45

Modifying Kurchatov’s method to find multiple
roots

A. Cordero’, N. Garrido®, J.R. Torregrosa’ and P. Triguero-Navarro”!

(b) Instituto de Matematica Multidisciplinar, Universitat Politécnica de Valéncia,
Camino de Vera, s/n, 46022-Valencia, Spain,
acordero@mat.upv.es, neugarsa@mat.upv.es, jrtorre@mat.upv.es, ptrinav@doctor.upv.es

1 Introduction

In many problems in engineering or applied mathematics, it is necessary to solve nonlinear equations
f(xz) = 0. They cannot always be solved exactly, which is why iterative methods appear to solve
them. A well-known one is Newton’s method, which has the following expression:

f () for k

:EkH::Ek_f(:Bk)’ or k=0,1,...

To ensure the convergence of Newton’s method, the derivative of the function evaluated in the
solution must be non-zero, that is, the solution must be a simple root of f(z) = 0. This is not
always the case. For this reason, iterative methods appear that allow us to obtain solutions with
a multiplicity greater than 1.

One of them is the following modification of Newton’s method, that can be find in [6], where
m is the multiplicity of the solution of the equation.

f(zk)
f(zy)’
In order to be able to apply this method, we must know the multiplicity of the solution in a priori.

To avoid the need to know the multiplicity in advance, iterative methods for multiple roots are
designed that do not use this multiplicity in their iterative expression, see [2].

In this way, we propose the following iteratives methods based on Kurchatov’s method.

To estimate the roots of f(x) = 0, we define the following method, denoted by KM,

Thtl =Tk — M for k=1,2,3...

Thi1 = T — 9(zk) L k=0,1,2,...
92z — 1, T 1]

where g(x) = £ and gly, 2)(y — 2) = 9(y) — 9(2).

To calculate the expression of g(x) in the previous method we use the derivative of the function
to be solved. We can replace this derivative by a divided difference operator, so that to estimate
the roots of f(z) = 0, we define the following method, denoted by KMD,

Tyl = T — g(:Ek) ) k= 071727"'
92z — Tpp—1, T—1]
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where g(z) = %

In this paper, we will analyse the order of convergence of the proposed methods and we will
also perform numerical experiments to illustrate the behaviour of them.

2 Convergence analysis

Theorem 20. Let f: C — C be a sufficiently differentiable function in an neighbourhood of «,
which we denote by D C C, such that o is a multiple zero of f(x) = 0 with unknown multiplicity
m € N—{1}. Then, taking an estimate xo close enough to o, the sequence of iterates {xy} generated
by method KM converges to o with order 2.

Proof. We first obtain the Taylor expansion of f(xy) around « where e =z — a:

(m) ‘
Flan) = L (e 4 Creptt o+ Caep ¥ Coef ) + O ),

. . ) fmtd) .
belng Cj = Zmlﬂyw(%?) fOI'j = 1,2,...
Calculating the derivative of the above expression we obtain

f(m)(a) ( m—1

7/(ew) = T (e o (m + D)Cref? + (m + 2Coef ™+ (m -+ 3)Caef ) + (e +?).

Now. we calculate g(xy)

f(zg) 1 1 5 (m+1)CE—2mCy 4 4
g(a:k) = f/(SCk) = E er — EClek + 2 er | + O(ek)
In an equivalent way, we obtain the following expressions for g(z;_1) and g(2z — xx_1)
flri_1) 1 1 (m +1)C? — 2mCy
g(zx,) = m = €k—1 — Ecle%:—l + mlg 62—1 + 0(6i_1),
f(@k)
2 - — = ] =
92wy — xp_1) 712k — z51)

1

1 +1)Cf — 2mC
= — <2€k — €p—1 — —01(26k - ek_1)2 + (m ) 1 2
m m

m2

(2e), — 6k—1)3) + O4(er, ex—1),
with e,_1 = zp_1 — a.
From the above relations, we obtain

92z —xp1) — g (Tp—1)
2(zp — Tp—1)

92z — w1, xp—1] =

1

2 _
_ 1 (1_%Clek+ (m+1)C7 — 2mCy

m2

— (46%- — 2ejep_1 + 621)) + O3(eg, ex—1)-

Thus, applying the above relationship, the following error equation is obtained:

g(w)
92z — Tp_1, Tp—1)
—1 m+ 1)C? — 2mC:
= —Che; + ( ) 12 2
m m

Thtl] — QX =2Tp — Q. —

<—5ei + 2e3ep_1 — ekez_l) + Oy(ep, ex—1).

258



Modelling for Engineering & Human Behaviour 2022

We have some different possibilities for the behaviour of e, respect to ex and ej_1.

By the expression, we only are going to take into account if the behaviour is like e} or exe;_;,
because e% and eiek_l converge faster to 0 than ez.

Then,

(m+1)C? —2mCsy
3 6kek_1.

