  Pred. Low 2 6 29 

Accuracy: 62.5 %  Accuracy: 60.5 % 

MCE: 0.438  MCE: 0.420 

MCC: 0.456  MCC: 0.384 

 368 

Population of TorORd models 

CiPA 

drugs 
High Int. Low 

 CredibleMeds 

drugs 
High Int. Low 

Pred. High 4 1 0  Pred. High 16 5 0 

Pred. Int. 0 6 1  Pred. Int. 3 13 2 

Pred. Low 0 0 4  Pred. Low 1 5 36 

Accuracy: 87.5 %  Accuracy: 80.2 % 

MCE: 0.125  MCE: 0.210 

MCC: 0.813  MCC: 0.690 

 Finally, a SFFS algorithm was applied to reduce the number of needed biomarkers. 369 

The minimum set of features that maximizes the accuracy of the classifier was the same 370 

for ORdmD and TorORd simulations. It was composed of: APD90, qNet, calcium 371 
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systolic concentration and the electromechanical window. A new classifier was trained 372 

again, this time using only these 4 features.  373 

Table 3 summarizes performance results of the new classifier that uses only 4 features 374 

extracted from a population of TorORd models. For the CiPA dataset, the classifier 375 

achieved the same accuracy (87.5%) than in the previous case, using all features. The two 376 

misclassified drugs are the same: domperidone and tamoxifen. However, when 377 

CredibleMeds data set is used the performance drops slightly. In this case, two more drugs 378 

(moxifloxacin - a high-risk drug- and fluvoxamine -an intermediate-risk drug) are 379 

misclassified (as intermediate-risk and as high-risk, respectively) thus reducing the 380 

accuracy in 2.4% and increasing MCE in 0.02. Despite this, it can be affirmed that the 381 

classifier continues to perform with considerable accuracy and that the 4 selected features 382 

are able to largely collect the torsadogenic effects of drugs. 383 

Table 3. Confusion matrices and performance metrics (accuracy, mean classification 384 

error -MCE-, and Matthew correlation coefficient -MCC-) of the classifier based on the 385 

population of TorORd models, using as inputs: APD90, qNet, EMw, systolic [Ca2+]i. 386 

Population of TorORd models 

CiPA 

drugs 
High Int. Low 

 CredibleMeds 

drugs 
High Int. Low 

Pred. High 4 1 0  Pred. High 15 6 0 

Pred. Int. 0 6 1  Pred. Int. 4 12 2 

Pred. Low 0 0 4  Pred. Low 1 5 36 

Accuracy: 87.5 %  Accuracy: 77.8 % 

MCE: 0.125  MCE: 0.235 

MCC: 0.813  MCC: 0.650 

Boxplots of the selected features, at 10 times the EFTPC, are represented in Figure 8. 387 

In general high-risk drugs greatly prolong APD90. qNet and the EMw follow a similar 388 

trend: high-risk drugs tend to decrease their value while low-risk drugs increase them. 389 

And regarding systolic calcium concentration, low-risk drugs especially reduce it. It can 390 

be observed that, individually, none of the features clearly discriminates between TdP-391 
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risk classes, thus it is necessary to combine different biomarkers, and different 392 

concentrations must be considered so that the classifier accurately performs.  393 
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Figure 8. Box plots of the 4 selected features (APD90, qNet, EMw, systolic Ca2+) for at 394 

the 16 CiPA validation drugs simulated at 10 times the EFTPC on the population of 395 

TorORd models. The red-shaded area includes actual high-risk drugs, the yellow-shaded 396 

area the actual intermediate-risk drugs, and the green-shaded area the low-risk drugs. 397 
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4 Discussion 398 

4.1 Main findings 399 

In this work, we calibrated two population of models (TorORd and ORdmD) to account 400 

for electrophysiological variability and we compared the performance of a ternary 401 

classification tool, based on SVM, with and without electrophysiological variability. 402 

