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Abstract

In 1936, Alan Turing proved that the halting problem, that is, deciding whether a
program terminates, is an undecidable problem for most practical programming lan-
guages. Even so, termination is so relevant that a vast number of techniques for
proving the termination of programs have been researched in the recent decades.
Term rewriting systems provide an abstract theoretical framework ideally suited for
the study of termination. In term rewriting systems, evaluation of a term corresponds
to the left-to-right, non-deterministic application of rewriting rules.

Narrowing is a generalization of term rewriting that provides a mechanism for
automated reasoning. For instance, given a set of rules defining addition and mul-
tiplication with natural numbers, rewriting allows to perform evaluation of arith-
metic expressions, whereas narrowing allows to solve equations with variables over
arithmetic expressions. This thesis constitutes an in-depth study of the termination
properties of narrowing. The contributions are as follows.

First, we identify classes of systems where narrowing behaves well, in the sense
that it always terminates for any system belonging to these classes. Many methods
of analysis, such as the semantics-based analysis of program properties by means of
narrowing, benefit from this characterization.

Second, we develop an automatic method to prove termination of narrowing for
a given system, based on the abstract framework of dependency pairs. For the first
time, such an automatic method is not restricted to specific classes of TRSs and hence
is universally applicable.

Third, we propose another automatic method to prove termination of narrowing
from a given term, also on top of the framework of dependency pairs. Termination
from a given term is relevant for many applications, including the termination anal-
ysis of programming languages. Our method generalizes the current state-of-the-art,
enabling the study of termination of logic programs in terms of the termination of
narrowing, something which was not possible previously.

Fourth and last, the modularity properties of the termination of narrowing are
considered in detail. That is, given two systems A and B where narrowing is termi-
nating, determine whether it is still terminating in the union system. This notion of
modularity has implications in many of the applications of narrowing. We develop
the case of combining systems for equational unification.

Furthermore, the automated approaches of the second and third contributions
above have been implemented in NARRADAR, our tool for automatic proofs of termi-
nation of narrowing.






Resumen

En 1936 Alan Turing demostré que el halting problem, esto es, el problema de decidir
si un programa termina o no, es un problema indecidible para la inmensa mayoria de
los lenguajes de programacién. A pesar de ello, la terminacién es un problema tan
relevante que en las tltimas décadas un gran nimero de técnicas han sido desarrolladas
para demostrar la terminacién de forma automadtica de la méxima cantidad posible de
programas. Los sistemas de reescritura de términos proporcionan un marco teérico
abstracto perfecto para el estudio de la terminacion de programas. En este marco, la
evaluacién de un término consiste en la aplicaciéon no determinista de un conjunto de
reglas de reescritura.

El estrechamiento (narrowing) de términos es una generalizacién de la reescritura
que proporciona un mecanismo de razonamiento automatico. Por ejemplo, dado un
conjunto de reglas que definan la suma y la multiplicacién, la reescritura permite cal-
cular expresiones aritméticas, mientras que el estrechamiento permite resolver ecua-
ciones con variables. Esta tesis constituye el primer estudio en profundidad de las
propiedades de terminacién del estrechamiento. Las contribuciones son las siguientes.

En primer lugar, se identifican clases de sistemas en las que el estrechamiento tiene
un comportamiento bueno, en el sentido de que siempre termina. Muchos métodos
de razonamiento automatico, como el analisis de la semantica de lenguajes de progra-
macion mediante operadores de punto fijo, se benefician de esta caracterizacion.

En segundo lugar, se introduce un método automatico, basado en el marco tedrico
de pares de dependencia, para demostrar la terminacién del estrechamiento en un
sistema particular. Nuestro método es, por primera vez, aplicable a cualquier clase
de sistemas.

En tercer lugar, se propone un nuevo método para estudiar la terminacion del
estrechamiento desde un término particular, permitiendo el anélisis de la terminacién
de lenguajes de programacién. El nuevo método generaliza los métodos existentes de
manera fundamental, gracias a lo cual se puede estudiar la terminacion de lenguajes
de programacién légicos a través de la terminacién del estrechamiento, algo que hasta
ahora no era posible con los métodos existentes.

En cuarto lugar, se analiza detalladamente la modularidad de la terminacion del
estrechamiento. Esto es, si los sistemas A y B son terminantes, en qué casos el sistema,
unién es terminante. La modularidad tiene implicaciones directas en muchas de las
aplicaciones del estrechamiento. En concreto desarrollamos el caso de la resolucién
de ecuaciones simbdlicas cuando se combinan varios sistemas ecuacionales.

Ademas, las técnicas automaticas de la segunda y tercera contribuciéon han sido
implementadas en nuestra herramienta de demostracion de la terminacion del es-
trechamiento, NARRADAR.






Resum

En 1936 Alan Turing va demostrar que el halting problem, és a dir, el problema de de-
cidir si un programa acaba o no, és un problema indecidible per a la immensa majoria
dels llenguatges de programacié. Tot i aixo0, la terminacié és un problema tan relle-
vant que en les ultimes decades s’ha desenvolupat una gran nombre de técniques per
a demostrar la terminacié de la maxima quantitat de programes possible de manera
automatica. Els sistemes de reescriptura de termes proporcionen un marc teoric ab-
stracte perfecte per a la caracterizacié de les propietats de terminacié de programes.
En aquest marc, ’avaluacié d’un terme consisteix en 'aplicacié no determinista d’un
conjunt de regles de reescriptura.

L’estretiment (narrowing) de termes és una generalitzacié de la reescriptura que
proporciona un mecanisme de raonament automatic. Per exemple, donat un conjunt
de regles que definisquen la suma i la multiplicacié dels naturals, la reescriptura
permet calcular expressions aritmetiques, mentre que l’estretiment permet resoldre
equacions amb variables. Aquesta tesi constitueix el primer estudi en profunditat de
les propietats de terminacié de 'estretiment. Les contribucions sén les segiients.

En primer lloc, s’identifiquen classes de sistemes en qué l’estretiment té un com-
portament bo, en el sentit que sempre acaba. Molts metodes de raonament automatic,
como 'analisi de les propietats de programes basat en una semantica computada per
mitja de narrowing, es beneficien d’aquesta caracteritzacio.

En segon lloc, s’introdueix un metode automatic, basat en el marc teoric de par-
ells de dependéncia, per a demostrar la terminacié de l'estretiment en un sistema
particular. El nostre metode es, por primera volta, aplicable a qualsevol classe de
sistemes.

En tercer lloc, es proposa un nou metode per 'estudi de la terminacié de I’estretiment
des d’un terme particular, cosa que permet ’analisi de la terminacié de programes.
El nostre metode generalitza els metodes existents de manera fonamental. Gracies a
aixo, es pot estudiar la terminacié de llenguatges de programacié logics a través de la
terminacié de 'estretiment, un fet que fins ara no era possible amb els metodes que
hi havia.

En quart lloc, s’analitza detalladament la modularitat de la terminacié de ’estretiment.
Aixo és, si els sistemes A i B s6n terminants, en que casos el sistema unioé és terminant.
La modularitat té implicacions directes en moltes de les aplicacions de 1’estretiment.
En concret, desenvolupem el cas de la resolucié de equacions simboliques quan es
combinen diversos sistemes equacionals.

A més, les tecniques automatiques de la segona i tercera contribucié han sigut
implementades en la nostra eina de demostracié de la terminacié de l'estretiment,
NARRADAR.
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Introduction

Narrowing [Fay, | is a generalization of term rewriting that allows free vari-
ables in terms (as in logic programming) and replaces pattern matching by syntactic
unification so that it subsumes both rewriting and SLD-resolution | , ].
Narrowing has many important applications including:

Execution of functional-logic programming languages and logic lan-
guages | , ; , ; , ]. Narrowing is
the operational mechanism of functional-logic languages such as Curry | ,

], or Toy | , ]. Moreover, a re-
striction of narrowing called basic narrowing (cf. Chapter 3) is fundamentally
equivalent to SLD resolution [ , ], the operational mechanism of
logic languages such as Prolog.

Equational unification | , ]. Equational unification is a general
procedure for finding solutions of symbolic equations. Due to non-termination,
narrowing behaves as a semi-decision procedure for the problem of equational
unification in a wide variety of equational theories.

Symbolic reachability [ , ] that is, given a set of
rules R and initial and final terms s and ¢, narrowing is able to find the “most
general” solution o for the variables of s and ¢, such that so rewrites to to in a
finite number of steps,

Automated proofs of termination of term rewriting | ,
; , ]. Narrowing is used in several techniques
for the approximation and refinement of so-called dependency graphs,

Automated proofs of non-termination in term rewriting Narrowing is
used as a mechanism for unfolding rewriting rules in proofs of non-termination
of term rewriting systems [ , , ; , ].

Verification of security policies | , ] and crypto-
graphic protocols | y ]. Narrowing is used to perform
automated reasoning over suitable definitions, by means of rewriting rules, of



2 1. Introduction

security policies and protocols, in order to establish the satisfaction of relevant

properties.
e Type checking | , ], where narrowing can replace syntactic unifi-
cation in Damas-Milner | ) ] based type systems extended

to dependent types.

e Equational constraint solving | , , ]. Narrowing
provides a complete semantic unification procedure for the equational constraint
logic programming scheme that parameterizes the CLP framework with respect
to a Horn equational theory.

e Symbolic model checking of infinite | , ]
state systems. Narrowing is a complete symbolic method for model checking
reachability properties of systems expressed by means of rewriting rules. Nar-
rowing can also be used to model check systems with state predicates, which
correspond to Kripke structures on which ACTL* and LTL formulas can be

verified.
e Semantics of term rewriting systems | , ] In joint
work [ , ], we propose an immediate consequences operator

which relies on narrowing to compute the compact semantics of a wide class of
term rewriting systems.

Termination of narrowing itself is of great interest to these applications. Without
it, many of these applications are simply not possible or their usefulness is seriously
affected. For instance, for all the applications related with reasoning, including equa-
tional unification, verification, and reachability, without a termination proof narrow-
ing can only provide a semi-decision procedure.

Example 1.1. Consider the following term rewriting system (TRS) defining the ad-
dition add on natural numbers built from 0 and s' :

add(0,y) —» y (R1)
add(s(z),y) — s(add(z,y)) (R2)

Narrowing allows us to prove that the formula
Jw3Iz s.t. add(w, s(0)) = s(s(z))
holds by computing the solution
{w — s(0), z— 0}
whereas it cannot prove that the formula

Jw s.t. add(w,s(0)) =0

1 Along this thesis, variables are written in italic font and function symbols are in typewriter font.



does not hold. There are infinitely many narrowing derivations issuing from the input
expression add(w, s(0)):

add(w,s(0)) ~>fwso},(r1) 8(0)

add(w, S(O)) ~ Lwess(z) ), (R2) s(add(:v, S(O))) L0}, (R1) S(S(O))

add(w, S(O)) ~ Lwess(a)},(R2) s(add(:r, S(O))) ~feess(z))},(R2) s(s(add(a:’, S(O))))
~ fzm0}, (k1) 5(8(s(0)))

(where at each step, the narrowing relation ~ is labelled with the rule used and the
substitution computed’, and the reduced subterm is underlined).
The following infinite narrowing derivation resulting from applying rule (R2) in-
finitely many times can also be proven:

add(w7 S(O)) ~ Lwess(a) },(R2) s(add(x, S(O))) ~fress(z)) ), (R2) s(s(add(:c'7 S(O)))) cee

Termination of narrowing has implications on many of the applications mentioned
above. Briefly, some of these are:

Proofs of termination of functional-logic and logic programs. As narrowing
is the operational mechanism of functional-logic languages, and it is closely re-
lated to the operational mechanism of logic programs, termination of narrowing
can be used to prove termination of such programs.

Proofs of termination of imperative programs. Semantic-based techniques can
prove termination of imperative programs in terms of termination of logic pro-
grams | , |, which in turn can be proven in terms of termination
of narrowing.

Improved proofs of termination and non-termination of term rewriting. As
mentioned before, narrowing plays a role in several techniques for proofs of
termination and non-termination of term rewriting. Often, some assumptions
and/or requirements are needed in order to ensure the termination of narrowing.
The results in this thesis might enable some of those restrictions to be relaxed
or dropped where appropriate.

Decidable equational unification. Termination of narrowing, combined with com-
pleteness, ensures that narrowing is a decidable procedure for the problem of
equational unification [ , .

Decidable of symbolic reachability. Again, termination combined with complete-
ness provides a decidable procedure for solving problems of symbolic reachabil-

1ty.
Verification of security policies and cryptographic protocols. Again due to

decidability, termination of narrowing is essential for enabling the checking of
most relevant properties.

2Restricted to the input variables.
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Semantics of term rewriting systems. The results in this thesis regarding classes
of systems where narrowing terminates enable us to establish the completeness
of an immediate consequences operator which uses narrowing to compute a
compact semantics for term rewriting systems [ , ]

1.1 State of the Art

Termination of term rewriting systems has been studied extensively in the recent
decades, and it can safely be said that it has become a hot topic in the top conferences
and journals of the area. We refrain from giving an enumeration of the endless
references about the topic and refer the reader to | , ] for a survey on
the topic.

On the other hand, there are few works in the literature which focus on the study
of the termination of narrowing. Existing termination results for narrowing have been
obtained as a by-product of other works that address the decidability of equational
unification or the completeness of narrowing-based equational unification algorithms.
To facilitate the understanding of our results, let us first summarize the existing
completeness results for narrowing as a procedure to solve equational unification as
well as reachability goals.

1.1.1 Existing completeness results for narrowing

[Fay, ] and | ) ] demonstrated that narrowing is a complete method for
solving equational unification goals s; = t1,...,s, = t, in an equational theory de-
fined by a canonical term rewriting system R. In the equational setting, completeness
means that, for every solution p to a given equational goal G (i.e., R = s;p = t;p, for
all i s.t. 1 < i < n), amore general solution 1 can be found by narrowing. Strictly
speaking, the relative generality of substitution 1 w.r.t. p holds modulo R and is
restricted to the variables of GG, or more formally:

n <g p [Var(G)] (unification-completeness)

This means that there exists a substitution o s.t., for all z € Var(G), the equation
xp = xno holds in R, which can be proved by rewriting terms xzp and xno in R to
the same normal form, due to canonicity. The subindex R in < can be dropped
only when we restrict our interest to normalized (or irreducible) substitutions, which
is generally understood as a weaker result from both the semantic as well as the
pragmatic point of view [ , ]. If we drop the termination of R
while keeping confluence, narrowing is (unification-) complete only w.r.t. normalizable
solutions | , ]

In the extensive literature about narrowing, unification-completeness has been
thoroughly investigated for a number of narrowing restrictions which are obtained by
imposing specific narrowing strategies; see | , ] for a survey. In this thesis,
we restrict our interest to ordinary (sometimes called full, unrestricted, or simple)
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narrowing, as defined in Chapter 2. An investigation of completeness or termination
for sophisticated narrowing strategies is beyond the scope of this thesis.

From a practical point of view, equational unification problems can be seen as
a special case of reachability problems. Namely, under canonicity of R, solving a
unification problem 3Z. s = t can be transformed into solving the corresponding
reachability problem 3Z. (s &~ t) —* true in the extended term rewriting system
R U (z =~ x — true) where both problems have the same solutions provided that
~ is a fresh binary function symbol and true is a fresh constant [

, ; , ]. The extension of R with the extra
rule (x = x — true) allows treating equality = as an ordinary function symbol ~
and syntactic unification as a narrowing step, i.e., in the extended TRS, the “term”
s & t narrows to true with substitution o iff o is the most general unifier of s and
t. Alternative formulations of narrowing-based equational unification procedures that
do not extend R by this extra rewrite rule complement the narrowing calculus with
an additional inference rule to cope with syntactic unification, e.g. | , ]

As stated above, the completeness of narrowing as a procedure to solve equational
goals heavily depends on the condition that the rewrite rules are confluent. Actually,
in the standard equational setting, confluence is the property which allows considering
equations as rewrite rules (oriented from left to right). The equational theory axioma-
tized by {f(a) =b,f(a) = c} is a trivial counter-example to unification-completeness
when confluence does not hold. Here narrowing fails to prove the equation b = ¢ in
the corresponding (oriented) TRS R = {f(a) — b, f(a) — c}, whereas b = c holds
in the original equational theory.

In | , ], reachability goals sy —* t1,...,8, —* t, are
investigated in non-confluent term rewriting systems in order to solve verification
problems of cryptographic protocols. Many safety properties (i.e., properties of a
system that are defined in terms of certain events not happening) can be characterized
in terms of reachability problems. By finding all solutions to a reachability goal
s =* t (i.e., the substitutions o such that R F so —* to), the subset of the states
denoted by s that can reach a subset of the states denoted by ¢ can be easily inferred.
Hence, reachability problems extend narrowing capabilities to a wider spectrum that
includes the analysis of concurrent systems. Similarly to the equational case, the
procedure for solving reachability goals performs syntactic unification at the last step
of the derivation; this way, trivial goals such as x —* y (where there is no redex to
narrow) do succeed in computing a more general solution. In the reachability context,
confluence is no longer a reasonable (or needed) assumption and is thus done away
with (e.g., concurrent systems are inherently non-deterministic).

The new completeness results for narrowing given in | , I
for solving reachability goals in (possibly) non-confluent TRS’s are summarized as
follows. Narrowing is weakly complete, i.e., complete w.r.t. normalized solutions: for
every normalized solution p to a reachability goal G, a (syntactically) more general

3The completeness results in [ 8 ] concern more general rewrite theories
that consist of a set of rewrite rules R together with a set of equations E so that rewriting and
narrowing in R are defined modulo E.
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solution 7 is found by narrowing, in symbols:
n < p [Var(G)] (weak reachability-completeness)

Note that neither confluence nor termination of R are required.

In | , ], strong reachability-completeness (i.e., complete-
ness w.r.t. not necessarily normalized solutions, i.e. solutions that can be further
rewritten by R) is proved to hold in the following two particular classes of TRS’s:
(i) topmost, and (ii) right-linear (provided that we additionally restrict ourselves to
linear reachability goals A", (s; —* t;), where each s; is linear). Under these asump-
tions, for every solution p to a reachability goal G, a more general solution n (modulo
R) is computed by narrowing, i.e., n <g p [Var(G)]. In the reachability setting,
where confluence cannot be assumed and thus equality in R cannot be decided by
rewriting, the definition is translated as follows: there is a (syntactic) instance 6 of the
computed substitution 7 such that the (possibly not normalized) solution p reduces
to 0. To be precise:

Plvar@) =R Olvar(e) and n < 0 [Var(G)] (strong reachability-completeness)

Of course, unification-completeness trivially implies reachability-completeness, hence
(strong) reachability-completeness of narrowing holds for canonical programs, whe-
reas narrowing is not unification-complete in either right-linear or topmost TRS’s
[ , 1994].

