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Abstract
This paper describes the automatic speech recognition

(ASR) systems built by the MLLP-VRAIN research group
of Universitat Politècnica de València for the Albayzin-RTVE
2020 Speech-to-Text Challenge.

The primary system (p-streaming 1500ms nlt) was a hybrid
BLSTM-HMM ASR system using streaming one-pass decod-
ing with a context window of 1.5 seconds and a linear com-
bination of an n-gram, a LSTM, and a Transformer language
model (LM). The acoustic model was trained on nearly 4,000
hours of speech data from different sources, using the MLLP’s
transLectures-UPV toolkit (TLK) and TensorFlow; whilst LMs
were trained using SRILM (n-gram), CUED-RNNLM (LSTM),
and Fairseq (Transformer), with up to 102G tokens. This sys-
tem achieved 11.6% and 16.0% WER on the test-2018 and test-
2020 sets, respectively. As it is streaming-enabled, it could be
put into production environments for automatic captioning of
live media streams, with a theoretical delay of 1.5 seconds.

Along with the primary system, we also submitted three
contrastive systems. From these, we highlight the system c2-
streaming 600ms t that, following the same configuration of the
primary one, but using a smaller context window of 0.6 seconds
and a Transformer LM, scored 12.3% and 16.9% WER points
respectively on the same test sets, with a measured empirical
latency of 0.81±0.09 seconds (mean±stdev). This is, we ob-
tained state-of-the-art latencies for high-quality automatic live
captioning with a small WER degradation of 6% relative.
Index Terms: natural language processing, automatic speech
recognition, streaming.

1. Introduction
This paper describes the participation of the Machine Learning
and Language Processing (MLLP) research group from the Va-
lencian Research Institute for Artificial Intelligence (VRAIN),
hosted at the Universitat Politècnica de València (UPV), in the
Albayzin-RTVE 2020 Speech-to-Text (S2T) Challenge.

Live audio and video streams such as TV broadcasts, con-
ferences, lectures, as well as general-public video streaming
services (e.g. Youtube) over the Internet have increased dra-
matically in recent years because of the advances in networking
with high speed connections and proper bandwidth. Also, due
to the COVID-19 pandemic, video meeting/conferencing plat-
forms have experienced an exponential growth of usage, as pub-

lic and private companies have leveraged teleworking for their
employees to comply with the social distancing measures rec-
ommended by health authorities.

Automatic transcription and translation of such audio
streams is a key feature in a globalized and interconnected
world, in order to reach wider audiences or to ensure proper
understanding between native and non-native speakers, depend-
ing on the use-case. Also, public governments are enforcing
TV broadcasters by law to provide accessibility options to peo-
ple with hearing disabilities, with a yearly increasing amount of
contents to be captioned at a minimum [1, 2].

Some TV broadcasters and other live streaming services
have assumed manual transcription from scratch of live audio
or video streams, as an initial solution to comply with the cur-
rent legislation, and/or to satisfy user expectations. However, it
is a really hard task for professional linguists that, under very
stressful conditions, are very prone to generate captioning er-
rors. Besides, it is difficult to scale up such a service, as in these
organizations, the amount of human resources devoted to this
particular task is typically scarce.

Due to these reasons, the need and demand for high-quality
real-time streaming Automatic Speech Recognition (ASR) has
increased drastically in the last years. Automatic live audio
stream subtitling enables professional linguists to correct live
transcripts provided by these ASR systems, if they are not pub-
lishable as they come. This would dramatically expedite their
productivity and significantly reduce the probability of produc-
ing transcription errors. However, the application of state-of-
the-art ASR technology to video streaming is a highly complex
and challenging task due to real-time and low-latency recogni-
tion constraints.

The MLLP-VRAIN, being aware of these demands from
the society, have focused its research efforts in the past two
years on streaming ASR. This work aims to disseminate our
latest developments in this area, showing how our hybrid ASR
technology can be successfully applied under streaming con-
ditions, by providing high-quality transcriptions and state-of-
the-art system latencies on real-life tasks such as the RTVE
(Radio Televisión Española) database. Therefore, our partic-
ipation in the Albayzin-RTVE 2020 S2T Challenge consisted
on the submission of a primary, performance-focused stream-
ing ASR system, plus three contrastive systems: two latency-
focused streaming ASR systems, and one conventional off-line
ASR system.
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Table 1: Transcribed Spanish speech resources for AM training.