These classifiers were blindly validated, as recommended by Li et al. [7], using the 16 403 

validation CiPA drugs and an extra validation dataset composed of 81 drugs. Our main 404 

findings are: 405 

(i) Populations of models allowed to generate different AP responses under the 406 

same pharmacological intervention and to identify ionic conductance profiles 407 

more prone to develop TdP. We found that individuals with lower conductances 408 

of IKr, IKs, INaK, and IKb and higher conductances of ICaL, INaL, and INCX are more 409 

prone to develop TdP. 410 

(ii) Classification accuracy significantly improves (more than 20 percentual points) 411 

when using population of models. This result highlights the benefits of using 412 

population of models when predicting TdP-risk and suggest that considering 413 

electrophysiological variability has the potential to improve in silico TdP-risk 414 

assessment tools. Furthermore, the results are similar regardless of the 415 

electrophysiological model used (ORdmJ or TorORd). The advantage of using 416 

the population of models was also evidenced with the two test datasets used. 417 

(iii) The feature selection algorithm SFSS revealed the 4 most relevant biomarkers 418 

for the prediction of TdP out of the 9 biomarkers studied in this work. These 419 

features were: APD90, qNet, systolic calcium concentration and EMw. 420 
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(iv) We have defined the TdP_score index, which provides a summarized 421 

quantification of the TdP-risk. The most dangerous drugs take values close to 1 422 

and the least dangerous close to -1. 423 

4.2 TdP-risk classifiers 424 

According to the levels of acceptable performance models defined by Li et al. [30] for 425 

CiPA predictive models, the classification tool based on population of TorORd models, 426 

which scored the highest performance in this work, presents an “excellent” performance 427 

with a MCE lower than 0.3 with both validation datasets. Therefore, it can be said that 428 

our models are acceptable for TdP-risk predictions. 429 

Regarding the performance comparison of the classification tool, “General Principles” 430 

for the validation of TdP-risk prediction models, published by Li’s group [7], suggest that 431 

prediction models should differentiate between three TdP-risk categories and should be 432 

validated with a hidden dataset. However, the authors are aware of only two papers that 433 

have been published to date following this suggestion: a work by Li et al. [30], and a 434 

recently published paper by Yoo [10]. Furthermore, these are not completely comparable 435 

studies, as they do not take into account electrophysiological variability; they quantify 436 

the uncertainty in pharmacological values and propagate it through the model. Li et al. 437 

[30] proposed a logistic model using the torsade metric score (average of qNet across 1-438 

4xCmax). They accurately classified 12 drugs, missing disopyramide, domperidone, 439 

clozapine, and risperidone. Yoo et al. [10] proposed an artificial neural network with 9 440 

AP-related biomarkers. They also accurately classified 12 drugs out of the 16, 441 

misclassifying disopyramide, azimilide, loratadine, and tamoxifen. As previously 442 

mentioned, our classification tool misclassifies only 2 drugs out of the 16 CiPA validation 443 

drugs (tamoxifen and domperidone) and 16 drugs out of the 81 CredibleMeds drug set. 444 

As proposed by Li and colleagues [9], a plausible explanation for the misclassification of 445 
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these drugs might be technical difficulties for the characterization of drug potency, which 446 

leads to mischaracterization of IC50. Another reason for misclassification might be under 447 

or overestimation of the role of a specific current of the in silico model, specifically poor 448 

representation of the INaL and ICaL inhibition or overrepresentation of IKr block effects [31]. 449 

This might be the case of tamoxifen, which shows similar potencies for IKr, INaL and ICaL, 450 

but the effects captured by the in silico  model on ICaL and INaL seem insufficient to 451 

counteract the prolongation of the action potential caused by IKr block. In addition, other 452 

drug-related phenomena such as the effects on other pathways different than ionic 453 

channels, trafficking inhibition, the activity of metabolites, or higher concentrations of 454 

the compound in the cardiac tissue than in blood plasmas, may impact TdP-risk induction 455 

but were not included in our work. These aspect could have favored the misclassification 456 

of some drugs. As an example, donepezil prolongs QT interval by IKr block and also by 457 

IKr trafficking inhibition [32]. Dronedarone is metabolized into N-debutyl-458 

dronedarone[33], a compound that retains up to one-third of the parent’s activity. As both 459 

have significant channel blocking effects, not considering N-debutyl-dronedarone 460 

activity when simulating dronedarone might be the cause of its misclassification. 461 