In the case of right-linear TRS’s, linearity of the goal is a key requirement which
cannot be dropped, as shown in the following example.

Example 1.2. | , | Consider the TRS R = {f(b,c) - d,a —
b,a — c}. The non-linear reachability goal £(x,x) —* d has a solution {x — a},
whereas there is no narrowing derivation stemming from the term £(x,x).

This example shows that reachability-incompleteness of narrowing for general TRS’s
is mainly due to rewrites that must happen within non-normalized substitutions but
are missed by the narrowing procedure, since narrowing steps do not apply to variable
positions. In the standard equational setting, these “under the feet” rewritings are
inconsequential, due to confluence.

1.1.2 Existing termination results for narrowing

In the literature, the termination of narrowing has received less attention than com-
pleteness. Actually, termination of narrowing is a much more difficult property to
achieve than termination of standard term rewriting; see | , ] for a sur-
vey on rewriting termination.

Termination results for narrowing calculi have been obtained as a by-product of
other works that address the decidability of equational unification; a summary can
be found in [ , ]. Most of these results are highly restrictive
and do not allow any recursively defined function. Many introduce specially tailored
equational unification procedures based on the generally more expensive “top-down



1.1. State of the Art 7

decomposition approach” outlined in | , ] (not considered in this
thesis). Narrowing-based procedures with a finite search space often 1ncorp0rate a
test to cut unproductive, infinitely failing derivations |
; , ] or a kind of graph- babed memoiza-

tion techmque [ ; , ] to achieve, in
some cases, a finite representatlon of an infinite narrowing space. There are popular®
(syntactic) conditions that, together with termination and (often) confluence of R,
are required for the termination of these procedures. These include |

, |: left-linearity (no variable appears in the lhs of a rewrite rule more than
once); right-hand side (rhs) groundness, right-groundness (rhs’s of rewrite rules con-
tain no variable); and left-flatness (each argument occurring at the lhs of a rewrite
rule is either a variable —often called shallow | , J— or a ground
term).

Unfortunately, the decidability of unification for a given equational theory does
not imply the termination of ordinary narrowing in the corresponding TRS. For in-
stance, unification is decidable in the equational theory associated to the function
add of Example 1.1 (see e.g. | , ]) whereas narrowing does
not terminate for the input equation add(w,s(0)) = 0 (as we have shown). Achiev-
ing termination without losing completeness is possible for this particular example
by adding an extra “failure rule”, which is able to detect a clash conflict between
the irreducible symbols 0 and s in the derived equational goal s(add(z,s(0))) = 0.
However, as the following example shows it is more difficult in general.

Example 1.3. Consider the TRS consisting of the “shallow” oriented commutativity
aziom for a binary symbol f: R = {f(x,y) — £(y,x)}. An extra artifact such as a
“loop checker” would be needed to stop narrowing from the input equation £(x,y) = z
in R, whereas the corresponding equational theory defined by R is not only decidable
but actually finitary [ , ] (actually, the considered equational goal has
exactly the one solution (modulo R) {z — £(x,y)}.

Summarizing, the only positive result in the literature concerning the termination
of ordinary narrowing was proved in [ ) ] and holds for every left-flat
TRS R that is compatible with a termination ordering <. Termination of narrowing
does not hold for systems with flat right—hand sides (even if linearity is also imposed),
as proved in | ]

In general, whenever the lhs of a rewrite rule is not flat, aliasing due to repeated
variables can cause troublesome propagation of hazardous structure as shown by the
following example.

Example 1.4. [ , | The non-flat rule £(£(x)) — x is “safe” when used
to narrow a linear term like c(£(u),v): it produces the term c(x,v), which cannot be
further narrowed. However, the non-linear term c(£(x),x) can be narrowed indefi-
nitely:

C(£(x), %) ~{art)y S EEX)) o0 sy (£, x7) -

4These properties have been studied in the context of other rewriting-related properties and
problems also, such as joinability, modularity of termination, and modularity of confluence.



8 1. Introduction

1.2 Plan of the thesis

In this thesis we make several contributions related to the termination of narrowing.
In the first part we focus on the study of the termination of narrowing and basic
narrowing. In Chapter 3, we focus on the syntactic restrictions (classes) of TRSs
where narrowing terminates, learning numerous insights on the way. Next, in Chapter
4 we study the shape of infinite narrowing derivations, which leads to a method based
on the technique of Dependency Pairs | , ] for automated proofs of
termination of narrowing. In Chapter 5 we consider automated proofs of termination
of narrowing from an initial query. These two chapters consider two independent
extensions of the Dependency Pair technique which can be complementary.

In the second part of the thesis, we study the modularity properties of the termi-
nation of basic narrowing, paving the way for the modular combination of theories
for equational unification with basic narrowing. Relying on these results, we develop
the modular combination of theories for equational unification with basic narrowing.

To be precise, the thesis contains the following contributions:

(i) For many applications it can be of interest to know whether narrowing termi-
nates for a given class of TRSs, instead of for a particular TRS. These classes
are often specified as syntactic restrictions. We ascertain several classes of TRSs
where narrowing always terminates, providing syntactic criteria there where pos-

sible.

(ii) Basic narrowing | , | is a restriction of narrowing with numerous ap-
plications in the area of equational unification. We study existing results on the
termination of basic narrowing and generalize the termination criterion of |

, ] by dropping the superfluous requirement of canonicity (i.e. termina-
tion + confluence). In addition, we show how to relate termination of narrowing
with termination of basic narrowing, and give a criterion for the termination of
narrowing in terms of the termination of basic narrowing.

(iii) By studying the shape of infinite narrowing derivations, we generalize the de-
pendency pair approach of | , ] to produce automated proofs
of termination of narrowing. For this we need to consider a new type of de-
pendency pairs, ll-dependency pairs, as well as a notion of chain specific to
narrowing. Moreover, we show how to translate termination of narrowing into
termination of rewriting, so the wealth of techniques available to prove the termi-
nation of rewriting can be reused to prove the termination of narrowing. Finally,
our technique is generally useful in that it can be applied to any class of TRSs,
not being restricted to particular classes of systems.

(iv) In many applications, termination for all possible queries is not required. In-
stead, it suffices that narrowing terminates for a given class of queries. Indeed,
even if the TRS is not terminating in general, the set of queries considered can be
terminating. This problem has appeared in previous work in the literature, e.g.
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for the termination of logic programs | , ], the termi-
nation of Haskell programs | , ], or the termination of narrowing

[Vidal, 2008].

We extend the dependency pair approach to consider termination problems from
an initial goal. We do so in a way which is independent of the underlying relation,
be it rewriting, narrowing or any other relation as e.g. innermost rewriting.
Since our method is not tied to narrowing in any way it can be reused for other
purposes.

(v) Given two TRSs R and P, we speak of relative termination of R with regard to P
when there are no infinite -} o — o —% derivations with an infinite number
of —x steps. We show how to use the dependency pair approach to produce
proofs of relative termination when R and P form a hierarchical combination
(i.e. no rules of P contain calls to functions defined in R). This means that the
wealth of techniques available for rewriting termination can be applied directly
to prove relative termination when the mentioned condition holds.

(vi) We put together the frameworks for initial goal termination and relative ter-
mination in order to prove termination of narrowing from an initial goal, by
recasting it as a problem of relative termination w.r.t. a set of gemerators, fol-
lowing | , ]. Our work is a significant extension of | , |, due to
the improved generality —we manage to lift the usual left-linearity restriction—,
power —as demonstrated by our empirical benchmarks—, and efficiency —since
our method replaces heuristics and unstructured search by constraint solving—
of the resulting technique.

(vil) As an immediate application of the above, narrowing can be used to prove the
termination of functional-logic and logic programs. We briefly develop the latter
on top of the transformational approach of | , ]. The
resulting method for termination of logic programs is potentially more powerful
than the original, as our benchmarks make explicit.

(viii) To analyze the termination properties of the combination of TRSs, we study
the modularity properties of termination of basic narrowing, unveiling its highly
modular nature.

(ix) Pairing the modularity results for the termination of basic narrowing uncovered
above with existing results in the literature about the modularity of its com-
pleteness, we distill a number of results about the modularity of the decidability
of equational unification, allowing for the modular combination of theories that
satisfy the conditions we unveil.

Major parts of these contributions have already been published as joint work in
international journals (| , , b, ]) and in conference proceedings
(I , , b; , ). However, this thesis contains a number
of contributions and improvements over previous developments which are entirely
original. These are enumerated individually at the beginning of every chapter.
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Many of the techniques presented in this thesis can be efficiently automated. The
two techniques for automated proofs of termination of narrowing, corresponding to

Chapters 4 and 5, have been implemented in the tool [ ], consisting of over
10.000 lines of Haskell code developed solely by the author. NARRADAR itself makes
use of other tools, including modern SMT solvers as | | and, in earlier versions,

of the termination tool AProVE [ , ]

The thesis is organized as follows. First, we recall the foundations of term rewrit-
ing and narrowing in Chapter 2. Then, Chapter 3 introduces Hullot’s basic restriction
of narrowing, with applications in equational unification due to its good completeness
and termination properties. The latter are reviewed and improved, by dropping a
superfluous canonicity requirement. Then a faulty result connecting the termination
of basic narrowing with the termination of narrowing is reviewed and and a corrected
result is provided (contribution (i)). From here, several stages of generalizations yield
a number of syntactic classes (contribution (ii)) where narrowing is complete and ter-
minating. We then move to the domain of automatic methods which are not limited
to syntactic classes. In chapter 4, we study the shape of minimally non-terminating
narrowing derivations, and extract a notion of narrowing dependency pairs that ef-
fectively models them. On top of this notion we build our termination criterion, and
turn it into an automatic method in the narrowing dependency pair framework (con-
tribution (iii)). Then in Chapter 5 we consider the problem of termination from an
initial goal, and develop several extensions to the dependency pair approach, in order
to deal with initial goal problems and relative termination problems (contributions
(iv) and (v)). These extensions are put to good use in the second part of this Chapter
for proving the termination of narrowing from an initial goal (contribution (vi)). After
that, we briefly discuss how these results can be applied to proving the termination
of logic programs (contribution (vii)).

Chapter 7 is devoted to the study of the modularity properties of the termina-
tion of basic narrowing (viii) in several classes of modular decompositions, including
hierarchical combinations. We show that termination of basic narrowing is modular
up to proper hierarchical combinations, a very general decomposition class. These
results are then complemented in Chapter 8 with a survey of the results on modular-
ity of completeness of basic narrowing in the literature. It is possible now to extract
modularity results for completeness plus termination, which together ensure the de-
cidability of equational unification (ix). The thesis concludes with a discussion of the
lines of future work in Chapter 9.



Foundations

In this section we recall the standard notions and terminology of term rewriting.
Readers familiar with these can skip this chapter, while other readers might find
it more useful to consult a reference book such as | , ] or

[ » 2002].

Relations

Given a binary relation =, we denote by =T the transitive closure of = and by =*
its reflexive and transitive closure. Thus ¢ =* s means that ¢ can be reduced to s in
zero or more steps. Given two relations =1 and =5, their composition =1 o =5 is
defined by {(z, 2) | Jy.(z,y) €=1 Ay, z) €=2}. A = derivation is a (possibly empty)
sequence of = steps. A relation is well-founded if there are no infinite sequences.

Terms, variables and positions

A signature ¥ is a set of function symbols each of which has a fixed arity. We often
write f/n € F to denote that the arity of function f is n. Given a countably infinite set
of variables V with XNV = (), we denote the domain of terms by 7(X,V). We assume
that X always contains at least one constant f/0. We use f, g, ... to denote functions
and z,v, ... to denote variables. Terms are viewed as labelled trees in the usual way,
where T(3,V) and T(X) denote the non-ground and the ground term algebra built
on XUV and 3, respectively. Syntactic equality between terms is denoted by =.

Positions are defined as sequences of natural numbers used to address subterms of
a term, with € as the root (or top) position (i.e., the empty sequence). Concatenation
of positions p and g is denoted by p.q, and p < ¢ is the usual prefix ordering, with
e < p for all positions p. Two positions p, ¢ are disjoint, denoted by p || ¢, if neither
p<gq,p>q,norp=gq.

The root symbol of a term is denoted by root(t). Given S C XUV, Posg(t) denotes
the set of positions of a term ¢ that are rooted by function symbols or variables in S.
Posipy(t) with f € ¥ UV will be simply denoted by Posf(t), and Possuy(t) will be
simply denoted by Pos(t). t|, is the subterm at the position p of t. t[s], is the term
t with the subterm at the position p replaced with term s. We say that u is a proper
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subterm of t if u =t|, and p < e. We write t > u or u <t if u is a subterm of ¢, and
t>u or u<tif u is a proper subterm of ¢.

By Var(s), we denote the set of variables occurring in the syntactic object s. A
fresh variable is a variable that appears nowhere else. A linear term is one where
every variable occurs only once. A ground term is one where no variable occurs.

A context is a term with several occurrences of a special fresh symbol O. If C[]
contains k occurrences of O at positions p1,...,pg, we write C[t1]p, [t2]p, - - - [tk]ps, OF
simply C[t1,...,tx], to denote the term (Clt1]p,) - - [tr]ps -

Substitutions and unifiers.

A substitution o : V — T(X,V) is a mapping from the set of variables V into the
set of terms T (X, V) with a (possibly infinite) domain which can be homomorphically
extended to a morphism from terms to terms. A substitution is represented as {z; —
t1,...,Tn — tn} for variables zq,...,x, and terms ty,...,t,. The domain of a
substitution ¢ is D(o) = {x € V | o # x}, and Rng(o) = {zo | x € D(0o)} is its
range. The set of variables in Rng(c) is denoted by VRng(o). A finite substitution o
has a finite domain D(0). The empty substitution is denoted by id, i.e., D(id) = 0.
The application of a substitution 6 to a term ¢ is denoted by 6, using postfix notation.
Composition of substitutions is denoted by juxtaposition, i.e., the substitution ¢
denotes (0 o o), i.e., of(x) = (o (x)).

We write vam(s) to denote the restriction of the substitution 6 to the set of
variables in s; by abuse of notation, we often simply write ],. A substitution  is
more general than o, denoted by 0 < g, if there is a substitution ~ such that 8y = o.
Given a set of variables W, we write § = v [W] (resp. 6 < v [W]) for 0]y, = v],
(resp. Oy < viy)-

A unifier of terms s and t is a substitution 1} such that s¢ = t#. The most general
unifier of terms s and ¢, denoted by mgu(s,t), is a unifier § such that for any other
unifier ¢', 6 < 6.

A substitution o is idempotent if for every term ¢, o(o(t)) = o(t). We say that
two idempotent substitutions 6; and 6, are compatible if their correponding bindings
“unify”, that is, there is 0 s.t. 6,0 = 2056, for all x € D(6,) N D(65).

Term Rewriting Systems

A term rewriting system (TRS) R is a pair (X, R), where R is a finite set of rewrite
rules of the form [ — r such that i, € T(X,V), I € V, and Var(r) C Var(l) (the
latter is often referred to as the variable condition). We will often write just R or
(3, R) instead of R = (X, R). If we omit the variable condition, i.e . Var(r) C Var(l)
for every rule I — r, then we talk of generalized TRSs (GTRS) instead. Variables in
the right hand side which do not occur in the left hand side are called eztra variables.
We denote the extra variables of a rule | — r by &ar(l — r), or simply EVar(r) when
the rule is known from the context.

Given a (generalized) TRS R = (X, R), the signature ¥ is often partitioned into
two disjoint sets ¥ = CW D, where D = {f | f(t1,...,tn) = r € R} and C = X\ D.
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Note that DN C = () by definition. Symbols in C are called constructors, and symbols
in D are called defined functions. The elements of T(C,V) are called constructor
terms. We often represent a (generalized) TRS as R(D,C,R). We also use the
notation ¥ = D W C to point out that D are the defined function symbols and C are
the constructors of a signature . A substitution o is (ground) constructor, if xo is
a (ground) constructor term for all x € D(o).

The rewriting relation —x is a binary relation on terms defined by —r=
(Cllolp, Clro],) where C is a context, p a position, ¢ a substitution and R a (gen-
eralized) TRS with [ — r € R. We often write =7, to make the position and rule

used explicit. We often write Z§R to denote steps in which the selected redex happens
below the root.

When no confusion can arise, we omit the subscript R in —x. We also omit the
reduced position p when it is not relevant. A term is a reducible expression or redex
if it is an instance of the left hand side of a rule in R. A term s is a normal form
with regard to a relation = (or simply a normal form where no confusion can arise),
if there is no term ¢ such that s = ¢. A term s is a head normal form with regard to
a TRS R if there are no terms ¢,t’ s.t. s =% t/ QR t. A substitution o is normalized
with regard to a relation = if, for every z € V, xo is a normal form with regard to
=-. A substitution is said to be normalizable with regard to a relation = if, for every
x € V, xo has a normal form with regard to =.

Popular TRS classifications

A (generalized) TRS R is called left-linear (respectively right-linear) if, for every
Il —reR,l (respectively r) is a linear term. A linear (generalized) TRS is both left
and right-linear.

A constructor system is a (generalized) TRS whose left-hand sides are patterns,
i.e., terms of the form f(cq,...,cr) where f € D and ¢4, ..., ¢ are constructor terms.
A term whose root symbol is a defined function is called root-defined.

A (generalized) TRS R is called conservative (or regular) if, for every | — r € R,
Var(l) = Var(r).

A GTRS R is confluent if, whenever ¢t =% s1 and ¢t =% s2, there exists a term w
s.t. s1 2% w and s =% w. A confluent and terminating TRS is called canonical'.
In canonical TRS’s, each term has one (and only one) normal form.

A TRS R is weakly normalizing if every term has a normal form that can be
reached by a finite rewriting sequence.

Two (possibly renamed) rules I — r and I" — r’ overlap if there is p € Posx(l) and
substitution o such that l|,0 = l'c. The pair (lo[r'c],,ro) is called a critical pair; it
is called an overlay if p = e. A critical pair (¢, s) is trivial if t = s. A left-linear TRS
without critical pairs is called orthogonal. A left-linear TRS whose critical pairs are
trivial overlays is called almost orthogonal or overlay system. Note that orthogonal

LCanonical TRS’s are sometimes called complete | s ; s ;

) ]
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TRS’s are almost orthogonal and almost orthogonality implies confluence | ,
].