Resource Duration (h)
Internal: entertainment 2932
Internal: educational 406
Internal: user-generated content 202
Internal: parliamentary data 158
Voxforge [8] 21
RTVE2018: train 187
RTVE2018: dev1-train 18
TOTAL 3924

The rest of the paper is structured as follows. First, Sec-
tion 2 briefly describes the Albayzin-RTVE 2020 S2T Chal-
lenge and the RTVE databases provided by the organizers.
Next, Section 3 provides a detailed description of our partici-
pant ASR systems. Finally, Section 4 gives a summary of the
work plus some concluding remarks.

2. Challenge description and databases
The Albayzin-RTVE 2020 Speech-To-Text Challenge consists
of automatically transcribing different types of TV shows from
the RTVE Spanish public TV station, and the assessment of
ASR system performance in terms of Word Error Rate (WER)
by comparing those automatic transcriptions with correct refer-
ence transcriptions [3].

The MLLP-VRAIN participated in the 2018 edition of the
challenge [4] in a joint collaboration with the Human Language
Technology and Pattern Recognition (HLTPR) research group
from the RWTH Aachen University. The evaluation was carried
out on the RTVE2018 database [5], that includes 575 hours of
audio from 15 different TV shows broadcasted between 2015
and 2018. This database is allocated into four sets: train, dev1,
dev2 and test (test-2018). Our systems won in both the open-
condition and closed-condition tracks [6], scoring 16.5% and
22.0% WER points respectively in the test-2018 set.

For the 2020 edition of the challenge, the participation has
been limited to a single open-condition track, and system eval-
uations have been carried out over the test (test-2020) set from
the RTVE2020 database, which includes 78.4 hours from 15
different TV shows broadcasted between 2018 and 2019 [7].

3. MLLP-VRAIN Systems
In this section we describe the hybrid ASR systems developed
by the MLLP-VRAIN that participated in the Albayzin-RTVE
2020 S2T Challenge.

3.1. Acoustic Modelling

Our acoustic models (AM) were trained using 205 filtered
speech hours from the train set (187h) and our internal dev1-
train set (18h), as in [4], plus about 3.7K hours of other re-
sources crawled from the Internet. Table 1 summarises all
training datasets along with their total duration (in hours).
From this data, first, we extracted 16-dimensional MFCC fea-
tures plus first and second derivatives (48-dimensional fea-
ture vectors) every 10ms to train a context-dependent feed-
forward DNN-HMM with three left-to-right tied states using the
transLectures-UPV toolkit (TLK) [9]. The state-tying schema
followed a phonetic decision tree approach [10] that produced

10K tied states. Then, feed-forward models were used to boot-
strap a BLSTM-HMM AM, trained with 85-dimensional fil-
terbank features, following the procedure described in [11].
The BLSTM network was trained using both TLK and Ten-
sorFlow [12], and had 8 bidirectional hidden layers with 512
LSTM cells per layer and direction. As in [11], we performed
chunking during training by considering a context to perform
back-propagation through time to a window size of 50 frames.
Additionally, SpecAugmentation was applied by means of time
and frequency distortions [13].

3.2. Language Modelling

Regarding language modelling, we trained count-based (n-
gram) and neural-based (LSTM, Transformer) Language Mod-
els (LMs) to perform one-pass decoding with different linear
combinations of them [14], using the text data sources and cor-
pora described in Table 2.

On the one hand, we trained 4-gram LMs using SRILM [15]
with all text resources plus the Google-counts v2 corpus [16],
accounting for 102G running words. The vocabulary size was
limited to 254K words, with an OOV ratio of 0.6% computed
over our internal development set.

On the other hand, regarding neural LMs, we considered the
LSTM and Transformer architectures. In both cases, LMs were
trained using a 1-gigaword subset randomly extracted from all
available text resources, except Google-counts. Their vocabu-
lary was defined as the intersection between the n-gram vocab-
ulary (254K words) and that derived from the aforementioned
training subset. We did this to avoid having zero probabilities
for words that are present in the system vocabulary but not in
the training subset. This is taken into account when computing
perplexities by renormalizing the unknown-word score accord-
ingly.

Specific training details for each neural LM architecture are
as follows. Firstly, LSTM LMs were trained using the CUED-
RNNLM toolkit [17]. Noise Contrastive Estimation (NCE) cri-
terion [18] was used to speed up model training, and the nor-
malization constant learned from training was used during de-
coding [19]. Based on the lowest perplexity observed on our
internal development set, we selected as final model that with a
256-unit embedding layer and two hidden LSTM layers of 2048
units. Secondly, Transformer LMs (TLMs) were trained using
a customized version of the FairSeq toolkit [20], selecting the
following configuration that minimized perplexity in our inter-
nal development set: 24-layer network with 768 units per layer,
4096-unit FFN, 12 attention heads, and an embedding of 768
dimensions. These models were trained until convergence with
batches limited to 512 tokens, 512 sentences, and 512 words per
sentence. Parameters were updated every 32 batches. During
inference, Variance Regularization (VR) was applied to speed
up the computation of the TLM score [21].