Cilostazol is a phosphodiesterase 3 (PED3) inhibitor that can favor the induction of TdP 462 

because it induces intracellular cAMP elevation, which results in Ca2+ dynamic 463 

disbalance, and early after depolarizations[34]. As for saquinavir, the underestimation of 464 

its TdP-risk could be related to the of higher accumulation of the drug in myocardium 465 

than in blood plasma [35], increasing the probability of provoking adverse effects in the 466 

heart. 467 

 On the other hand, it should be noted that the ternary-classification tool presented here 468 

achieves similar performance to previous TdP-risk assessment studies, where binary 469 

classifications were carried out [13,22,24,29,36–40]. 470 
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Furthermore, using populations of models allowed to identify ionic conductance 471 

profiles more prone to develop TdP: individuals with lower conductances of IKr, IKs, INaK, 472 

and IKb and higher conductances of ICaL, INaL, and INCX are more prone to develop TdP. 473 

This is in closely agreement with other studies: Britton et al. [6] suggested that decreased 474 

INaK, combined with low IKr, can increase proarrhythmic-risk of drugs; Passini’s [29] 475 

group showed that individuals with increased ICaL, INaL, and INCX and reduced INaK were 476 

highly vulnerable to drug-induced repolarization abnormalities; Lacerda et al. [41] stated 477 

that an enhancement of INaL plays a relevant role in increased risk of TdP. This 478 

information may provide insight about clusters of patients in which the dose of 479 

proarrhythmogenic drugs should be avoided or reduced. In fact, this ionic profile is 480 

consistent with different conditions or situations that have been associated with an 481 

increased incidence of TdP. For example, women, who have higher risk to develop TdP, 482 

present lower IKr, and IKs [42,43]; or patients with chronic systemic inflammation, which 483 

can exacerbate drugs’ cardiotoxic effects, have a lower expression of IKr and a higher 484 

expression of ICaL [29]. The utility of population of models to represent 485 

electrophysiological variability in in silico studies was first introduced by Sobie [45]; 486 

since then different publications have employed this strategy [24,46–48]. The application 487 

of the population of in silico models approach is reviewed in [5]. 488 

4.3 Limitations of the study 489 

As mentioned in the previous section, one the limitation of this work is the reliability 490 

of pharmacological data (IC50, h and EFTPC).  Recently, efforts have been made to 491 

standardize experimental protocols and increase model prediction accuracy 492 

standardization protocols [49,50]. However, these new experimental data are only 493 

available for a few drugs. To deal with it, we used a similar approach to previous studies 494 

[13,22]: we reduced source variability by considering data from similar experimental 495 
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conditions and then assumed that the published data represented a distribution of values 496 

affected by a random error and the variability due to the experimental conditions. Then, 497 

the most representative value considering variability was the median, as it is a robust 498 

estimator of the central tendency of a data set. In addition, the present results could be 499 

extended in the future by combining the uncertainty quantification in the pharmacological 500 

data with the population of models to better understand model’s tolerability to input 501 

variability. Previous works [51–53] have incorporated methods for quantifying 502 

uncertainty in pharmacological data (IC50s and hill coefficients) into the CiPA 503 

framework and have demonstrated that they provide valuable information, which can 504 

inform in the proarrhythmic evaluation of drugs. Furthermore, if more data on 505 

pharmacological hERG binding kinetics were available, it would also be of high interest 506 

to simulate drug effects with hERG binding kinetics data, since it could improve the 507 

classification performance, as some previous studies have shown [30,54]. 508 

Another limitation is the dependence of the populations results on the number of models 509 

and on the distribution of probability from where the scaling factors are sampled. Here, 510 

we consider that an initial population of 1,000 models provides a good balance between 511 

having an adequate sample size and avoiding having very similar models that just 512 

contribute to increase simulation time. In this sense, we repeated the methodology for 513 

building the classifiers but starting from a population of 5,000 initial models in order to 514 

study if classification results were convergent. For both populations of models (ORdmJ 515 