A TRS R is called topmost if, for every term of interest ¢, all rewritings on ¢ are
performed at the root position of . Topmost TRS’s are a central part of the depen-
dency pair approach to the termination of narrowing, where to decide the termination
of a TRS R one studies instead the termination of a topmost TRS derived from R.
For example, given the encoding of addition in Example 1.1, one extracts a derived
TRS given by the rule

ADD(0,y) — ADD(z,y) (2.1)

In this case the terms of interest are those which do not contain calls to ADD below
the root position. Topmost TRS’s are also relevant in programming languages. For
instance, in Haskell | , ] or Maude [ , ], rewrite rules
can be defined so that the type (or sort) information forces rewrites to happen only
at the top of terms. In this case, the terms of interest are those which are well sorted.

In Maude, it is also possible to introduce freezing specifications that block rewrites
at any proper subterm position. Actually, many concurrent systems of interest, in-
cluding the vast majority of distributed algorithms, admit quite natural topmost
specifications [ , ].

Narrowing

Let R be a (generalized) TRS. Let | = r < R denote that [ — 7 is a new variant of
a rule in R such that [ — r contains only fresh variables, i.e., contains only variables
not previously met.

The narrowing relation ~» is a binary relation on terms defined by ~»g = (C[t],,
Colro],) where C is a context, p a position, R a (generalized) TRS with l - r < R
and o a most general unifier of ¢ and I. We often write Mﬁ,l _,, to make explicit the
position, rule and substitution computed.

A narrowing derivation ty ~7% t, denotes a sequence of narrowing steps to ~,

..~og, bty With 0 = 0, 0--- 00y (if n =0 then o = id). We write s ~%  tif there
exists a narrowing derivation s ~, p o~ -+~ o tsuch that o = 0102... 0.
We say a term ¢ is a narrex for R if there is a term ¢’ s.t. ¢t~ .

The following important result, originally enunciated by Hullot, establishes the
correspondence between narrowing and rewriting derivations. It is also known as the
soundness theorem or the lifting lemma. Concretely, it states that every rewriting
derivation can be projected as a narrowing derivation, while every narrowing deriva-
tion projects a certain set of rewriting derivations.

Proposition 2.1 (Lifting Lemma | , D). , Let R be a TRS, ty be a term,
and consider a narrowing derivation starting from tg:

2 Ry tn (2.2)

Po
to ~> B gy sy - Onsln—Tn

O’o,lo*}’l"g
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Define a substitution @ = ogoq ...0,. There exists an associated rewriting sequence
starting from ty0:

to 28 o2

Conversely, to every rewriting derivation 2.5 and every normalized substitution
0, we can associate a narrowing derivation 2.2. More precisely, if 8 is a normalized
substitution and s —% t', then there exist a term s’ and substitutions 0’ and o such
that:

Pn
lo—To li—ry * 4ln*>Tn tne (23)

e s M;,R s,

o 50 =1+,

e o6 =0[s],

e ¢ is normalized.

and one can assume that the narrowing derivation uses the same rules at the same
positions as the rewriting derivation.

Below we extend the lifting lemma for GTRSs with extra variables. As in the
case for TRSs, every narrowing derivation can be projected as a set of rewriting
derivations, but the converse direction does not hold.

Proposition 2.2 (Lifting Lemma extended). , Let R be a GTRS, to be a term, and
consider a narrowing derivation starting from tq:

t, B Ry
1 o1,li—=r1 Onsln—Tn

t (2.4)

t Pq
0 /\,)G'o,lo—yr'o

Define a (possibly infinite) substitution = oyoy . ..o0,. There exists an associated
rewriting sequence starting from tof:

tog p#lo—ﬂ‘o tlg gll—ﬂj e %ln_)rn tnﬂ (25)
Proof. The original proof in [ , , Theorem 1] (or the more precise proof
given in [ , ]) applies with no changes to the case of extra
variables. O

Termination

A TRS R is (—r)-terminating? if the relation —g is well-founded. A GTRS R is
(~x )-terminating if the relation ~» is well-founded.

An object t is said to be (=)-terminating, or just terminating when no confusion
can arise, if there is no infinite = sequence starting from ¢. Thus a term ¢t € T (3, V)
is (=g )-terminating (resp. (~g )-terminating) if there is no infinite rewriting (resp.
narrowing) derivation in R starting from ¢t. A set of objects is said to be (=)-
terminating if every member object is (= )-terminating.

2also called strongly normalizing or noetherian
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Proposition 2.3 (Termination of narrowing implies termination of rewriting). Let
R be a TRS. If ~» is terminating, then —g is terminating.

Proof. Immediate from the soundness of narrowing, i.e. Proposition 2.1. O



Syntactic Termination

Due to non-termination, narrowing behaves as a semi-decision procedure for the prob-
lem of equational unification in a wide variety of equational theories, as mentioned
before. For instance, recall the equational theory for Peano addition from the intro-
duction in Chapter 1, which was defined by the rules:

add(0,y) =y
add(s(z),y) — s(add(z,y))

narrowing allows us to prove that the formula Jw3z s.t. add(w, s(0)) = s(s(z)) holds
by computing the solution {w — s(0), z — 0}, whereas it cannot prove that the
formula Jw s.t. add(w, s(0)) = 0 does not hold.

Under appropriate conditions, narrowing is complete as an equational unification
algorithm as well as a procedure to solve reachability problems, as explained in the
introduction. For instance, narrowing computes the solution {w — s(z)} for the
reachability problem Jw3z s.t. add(0, w) —* s(z).

In this chapter, we are interested in identifying classes of TRSs where narrowing
terminates and is still complete for solving reachability and equational unification
problems. We do not consider extra artifacts to reduce or limit the narrowing space,
such as restrictions or strategies. As such, we talk of unrestricted, ordinary or full
narrowing indistinctly. We proceed as follows:

1. We extend an existing termination result, originally formulated for Basic Nar-
rowing by | , ], to Full Narrowing in canonical TRSs. This is achieved
by requiring the TRS to satisfy Réty’s maximal commutation conditions, which
allow the establishment of a correspondence between ordinary and basic nar-
rowing derivations (Theorem 3.13).

We complete this result by explicitly dropping the superfluous requirement of
canonicity from Hullot’s result, as the cognoscenti already tacitly do, generaliz-
ing Theorem 3.13 in Corollary 3.18. However the class of TRSs satisfying the
maximal commutation conditions is quite restrictive, as it requires that the TRS
is linear and, roughly speaking, constructor based.
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2. From Corollary 3.18, we extract a practical criterion for the termination of nar-
rowing that does not require confluence of the TRS, nor a termination ordering.
We achieve this by imposing syntactic conditions on the TRS, namely that it be
linear and rnf-based, a novel class of TRSs that can be seen as a generalization of
left-linear constructor systems and that satisfy Réty’s normalization condition
(Corollary 3.27).

A TRS is rnf-based if each argument occurring in the lhs of every rewrite rule
is “unnarrowable”, called rigid normal form (rnf), i.e., it contains no subterm
that unifies with the lhs of any rule. The class of rnf-based TRSs includes both
constructor systems and almost orthogonal TRSs as a particular case.

3. Then, we consider the class of TRSs where narrowing is strongly complete as
a procedure to solve reachability goals. This allows us to prove narrowing ter-
mination in a number of TRSs where right-linearity is not explicitly required
(Corollary 3.37).

4. Inspired by Christian’s termination result | , ], we further improve
our results getting rid of left-linearity, proving termination for the subclass of
left-plain TRSs, a novel class where arguments of the lhs’s can be either ground
or rnf-patterns (Theorem 3.61).

5. Finally, by using the known results for the strong reachability completeness of
narrowing recently given by [ , ], we identify several al-
most purely syntactical, non-trivial classes of TRSs where narrowing has a finite
search space and is still (strongly) complete as a procedure to solve reachability
goals (Corollary 3.62).

From the above results, termination of several popular classes of TRSs follows,
including right-rnf TRSs which are either (i) almost orthogonal, (ii) construc-
tor and either right-linear or confluent, (iii) topmost, or (iv) right-linear and
the initial term is linear. These results are particularly practical since many
interesting TRSs fit into one of these classes. Differently from Christian’s cri-
terion [ , ], our termination criteria do not resort to termination
orderings, and are thus simpler to check.

Structure of the chapter

Section 3.1 introduces the basic refinement of narrowing. We recall Hullot’s termi-
nation criterion for basic narrowing in canonical TRSs in Section 3.1.1. and derive
a novel termination criterion for full narrowing employing Réty’s maximal commu-
tation property | , ]. Then, in Section 3.2, we show that canonicity is a
superfluous requirement in Hullot’s result. This leads to a practical termination cri-
terion for full narrowing in linear, rnf-based TRSs. Section 3.3 introduces the class of
reachability-complete TRSs, which allows us to get rid of right-linearity. Finally, Sec-
tion 3.4 provides a strong narrowing termination criterion which holds in left-plain,
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Restrictions on R

Reference

LF + cT

[ , , Lemma 2]

RL + (LL or Co) + NC + bnT

Thm. 3.13 (Hullot’s result gen.)

RL + (LL or Co) + NC + R-bnT

R-rnf + L + rnf-B

Cor. 3.18 (Hullot’s result re-
paired)

Corollary 3.27

e.g R-mf + L + CS

RL + R-rnf (4linear term)

Corollary 3.56

LP + RC + R-rnf
R-rnf + LP + C

Corollary 3.61
Corollary 3.62
e.g. R-mf + (either aO or CS + C)

R-mf + Tp Corollary 3.62
RL + (LL or Co) + NC + St Thm. 3.13, by | , ]
Legend
C confluent LL left-linear RL  right-linear
Tp topmost Co conservative CS  constructor system
R-rnf right-rnf rnf-B  rnf-based LP  left-plain
LF left-flat L linear a0  almost Orthogonal
RC reachability-complete ~ bnT basic narrowing terminates
NC Rety’s normalization condition
R-bnT  all basic narrowing derivations starting from rule rhs’s terminate
St standard theories saturated by basic paramodulation
cT compatible with a termination ordering

Figure 3.1: Criteria for Narrowing termination

right-rnf TRSs, provided they are also reachability-complete. Figure 3 summarizes all
the results included in this chapter.
The contents in this chapter have been published in | , ]

3.1 Basic Narrowing

Basic narrowing [ , ] is a refinement of narrowing that restricts narrowing
steps to a set of unblocked (or basic) positions and is still complete for equational
unification in canonical TRSs, i.e., terminating and confluent TRSs.

Termination of basic narrowing was first studied by Hullot in | , ], where
an erroneous termination result for narrowing was enunciated. The result incorrectly
states that ordinary narrowing terminates in canonical TRSs when all basic narrowing
derivations issued from the right hand side of each rewrite rule terminate. This can
be refuted by the following counterexample.

Example 3.1. Consider again the TRS {f(f(z)) — z} of Example 1.4, which is
canonical and trivially satisfies the requirement that (basic) narrowing terminates for
the rhs x. However, Example 1.4 above shows that an infinite narrowing derivation
ezists in R.
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Actually, under the conditions established by Hullot’s proof, nothing beyond the
termination of basic narrowing can be concluded, as implicitly' corrected in Hullot’s
thesis | ]. Note that basic narrowing does “safely” handle the TRS of Example
1.4 and blocks the infinite narrowing derivation after the first step.

We formulate basic narrowing using the original definition, given by Hullot and
subsequently used by [ , ; , ], which is based on
restricting narrowing steps to a distinguished set of basic positions.

Definition 3.2 (Basic Narrowing Derivation). Given a narrowing derivation D:
to &91% 21 '1392’73 2307“72 tn, where l;—r; € R is used at step i, we inductively
define the basic positions of D as:

Bo = POSZ(tO)
B; = (Bi—i \ {pi-p | p € Pos(ti—1lp,)}) Upi. Posx(r;)

Informally, a basic occurrence is a non-variable occurrence of the original term or
one that was introduced by the non-variable content of the rhs of an applied rule.

We define a basic narrowing derivation s ~3 ¢ as sg }\)591 S1°°*Sn—1 g%n Sp such
that s = sg, t = 8p, 0 =01---0,, and p; € B;_1 for 1 <i<n.

Example 3.3. Consider the TRS R = {a — 0,f(x) — h(x)} and input term £(a).
The following narrowing derivation is not basic

£(2) ~ia, f(2)—h(z) B(@) ~ig a0 1(0)

since position 1, selected in the second narrowing step, is not basic (the narrowing
redex a was introduced by instantiation of the rhs h(x) of the second rule). A basic
narrowing derivation is £(a) ~ 4,0 £(0) ~,4 ¢4y () B(O)-

3.1.1 A novel result on termination of basic narrowing
As mentioned above, [ , ] proved two different results for basic narrowing:
1. its unification-completeness for canonical TRSs, and

2. its termination for canonical TRSs where all basic narrowing derivations issuing
from the right-hand side of every rule terminate.

We note here that in contrast to ordinary narrowing, termination of basic nar-
rowing does not imply termination of rewriting. If canonicity is replaced by simple
confluence in item 2 above, then completeness is lost, even if we restrict ourselves to
normalizable substitutions | , ]. Unification-completeness
of basic narrowing can be restored (for normalizable substitutions) by additionally re-
quiring R to be right-linear | ,

The termination of basic narrowing was established in Hullot s Ph.D. thesis for
canonical TRSs as follows.

1The correct termination result, which only guarantees the termination of basic narrowing under
the same assumptions, was cstabhshod in [ R |, and subsequently referred to in a number
of works [ , ; ) ; )
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Proposition 3.4 (Termination of Basic Narrowing for Canonical TRSs | , ,
Proposition 7.1]). Let R be a canonical TRS. If for every I — r € R, all basic
narrowing derivations issuing from r terminate, then any basic narrowing derivation
in R issuing from any term terminates.

Hullot’s condition on the rhs’s of rewrite rules is essential for the termination of
basic narrowing, as illustrated in the following example.

Example 3.5. | , | Consider the canonical TRS R = {h(f(y)) —
h(y)}. The following infinite basic narrowing derivation can be proved:

h(x) ~ s p1 R BO) ~ e BO) - -

A termination result similar to Proposition 3.4 does not hold for ordinary narrow-
ing, even when the condition is extended to demand termination of ordinary narrowing
for the rhs’s of the rules (instead of the less demanding condition of basic narrowing
termination). The TRS of Example 1.4 would be an easy counterexample.

By considering a particular class of TRSs where there is a precise correspondence
between basic narrowing and ordinary narrowing derivations, we are able to identify
the conditions which enable a termination result for ordinary narrowing formulated
in Hullot’s style.

The class where basic and full narrowing derivations coincide was first identified
by Rety in a commutation result for narrowing sequences [ , ]. Réty’s com-
mutation result is based on the condition that narrowing produces only normalized
substitutions, as formalized in the following definition.

Definition 3.6 (Rety’s normalization condition). [ , ] A TRS R satisfies
Rety’s normalization condition if, for every term s, every substitution 6 computed by
an ordinary narrowing derivation issuing from s satisfies that G[Var(s) is normalized.

To continue, we need to introduce the notion of antecedent of a position in a
rewrite sequence.

Definition 3.7 (Antecedent of a position [ ) ). Lett 5, t' be a rewriting
step, v € Pos(t), and v' € Pos(t'). We say position v is an antecedent of v iff

1. v || p, i.e., v is incomparable to p, and v =v', or

2. there is a variable x € Var(r), u' € Posy(r), and u € Pos,(l) s.t. v = pu'.w
and v = p.u.w.

This notion extends to a rewrite sequence by transitive closure of the rewriting relation
in the usual way.

With the notations of the previous definition, we have:
1. t|v = t/|v/,

2. v" may have no antecedent if v’ = p.u’ with «’ € Posg(r), or if v/ < p,
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3. v/ may have several antecedents if [ is not linear.

Therefore, the notion of antecedent is (nearly) dual to the standard notion of
descendants of a position in a rewrite sequence | , ]. The main difference
is that, given a rewriting step ¢ £>l_w t’ and a position ¢ such that ¢ < p, then ¢ is
not an antecedent of any position in ¢ whereas the same position ¢ in ¢’ is commonly
considered the descendant of ¢ in ¢.

Definition 3.8 (Terminal antecedents | ) ). Let S be a rewrite sequence
to =g t1... =g tn, and ¢, € Pos(t,). Given an antecedent q; € Pos(t;) of ¢, we
say that q; is terminal in S iff either i = 0 or q; has no antecedent in t;_1.

The notion of antecedent can be extended to narrowing as follows:

Definition 3.9 (Narrowing antecedent of a position | ) ). Lett ~p p t,
v € Pos(t), and v' € Pos(t’). We say v is a (terminal) antecedent of t iff v is a

(terminal) antecedent of v’ in the rewrite sequence to —7, t'.

The following proposition holds.

Proposition 3.10 ([ , ). Given a narrowing sequence
p1 Pn
t0 oyl —ry Utn—1 "6, 1, tn

if @i € Pos(t;) is an antecedent of ¢, € Pos(ty), then (t;(cir1..00))

qi = tn|qn'

As we mentioned, when R is not left-linear, a given position may have several
antecedents in a previous term in the derivation, and may also have antecedents in
different previous terms which are not antecedents from one another. Therefore, a
position may have terminal antecedents in different previous terms of the sequence.

Also note that, whenever an expression is introduced by instantiation, and subse-
quently propagated along the narrowing derivation, its terminal antecedents are all
in the initial input term of the sequence, and occur exactly at the positions of the
input term which become instantiated. This is due to the absence of extra variables
in rhs’s.

The following commutation property is the key of our proof. For ¢ = ;- - - ¥,

1 k 1
we use t  ~Y s as a shorthand to denote the narrowing sequence t ~

uk

e A
G, l—r

S1

G, l—r Vq,l—r

S.

Proposition 3.11 (Maximum commutation). | , | Let R be a right-linear
TRS, which is also either left-linear or conservative. Consider a narrowing sequence

Pn

P1
t0 oyl 1 o1 0 1, T
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such that oy --- oy, restricted to Var(to), is normalized. Then, there exists a com-
muted narrowing derivation

1 k
b "I B t
0 01,ln—=1n ofli—ry V1
1 Fn—1
+ Up—150Up g Pn—1 #
n—2 ~ L B R S S
/ Pn
bn1 ™70, 1, —r, tn
— k; -
such that 610} -+ 0,100 _ 10, = 01+ 0,[Var(ty)], where ul,... u;* are the terminal

antecedents of position p, in term t;.
The following commutation result for ordinary narrowing derivations easily follows.