3.3. Decoding strategy

Our hybrid ASR systems follow a real-time one-pass decod-
ing by means of a History Conditioned Search (HCS) strategy,
as described in [14]. This approach allows us to benefit from
the direct usage of additional LMs during decoding while sat-
isfying real-time constraints. This decoding strategy introduces
two additional and relevant parameters to control the trade-off
between Real Time Factor (RTF) and WER: LM history re-
combination (LMHR), and LM histogram prunning (LMHP).
The static look-ahead table, needed by the decoder to use pre-
computed look-ahead LM scores, was generated from a prunned
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Table 2: Statistics of Spanish text resources for LM training.
S=Sentences, RW=Running words, V=Vocabulary. Units are in
thousands (K).

Corpus S(K) RW(K) V(K)
Opensubtitles [22] 212635 1146861 1576
UFAL [23] 92873 910728 2179
Wikipedia [24] 32686 586068 3373
UN [25] 11196 343594 381
News Crawl [26] 7532 198545 648
Internal: entertainment 4799 59235 307
eldiario.es [27] 1665 47542 247
El Periódico [28] 2677 46637 291
Common Crawl [29] 1719 41792 486
Internal: parliamentary data 1361 35170 126
News Commentary [26] 207 5448 83
Internal: educational 87 1526 35
TOTAL 369434 3423146 5785
Google-counts v2 [16] - 97447282 3693

Table 3: Basic statistics of development and tests sets of RTVE
databases, including our internal dev1-dev set: total duration
(in hours), number of files, average duration of samples in
seconds plus-minus standard deviation (dµ ± σ), and running
words (RW) in thousands (K).

Set Duration(h) Files dµ ± σ RW(K)
dev1-dev 11.9 10 4267 ± 1549 120

dev2 15.2 12 4564 ± 1557 149
test-2018 39.3 59 2395 ± 1673 377
test-2020 78.4 87 2314 ± 1576 519

version of the n-gram LM.
For streaming ASR, as the full sequence (context) is not

available during decoding, BLSTM AMs are queried with a
sliding, overlapping context window of limited size over the in-
put sequence, averaging outputs of all windows for each frame
to obtain the corresponding acoustic score [30]. The size of the
context window (in frames or seconds) is set in decoding, and
defines the theoretical latency of the system. This limitation of
the context prevents us to perform a Full Sequence Normaliza-
tion (FSN), that is typically applied under the off-line setting.
Instead, we applied the Weighted Moving Average (WMA)
technique, that uses the content of the current context window
to update normalization statistics on-the-fly, weighted by previ-
ous context from past windows with an α parameter [31]. Fi-
nally, as Transformer LMs have the inherent capacity of attend-
ing to potentially infinite word sequences, history is limited to
a given maximum number of words, in order to meet the strict
computational time constraints imposed by the streaming sce-
nario [21]. By applying all these modifications, our decoder
acquires the capacity to deliver live transcriptions for incom-
ing audio streams of potentially infinite length, with latencies
lower-bounded by the context window size.

3.4. Experiments and results

To carry out our experiments, we used the development and test
sets from the RTVE2018 database. More precisely, we devoted
our internal dev1-dev set [4] for development purposes, whilst
dev2 and test-2018 were dedicated to test ASR performance.
Finally, test-2020 was the blind test used by the organisation to
rank the participant systems. Table 3 provides basic statistics of

Table 4: Perplexity (PPL) and interpolation weights, computed
over the dev1-dev set, of all possible linear combinations of n-
gram (ng), LSTM (ls) and Transformer (tf) LMs.

LM comb. PPL Weights(%)
ng 179.5 -
ls 98.4 -
tf 63.3 -
ng + ls 93.2 15 + 85
ng + tf 61.6 6 + 94
ls + tf 60.7 13 + 87
ng + ls + tf 59.5 5 + 10 + 85

these sets.
First, we studied the perplexity (PPL) on the dev1-dev set

of all possible linear combinations for the three types of LMs
considered in this work. Table 4 shows the PPLs of these inter-
polations, along with the optimum LM weights that minimized
PPL in the dev1-dev set. The Transformer LM provides signifi-
cant lower perplexities in all cases, and accordingly, takes very
high weight values when combined with other LMs. Indeed,
the TLM in isolation already delivers a strong perplexity base-
line value of 63.3, while the maximum PPL improvement is of
just 6% relative when all three LMs are combined.