and TorORd), we found that the final drug classification (based on the TdP-score) was 516 

the same with the population of 5,000 models and with the population of 1,000 models, 517 

although the percentage of models in each category was slightly different. The 518 

distributions of the biomarkers used for the calibration across each population (TorORd 519 

and ORdmD) with 5,000 initial models, can be consulted in the Supplementary 520 
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Material, Figures S9 and S10. Furthermore, comparison between the classification 521 

results for the 16 CiPA drugs when using an initial population of 5,000 TorORd models 522 

or an initial 1,000 TorORd models is shown in Supplementary Material, Table S6. On 523 

the other hand, we chose a normal distribution since the aim of the study was to predict 524 

drugs effects in a healthy population, where ionic conductances are supposed to be a 525 

continuum of values normally distributed. In addition, population variability was 526 

considered only in ionic current conductances because it constitutes the major 527 

determinant behind physiological variability [55]. Another limitation is precisely that 528 

drug effects were only simulated on healthy cardiomyocytes, and the incidence of TdP is 529 

known to be very rare in this population. 530 

It is worth noting that the methodology used here does not seek for the identifiability 531 

of the ion channel conductances. Therefore, the scaling factors in the populations of 532 

models do no necessarily represent the real variation of ionic conductances responsible 533 

for experimentally observed AP. Different strategies for the identifiability of the 534 

parameters of the AP model are presented in the review by Whittaker and colleagues [56]. 535 

On the other hand, regarding the rate dependence, in this study we performed 536 

simulations at an intermediate and physiological-like heart rate (60 beats per minutes) as 537 

a first approximation. The study of the performance dependence on the stimulation rate 538 

could help refine the classification tool. According to some authors, the best 539 

discrimination between TdP-risk categories is achieved at stimulations of 1Hz [37,57]; 540 

instead, Dutta and colleagues observed the best category separation at slower rates (0.5 541 

Hz) [54]; while other authors have not found any rate dependence in their classification 542 

results [22].  543 
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Another limitation of this work is the strong dependence of classification performance 544 

on the information taken as reference. Here, for the validation drugs not included in the 545 

CiPA reference list we used the CredibleMeds database [25]. Although it is a well 546 

recognized database which feeds from clinical data, it mixes the QT prolongation and the 547 

TdP risk end points. QT prolongation is closely related to but distinct from TdP end point, 548 

and inferring TdP risk only from QT interval is inaccurate[7]. In this sense, CredibleMeds 549 

class 2 (“possible risk of TdP”), which here was considered as intermediate risk of TdP 550 

for the classifiers development, includes compounds that can cause QT prolongation in 551 

the absence of evidence for a risk of TdP. Therefore, some of the CredibleMeds validation 552 

drugs in the intermediate TdP-risk class actually might have no known risk of TdP and 553 

should have been considered as low TdP-risk instead. This could explain the lower 554 

performance among all the classifiers when validated with the CredibleMeds dataset. 555 

It is to be noted that our simulations do not consider other pharmacological aspects such 556 

as drug interactions, effects of active metabolites or accumulation of drugs in cardiac 557 

tissues, etc. 558 

5 Conclusions 559 

In this work, we developed a ternary-classification tool based on population of models 560 

for the assessment of drug-induced TdP. This tool quantifies the percentage of models in 561 

which the drug will be dangerous and summarizes the risk of TdP in the biomarker “TdP 562 

score”. The validation of the classification tool with two different “hidden” drug sets 563 

showed that its performance was higher than when just using the baseline model. 564 

Simulations with population of models also allowed the identification of individuals 565 

which are more prone to develop TdP. Taken together, the results outline the benefits of 566 

using population of models when predicting TdP-risk and suggest that considering 567 
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electrophysiological variability has the potential to improve in silico TdP-risk assessment 568 

tools. 569 

The methodology presented in this study provides new opportunities to assess drug-570 

induced TdP, taking into account electrophysiolocial variability. The use of such in silico 571 

tools as screening methods could be helpful to accelerate the development of new drugs 572 

and reduce the costs of cardiac safety screening in preclinical phases.  573 
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