Proposition 3.12 (Commutation of narrowing derivations). Let R be a TRS that
satisfies Rety’s normalization condition as well as the conditions for Rety’s maxi-
mum commautation property (i.e. right-linearity, and either left-linearity or conserva-

tiveness). For every narrowing sequence t 2, ty - R ty, there is a com-
. Y g seq 0 g, R U1 0., R tns

muted basic narrowing sequence tg 3’01,72 th - @UWR ', such that t), = t,, and
016, =01 om[Var(ty)].

Proof. By successive applications of Proposition 3.11.

Given the narrowing sequence tg 2591773 t1--- 339”’77% tn, assume that p; is the first
non-basic position selected in the derivation. By Proposition 3.11, we can commute
the derivation so that the step ¢ is performed on the terminal antecedent positions
of p;. Those terminal antecedents occur at basic positions, since redexes are never
introduced in a basic narrowing derivation by instantiation due to the Rety’s nor-
malization condition. Note that the procedure that repeatedly applies Proposition
3.11 to the derivation which results from the previous commutation is finite since the
number of non-basic steps to commute is reduced at each application. O

Together with the normalization condition, Réty’s “maximal commutation prop-
erty” of narrowing sequences requires two additional conditions: right-linearity, and
either left-linearity or conservativeness | , ]. By requiring all these properties,
we are able to achieve the desired narrowing termination result.

Theorem 3.13 (Termination of Narrowing). Let R be a right-linear TRS which
satisfies Réty’s normalization condition and is either left-linear or conservative. If
basic narrowing terminates in R, then ordinary narrowing also terminates in R.

Proof. By contradiction. Assume that there exists an infinite narrowing derivation
D issuing from a given term ¢. Then, we can obtain infinitely many finite subse-
quences (prefixes) of D. By Proposition 3.12, each of these finite subsequences has
a corresponding, commuted basic narrowing derivation issuing from ¢. Hence, there
are infinitely many basic narrowing derivations issuing from the very same term t,
each of which is: (i) finite (by definition), and (ii) a prefix of the subsequent one (by
Proposition 3.12), which yields a contradiction. O



24 3. Syntactic Termination

A popular class of TRSs that satisfy the normalization condition is the class of
left-linear constructor systems | , ], that only compute? constructor substi-
tutions. Nevertheless, in Section 3.2.1 we are able to define a more general, syntactic
characterization of TRSs satisfying this condition.

Note that Example 1.4 satisfies all conditions required in Theorem 3.13, except
for Réty’s normalization condition. In the following section, we improve this result
by explicitly getting rid of canonicity.

3.2 Beyond canonical systems

Hullot’s basic narrowing termination result for canonical TRSs, recalled in Proposi-
tion 3.4, has been referred to in a number of works, e.g. | ,
; ; , ]. However, to the best of our knowledge, no one
has expllcltly pomted out that canonicity is not explicitly used in Hullot’s proof. This
seems to suggest that canonicity of R might be superfluous for Hullot’s basic nar-
rowing termination result and that is only required for deriving both termination and
unification completeness of the basic narrowing mechanism in one go. By providing a
new proof for Hullot’s basic narrowing termination result, in this section we confirm
this presumption and demonstrate that canonicity can be safely removed.
The following result establishes the termination of basic narrowing without the
canonicity requirement.

Theorem 3.14 (Termination of Basic Narrowing). Let R be TRS. If for every | —
r € R, all basic narrowing derivations issuing from r terminate, then every basic
narrowing derivation issuing from any term terminates.

To prove this result, we find it useful to use the alternative definition of basic
narrowing given in [ ) ]. In this formulation, elements of the derivation
are split into a skeleton and an environment part. The environment part keeps track
of the accumulated substitutions so that, at each step, substitutions are composed in
the environment part, but are not applied to the expressions in the skeleton part, as
opposed to ordinary narrowing. Due to this representation, the basic occurrences in
tf are all in ¢, whereas the non-basic occurrences are all in the codomain of 8. This
ensures that no narrowing step will reduce any expression brought by a substitution
computed in a previous step.

Definition 3.15 (Basic narrowing (skeleton-environment)| , D). Given
a term s € T(X,V) and a substitution o, a basic narrowing step for (s,o) is defined

by (s, o) ’\b”p,R,e (t,0") if there exist p € Posx(s), | = r < R, and substitution 0 such
that 0 = mgu(s|yo,1), t = (s[r]p), and o’ = (6)[t].

In the proof we make use of the following auxiliary lemma relating the basic
narrowing derivations starting from the instances of a term.

2This is desired in some functional logic languages [ , ], since a broader class of solutions
may contain unevaluated or undefined expressions.
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Lemma 3.16. Let R be a TRS, t be a term, and o be a substitution. Let n be
the length of the longest basic narrowing derivation for (t,c) in R. Then, for every
substitution ¥, n is an upper bound for the length of the basic narrowing derivations
issuing from (t,c9) in R.

Proof. By induction on n.

The case when n = 0 is straightforward, since no basic narrowing step issuing
from (t,01) can be proved for any ¥, either.

Consider now the case when n > 0. If there is no basic narrowing sequence such

that the substitution 6 computed in the first step (¢,0) «b»R_G (t',00) is compatible
with ¢, then there is no basic narrowing sequence issuing from (¢, ), and the con-

clusion follows. Assume that (¢, o) «b»R_@ (t',o0) is the first step of a basic narrowing
derivation for (¢,0) such that 6 is compatible with . Since ¥ and 6 are compatible,
the basic narrowing step (¢, (c19)) f\b»Rﬁ, (', (019)8") can be proven, and (c1)d’ is com-
patible with o6. By hypothesis, the lengths of the basic narrowing derivations issuing
from (t’,00) are bounded by n — 1, hence so are the lengths of the basic narrowing
derivations issuing from (t’, (¢9)8’), which concludes the proof. O

The proof of Theorem 3.14 follows now by structural induction with help of the
Lemma just introduced.

Proof of Theorem 3.14. We prove the slightly more general result that, for every term
t and substitution o, every basic narrowing derivation issuing from (¢, o) terminates.
We proceed by structural induction on the term t.

e The case when ¢ is a variable is straightforward.

o Let t = f(t1,...,tm), m > 0, and consider any basic narrowing derivation
D: (t,o) «ZRvghpl (ta, o9) «b»RﬂQ’pQ .-+ stemming from (t,c). We distinguish
two cases: either none of the positions p; for j > 0 is €, or there is £ > 0 such
that the k-th basic narrowing step in D takes place at the root position of t5. In
the first case, by the induction hypothesis the derivation terminates, since every
basic narrowing derivation issuing from (¢;, o) terminates, fori € {1,...,m}. In

the second case, (tg, o) 2, (I=r}00.c (r,ok+1). Since all basic narrowing deriva-
tions issuing from r terminate, then by Lemma 3.16 the derivation terminates.
Thus, the conclusion follows. O

Note that the termination of basic narrowing in R does not imply that R is
terminating for rewriting, as shown by the example below.

Example 3.17. Consider the following non-terminating and non-confluent TRS R
borrowed from [ , |, which satisfies Réty’s normalization condition®:

f(b,c,x) = f(x,x,x) a—b a—c

By applying Theorem 3.1/, there is no infinite basic narrowing derivation in R.

3by Theorem 3.26 in Section 3.2.1 ahead.
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The following Hullot-like termination result follows from Theorem 3.14.

Corollary 3.18 (Termination of Narrowing). Let R be a right-linear TRS which
satisfies Réty’s normalization condition and is either left-linear or conservative. If
for every Il — r € R all basic narrowing derivations issuing from r terminate, then
every narrowing® derivation issuing from any term terminates.

Proof. Tt follows immediately from Theorem 3.13 and Theorem 3.14. O

Example 3.19. Consider the following linear TRS R satisfying® Réty’s normaliza-
tion condition:

f(a,x) = a f(£(b,x),a) = c(h(x)) h(c(x))) —» x

By applying Corollary 3.18, since all basic narrowing derivations issuing from the
rhs’s of the rules in R terminate, then narrowing terminates in R.

Note that right-linearity is essential for Réty’s maximum commutation property
and hence cannot be dropped from Corollary 3.18, as shown in the following example.

Example 3.20. Consider again the TRS of Example 3.17, which also satisfies Réty’s
normalization condition. However, note that it is not right-linear. Basic narrowing
terminates in this TRS, as seen before, but an infinite ordinary narrowing sequence
exists for input term £(a,a,a), which is set off when we instantiate the rhs £(x,x,x)
of the first rule using the non-normalized binding {x — a}:

f(a,a,a) —» f(b,a,a) = f(b,c,a) — f(a,a,a) - £f(b,a,a) - .

Unfortunately, both Hullot’s termination condition based on the rhs’s of rewrite
rules and Réty’s normalization condition are not syntactical. Hullot’s termination
condition has been approximated in the related literature by the following syntactic
criterion, assuming that R terminates: every non-ground rhs of a rewrite rule is
a constructor term [ , ; , ]. This generalizes the
original characterization given by Hullot | , ], who required all non-ground
rhs’s to be variables. Note that these syntactic characterizations do not work under
the conditions of Theorem 3.14 since termination is not explicitly required, and we
would require also ground rhs’s to be constructor terms (the rule a — a would be an
easy counter—example).

With regard to Réty’s normalization condition, we already mentioned a popular
class of TRSs satisfying this property: left-linear constructor systems. In the following
section, we demonstrate that Réty’s condition also holds in the more general class of
left-linear, rnf-based TRSs. This leads to a practical approximation of the termination
result for ordinary narrowing given in Corollary 3.18 which holds in (a subclass of)
linear, rnf-based TRSs.

4In the following, narrowing always refers to full (unrestricted) narrowing.
5Tt satisfies the sufficient characterization of TRSs satisfying Réty’s normalization condition given
in Section 3.2.1.
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Moreover, by further exploring the notion of rigid normal form, in Sections 3.3
and 3.4, we will be also able to generalize the popular approximation of Hullot’s
termination condition based on the rhs’s of the rules, and provide stronger (purely
syntactical in some cases) termination results for ordinary narrowing in a class of
systems where right-linearity as well as left-linearity are no longer required.

3.2.1 Rigid normal forms and rnf-based TRSs

Let us define the class of rnf-based TRSs by introducing the notion of rigid normal
form® (rnf), which lifts the standard notion of (rewriting) normal form to narrowing.

Definition 3.21 (Rigid normal form). A term s is a rigid normal form (rnf) if there
18 mo term t, substitution 6, and position p such that s &Q)R t.

The notion of rigid normal form is stronger than the standard notion of rewriting
normal form but can still be easily decided by simply checking that no subterm of the
considered term unifies with the lhs of any rule in R. This notion extends to rigidly
normalized substitutions in the obvious way.

We define the new class of rnf-based TRSs as follows.

Definition 3.22 (rnf-pattern). A term f(t1,...,tn) € T(X,V) is a rf-pattern if, for
all i s.t. 1 <i<n, t; is a rigid normal form.

Definition 3.23 (rnf-based TRS). Given a TRS R, we call it rnf-based if the left-
hand side of every rule in R is a rnf-pattern.

Note that two popular classes of rnf-based, left-linear TRSs are: (i) left-linear con-
structor systems, and (ii) almost orthogonal TRSs, i.e., typical functional programs.

Proposition 3.24 (Almost orthogonal rnf-basedness). Almost orthogonal TRSs are
rnf-based.

Proof. By definition of almost orthogonal TRS, every critical pair is an overlay, i.e.,
two lhs’s overlap only at the root position. Therefore, the lhs of every rewrite rule is
a rnf-pattern. O

The following result is instrumental and shows that rigid normal forms are closed
under substitution.

Lemma 3.25. For every rigidly normalized substitution 0, if t is a rigid normal form,
then t0 is also a rigid normal form.

60ur rnf notion is more general than the strongly ~s-irreducible terms proposed in [

, ] for topmost theories, where ¢ is strongly ~»-irreducible if to is a normal form for every
normalized substitution o. Consider, e.g. the non-confluent, non-topmost TRS R = {f(a) — b,a —
b}. The term £(x) is strongly ~»-irreducible, since non-normalized substitutions such as {x — a} are
not considered within the definition. However, it is not a rigid normal form.
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Proof. By contradiction. Let us assume that ¢ is not a rigid normal form, i.e., there
is a term s, substitution o, rule R, and p € Pos(tf) such that tf f\p»m R S Actually,
since @ is rigidly normalized, then p € Posx(t). Therefore, we have that ¢6|, and [
unify with unifier o, whereas by the rnf assumption ¢|, and ! do not unify, which leads
to contradiction. O

From Lemma 3.25, it follows that, in rnf-based left-linear TRSs, all substitutions
computed by narrowing are rigidly normalized, hence also normalized, and therefore
these systems satisfy Rety’s normalization condition.

Theorem 3.26 (Rigid normalization). Let R be a rnf-based, left-linear TRS. Every
substitution 8 computed by an ordinary narrowing derivation issuing from the term t
satisfies that OFVar(t) 18 rigidly normalized.

Proof. Consider a narrowing sequence

Pn
li—r tl T tnfl Men,ln*}’(‘n tn

— P1
t= tO ’\/7017 S

At each narrowing step t«&gyl _yr §, the substitution 6[,,  is rigidly normalized,
since [ is linear and every subterm of [ is a rigid normal form. We proceed by induction
on n. The base case n = 0 is trivial. For the case when n > 0, by induction
hypothesis we have that ¢ = (6; --- Gn,l)[vw(t) is rigidly normalized, i.e., for each
binding = — w € ¥, we have that w is a rigid normal form. Now, by Lemma 3.25, we
have that w6, is also a rigid normal form, and the conclusion follows. O

From Theorem 3.26 and Corollary 3.18, the following practical criterion for ter-
mination of narrowing in rnf-based, linear TRSs easily follows.

Corollary 3.27 (Termination of narrowing as termination of basic narrowing). Let
R be a linear, rf-based TRS. If for every l — r € R, all basic narrowing derivations
issuing from r terminate, then every marrowing derivation issuing from any term
terminates.

3.3 Beyond right-linear systems

Our narrowing termination results in Section 3.2.1 rely on Réty’s commutation result
[ , |, which requires right-linearity and either left-linearity or conservativeness.
In this section, we provide new termination results that are not based on Réty’s
commutation property, and thus get rid of linearity in some cases.

The notions of root-stable rigid normal form (rs—rnf) and stable rigid normal form
(srnf) are the key for achieving termination when right-linearity is dropped.

3.3.1 Stable and Root-stable Rigid normal forms

Let us highlight the insufficiency of considering rigid normal forms for ensuring the
narrowing termination when right-linearity of R is not imposed. Basically, the prob-
lem lies in the fact that rigid normal forms are not stable under instantiation by
non-normalized substitutions, as illustrated in the following example.
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Example 3.28. Consider again the left-linear and rnf-based TRS R of Example 3.17,
which is non-confluent and not right-linear. The term £(x,%,x) in the ths of the first
rule is a rigid normal form since it does not unify with lhs £(b, c,x); hence, it cannot
be narrowed. However, the instance £(a, a,a) is no longer a rigid normal form, since
it can be rewritten (in two steps) to £(b,c,a), which can then be rewritten (hence
narrowed) at the top position by using the first rule of R.

Let us introduce the notion of root-stable rigid normal form, which lifts to nar-
rowing the standard notion of root-stable (or head) normal form; and the notion of
stable rigid normal form, which denotes a variable or a rigid normal form stable under
instantiation.

Then, a suitable definition of “stable rigid normal form t” is provided which ensures
that every subterm s of ¢ is conveniently “protected”, in the sense that no instantiation
can enable a “non-topmost” rewriting sequence such that then the resulting term can
be narrowed at the top.

Definition 3.29 (stable and root-stable rigid normal forms). A term s is a root-
stable rigid normal form (rs—rnf) if either s is a variable or there are no substitutions

0 and 0" and terms s’ and s" s.t. s 3}‘3 s S 8", A term t is a stable rigid normal
form (srnf) if every subterm of t is a root-stable rigid normal form.

The above notions extend to root-stable rigidly normalized substitutions and stable
rigidly normalized substitutions in the natural way.

Note that the notion of stable rigid normal form is stronger than the notion of
rigid normal form. Example 3.28 above shows that the inverse does not hold. By
definition, non-variable stable rigid normal forms are stable under instantiation, even
under non-normalized substitutions. Also, constructor terms as well as ground normal
forms are trivial cases of stable rigid normal forms. Therefore, the approximation of
Hullot’s basic narrowing termination condition based on checking that the rhs’s of
the rules are constructor terms is subsumed by the more general right-srnf condition.

Definition 3.30 (Right-rnf TRS). A TRS is called right-rnf if the right-hand side of
every rule in R is a rigid normal form. Similarly, a TRS is right-srnf if the right-hand
side of every rule in R is a stable rigid normal form.

The following interesting property holds.

Proposition 3.31 (Termination of right-srnf systems). Rewriting is terminating in
every right-srnf TRS.

Proof. (Sketch) We apply the dependency pairs technique [ ] (cf.
Section 4.1). Since by definition a right-srnf TRS R can have no chams then R
terminates by | , , Thm. 6] (cf. Theorem 4.4). O

Note that the right-srnf condition required in Proposition 3.31 cannot be weakened
to right-rnf. The TRS of Example 3.17 is an easy counterexample.

In order to provide a general termination result for right-srnf TRSs, we need the
following notion.
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Definition 3.32 (Stable rigid normalization condition (SRNC)). A TRS
R satisfies the stable rigid normalization condition if, for every term s, every substi-
tution 6 computed by an ordinary narrowing derivation isswing from s satisfies that
vam(s) is stable rigidly normalized.

By requiring the SRNC (instead of Réty’s maximal commutation condition), we are
able to provide the following termination result for narrowing.

Theorem 3.33 (Termination of narrowing under the SRNC). Let R be a right-
srnf TRS that satisfies the stable rigid mormalization condition. Every narrowing
derivation issuing from any term terminates.

Proof. The proof for this theorem is subsumed by the proof for Theorem 3.43 in the
following section, and thus we omit it here. O

The following example demonstrates that stable rigid normal forms cannot be
replaced by vanilla rigid normal forms in Theorem 3.33.