-1
2
Chrr ~ O m

o Ifepyiq ~ ei, then the order of convergence is 2.
o Now, we suppose that ex1 ~ eke%_l. We assume that the method has R-order p, that means,
€k+1 ™~ 6%-

In the same way, ¢; ~ “i-—l' From the above relations, we get

2
P
Ck+1 ™~ €p_q-

Then, the error equation is

2 p+2
€k+1 ™~ CkCp_1 ~ € 1-

By equating the exponents of e;_1 of the above relations, we obtain the following polynomial
p? —p—2 = 0, whose only positive root is p = 2, then the order of convergence of the method
is 2.

Theorem 21. Let f : C — C be a sufficiently differentiable function in an neighbourhood of «,
which we denote by D C C, such that « is a multiple zero of f(x) = 0 with unknown multiplicity
m € N—{1}. Then, taking an estimate x close enough to a, the sequence of iterates {xy} generated
by method KM D converges to o with order 2.

Proof. We first obtain the Taylor expansion of f(x) around o where e =z} — a:

F ()

m)!

flay) = (e + Crep ™) + O ™).

. | (m+3) (o .
being C; = Wff(m—)(o(f;) for j=1,2,...

In the same way,

Fo+ S = T (et @)™ + € et @)™ ) + 0.

Then,

(M) (o
Fla+ fon) - o) = L mf D ((en+ fan)™ = e+ Cr ((en + F@))™ = 1)) +O(ert).

Using Newton’s binomial and the Taylor expansion of f(xj) around a we obtain that

Pt fwn)) = faw) SN0 (onet | s 1)cre) + O,

rr + f(r) — 2 m!

We then calculate g(xy) from the above expressions.

(21) = f(zp) _ e+ Cref"™ 4 0(ef?)
9Lk} = flog + f(zr), vn] mel" ' + (m + 1)Crel + O(ep™h)
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1 1
= (ek - E(ﬁe%) + O(e}).

In an equivalent way, we obtain the following expressions for g(zy_1) and g(2z; — xg_1)

1 1 ]
g(xp_1) = p— (ek—l — Eclei—1> +0(e}_1).

1 1
92w — 1) = p- (26k —Cp1 — E01(2€k - 6k-1)2> + Os(ek, ex—1),

with ep_1 = zp_1 — a.
Then, appyling the above relations, we obtain that

92z — xp—1) — g(TR—1)
2(xy, — 1)
1

2
= — (1 — —016k> + Og(ek,ek_l).
m m

92z, — xpq, 1] =

Thus, the following error equation is obtained

g(zr)
92z — xp_1, Tp—1]

Thyl — Q=T — @ —
1 2 3
= —EClek + ekOg(ek,ek_l) + O(ek)

We have some different possibilities for the behaviour of ey, respect to e and ej_1.

By the expression, we only are going to take into account if the behaviour is like e% or eke%_l,
because e% and e%ek_l converge faster to 0 than ei.

Then

o Ifegyg ~ e%, then the order of convergence is 2.

o If we assume that eg;1 ~ ekei_l. Then, we assume that the method has R-order p, that
means,

ek1 ~ Dy peb.
At the same time, ej ~ e}, then we obtain that
2
k41 ez_l-
From the error equation and the last relation, we obtain that

2 p+2
€k+1 ™~ k€1 ™~ € _1-

By equating the exponents of e;_ of the last two equation, we obtain the following polynomial
p? —p—2 = 0, whose only positive root is p = 2, then the order of convergence of the method
is 2.
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3 Numerical experiments

Now, we perform a numerical experiment to see the behaviour of the two proposed iterative meth-
ods. For the computational calculations, we use Matlab R2020b with an arithmetic precision of
500 digits iterating from an initial estimate xg until it is verified that the absolute value of the
function evaluated in the iteration is less than 10759, that is,

|f ()| < 10777,
The numerical results we are going to compare the methods in the different examples are:
e the approximation obtained,
e the norm of the equation evaluated in that approximation,
e the norm of the distance between the last two approximations,
o the number of iterations necessary to satisfy the required tolerance,

o the computational time and the approximate computational convergence order (ACOC), de-
fined by Cordero and Torregrosa in [3], which has the following expression

In(|zgy1 — 2xl/|2r — 1))
In(|zg — zp—1]/|Tk—1 — Th—2|)

p~ ACOC =

The equation we try to solve is f(x) = (22 — 1)3, which has two roots with multiplicity 3.

Table 1: Results for (z2 —1)3 = 0.

zo | v | [[#pr — @kl | [lg(zpa1)] | Tter | ACOC
KM | 0.5] 0.1 3.3307e-16 0 7 2.0058
KMD | 0.5 | 0.1 9.7478e-14 0 9 1.7006

The results obtained for each of the methods for the function to be solved are shown in Table
1. We can see from the Tables that in all cases the ACOC is close to the theoretical convergence
order shown above. It can be seen that the best results for this numerical experiment are obtained
with the KM method. Both methods give good approximations to the solution, although the K M
method performs less iterations to verify the stopping criterion.

4 Conclusions

In this work, we have studied two iterative methods for multiple roots with memory, obtaining that
the order of convergence of them is 2. These iterative methods do not use the multiplicity of the
root in their iterative expression, so it is not necessary to know this multiplicity before applying the
iterative method. In the numerical experiments, we have verified the theoretical results concerning
the order of convergence of the methods.
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