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1 Introduction

Following the line started in [1], some interesting numerical and computational techniques used in
part of our research in Cosmology are now presented. As remarked in [1] (with other algorithms we
built), we also think the tools described in this conference presentation may work in different tasks
concerning our research fields. Moreover, they may even be extended in Science and Technology
in general. The approaches showed here have been developed in N-body algorithms applied when
describing the CMB (Cosmic Miicrowave Background) anisotropies (see [2, 3, 4, 5, 6]). In our
methods, innovations in CMB maps treatments are performed. Such novelties may be extended to
other studies.

2 Methods

Along more than a decade, we have presented the advance of our CMB anisotropy computations
using N-body codes. The codes with more resolution and precision we used were the N-body Hydra
ones (see [3]). All versions were designed by members of the Hydra Consortium. We used 1) Codes
without baryons. 1.a) Sequential versions. 1.b) Parallel ones. With both of them we computed the
weak lensing (WL) and the Rees-Sciama (RS) contributions to the CMB angular power spectrum.

Using our numerical techniques, we reported a higher contribution –to lensing– than previous
approaches. Our CMB anisotropies computations on every step of the run allowed less inter-
polations and approximations. This could be the explanation of our excess of power in lensing
computations. Our higher resolution could also contribute to this excess.

Afterwards, we also performed computations with baryons (see [6]). This version allowed us to
compute Sunyaev-Zel’dovich (SZ) contribution to the CMB angular power spectrum too.

An appropriate ray-tracing procedure through N-body simulations was proposed in the following
basic references: [7, 8]. In these papers it was explained how to chose a preferred direction (PD)
to cross the N-body simulated boxes. Such directions wee chosen to reach the initial position
after passing through 16 boxes. For a box size L = 512h−1Mpc the distance between points
entering and leaving each box was ∼ 104h−1Mpc. So, one had independent regions from redshift
z ∼ 6 (∼ 5900h−1Mpc). For our computations, starting in z ∼ 6 was sufficient. There was no need
to start computations at higher redshifts. Applications based on our ray-tracing methods through
PM simulations can be seen, for instance, in: [9, 2].
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Some important computational details of the map construction are now detailed.

For weak lensing (see [3]), small, unlensed maps of CMB temperature contrasts (∆ = δT/T )
were constructed to be subsequently deformed by lensing. In order to deform the unlensed maps,
the lens deviations corresponding to a set of directions, covering an appropriate region of the sky,
were calculated. These deviations corresponded to the quantities:

~δ = −2

∫ λ0

λe

W (λ)~∇⊥φ dλ , (1.1)

where ~∇⊥φ = −~n∧ ~n∧ ~∇φ is the transverse gradient of the peculiar gravitational potential φ, and
W (λ) = (λe − λ)/λe. The variable λ is:

λ(a) = H−1
0

∫ 1

a

db

(Ωm0b+ ΩΛb4)1/2
. (1.2)

Once the deviations were calculated, they could be easily used to get the lensed maps from the
unlensed ones. This was achieved using the relation:

∆L(~n) = ∆U (~n+ ~δ) , (1.3)

where ∆L and ∆U are the temperature contrasts of the lensed and unlensed maps, respectively.
The unit vector ~n defines the observation direction (line of sight).

Given the unlensed map ∆U , and the map ∆L obtained from it after deformation by lensing (the
lensed map), the chosen power spectrum estimator could be used to get the quantities C`(U) and
C`(L), whose differences C`(LU) = C`(L)− C`(U) could be considered as an appropriate measure
of the weak lensing effect on the CMB.

For the Rees-Sciama contribution we computed the integral (see [2, 4]):

∆T

TB
(~n) = 2

∫ λ0

λe

W (λ)
∂φ

∂λ
dλ , (1.4)

where φ is the peculiar gravitational potential φ, W (λ) = (λe − λ)/λe and λ is given in eq(1.2).

For the Sunyaev-Zel’dovich thermal contribution in the long wave regimes we computed the
integral (see [6]):

∆T

TB
(~n) = −2

σT
mec2

∫ λ0

λe

ne k Te dλ , (1.5)

where the subscript e refers to electrons.

Notice that we had to define different weak lensing regimes. Basically, this is the way to proceed
(see [3]):

� AWL (A weak lensing), namely the effect due to scales k > 2π/Lmax (where Lmax = 42h−1

Mpc) at redshifts z < 6. This signal is dominated by strongly nonlinear scales (namely
structures).

� BWL, the lensing signal due to scales k < 2π/Lmax which corresponds to modes that are
always in the linear regime down to z = 0.

� CWL, the lensing signal due to scales k ≥ 2π/Lmax but at redshifs z > 6.