Example 3.34. Consider again the left-linear and rnf-based TRS of Example 3.17,
where we showed that the term £(x,x,x) in the rhs of the first rule is a rigid normal
form. However it is not a srnf, and narrowing does not terminate for the input term
f(a,a,a), as shown in Example 3.17.

In the following section, we characterize the class of TRSs where all rigid normal
forms are stable, thus guaranteeing that the new structure that is introduced through
ordinary narrowing steps by instantiation cannot lead to an infinite derivation. This
is the final ingredient we need in order to derive a purely syntactical characterization
of narrowing termination which does not require the right-linearity of R.

3.3.2 Reachability-complete TRSs

Let us introduce a new class of TRSs (which we call reachability-complete TRSs)
where narrowing is strongly reachability-complete. This is inspired by the commonly
used terminology which, recalling the unification-completeness of narrowing for canon-
ical TRSs, uses the name “complete TRS” as an alternative terminology to refer to
this particular class [ , ; , ;

).

Definition 3.35 (Reachability-complete TRS). A TRS R is reachability-complete iff
the narrowing procedure is strongly reachability-complete for R.

)

The following interesting result holds for reachability-complete TRSs.

Proposition 3.36 (Reachability complete srnf systems). Let R be a reachability-
complete TRS. If s is a rigid normal form, then s is also a stable rigid normal form.

Proof. By contradiction. Assume that s is a rigid normal form and there is a position
p in s such that s|, is not a root-stable rigid normal form. Then, there are two
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substitutions p and p’ and terms ¢ and ¢’ such that s|,p 153‘3 tS, t Let s' = s[t'],,.
Since R is reachability-complete, for the reachability goal s —* s’ narrowing computes
a solution 7 more general than pp’ s.t. s~} s”, with s < s’. Hence, s is not a rigid
normal form, which contradicts the initial assumption. O

Proposition 3.36 reveals that reachability-completeness can be understood as the
property that shelters rigid normal forms with a suitable form of stability which suf-
fices to prevent non-normalized bindings from introducing the possibility of initiating
an infinite narrowing derivation. Actually, under reachability-completeness we are
able to weaken stable rigid normal forms down to the purely syntactic notion of rigid
normal form, which is easier to check.

As a corollary of Theorem 3.33, by using Proposition 3.36, we achieve the following
termination result for reachability-complete TRSs. Note that reachability-complete
TRSs that satisfy Réty’s normalization condition also satisfy SRNC.

Corollary 3.37 (Termination of Narrowing under Rety’s normalization condition).
Let R be a reachability-complete, right-rnf TRS which satisfies Réty’s normalization
condition. Fvery narrowing derivation issuing from any term terminates.

In the above result, reachability-completeness allows us to get rid of right-linearity,
e.g. in TRSs that are confluent or topmost | , ]. Unfortunately,
this is not the case for left-linearity, which is still required in the sufficient criteria for
Réty’s normalization condition.

Inspired by Christian’s narrowing termination result for left-flat TRSs | ,

], in the last section of this chapter we further refine the termination result above
by getting rid of left-linearity.

3.4 Beyond left-linear systems

In | , ], termination of narrowing was proved for left-flat TRSs (i.e.,
each argument occurring in the lhs of a rewrite rule is either a variable or a ground
term), provided the rewrite rules are also compatible with a termination ordering <.
Given a signature X, a termination ordering < is a well-founded monotone ordering
on T(X,V) which is also stable under substitutions; i.e., if s < ¢, then so < to for
any substitution o (see | ) ] for a survey on termination orderings).
Christian formalized a “harmlessness” criterion for narrowing as an extension <, of
< as follows: s <, t whenever the number of distinct variables in s is either (i) less
than the number in ¢; or (ii) equal to the number in ¢, and s and ¢ are identical
everywhere, except at some position p such that s|, < t[,. Then he demonstrated
that, whenever any term ¢ narrows to t' in a left-flat system, then ¢’ <, ¢, which
ensures termination of narrowing.

Informally, the reason why left-flat rules “behave well” is that they do not intro-
duce new variables in the term: each narrowing step either reduces the number of
distinct variables, or produces a smaller term under the < well-founded ordering.
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Example 3.38. Consider the following non-flat TRS £(£(x)) — £(x) which can be
oriented with the following termination ordering: t > s iff |to| > |so| for every
substitution o, where |t| denotes the size of t. However, this rule raises the infinite
narrowing sequence

f(X) M{x»—)f(x’)} f(XI) ""’{x’»—>f(x”)} f(x//) '\/){x“»—>f(x’”)} e

Note that the ultimate source of narrowing non-termination in this TRS is the intro-
duction of “fresh wariables” %', %", which causes the terms £(x'),
£(x"),... to enter at some point in the derivation, whereas £(x') £, £(x).

In order to combine and generalize the termination results that hold for TRSs
which are either left-flat | ) ] or rnf-based (Section 3.3), we extend the
stable rigid normalization condition (SRNC) as follows. Informally, the key idea is
to ensure that the substitutions applied in narrowing steps cannot introduce any new
term that is not a root stable rigid normal form and may only replicate in the worst
case (strict) subterms of existing ones.

Definition 3.39 (Quasi stable rigidly normalized substitution). Given a
TRS R, a term s, a substitution 0 is quasi stable rigidly normalized w.r.t. s and
R (QSRN) if, for each variable x € Var(s) that appears in s more than once, x0 is
either

(i) a ground term,
(ii) a stable rigid normal form, or
(ii1) there exists a position p € Posx(s) such that 0 = (s0)|,.

Note that every substitution is quasi stable rigidly normalized w.r.t. a linear term,
for any TRS.

Example 3.40. Consider the TRS {f(f(z)) — z} of of Example 1.4, and the term
s =c(e(x,£(x)),£(y)). Assume a is a fresh symbol not in the signature of R.
The following substitutions are QSRN w.r.t. s and R:

o {x—a}, by (i)
o {x—c(z,2)}, by (i)
o {x—1£(y)}, by (iii).

Note that {x — £(z)} is not QSRN w.r.t. s and R because it is neither ground, a srnf,
or a subterm of s.

The following result is trivial due to linearity.

Corollary 3.41. In a right-linear TRS R, every substitution computed by narrowing
for a linear term s is quasi stable rigidly normalized w.r.t. s and R.
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Definition 3.42 (Quasi stable rigid normalization condition (QSRNC)). A TRS R
satisfies the quasi stable rigid normalization condition if, for every term s, every
substitution 8 computed by an ordinary narrowing derivation isswing from s satisfies
that HFVM(S) s quasi stable rigidly normalized w.r.t. s and R.

Note that SRNC implies QSRNC. Now we are ready to provide our most general
result for narrowing termination.

Theorem 3.43 (Termination of narrowing under QSRNC). Let R be a
right-srnf TRS that satisfies the quasi stable rigid normalization condition. Every
narrowing derivation issuing from any term terminates.

Before proceeding with the proof of Theorem 3.43, we need to introduce a number
of auxiliary definitions and results. A term that is not a root-stable rigid normal form
is called a non-rs—rnf. First, let us recall the standard notion of multiset.

Definition 3.44 (Multiset [ , D). A multiset M over a set A
is a function M : A — N. Intuitively, M (z) is the number of copies of x € A in the
multiset M.

Next, we define a pair of measure functions D and D* over terms which produce
the multiset of non root-stable rigid normal subterms of a term.

Definition 3.45 (Multiset of non root-stable rigid normal forms). Let R be a TRS
and t be a term. We define D% (t) (resp. Dg(t)) to be the multiset of subterms (resp.
non-ground subterms) of t that are not root-stable rigid normal forms.

We drop the subindex R in D (t) and Dx (t) when it is clear from the context.

Example 3.46. Assume any TRS R such that any term rooted by symbol f is not
a root-stable rigid normal form w.r.t. R, whereas terms rooted by symbols a or s are
root-stable rigid normal forms. Then,

1. fort; = f(a,a), we have D(t1) = 0 and D*(t;) = {f(a,a)},

s(z), f(a,a)), we have Dits) = {f(s(z),f(a,a)} and
f(s(x), f(a,a)), fa,a)},
(

3. fOT t3 = f f xay)7a)) we have D(tS) = D*<t3) = {f(f(x,y),a),f(x,y)},

4o for ts = f(F(z,9). f(v,y)), we have D(ts) = D*(ta) = {F(f(z.y), f(@.v)),
f(x,y), (Z‘,y)}, and

5. fO’I“ ts = f(f(w,y%f(w’,y’)), we have D(tS) = D*(tS) = {f(f($7y)vf($/ﬂy/))7
fl@y), f@' )}

Let us now define an ordering >g on terms. The main idea behind the definition is
to capture that whenever ¢ narrows to ¢’ with substitution 6, all non-rs—rnf terms in
t’ are just descendants of (possibly instantiated) strict subterms of non-rs—rnf terms
of t.
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Definition 3.47 (>p and »y). Let t,s be two terms and 0 a substitution. We say
tg s if there is a position p € Posx(t) such that s = t0|, and either p > € or 6 # id.
We write t wg s whenever t>g s and s is a strict subterm of t (i.e., p > €).

We recall the definition of a multiset ordering.

Definition 3.48 (Multiset ordering). | ) | Let (M,>) be a
partial ordering. The extension of > to multi-sets is defined by the two axioms below,
where My and Mo are multisets over a set S':

M1 = mul MQ = M1 ;Té Mg (31)
Vm € S, Ma(m) > My(m) = 3Im’ € S : (m' = m, My(m’) > Ma(m')) (3.2)

Since a term might be instantiated further and further, the orderings >y and »y are
not well-founded, hence neither of their multiset extensions l>g“‘l and >g“‘l are well-
founded. Nevertheless, we can prove that there are no infinite decreasing sequences
generated by narrowing steps. Informally, the idea is that no new non-rs—rnf terms
are introduced by narrowing and it may replicate in the worst case (strict) subterms

of existing ones.

Definition 3.49 (Non-additive). We say a decreasing sequence Sy l>§ri“l Sy Dg’;“l

. Dg’:l“l Sy, of term multisets is non-additive if no new terms are introduced at any
step of the sequence, i.e., for every i > 0 and term t in S; such that S;(t) > 0, there
is a term t' in S;_1 such that S;_1(t') > 0 and t = t'0;.

Definition 3.50 (Monotonically decreasing). We say a non-additive decreasing se-
quence Sy Dg':“l S1 Dg';“l Dg:L“l S, of term multisets is monotonically decreasing
if replication of a term t implies consumption of a term u lying strictly above t, i.e.,
for every i > 0 and terms t in S; and t' in S;_1 such that t = t'0;, S;_1(t') > 0,
and S;(t) > S;_1(t'), there are terms uw in S; and v’ in S;_1 such that u = u'6;,
Si—1(u') > Si(u), and v wig t'.

Lemma 3.51. FEvery monotonically decreasing sequence of term multisets is finite.

Proof. By contradiction. Let us assume an infinite monotonically decreasing sequence
g seq
l l l
SO |>g714u Sl Dgzu l>79r,iu Sn

Since it is non-additive, there must be a term wug in the original multiset Sy that is
replicated infinitely many times, i.e., for all ¢ there is u; in S; such that, for some p,
u; = upby -+ - 05|, and S;(u;) > So(up). However, this leads to a contradiction since
the sequence is monotonically decreasing and wug is finite. O

We prove that that the conditions of the previous result do hold for the class of
TRSs that we are considering.
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Lemma 3.52. Let R be a right-srnf TRS that satisfies the quasi stable rigid normal-
ization condition. For each narrowing sequence tg gel’l14)7"1 t1-th_1

'@Gn,ln—wn ty -+ the sequence D(tp) l>gi“l D(ty) vy D(ty)--- of term multisets is

monotonically-decreasing.

Proof. The proof that the sequence is non-additive is obtained by considering that
new non-ground, non-rs—rnf terms are never introduced by narrowing steps, since (i)
R is right-srnf, and (ii) the computed substitutions are QSRNC and thus any eventual
new non-rs—rnf brought by instantiation is ground.

The proof that the sequence is monotonically decreasing is obtained by considering
that any new non-rs—rnf term wu of ¢; is ground, and any non-rs—rnf subterm v of t; 4
that has more occurrences in ¢; than in ¢;_; satisfies ¢;_1|p, »iq u. O

Two further auxiliary results follow: (i) for the case when a narrowing step pro-
duces a stable rigidly normalized substitution, and (ii) for the case when a narrowing
step produces a quasi stable rigidly normalized substitution. Intuitively, when a term
t narrows to t/, we take into account the number of variables of ¢ and ¢ and the num-
ber of non-rs—rnf subterms in ¢ and t/, and show that at least one of these numbers
decreases.

We first prove that whenever a term ¢ narrows to ¢’ by computing a stable rigidly
normalized computed substitution 6, D*(t) et D*(¢).

Lemma 3.53. Let R be a right-srnf TRS. For every narrowing step t’&&lﬁr t' such
that 0 is a stable rigidly normalized substitution, D*(t) syl D*(t').

Proof. By Definition 3.48, let us assume that there exists a term w such that D*(¢')(u)
> D*(t)(u); otherwise it is trivial. We have to prove that there is a subterm w of ¢
s.t. wrg u and D*(t)(w) > D*(¢')(w). We consider the cases when D*(¢)(u) = 0 and
D*(t)(u) > 0 separately.

If D*(t)(u) = 0, then w does not appear in t because u is an instantiated version
of a subterm ' of . That is, since # is a stable rigidly normalized substitution and
r is a stable rigid normal form, there is a subterm u’ of ¢ such that v = 6 and
Oy gr(ury Z td. Therefore, w' g u, D*(¢)(u') > D*(t')(u’) = 0, and the conclusion
follows.

If D*(t)(u) > 0, then the extra occurrences of u in ¢ have been introduced by
propagation of the applied substitution due to the possible non-linearity of r (the
possible non-linearity of | did not have any effect because 6 is stable rigidly nor-
malized), which implies that u is a strict subterm of ¢|,. However, we have that
D*(t)(t|,) > D*(t')(t|,) (at least in one unit since ¢|,, has been narrowed) and ¢|,>g u,
since u is a subterm of ¢|,. Therefore, the conclusion follows.

The previous result can be easily extended to D(t) instead of D*(t) when we
consider narrowing steps on non-ground terms.

Lemma 3.54. Let R be a right-srnf TRS. For every narrowing step t’&&lﬁr t' such

that t|, is mon-ground and 6 is a stable rigidly normalized substitution, D(t) >yl
D(t").
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Proof. Immediate. O

Now we are ready to extend the previous results to the case when the computed
substitutions are only quasi stable rigidly normalized.

Lemma 3.55. Let R be a right-srnf TRS. For every narrowing step t'\p»g’l_w t' such
that t|,, is non-ground and 6 is a quasi stable rigidly normalized substitution w.r.t. t,
D(t) st D(t).

Proof. By Definition 3.48, let us assume that there exists a non-ground term u such
that D(¢')(u) > D(t)(u); otherwise it is trivial. We have to prove that there is a
subterm w of ¢ s.t. wg uw and D(¢)(w) > D(t')(w). We consider the cases when
D(t)(u) = 0 and D(t)(u) > 0 separately.

If D(t)(u) = 0, then, since 0 is a quasi stable rigidly normalized substitution w.r.t.
t and r is a stable rigid normal form, there is a subterm v’ of ¢ such that u = u'6
and 01y, # id. Therefore, v’ >g u, D(t)(u') > D(t')(u’) = 0, and the conclusion
follows.

If D(t)(u) > 0, then the extra occurrences of w in ¢ have been introduced by
propagation of the applied substitution, due to the possible non-linearity of either [
or r. In both cases, u is a strict subterm of ¢|,, and since |, is non-ground and 7 is
a stable rigid normal form, D(¢)(¢|,) > D(t')(¢|,) (at least in one unit), ¢|, »¢ u, and
the conclusion follows. O

And finally, let us proceed with the proof of Theorem 3.43.

Proof of Theorem 3.43. Given a narrowing sequence

D = tO }\)591,11%7‘1 tl e tnfl @On,ln%rn tn e
we define an order based on pairs (D(t;),D*(t;)) and ordered by
(My, My) =g (M], M} if My w4 M or My = M and M, »7! M,. Note that
the order is noetherian due to Lemmas 3.51 and 3.52. Then, we prove termination of
narrowing by noetherian induction on (D(t,), D*(t,)) and >q, .

1. (Base case) (D(t,), D*(t,)) = (@, ?), which implies that there are no narrowable
subterms in t,, and the claim follows trivially.

2. (Induction case) We have (D(t,,), D*(t,)) # (0,0), and consider the subsequent
narrowing step

Pn41

ty, ~

On+1,ln+1—=Tnt1 tn+1

We consider the following three cases separately,

(a) if tnlp,,, is a ground term, then D(t,) = D(t,41) and 6,4, is a sta-
ble rigidly normalized substitution. Then by Lemma 3.53, D*(t,) Dgﬁll
D*(tn+1);

(b) if ty]p,,, is a non-ground term and 6,4, is a stable rigidly normalized
substitution, then by Lemma 3.54, D(¢,,) Dg’iill D(tn+1);
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(c) iftplp, ., is a non-ground term and 6,4 is a quasi stable rigidly normalized
substitution w.r.t. t,,, then by Lemma 3.55, D(t,) o5 D(t,y1).
9 n41 +

In the three cases, the result follows by induction hypothesis. O
Theorem 3.43 and Corollary 3.41 together provide the following result.

Corollary 3.56 (Termination of Narrowing for right-linear TRSs). Let R be a right-
linear, right-srnf TRS. Fvery narrowing derivation in R issuing from any linear term
terminates.

Now we are ready to introduce the notion of left-plain TRSs as a natural gener-
alization, with regard to narrowing termination, of both left-flat as well as rnf-based
TRSs. Note that the case of a variable argument is considered in the definition below,
since variables are rigid normal forms.

Definition 3.57 (Left-plain TRS). A TRS R is called left-plain if every non-ground
strict subterm of the left-hand side of every rule of R is a rigid normal form.

Example 3.58. The following TRS defining a speczalzzed verston of the xor operator
used in many security protocols [ , ] is left-
plain. The symbol h is constructor; it might represent e.g. the hash of a message.

x+x—0 x+0—x (0+0) +h(x) — h(x)

Note that the third rule is neither left-flat nor rnf-based.

Example 3.59. The rule 0+ (0 +x) — x is not left-plain, since the non-ground
subterm 0+ x is not a rigid normal form. Indeed, the following infinite narrowing
derivation can be proved

c(0+%,%) ~>(psotw} (X, 04+ %)~ oty c(0+x",%7) - -

By using Proposition 3.36, we are able to demonstrate the QSRNC property for
left-plain, reachability-complete TRSs.