Second, we tuned decoding parameters to provide a good
WER-RTF tradeoff on dev1-dev, with the hard constraint of
RTF<1 to ensure a real-time processing of the input. From
these hiperparameters, we highlight, due to their relevance,
LMHR=12, LMHP=20, and TLM history limited to 40 words.

At this point, we defined our participant off-line hybrid
ASR system identified as c3-offline (contrastive system no. 3),
consisting of a fast pre-recognition + Voice Activity Detec-
tion (VAD) step to detect speech/no-speech segments as in [4],
followed by a real-time one-pass decoding with our BLSTM-
HMM AM, using a FSN normalization scheme and a linear
combination of the three types of LMs: n-gram, LSTM and
Transformer. This system scored 12.3 and 17.1 WER points
on test-2018 and test-2020, respectively.

Next, as our focus was to develop the best-performing
streaming-capable hybrid ASR system for this competition,
we explored streaming-related decoding parameters to optimize
WER on dev1-dev, using the BLSTM-HMM AM and a linear
combination of all three LMs. This resulted on using a context
window size of 1.5 seconds and α=0.95 for the WMA normal-
ization technique. This configuration defined our primary sys-
tem, identified as p-streaming 1500ms nlt, that showed WER
rates of 11.6 and 16.0 in test-2018 and test-2020, respectively.
It is important to note that this system does not integrate any
VAD module. This task is implicitly carried out by the decoder
via the non-speech model of the BLSTM-HMM AM.

A small change on the configuration of the primary system,
consisting on the removal of the LSTM LM from the linear in-
terpolation, defined the contrastive system no. 1, identified as
c1-streaming 1500ms nt. The motivation behind this change is
that the computation of LSTM LM scores is quite expensive
in computational terms, and its contribution to PPL is negligi-
ble with respect to the n-gram LM + TLM combination (3%
relative improvement). Hence, for the sake of system latency
stability, we obtained nearly no degradation in terms of WER:
11.6 and 16.1 points in test-2018 and test-2020, respectively.

Both streaming ASR systems, p-streaming 1500ms nlt and
c1-streaming 1500ms nt, share the same theoretical latency of
1.5 seconds, as it is determined by the context window size. As
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Figure 1: WER as a function of context window size (in seconds)
for the streaming setup, computed over the dev1-dev set.

stated in Section 3.3, this parameter can be adjusted in decoding
time. This allows us to configure the decoder for lower latency
responses or better transcription quality. Hence, our last com-
mitment for this challenge was to find a proper system config-
uration that could provide state-of-the-art, stable latencies with
minimal WER degradation. Figure 1 illustrates the evolution of
WER on dev1-dev as a function of the context window size, lim-
ited to one second at maximum. As we focused on gauging AM
performance, we used the n-gram LM in isolation for efficiency
reasons. At the light of the results, we chose a window size of
0.6 seconds, as it brings a good balance between transcription
quality and theoretical latency.

The last step to set up our latency-focused streaming sys-
tem was to measure WER and empirical latencies as a func-
tion of different prunning parameters and LM combinations. In
our experiments, latency is measured as the time elapsed be-
tween the instant at which an acoustic frame is generated, and
the instant at it is fully processed by the decoder. We pro-
vide latency figures at the dataset level, computed as the av-
erage of the latencies observed at the frame level on the whole
dataset. Figure 2 shows WER vs mean empirical latency fig-
ures, computed over dev1-dev, with different prunning param-
eter values, and comparing the LM combinations that include
the Transformer LM. These measurements were run on an In-
tel i7-3820 CPU @ 3.60GHz, with 64GB of RAM and a RTX
2080 Ti GPU card. On the one hand, we can see how combi-
nations involving LSTM LMs are systematically shifted right-
wards w.r.t. other combinations. This means that the LSTM LM
has a clear negative impact on system latency, with little to no
effect on system quality. This evidence corroborates our deci-
sion of removing the LSTM LM to define our contrastive system
c1-streaming 1500ms nt. On the other hand, TLM alone gener-
ally provides a good baseline that is slightly improved in terms
of WER if we include the other LMs. However, this comes with
the cost of increasing latency. Hence, we selected the Trans-
former LM in isolation for our final latency-focused streaming
system. This system was our contrastive system no. 2, iden-
tified as c2-streaming 600ms t. Its empirical latency on dev1-
dev was 0.81±0.09 seconds (mean±stdev), and its performance
was 12.3 and 16.9 WER points in test-2018 and test-2020, re-
spectively. This is, with just a very small relative WER degra-
dation of 6% w.r.t. the primary system, we got state-of-the-art
(mean=0.81s) and very stable (stdev=0.09s) empirical latencies.
This system has a baseline consumption (when idle) of 9GB
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16.5
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tf
ng+tf
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Figure 2: WER versus mean empirical latency (in seconds) on
dev1-dev, measured with different prunning parameters, and
considering only interpolation schemes that include TLM.