� RS, the same regimes that one has for WL apply for RS.

� SZ, this distinction does not apply.
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We now describe the main features of the algorithm designed to compute the physical quantities
described above and that allowed to study the CMB anisotropies using the Hydra N-body codes
(see [3]):

1. Decide upon the direction of the normal rays representing the geodesics.

2. Assuming the Born approximation and using the photon step distance ∆ps, determine all
the evaluation positions and times on the geodesics within the simulation volume from z = 6
down to the final redshift.

3. Associate test particles with each of these positions and times.

4. At each time-step of the N-body simulation (while it is running) determine which test particles
require force evaluations (or other physical quantities depending on the CMB anisotropy
effect to be computed).

5. At each test particle position evaluate the force (or corresponding physical quantity) on the
test particle using the long-range FFT component and short-range PP correction as in the
HYDRA algorithm.

6. During the FFT convolution for the test particles eliminate contributions from scales larger
than 42h−1 Mpc by removing the signal from wavenumbers satisfying k ≤ 0.15h Mpc−1.

7. If the evaluation time for a point on the geodesic lies between two time-steps calculate a
linear interpolation of the two forces from the time-steps that straddle the correct time.

8. Resolve the force into its transverse component and hence recover the transverse com-
ponent of the potential gradient. This applies for WL. For RS and SZ, see [2, 4] and [6],
respectively, for the physical quantities to be computed (potential in Eq. (1.4) and electrons
temperatures in Eq. (1.5), respectively).

3 Results

Simulations were performed in the framework of the concordance model with the following param-
eters: h = 0.7, Ωb = 0.046, Ωd = 0.233, ΩΛ = 0.721, optical depth τ = 0.084 and σ8 = 0.817.
The power spectrum of the scalar (adiabatic) energy density perturbations was obtained with the
CMBFAST code. No tensor modes were considered at all.

One of the numerical advances of our work was that the correlation function ξ(r) extracted
from one simulation (instead of 30 which was the usual method) was sufficient. This showed that
our nonlinear algorithm was very robust. Besides, its form was that expected for the softening
length and the box size. The code worked very well in spite of the modifications required by our
CMB calculations.

For lens deformations (see [3]), the angular power spectra for one simulation was compared
to the same simulation but where deflections were calculated by including an average over the 8
nearest geodesics. This reduced the resolution of the geodesic method, but maintained the same
resolution in the gravitational solver. The resulting power spectrum was plotted in Figure 10 of [3]
and showed a decaying signal at high ` which was similar to that found in earlier works (e.g. [10]).
This showed that as we degraded the resolution of our ray-tracing method we indeed had close
results to those of previous works with less resolution than ours. Therefore, the local averages,
used in methods of other authors, might hide the highly nonlinear structures effects. Notice that
these structures had a relative small size.

For RS (see [2, 4]) and SZ (see [6]), the results we obtained were of the order of magnitude or
slightly greater than those obtained by other authors.

3



Modelling for Engineering & Human Behaviour 2022

4 Conclusions

Our AP3M codes adapted to CMB calculations could be run for different values of the parameters
defining the simulations; hence, this code allowed us to see how the resulting angular power spectra
depended on the parameters defining both the N-body simulation and the ray-tracing procedure.

Simulations in boxes of 512h−1 Mpc led to good C`(LU) spectra for 1000 < ` < 7000. For
2000 < ` < 7000, all the simulations lied in a region of width ∼0.5 µK, indicating that the
simulations gave consistent estimates of the signal in this range (see [3]). The signal in the range
4000 < ` < 7000 is 2.0± 0.4 µK, which is ∼1.4 µK higher than that found elsewhere [10].

The values we obtained were compatible with studies based on the Millennium simulation (see
[11]), where the authors reported a small contribution from nonlinearity at ` ' 4100. However,
the methods of [11] were designed to build all-sky lensed maps, and therefore did not have the
necessary resolution to perform an accurate estimate of the weak lensing by strongly nonlinear
structures in the `-interval where we found our main effect.

Now we are working on the analysis and description of the numerical advances we have made in
all the research described in the present paper. Such as the improvements we made on the resolution
of N-body algorithms, on our FFT subroutines and on numerical parallelisation technics. Also our
ameliorations on the numerical treatment of images necessary to extract the power spectrum of
CMB. This work will be presented in the near future.
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We acknowledge the financial support of the Spanish Ministerio de Ciencia, Innovación y Uni-

versidades and the Fons Europeu de Desenvolupament Regional, Projects PID2019-109753GB-C21
and PID2019-109753GB-C22, the Generalitat Valenciana Project AICO/2020/125 and the Univer-
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