Lemma 3.60. FEwvery left-plain, reachability-complete TRS satisfies the quasi stable
rigid normalization condition.

Proof. By reachability-completeness, we can safely consider rigid normal forms in-
stead of stable rigid normal forms. On the other hand, since the composition of two
rigidly normalized substitutions is also rigidly normalized, we can safely consider the
substitutions computed at each narrowing step.

Let us consider a term t and the narrowing step t «p»ml _,, t'. We prove the result
by induction on the number of bindings in o. If ¢ = id, the conclusion follows
straightforwardly. Let x +— w € o and suppose that v does not satisfy any of the
conditions (i), (ii), and (iii) of Definition 3.39, i.e., u is not ground, is not a rigid
normal form, and is not a non-variable subterm of to. By definition, there is at least
one position p’ € Pos(l) N Pos(t|,) s.t. tlpy = = and to|,, = lo|,, = u. Let us
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consider an arbitrary such p’. We distinguish the cases when [|, is a variable or not.
Ifl|,, =y €V, then y — u € 0 and y must be a repeated variable in [, since u is not
a variable (it is not a rigid normal form) and o is the most general unifier. Therefore,
there is a position p” € Posx(t|,) s.t. to|pp = u. But this contradicts condition (iii)
of Definition 3.39. If l|,y & V, then |, itself is not ground and is not a rigid normal
form, since @ cannot appear in [|,» and, by induction hypothesis, o\ {z + u} satisfies
conditions (i), (ii), and (iii) of Definition 3.39. However, this contradicts condition
(ii) of Definition 3.39, and the conclusion follows. O

By using Lemma 3.60, the following result directly follows as a specialization of
Theorem 3.43 for left-plain TRSs.

Corollary 3.61 (Termination of Narrowing for left-plain TRSs). Let R be a left-
plain, reachability complete, right-rnf TRS. Every narrowing derivation issuing from
any term terminates.

Note that the above result is very handy as it can be applied to TRSs which are
neither purely left-flat or rnf-based, as illustrated in Example 3.58.

Finally, by using the known results for the strong reachability-completeness of
narrowing given by [ , ], we are able to particularize Corollary
3.61 to a number of purely syntactical, non-trivial classes of TRSs where narrowing
has a finite search space and is still (strongly) complete as a procedure to solve
reachability goals. The following result also subsumes Corollary 3.56.

Corollary 3.62 (Termination of Narrowing for right-rnf TRSs). Let R
be a right-rnf TRS which is either

1. right-linear,
2. confluent and left-plain, or
3. topmost.

Then, every narrowing deriation isswing from any term terminates. In the case of
(1), the termination (proved in Corollary 3.56) only holds for linear input terms.

Example 3.63. Let us consider the following rule defining the exponentiation func-
tion used as a primitive operation for key exchange in the Diffie-Hellman key agree-
ment protocol / , ; , ], where symbols x and g are
constructors’ .

exp(exp(g,y),z) — exp(g,y * z)

This rule satisfies both criteria 1 and 2 of Corollary 3.62, hence we conclude that
narrowing derivations w.r.t. this rule terminate.

The criteria given in Corollary 3.62 are particularly practical, since many inter-
esting TRSs fit in one of the above classes. For instance, termination of the following
TRSs follows from Corollary 3.62 straightforwardly (other examples are given in Table
3.1):

7

* is commonly defined as a (built-in) associative commutative operator with identity element 1.
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e almost orthogonal, right-rnf TRSs (including right-rnf orthogonal TRSs as a
particular case);

e constructor, confluent, and right-rnf TRSs;
e right-linear, right-rnf TRSs (only for linear input terms).

Note that the TRS in Example 1.1 satisfies all the above requirements, except for
the condition to be right-rnf.

We would like to note that our results are not comparable to those of | ,

], i.e., we do not claim to subsume Christian’s results. As a counterexample, it
suffices to consider any left-flat TRS that is compatible with a termination ordering
but is neither right-rnf nor reachability-complete. Obviously, | , ] does
not subsume our results either, since Christian’s criterion cannot deal with TRSs that
are not left-flat.

The main advantage of our approach w.r.t. | , ] is that our crite-
ria are truly syntactic and do not rely on termination orderings. As an additional
advantage, note that some of our results are based (and hence preserve) the strong
reachability-completeness of R, besides ensuring the narrowing termination, which is
not guaranteed by Christian’s result.

3.5 Discussion

It should be pointed out that, even if these results may seem of reduced interest for
programming languages since the right-rnf condition precludes recursion, they are
still very relevant for proving the termination of narrowing-based procedures that
are used in the context of bottom-up program analysis and abstract diagnosis. As a
representative example, the compact collecting semantics of term rewriting systems
defined on top of narrowing in | , ] gives rise to interpretations
(systems of semantic equations) which satisfy the right-srnf condition. For instance,
the rules defining insertion at the end of a linked list:

insert(Y, cons(X, X X)) — cons(X, insert(Y, X X))
insert(Y, Z) — cons(Y, Z)

give rise to an interpretation, computed by means of narrowing-based procedures, of
the form:

insert(X,Z) — cons(X, Z)
insert(X, cons(Y, Z)) — cons(Y, cons(X, Z))
insert(X, cons(Y'1,cons(Y2,7))) — cons(Y'1, cons(Y2, cons(X, Z)))

where the right hand sides of the equations are srnf. The proof of termination of
narrowing over these interpretations is critical to ensure the computability of the
semantics.
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It is challenging to identify more general classes of TRSs where narrowing ter-
minates without giving up the ability to test (almost purely) syntactic properties of
individual rewrite rules. Let us emphasize that all the results in this section also
apply to proving termination of sophisticated narrowing strategies such as innermost
or lazy narrowing | , ], where narrowing steps are restricted to a suitable
subset of the term positions. Obviously, more general classes of TRSs may exist where
a particular narrowing strategy terminates.

Theorem 3.13 provides a powerful criterion for proving narrowing termination in
TRSs or theories where basic narrowing terminates, often called BNT-theories; see
e.g. | , ]. Moreover, under the conditions for Theorem 3.13, the
modularity results of Chapter 7 apply also to full narrowing. On the other hand,
[ , | demonstrated that, for some kinds of theories closed under some
basic inference rules, equational unification can be proved terminating by again apply-
ing these inference rules. This entails termination of basic narrowing e.g. in shallow
theories (where all variables in the axiomatization are shallow) that are saturated
under a rule which subsumes basic narrowing, called basic paramodulation. A similar
result holds in standard theories, which extend shallow theories by only requiring
shallowness to the variables that appear on both sides of the equations.



Automatic Termination

In Chapter 3 we identified a number of classes of systems where narrowing terminates.
But as mentioned at the conclusion, it is difficult to expand these results while staying
in the realm of syntactic restrictions.

In this chapter we introduce a different, non-syntactic approach to proving ter-
mination of narrowing, which has the nice property of being highly amenable to
automation. The method is based on the well-known approach of Dependency Pairs
[ , ] for termination of rewriting.  In recent years, the depen-
dency pair (DP) method for automating the termination proofs of term rewriting has
achieved tremendous success, as witnessed by the large number of publications and

tools since its introduction in [ , ] and subsequent reformulation
in [ ) | (see [ , ; , ] for
extensive references thereof). In | , ], the notions of dependency

pairs and dependency graphs, which were originally developed for term rewriting,
were adapted to the logic programming domain, leading to automated termination
analyses that are directly applicable to any definite logic program.

Recently, two techniques for the termination of narrowing have been proposed
which are based on the dependency pair approach. In | , ;

, ], the approach of | , | is adapted to the termi-
nation of narrowing, whereas | , ; , | proves termina-
tion of narrowing w.r.t. a given set of initial queries, relying on a restricted form of
termination of rewriting based on relative termination.

In order to be as useful as possible, automatic methods for deciding and proving the
termination of narrowing must be applicable to a class of TRSs as large as possible.
However, both [ , ; , | and | , :

, | apply only to restricted classes of TRSs, namely right—
linear TRSs (i.e., no repeated variables occur in the right—hand sides of the rules), or
constructor systems (the arguments of the lhs’s of the rules are constructor terms).
These two classes are overly restrictive for many of the applications of narrowing
mentioned in Section 1.

In this chapter, we present an approach which is able to relax these restrictions
and is applicable to any class of TRSs, while at the same time being at least as
powerful as the existing approaches.
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filter(pckt(src, dst, established)) — accept

filter(pckt(ethO, dst,new)) — accept
filter(pckt(194.179.1.z:port, dst,new)) — filter(pckt(secure,dst,new))
filter(pckt(158.42.x.y:port, dst,new)) — filter(pckt(secure, dst,new))
filter(pckt(secure, dst: 80,new)) — accept
filter(pckt(secure, dst: other,new)) — drop

filter(pckt(pppO, dst,new)) — drop

filter(pckt(123.123.1.1 :port,dst,new)) — accept

pckt(10.1.1.1 :port, pppO, s) — pckt(123.23.1.1 :port, pppO, s)
pckt(10.1.1.2 :port, pppo, S) — pckt(123.23.1.1 :port, ppp0, s)

pckt(sre, 123.123.1.1 :port,new) — natroute(pckt(src,10.1.1.1 :port, established),
pckt(sre, 10.1.1.2 :port, established))
natroute(a, b) — a
natroute(a, b) — b

Figure 4.1: The Rpoticy TRS

Example 4.1. Consider our running example adapted from [ , ],
the non—right-linear, non—constructor-based, non—confluent TRS shown in Figure
4.1. This TRS models a security, filtering and routing policy that allows packets com-
ing from external networks to be analyzed. We do not describe the intended meaning
of each symbol since it is not relevant, but note the kind of expressivity that is assumed
in the domain of rule—based policy specification.

Narrowing is terminating for this TRS, but it cannot be proved by using any of
the existing methods [ , ] as
it does not fit in the right-linear restmctzon (due to the thmi rule for pckt) or the
constructor discipline (due to the rules for filter). It doesn’t either fit in any of
the syntactic characterizations where narrowing terminates defined in Chapter 3. In
the rest of this chapter, we develop techniques that allow us to prove its narrowing
termination automatically.

Structure of the chapter

In Section 4.1 we recall the basic notions of the dependency pair approach from the
literature. Then, in Sections 4.2 we dissect the structure of minimal infinite nar-
rowing derivations. By doing that, in Section 4.2.2 we distill a notion of narrowing
dependency pair which accurately models them, providing a sound and complete ter-
mination criterion for narrowing. Then, in Section 4.2.4 we show how to apply this
criterion to demonstrate termination of narrowing by means of termination of rewrit-
ing. Section 4.3 introduces the narrowing dependency pair (NDP) framework, which
enables the automation of the approach and the integration with other termination
techniques. Finally, Section 4.4 concludes.

Part of the results in this chapter have been published in | , ]
In this chapter we additionally:
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e improve on the original definition of narrowing dependency pairs. The new
definition is complete, while the original definition was not.

e extend the method to consider TRSs with extra variables (cf. Section 4.2),
e cstablish a formal connection with the results in Chapter 3 (cf. Section 4.2).

e give an exact characterization of the class of systems where narrowing enjoys
the TRAT property (cf. Section 4.2.3),

e consider a notion of usable rules for narrowing (cf. Section 4.3), and

e provide two new NDP processors which enable the decomposition of the nar-
rowing dependency graph in strongly connected components (cf. Theorems 4.47
and 4.52).

4.1 The Dependency Pair Method

The dependency pair technique | , | is one of the most powerful
methods for automated analysis of termination of rewriting systems. Throughout
this thesis we consider two extensions of this framework. Firstly, in this chapter it is
extended to prove termination of narrowing, by introducing the notion of narrowing
dependency pair and narrowing chain. Secondly, in Chapter 5 it is extended twice
to 1) consider only derivations that issue from a set of initial terms, and 2) to prove
relative termination of a system R with regard to another system £. In order to make
this thesis self-contained, in this section we give a very brief introduction to the basic
notions underlying the dependency pair technique. For an extensive reference check
[ , 2006b].

The dependency pair technique focuses on the dependency relations between de-
fined function symbols, paying particular attention to loops, which are modelled as
strongly connected components within a graph of functional dependencies. This de-
pendency graph is extracted from the function calls in the right hand sides of the
rules. The notion of dependency pair captures this idea by extracting, from every
rule, the set of relevant function calls. Given a TRS R over a signature ¥, for each
f/n € ¥, we let f*/n be a new fresh symbol; we often write F (i.e. in uppercase
characters) instead of f* in the examples. Given a term f(ty,...,t,) with f a defined
symbol, we let ¥ denote the marked term f#(t1,...,t,).

Definition 4.2 (Dependency Pair | , ). Given a TRS R over a
signature F = D W C, the associated set of dependency pairs, DP(R), is defined as
follows:"

DP(R)={l) - t*|l - r€R, r>t, and root(t) € D}

It turns out that every —% derivation can be modelled as a topmost —p derivation
modulo the rules of R. This is captured by the notion of chain.

!Note that if R is a TRS, so is DP(R).
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Definition 4.3 (Chain). | ) ; , | Let P, R be two
TRSs. A (posibly infinite) sequence of pairs sy — t1,82 — ta,... from P is a (P, R)-
chain if there exists a substitution o with t;oc =5 s;110 for alli. A chain is said to
be minimal if and only if all t;o are terminating w.r.t. —x.

Equivalently, every (DP(R),R) chain can be mapped to a pure — derivation.
This means that proving termination of R is equivalent to proving the absence of
infinite (DP(R), R)-chains. This is a simpler problem, since chains have more struc-
ture than R derivations. Ultimately, it boils down to proving relative termination
of DP(R) with regard to R where, moreover, DP(R) is a topmost system (this
viewpoint is developed for instance in | , D.

The following theorem formalizes the study of termination of rewriting with de-
pendency pairs.

Theorem 4.4 (Termination Criterion [ ) D). Let R be a TRS. The
following three properties are equivalent.

1. = 18 terminating.
2. there is no infinite (DP(R), R)-chain.
3. there is no infinite minimal (DP(R), R)-chain.
A TRS R is terminating if and only if no infinite minimal (DP(R), R)—chain exists.

The dependency pairs of a TRS R can be laid out in a dependency graph, where
the set of nodes is DP(R) and there is an edge between a pair s — ¢ and a pair u — v
if an instance of u is reachable from an instance of ¢.

Definition 4.5 (Dependency Graph | , ). Given a TRS R and
a set of pairs P, the dependency graph is the directed graph where the nodes are the
elements of P, and there is an edge from s — t tou — v if s - t, u = v is a
(P, R)-chain.

Every chain corresponds to a path in the dependency graph. Since only infinite
chains can lead to non-termination, it suffices to focus on the cycles of the dependency
graph. As shown in | , |, a termination problem can be decomposed
into smaller problems, one for every cycle in the graph, such that the solution of all
the subproblems implies the termination of the original problem. In fact, instead of
focusing on every cycle, one can focus on every strongly connected component in the
graph. This modular decomposition is one of the key strengths of the approach.

We note that computing the dependency graph of a TRS is an undecidable prob-
lem, since for any two dependency pairs s — ¢ and u — v, it is in general undecidable
whether they form a chain, i.e. whether there exists a substitution o such that
to —% u. Several estimations exist in the literature, we again refer the reader to e.g.
[ , ; , ] for more information on this subject.
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Reduction Pair

To see why 2) and 3) are simpler problems than 1) in the termination criterion of
Theorem 4.4, recall that in the classical approach to 1) (see | , ]
for a detailed view), the goal is to find a monotone, stable, well-founded order > on
terms such that every rule is strictly decreasing, i.e. I > r for every rule [ — r € R.

When proving the absence of infinite chains, while the goal is still finding an
ordering which orients the rules, the requirements are more relaxed thanks to the
additional structure in the problem, since:

e the order > used to orient the pairs need not be monotone since the DP(R)
system is topmost, and

e the order > used to orient the rules need not be well-founded since only relative
termination is required.

Thus we arrive at the notion of reduction pair.

Definition 4.6 (Reduction Pair |
pair of orderings such that:

, ). A reduction pair (=, >) is a

1. = is reflexive, transitive, monotonic and stable under substitutions.
2. = 1is a stable well-founded order.

3. = and > are compatible,i.e., (= o> o0>x) C ».

By means of reduction pairs one can show the absence of infinite chains, by search-
ing for an order which orients all the rules and pairs. In fact this can be done modu-
larly, see [ , ] for the details.

The Dependency Pair framework

The DP framework formalism [ , ] is a refinement of the dependency
pair technique created with the goal of enabling the modular composition of different
termination techniques. The DP framework improves the dependency pair technique
in several ways. It is fundamentally more powerful, it is also more applicable thanks to
the possibility to combine with other termination techniques, and it is more amenable
to automation and implementation.

Definition 4.7 (DP problems and processors | , ). A DP problem is
a tuple (P, R, f) consisting of two TRSs R and P and a minimality flag f € {m,a},
where m and a stand for minimal and arbitrary respectively. We say that a DP
problem (P, R, f) is finite if there is no associated infinite (and minimal if f is m)
(P,R) chain. A DP problem (P, R, f) is infinite either if it is not finite or if = is
not terminating.

A DP processor is a function Proc which takes a DP problem and either returns
a new set of DP problems or fails. Proc is sound if for any DP problem M, M is
finite whenever all DP problems in Proc(M) are finite.
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Following | ], we construct a tree whose root is labeled with the
problem (DP(R), R, m) and whose nodes are produced by application of sound DP
processors. R is terminating if all the leaf nodes of this tree are finite.

There are a large number of DP processors available in the literature, as termina-
tion using the DP framework is a very active research topic. For an extensive reference
about the most commonly used processors, we refer the reader to | , ].

4.2 Termination of Narrowing with
Dependency Pairs

In this section we study the shape of minimal infinite narrowing derivations, arriving
to the notion of echoing terms and to a classification of such infinite derivations.
This, in turn, will enable us to define a notion of narrowing dependency pairs in next
section which faithfully captures the behaviour of these infinite derivations.

We start by pointing out that in contrast to rewriting, the narrowing relation
is not monotone: t ~»_ » s does not entail Cft] ~,  C[s] but C[t] ~, » (Co)[s]
instead. Recall Example 1.4 from Chapter 3.