Table 5: WER of the participant systems, including our open-
condition system submitted to the 2018 challenge, computed
over the dev2, test-2018 and test-2020 sets.

System dev2 test-2018 test-2020
p-streaming 1500ms nlt 11.2 11.6 16.0
c1-streaming 1500ms nt - 11.6 16.1
c2-streaming 600ms t 12.0 12.3 16.9
c3-offline - 12.0 17.1
2018 open-cond. winner [4] 15.6 16.5 -

RAM and 3.5GB GPU memory (on a single GPU card), adding
256MB RAM and one CPU thread per each decoding (audio
stream). For instance, the decoding of four simultaneous audio
streams in a single machine would use four CPU threads, 10GB
RAM and 3.5GB GPU memory.

Table 5 summarises the results obtained with all the four
participant ASR systems in the dev2, test-2018 and test-2020
sets, and adds the results obtained with our 2018 open-condition
system for comparison. On the one hand, surprisingly, the off-
line system is surpassed by the three streaming ones in test-
2020, by up to 1.1 absolute WER points (6% relative). We
believe that this is caused, first, by an improvable VAD mod-
ule, based on Gaussian Mixture HMMs, that, in our experi-
ence, suffers from false negatives (speech segments labelled as
non-speech). As the non-speech model was trained with mu-
sic and noise audio segments, and given the inherent limitations
of GMMs, it is likely to misclassify speech passages with loud
background music and noise (often present in TV programmes)
as non-speech. Second, the FSN technique might not be ap-
propriate for some types of TV shows, as local acoustic condi-
tion changes become diluted in the full-sequence normalization,
and acoustic scores computed for those frames may present
some perturbations that can degrade system performance at that
point. On the other hand, it is remarkable that our primary 2020
system significantly outperforms the 2018 winning system by
28% relative WER points on both dev2 and test-2018 (25% in
the case of our latency-focused system c2-streaming 600ms t),
while adding the novel streaming capability at the same time.

All these streaming ASR systems can be easily put into
production environments using our custom gRPC-based server-
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client infrastructure1. Indeed, ASR systems comparable to
c2-streaming 600ms t and c1-streaming 1500ms nt are already
in production at our Transcription and Translation Plarform
(TTP)2 for streaming and off-line processing, respectively. Both
can be freely tested using our public APIs, accessible via TTP.

4. Conclusions
In this paper we have described our four ASR systems that
participated in the Albayzin-RTVE 2020 Speech-to-Text Chal-
lenge. The primary one, a streaming-enabled performance-
focused hybrid ASR system (p-streaming 1500ms nlt) pro-
vided a good score of 16.0 WER points in the test-2020 set,
and a remarkable 28% relative WER improvement over the
2018 winning ASR system on test-2018, with a theoretical la-
tency of 1.5 seconds. Nearly the same performance was deliv-
ered by our first contrastive system (c1-streaming 1500ms nt):
16.1 WER points on test-2020, at a significant lower computa-
tional cost. In pursuit of low, state-of-the-art system latencies,
our second contrastive system (c2-streaming 600ms t) provided
a groundbreaking WER-latency balance, with a solid perfor-
mance of 16.9 WER points on test-2020 at an empirical latency
of 0.81±0.09 seconds (mean±stdev). Finally, our contrastive
off-line ASR system with VAD (c3-offline) provides the high-
est, yet still competitive, WER mark of 17.1 points, attributable
to an improvable VAD module and to the limitations of FSN
when dealing with local acoustic condition changes.

With a configurable system latency in decoding time, our
ASR technology offers the flexibility to produce fast system
responses for streaming applications, or to generate maximum
quality transcriptions whenever hard time constraints do not ap-
ply. Also, results demonstrate that our streaming ASR technol-
ogy is mature enough to be systematically put into production
environments for high-quality automatic live captioning in TV
stations, distance learning, conferencing platforms, or general-
purpose video/audio streaming services, among others.
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