Example 4.8 (Example 1.4). Consider the TRS Rq1 = {£(f(z)) — =}, and the non—
linear term c(£(z),xz). Then there does not exist an infinite (~x )-derivation for the
subterms £(x) and x, whereas there is an infinite (~x)-deriwation stemming from
c(£(x), z) which never performs a narrowing step at the root:

c(£(2), ) ~ (st} (@, £(2))) ~(wse @y c(E ("), 2") ...

As shown by the above example, in the presence of non-linearity the non-monoto-
nicity of narrowing has undesirable effects for its termination, since narreres can be
brought into the context by the substitution computed at the preceding narrowing
step, thus causing other terms in the context to grow. This echoing effect plays a
fatal role in the (non—) termination of narrowing.

In all existing previous efforts on termination of narrowing using dependency pairs,
the position taken is to banish non-monotonicity altogether and demand that narrow-
ing behaves as a monotone relation. For instance, the method of | , ]
is restricted to systems that have the so-called Top Reduced Almost Terminating
(TRAT) property.

Definition 4.9 (TRAT | ) D). Given a property P on terms, a term t
18 said to be a minimal P term if t satisfies P but none of the proper subterms of t does.
Given a TRS R and a binary relation = (being —x or ~x ), an infinite derivation
t = t1 = to... is called almost terminating if ¢ is a minimal non—terminating term
w.r.t. =. An almost terminating derivation t = t1 = to... is called top reduced if
it contains a derivation step at the root position.

We say that = has the TRAT property if, for every non-terminating term t, there
exists a top reduced almost-terminating sequence stemming from one subterm of t.
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In | , ] it is proved that every monotone relation has the TRAT
property. Since the rewriting relation is monotone (i.e., ¢ — s implies C[t] =
C[s]), then it has the TRAT property for every TRS R. In term rewriting this ensures
that, in every almost terminating, infinite derivation, a rewriting step is given at the

root (cf. [ , , Lemma 1]). There are some classes of TRSs
in which narrowing exhibits a monotone or monotone—like behaviour and thus enjoys
the TRAT property. | , | considers two such classes: right-linear

systems when the initial term of the derivation is linear, and constructor systems (for
any initial goal).

But we want to remark here that neither TRAT nor monotonicity are a necessary
condition for the termination of narrowing, as the following examples shows.

Example 4.10. Consider the non—constructor TRS Ro defined by the rules below

t(g(x)) = =
glr) =z

together with the non linear initial term c(£(x),x). The only possible derivation for
this term (or any other) is finite, whereas the TRS does not fit in any of the syntactic
characterizations for TRAT?, and cannot be proven terminating by any of the existing
automated approaches (| , ; , ; ,
]), nor does it fit in any of the terminating classes introduced in Chapter 3.
However as we will prove in the following, the system is terminating for narrowing.

4.2.1 The echoing problem

In the following we switch our attention to generalized TRSs (GTRSs), i.e. TRSs
with extra variables. Extra variables are very natural in the context of narrowing,
they behave as free or logic variables which get instantiated by narrowing only when
necessary. Since our technique is flexible enough to consider this extension, there is
no particular reason to restrict ourselves to TRSs with no extra variables.

In rewriting (and narrowing), if a TRS is not terminating then there must be a
minimal non-terminating term ¢ such that every subterm of ¢ is terminating. Following
[ , |, let us denote the set of all minimal non-terminating
narrowing terms by 7°°.

Definition 4.11 (7). Let R be a GTRS. A term t belongs to the set of minimal
non-terminating narrowing terms of R, denoted by T2, , if and only if:

1. There is an infinite ~g derivation starting from t,

2. There is no infinite ~»x derivation starting from a proper subterm of t.

2Strictly speaking, narrowing enjoys the TRAT property in Ro —and in any (~)-terminating TRS
for that matter— because, since there are no infinite derivations, by vacuity every infinite derivation
is top reduced. But this does not help us, since we are trying to decide termination.
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In rewriting | , , Corollary 1], such a minimal non-
terminating term is rooted by a defined symbol. Crucially, this is not true for nar-
rowing, as shown before in Example 4.8. In that example we had a derivation where
a (~g, )-terminating term, f(x), leads to nontermination due to an echoing-like be-
haviour. This is formalized by the notion of echoing term.

Definition 4.12 (Echoing terms). Let R be a GTRS. We define the set of echoing
terms w.r.t. R, denoted by Tg, as follows: s € 7;? if

e there is no infinite ~x derivation starting from s,

o for any context with two holes C, there is a variable x € Var(s) such that
Cls,x] € T, .

Example 4.13. Consider the TRS Ry = {f(£(z)) — x} of Ezample 4.8. We have
that c(f(x),x) € TS, , f(x) € 7'791, and £(c(f(x),z)) & TZ5,, since it is not minimal.

~Ry

Echoing terms are terms which are terminating by themselves, but when placed
in a non linear context they can become non-terminating. Echoing terms are the key
to characterize minimal infinite narrowing derivations.

Informally, we can classify infinite narrowing derivations starting from a minimal
non—terminating term in three categories TOP, ECHOING and HYBRID.

The TOP case is the usual one shared by rewriting and narrowing; there are a
number of steps below the root and eventually there is a root step introducing a new
minimal non-terminating subterm.

The other two cases are due to non—monotonicity and thus unique to narrowing.
Both work by introducing a narrex into the context, and hence both need a context
and a non linear term to manifest themselves. In the ECHOING case, the narrowing of
an echoing subterm introduces into the context a new echoing subterm that enables
the process again, as in Example 4.8.

In the HYBRID case, the reduction of an echoing subterm introduces into the con-
text a minimal non—terminating narrex that spawns an infinite narrowing derivation,
as in Example 4.14 below.

Example 4.14. Consider the following TRS Rs:

f(g(z)) —a g(x) = glx)

g(x) is in T2y, i-e., itis a minimal non-terminating term. f(zx) & T2, since only
the derivation £(x) ~(zsgar)} @ can be proven. However, given a fresh symbol c,

there is a HYBRID infinite narrowing derivation stemming from the term c(f(x),x) €
Tj"%. Therefore, £(x) € ’7'7%,

A further insight comes from observing the source of the echoing narrexes in
the ECHOING and HYBRID cases. Suppose we split the substitution o computed by
a narrowing step t ~, . s into two pieces, 0 = of, W of,. The o], part of the
substitution has the usual effect of propagating narrexes to the right-hand side of the
rule. On the other hand, the o], part is responsible for the echoing of narrezes to the
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context that can fire a new narrowing step. The narrexes propagated into the context
come from the subterms of the left-hand side of the rule, as in the TRS Rpoiicy
of Example 4.1, or from the term being narrowed itself, e.g. when c(z,h(g(z),2))
is narrowed to c(g(x),0) by using the rule h(y,y) — 0 and most general unifier
{z = g(z),y — g(x)}. When analyzing derivations starting from minimal non-
terminating terms, the subterms from the term being narrowed are always (~g)-
terminating. This leads to the conclusion that only bindings from of, can lead to
non-termination in these cases.

The lemma below formalizes the shape of infinite minimal narrowing derivations.

Lemma 4.15. Let R be a GTRS. For every term t € T2, we have that either

1. (TOP) there exists a rewrite rule | — r € R, substitutions o, p, a term t', and a

non-variable subterm u of r such that t 55:;’7% t 5 ro>uandu €T, ;

o,l—r

2. (HYBRID) there exists a rewrite rule | — r € R, terms t',t" u,l’, substitutions
p,0, a position p > €, and a variable x such that t 2’57),7% t/ «paa)lHT t, x €

Var(t'|,) and x € Var(t'[0],), xo > u, u =10, lI'al, t'|, € T5, and u,l' €

T
3. (ECHOING) there exists a rewrite rule | — r € R, terms t',t",l', substitutions
p,0, a position p > €, and a variable x such that t 25;72 Lt e

Var(t'|,) and = € Var(t'[0],), zo =1o,l'<l, and V'|,,z0 € T .

Proof. Let D be an infinite narrowing sequence stemming from ¢. Since all proper
subterms of ¢ are (~g )-terminating, D must contain a narrowing step at the root
position or there is a narrowing step which computes a substitution that carries a
narrex into the context which leads to non-termination. Summarizing, we have ¢ 35;772
L
o,l—r

step.

t"” and we can distinguish two cases depending on whether there is a root

e There is at least one root step, i.e. let p = € above be the first such root step. We
are in the TOP case. By the minimality assumption, all proper subterms of ¢’ are
(~x )-terminating and thus terms brought in by the substitution o = mgu(¢’,1)
are (~ g )-terminating. As ro is not (~x )-terminating, there is some position
g st. u= (ro)|q is not (~x)-terminating. Moreover ¢ € Pos(r), because all
terms brought in by o are (~x )-terminating,.

e There is no root step in the entire infinite derivation. Then, there must be a
step in which the substitution computed introduces a narrex into the context
above p. Observe that this requires that ¢’ is non-linear and then ¢’ can be
written as C[t'|,, z], where z is the duplicated variable introducing a narrex.
By definition, t'|, is an echoing term, and we distinguish two cases depending
on whether the narrex z6 is (~x )-terminating:

— The narrex introduced is not (~ )-terminating, hence it contains a min-
imal non-terminating term u, i.e. t">u € 73,. We are in the HYBRID
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case. Since all the proper subterms of ¢ are (~x )-terminating, u must
be an instance of a proper subterm of [ introduced by a binding of o, i.e.
there is a variable x € Var(t'|,) with zo > u, and a term v’ <, such that
u=u'cand v €T, .

— The narrex introduced is (~ g )-terminating. We are in the ECHOING case.
Since t'|,, is an echoing term, there are only a finite number of ~» steps
which can be given from t'|,. Eventually, a ~»%z must be given such that
xo = u is a new echoing term. In addition, u must be an instance of a
proper subterm of [ (to see why, recall that in the definition of echoing term
one cannot assume anything about the context surrounding the echoing
term).

Hence, there is some variable = € Var(t'|,) with zo € T.5. O

As a consequence from Lemma 4.15, it is obvious that for all term ¢ € 727, either ¢
has a defined root symbol or ¢ is non-linear and contains at least an echoing proper
subterm. Moreover, every minimal echoing subterm is rooted by a defined symbol.

Corollary 4.16. Every term t € T2, either has a defined root symbol or is non-
linear and contains at least one echoing subterm.
Moreover, every term t € T© has a defined root symbol.

4.2.2 Narrowing Dependency Pairs

In this section we develop the notions of narrowing dependency pair and narrowing
chain, and provide a sound and complete criterion for the termination of narrowing
that is based on analyzing narrowing chains. We have seen in the previous section
that the substitution computed in a narrowing step propagates narrexes into the
context, that originate either from (subterms of) the left-hand side or the term being
narrowed. Although the narrexes coming from proper subterms of the term being
narrowed may lead to non-termination, standard (rewriting) termination analyses
already cope with them. On the other hand, narrexes coming from proper subterms
of the left-hand sides of the rules are specific to narrowing, and this is what drives
the generalization of the notion of dependency pair to narrowing.

To construct the set of dependency pairs, we not only relate the left-hand side of
each rule with the root—defined subterms occurring in the corresponding right-hand
side, as in standard rewriting DP, but also with its own root—defined subterms, i.e.,
those terms whose root symbol is a defined function. The resulting set of dependency
pairs faithfully captures the behaviour of narrowing derivations where narrexes coming
from a left-hand side are propagated into the context. As a result, the set of narrowing
dependency pairs of a TRS is a superset of its set of rewriting dependency pairs. For
instance, the TRS R; of Example 4.8 has no rewriting dependency pairs (and hence
it is trivially terminating) but it has one narrowing dependency pair, as we will see
in the following.

The following definition formalizes this idea by extending the standard notion with
a novel kind of dependency pairs, which we call l[-dependency pairs.
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(1) filter” (pckt(194.179.1.z:p, dst,new)) — filter” (pckt(secure, dst,new))
(2) filter” (pckt(194.179.1.z:p, dst,new)) — pckt® (secure, dst,new)

(3) filter” (pckt(158.42.2.y:p, dst, new)) — filter™ (pckt(secure, dst, new))
(4) filter” (pckt(158.42.2.y:p, dst, new)) — pckt¥ (secure, dst, new)

(5) pckt#(10.1.1.1 :p, ppp0, ) — pckt#(123.23.1.1 :p, ppp0, )

(6) pckt#(10.1.1.2 :p, ppp0, ) — pckt# (123.23.1.1 :p, ppp0, )

(7) pckt#(src7 123.123.1.1;p, new) — natroute? (pckt(sre, 10.1.1.1 :p, established),

pckt(src, 10.1.1.2 :p, established))
pckt? (src,10.1.1.1 :p, established)
pckt? (sre, 10.1.1.2 :p, established)
pekt# (src, dst, established)

pckt? (etho, dst, new)

pckt™ (194.179.1.2:p, dst, new)
pckt# (158.42.2.y:p, dst, new)

pckt™ (secure, dst: 80, new)

pckt™ (secure, dst: other, new)
pckt™ (ppp0, dst, new)
pckt™(123.123.1.1 :p, dst, new)

(8) pckt# (src, 123.123.1.1 :p, new)
9) pckt# (src, 123.123.1.1 :p, new)
(10)  filter™ (e(src,dst))

(11)  filter™(e(dst))

(12)  filter™(e(z,p, dst))

(13)  filter™(e(z,y, p,dst))

(14)  filter™(e(dst))

(15)  filter™(e(dst))

(16)  filter™ (e(dst))

(17)  filter™(e(p, dst))

R O A R A A A

Figure 4.2: Dependency pairs of R poiicy

Definition 4.17 (Narrowing Dependency Pair). Given a GTRS R, we have two
types of narrowing dependency pairs:

e a Ir-dependency pair (orstandard DP) of R is a pair[# — t# wherel — r € R,
r > ¢, and root(t) € D.

e a ll-dependency pair (II-DP) of R is a pair I#[e(Var(l|,))], — U where | —
r € R, root(l],) € D.

where o is a new variadic® symbol not present in the signature of R. The set of all
narrowing dependency pairs of R is denoted by NDPx .

Example 4.18. The TRS Ry = {£(f(z)) — =} of Fxample /.8 has no lr-dependency
pairs and the single ll-dependency pair F(e(z)) — F(x).

Example 4.19. For the TRS Rpolicy of Example 4.1 we obtain the narrowing de-
pendency pairs shown in Figure /.2.

Recall that our purpose is to prove that there are no infinite narrowing derivations
in terms of infinite narrowing chains. For narrowing we consider suitable the following
definition of chain. As in [ , ], we assume that different occurrences
of dependency pairs are variable disjoint.

Definition 4.20 (Narrowing Chain). Let P, R be two GTRSs. A possibly infinite
sequence of narrowing dependency pairs

81—>t1,$2—>t2,...€73

is called a (P,R )-narrowing chain if there are terms ui,...,u, and substitutions

01,...,0n, Such that:

€

t >€y € t >€x € ¢
Ui /\,)O'l,sl—ﬂil 101 ’\,}Tl,R U2 ’\,}(72,82—>t2 202 ’\/)T‘Z,R us Mﬂ'g,s;;—)tg 303 ...

3i.e. used with several different arities.
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Moreover, P is a minimal chain if and only if all t;o; are (~x)-terminating.

We often omit the (P,R) prefix when referring to narrowing chains when it is clear
from the context.

Example 4.21. Consider the TRS Ry and the lI-DP F(e(x)) — F(z) from Ezxample
4.18. There is an infinite narrowing chain F(e(z)) — F(z),F(e(x)) — F(x),..., as
witnessed by the following ~(r(e(x))—»F(x)}uR, derivation:

F(O({E)) ~} F(LC) ~{zre(z)} F(CE/) > ase(z!)} F(.%‘H) cee

In the following we will see how every chain can be mapped to a ~»x derivation.
Hence an infinite chain constitutes an infinite ~»% derivation, and proving termination
amounts to proving the absence of infinite chains.

Let us briefly mention that the original definition of narrowing dependency pair
introduced in | , ] contained a mistake regarding the previous
statement. Namely, the way in which 1ll-dependency pairs were constructed could
lead to narrowing chains which did not correspond to any narrowing derivation. In
the definition of ll-dependency pair contained in this thesis, the echoing subterm is
replaced by a e(zy...xz,) term. In the original version from | , I,
this replacement was not performed. This Example 4.22 below demonstrates how this
leads to false chains.

Example 4.22. Consider the TRS defined by the rules:
f(g(z)) =«

g(x) = h(z)

h(z) — £(g(x))

With the original definition of narrowing dependency pair introduced in [
, ], the set of pairs obtained for these rules is:

=W N =
S— Nt N N

[l =N N

( (
( (
( (
( (

The sequence (4.4),(4.2),(4-4),(4-2), ..., constitutes an infinite narrowing chain,
as there is a ~gup derivation:
H(z) ~(4.4) G(w) ~ 4.2y H(T) ~r gy -
This chain is mirrored* by the following narrowing ~>g derivation:

h(z) ~r £(g(x)) ~r £(h(2)) ~r £(E(g(2)) ~r -

4The precise meaning of “mirrored” in this sentence will become clear with Lemma, 4.23 below.
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The sequence (4.3), (4.1), (4.2), (4.3), (4.1),(4.2). .., also constitutes a narrowing
chain, as witnessed by the following ~ryup derivation:

H(x) ~(4.3) F(g(®)) ~(a.1) G(x) ~ra2 H(w) ~rg3 -+

However, the reader can check that there is no infinite ~x derivation which mirrors
this chain, because there is no way to capture the echoing term g(x) in the step given
with the first rule corresponding to the ll-dependency pair 4.1:

c(h(x), z) ~r c(f(g(@)),2) ~r c(,x) or

Therefore the narrowing chains of [ , | overapprozimate the nar-
rowing derivations of the system, which is clearly undesirable. With the narrowing
dependency pairs of Definition 4.17, the set of pairs obtained for these rules is the
same except for the ll-dependency pair (4.1):

F(e(x)) — G(x) () (4.1)
G(x) — H(x) (ir) (4.2)
H(z) — F(g(x)) (ir) (4.3)
H(x) — G(z) (ir) (4.4)

Now the sequence (4.3), (4.1), (4.2), (4.3), (4.1),(4.2)...simply does not constitute
a narrowing chain.

H(z) ~(13) F(g(z)) #(a1)
The following result formalizes the soundness of analyzing narrowing chains.

Lemma 4.23. Let R be a GTRS. Given a (NDPr R )-narrowing chain s7 — t7,

sf — tf, ..., there exists a narrowing derivation in R which gives at least one re-
duction step for every pair in the chain.

Namely, there is a term tg, contexts C1[0],Ca[0],..., positions pg,p1,..., rules
lh = 7r1,la = ro, ... from R, and substitutions o1,09,... and T2, T3, ..., such that

there is a derivation:

Po >P1x P1 >P2x P2
to ’\,}O'l,ll—>7’1 Cl [tlal]Pl ~ 79, R © ’\,}1727l2—>"’2 C2 [t202]P2 ~ 73, R © Mog,lg—)rg e

where the rule l; — r; € R is:
o If sz# — t? is a lr-dependency pair, then l; = s; and r;|, =t;,

o Ifs7 = t¥ is an ll-dependency pair with s7 |, = o(Var(s|,)), then l; — r; is a
rule’ such that l; = s;[ti],.

Proof. By induction on the length n of the chain. The case n = 0 is immediate. For

n > 0, let us assume that the statement holds for the initial part of the chain, i.e.

there is a narrowing derivation for the chain sf — tf, ce sfil — tfﬁp and then

5Note that if there is more than one such rule, the choice is irrelevant.
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prove the statement for the whole chain by extending this derivation with the segment
corresponding to the pair s — 7.

The induction hypothesis yields a term tg, contexts Ci] |,...,Cpn_1[ |, positions
D1, ---,Pn—1, and substitutions o1, ...,0,_1 s.t. there is a (~x )-derivation:

Po >pi1y P1 >Pn—24 Pn—2
to ~p, OO, M, RO o 1 RO N~ o kR Cacilta—10n-1lp,

And the segment to be shown is the following:

>Pn—14 Pn—
Cnfl[tnflgnfl]pn_l ~ lrn,R © Mlan,lnarn Cn[tngn}pn
The definition of narrowing chain yields the following assumption: there exist
substitutions 7/ and ¢’ such that there is a (~nypp,ur )-derivation:

>€ €
th on1 SR ut 5

Lo’ (4.5)

ol st
We consider the two kinds of narrowing dependency pair separately.
e s — 7 is an Ir-dependency pair.
Then there is a rule s, — r, € R and a position ¢ s.t. r,|g = t,. Defining
7o =7 and o, = o', by (4.5) there is a derivation:

>Pn—1y Pn—1
Cnfl[tnflgnfl}pna ~ R CnflTn[u]Pn—l N ST

Cn—1Tnon [Tno'n]pnf1 =p

Now we just have to define p, = p,,_1.¢ and take C,, = §[0],, to complete the
proof for this case.

e s¥ — t# is an ll-dependency pair with s¥|, = e(z1...x,).
Then there is at least one rule I, — 7, € R such that I, = s,[tn]p-

As e does not occur in R nor in the right-hand sides of the rules of NDPyg, it
follows from (4.5) that the subterm u# |, must necessarily be a variable z, and
that zo’ = e(xy...x,). Since we want to give a step with the rule [, — 7,
instead of the pair s# — t#, define 0, (z) = t,0, and o,(z') = o’(z') for any
variable 2’ distinct from z. It follows that uo, = lo,, and by letting 7,, = 7/,
(4.5) yields the derivation

>Pn—1y Pn—1
Cnfl[tnfla-nfl]pnfl ~ R CnflTn[u]pna N ol =T

Cnfl’rnan [rnan]pn = ﬂ

Now it only remains to be shown that 8 = Cy[tno,]p,. For this, choose ¢
so that x € Var(C,_17,). Observe that this is always possible, as we have
freedom to choose tg. For instance, given a t{, for which this is not satisfied,
define to = c(t(,y) for a fresh binary symbol ¢ and a variable y € Var(tf)
s.t. yo1720973...Tn_10n_1 > x. Given an occurrence of x in Cp_17,, q¢ €
P0sy(Cr—1Ty), define p,, = ¢ and C,, = B[0],, . This concludes the proof. [
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It can be seen from Lemma 4.23 that each narrowing step given with the rule
corresponding to an Ir-dependency pair is a TOP step, whereas each narrowing step
given with the rule corresponding to an ll-dependency pair is either a HYBRID or
ECHOING step. Equivalence between the first and third statements now follows by
transitivity.

The following proposition establishes a lifting between narrowing and rewriting
chains. It will be highly useful in Section 4.3, where we adapt several DP processors
from the rewriting setting to the narrowing setting. The proposition simply states
that every rewriting chain is also a narrowing chain, be it finite or infinite; but the
other way around is only true when we consider a finite narrowing chain, or a finite
prefix of an infinite narrowing chain. Intuitively, this is because the substitution o
computed by an infinite narrowing derivation can contain infinite terms in the limit,
whereas rewriting chains are assumed to contain only finite terms (cf. Definition 4.3).

Proposition 4.24. Given a TRS R with no extra variables, every rewriting chain
(P,R) is also a narrowing chain. Moreover, if the rewriting chain is infinite then the
associated narrowing chain is also infinite.

Conversely, given a GTRS R (possibly with extra variables), every finite prefix of
a narrowing chain (P,R) is also a rewriting chain®, and minimality is preserved.

Proof. First we show first that every rewriting chain has an associated narrowing
chain.

Let sg — tp,81 — t1,... be a possibly infinite, minimal rewriting chain. By
definition, there exists a substitution o s.t. ;0 =% siy10, for every two consecutive
pairs of the chain s; — t;, 5,41 — t;+1. Then we can construct a —xp derivation of
the form:

€ >€x € >€x €
S00 =gty 100 =R S10 =g 4y, 110 =R S20 =g,y -

We can apply the lifting lemma of Proposition 2.1 (with § = id) to extract a narrowing
derivation of the form:

£ ¢ >eyx 5 ¢ >€ex
00 ’\»U,SUHtO 00 /\,)id,R 810 /\’)O',Slﬁtl 10 /\’)id,R e

which constitutes a narrowing chain.

Now we show the converse, that every finite prefix of a narrowing chain has an
associated rewriting chain. We proceed in the same way. Let P = s9 — tg,51 —
t1,.... Then there is a substitution oy such that the following ~»pyr derivation
exists:

€ >e€x € >e€x
S000 '\,)00780_”0 tOJO ,\,)PovR S$101 '\/)0_1751_>t1 tlal MPL'R N

Consider a finite prefix of the derivation above. In order to prove that this prefix
is a rewriting chain, we must show that there exists a substitution o containing
only finite terms such that ¢;0 —% s;y10 for every two consecutive pairs in the
chain. By the soundness of narrowing (cf. Proposition 2.2) this substitution exists,

6Note that rewriting chains were introduced for TRSs only, while in general R and P are gener-
alized TRSs (i.e. with extra variables). But this is no problem since the definition of rewriting chain
can be extended to generalized TRSs without changes.
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0 = 0gpoo1p1 - ... Moreover if this is a finite chain, or a finite prefix of an infinite
chain, then ¢ has a finite domain and contains only finite terms. That minimality
is preserved follows from the fact that ~»-termination implies —-termination (cf.
Proposition 2.3). O

Now we are able to show that, whenever there are no infinite narrowing chains,
narrowing does terminate.

Theorem 4.25 (Termination Criterion). A GTRS R is terminating for narrowing
if and only if no infinite minimal (NDPx R )-narrowing chain exists.

Proof. The if case is straightforward from Lemma 4.15 and the only if case is straight-
forward from Lemma 4.23. O

The following definition lifts the standard notion of dependency graph (cf. Defi-
nition 4.5) to the narrowing setting by considering narrowing dependency pairs and
chains.

Definition 4.26 (Narrowing Dependency Graph). Given a set of rules (possibly with
extra variables R and a set of pairs (possibly with extra variables) P, the narrowing
dependency graph is the directed graph where the nodes are the elements of P, and
there is an edge from s -t € P tou - v € P if s > t, u — v is a narrowing chain
from P.

The lemma below establishes that the narrowing dependency graph and the de-
pendency graph coincide in absence of extra variables (otherwise, the rewriting depen-
dency graph is not defined), as an immediate consequences from the lifting between
narrowing and rewriting chains.

Lemma 4.27. Given a set of rules R satisfying the variable condition and a set of
pairs P, the narrowing dependency graph is the same as the dependency graph.

Proof. Follows from the lifting between narrowing chains and rewriting chains stated
in Proposition 4.24. O

For finite GTRSs, infinite chains show up as cycles in the dependency graph”.
Unfortunately, it is well known that computing the exact dependency graph is an
undecidable problem and thus several approx1mat10nb [ ,

, , | are used to com-
pute an estzmated dependency graph Wthh 1ncludes the exact graph. The following
approximation is commonly used.

Definition 4.28 (Estimated Dependency Graph). | ) ] Let R be a
set of rules (possibly with extra variables), and P be a set of pairs (possibly with extra
variables). Let CAPR (t) be the result of replacing® all the proper subterms of t with a

"The converse does not hold, not every cycle corresponds to an infinite chain.
8This function was first defined for approximating loops in dependency graphs in [ ,

], where it is called 7.
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Figure 4.3: Estimated dependency graph of R poicy

defined root symbol by a fresh variable, and REN(t) the linearization of t (replacing all
ocurrences of a non linear variable with independent fresh variables). The nodes of
the estimated dependency graph (EDG) are the pairs of P and there is an edge from
s% — t7# to u? — v¥ iff REN(CAPR (1)) and u are unifiable.

As in the rewriting setting, this estimation correctly overapproximates the exact
narrowing dependency graph.

Lemma 4.29. Let R be a set of rules (possibly with extra variables) and P be a
set of pairs (possibly with extra variables). Define EDG to be the estimation of its
dependency graph G, obtained as in definition 4.28 above. Then EDG contains G,
i.e. every node in G is a node in EDG and every edge in G is also an edge in EDG.

Proof. By straighforward generalization of the proof of Theorem 21 in | ,
] to the case of extra variables in P and R, in the sense that no changes at all
are required. O

Example 4.30. For the TRS Rpolicy of Example 4.1 and the set of DPs obtained in
Ezxample 4.19, the EDG is shown in Figure j.3.

4.2.3 Classes of TRSs where narrowing enjoys the TRAT prop-
erty

We take a short detour to outline that, as a byproduct of the results in this section,
we are now able to give new characterizations of classes of TRSs where narrowing
enjoys the TRAT property.

The proposition below highlights the role that ll-dependency pairs play in non
TRAT systems. FEssentially, it states that saying that narrowing enjots the TRAT
property in a system R is equivalent to saying that R gives rise to no ll-dependency
pairs, or at least they play no role in minimal infinite derivations.

Proposition 4.31. Let R be a TRS.The following three statements are equivalent.
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1. ~x has the TRAT property for any term,
2. every infinite minimal ~x derivation is composed solely of TOP steps, and
3. there are no ll-dependency pairs ocurring in any minimal infinite ~x chain.

Proof. That the first and second statements are equivalent follows from the classifi-
cation of infinite narrowing derivations in Lemma 4.15. That the second and third
statements are equivalent follows from Lemma 4.23, since non TOP steps, i.e., HYBRID
or ECHOING steps, correspond always to an ll-dependency pair. O

While the proposition above completely characterizes the class of systems that
have the TRAT property for narrowing, it is not useful for deciding whether a given
TRS enjoys the TRAT property. An approximation based on the EDG can be used
instead.

Corollary 4.32. Let R be a TRS. Narrowing has the TRAT property in R if no ll-

dependency pair appears in a cycle of (an over-estimation of) the dependency graph
of R.

Proof. Follows from Proposition 4.31. O

It also follows that narrowing enjoys the TRAT property in the rnf-based systems
studied in Chapter 3, which constitute a superclass of constructor systems. This
generalizes the results in [ , | for constructor systems.

Corollary 4.33. Let R be a TRS. If R is sinf-based, then the narrowing relation
~»gr has the TRAT property.

Proof. Let R be a srf-based TRS, and [#[e(x;...7,)], — (I|,)# a ll-dependency
pair extracted from some rule | — r € R. By definition, [|, is a stable rigid normal
form (cf. Definition 3.29), i.e. there is no substitution o such that I|,0 ~x ¢, for any
term ¢.

Hence ll-dependency pairs can only appear as the last element of a narrowing chain,
and therefore never in an infinite chain. The result now follows from Proposition
4.31. O

It is also easy to show that narrowing enjoys the TRAT property in systems which
satisfy the (quasi stable rigidly normalized condition) of Chapter 3 (cf. Definition
3.42). This class includes, for instance, the rnf-based systems of Section 3.2.1 and the
left-plain systems of Section 3.4.

Proposition 4.34. Let R be a TRS that satisfies the QSRN condition. Then ~g
enjoys the TRAT property.

Proof. Follows from Lemma 4.15. Let R be a TRS that satisfies the QSRNC. By def-
inition, the substitution ¢ computed in a ~»% step cannot introduce non-constructor
subterms from the left hand side of a rule. From this observation we can conclude, by
Corollary 4.16, that no substitution computed in a ~» step can introduce a binding
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u € TO or u € T=°, which precludes HYBRID and ECHOING steps, respectively. Hence
every infinite ~»x derivation is composed solely of TOP steps, and therefore R does
enjoy the TRAT property. O

4.2.4 Proving the Absence of Infinite Narrowing Chains

In this section we consider the problem of proving that a narrowing chain is finite.
The approach followed is inspired by [ , ] but we provide all results
without requiring TRAT. Essentially, it consists on finding a mapping from narrowing
chains to rewriting chains, such that for each narrowing chain, finiteness of its associ-
ated rewriting chain implies finiteness of the narrowing chain. Then, we use standard
techniques from the rewriting setting to prove that the rewriting chain is finite.

Let us start by recalling the notion of argument filtering. Intuitively speaking,
argument filterings map every function symbol to a subset of its argument positions,
i.e., given a function symbol f of arity n, 7(f) returns a subset of {1,...,n} so that
the arguments whose position is not in the set are filtered away. This notion can also
be used as a function to apply this mapping to a term ¢, with the homomorphic lifting
to rules and GTRSs.

Definition 4.35 (Argument Filtering). [ , | An argument filtering
(AF) for a signature ¥ is a mapping w that assigns to every n-ary function symbol
f € ¥ an argument position i € {1,...,n}, or a (possibly empty) list [i1,...,im] of
argument positions with 1 < i; < ... < i, < n. The signature X, consists of all
function symbols £ s.t. w(£) is some list [i1, ..., im]|, where in ¥, the arity of £ is m.
Every AF 7 induces a mapping from T(2,V) to T (X, V):

t if t is a variable
w(t) = { m(t;) ift==(t1,...,tn) and w(f) =i
£(m(ts,), ... m(ti))  ift==£(t,... tn) and w(£) = [i1, ..., in]

e By abuse of notation, we often simply write X instead of X, and keep the same
symbol for the original function and the filtered function with a possibly different
arity.

o An argument filtering is called collapsing if w(f) =i for some f.

o Argument filterings can be homomorphically extended to TRSs and substitutions:

7(R)={n(l) > n(r) |l > r €R} 7(o)(x) = 7(o(x))
o For any filtering m and relation =, we let >, be the relation where t =, u holds

iff m(t) = w(u).
Example 4.36. Consider the TRS of Example /.1 and the term

t = filter(pckt(secure, dst, new))
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Given the argument filtering m (pckt) = [1,3] and m1(f) = [1,...,ar(f)] for any
other f € 3, we have that 71 (t) = filter(pckt(secure,new)).

Given the argument filtering ma(pckt) = 2, mo(filter) = 1, and mo(f) = [1,...,
ar(f)] for any other f € ¥, we have that mo(t) = dst.

Our main result in this section relates infinite narrowing (P, R )—chains to infinite
rewriting (7(P),7(R))—chains. In order to prove this result, we need to prove an
auxiliary lemma first. The lemma establishes a correspondence between rewriting
derivations in R and derivations in the filtered TRS 7(R). For this purpose we make
use of the auxiliary notion of regarded positions w.r.t. an argument filtering found in
the literature, e.g. in | , ]. In essence, the regarded positions of ¢ w.r.t.
7 are those positions of ¢ which are not dropped by the filtering .

Definition 4.37 (Regarded Positions [ , D). Given an argument filter-
ing ™ and a term t, we let RegPos,(t) denote the regarded positions of t w.r.t. ,
defined recursively as:

RegPosy(t) ={efU{ip|t=1f(t1,- - ,tn),p € RegPos,(t;),i € (f)}

Lemma 4.38 (Properties of argument filterings). Let R be a GTRS over a signature
3, m be an argument filtering over X, t,s € T(X,V) be terms, and o be a substitution.

(a) w(to) = w(t)m (o).
(b) If s %, .t and p € RegPos,(t) then m(s) l>7r(l)~>7r(r) (t), otherwise w(s) = m(t).

(¢) If s =% t then w(s) =7 ) m(t). Moreover, we can assume that the derivation in

m(R) uses the same rules in the same order at the corresponding filtered positions
(whenever the filtered position exists).

Proof. (a) We perform induction on t. If ¢ is a variable z then 7(to) = w(o(x)) =
trn(o) = w(t)w (o).
If t = £(t1,...,t,) there are two cases. If w(f) = [i1,...,im], then 7(to) =
w(£(t10,...,t,0)), by definition of argument filtering n(to) = £(n(t;,0),...,
m(t;, o)), by the induction hypothesis w(to) = £(n(t;,)w(0)),...,w(t;,, )7(0)),
and by reversing substitution application n(to) = f(n(t;,),...,7(t;,,))7(0) =
w(t)m(o).
Otherwise 7(f) = i, w(toc) = 7(t;0). By the induction hypothesis, w(t;0) =
w(t;)w(o) = w(t)m (o), and we are done.

(b) We perform induction on the position of the reduction. We assume that s is of
the form f(s1,...,8,). If p = € then p € RegPos;(s) by definition. We have
s =lo =, ro = t and 7(s) = w(lo). By (a), w(s) = w()7w(0). Now it is
immediate that 7(1)7(0) —r@)—n(r) T(r)7(0) = 7(ro) = n(t), where again we
make use of (a) in the last step.

Otherwise p = i.j, s = £($1...8;...5n) —i—r £($1...0;...8,) = t, and s; =
lo,v; =ro.
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If i € n(f) then p € RegPosx(s), so the induction hypothesis implies 7 (s;)
—r(l)—n(r) T(vi). As =g is compatible with the ¥ operations, the following fact
holds:

f(m(sy)...m(s;)...7(sn)) — ()= (r) f(m(sy)...m(v;)...7(sp))
and therefore we obtain 7(s) —x)—n(r) T(t).

If i & w(£f) and p & RegPos,(s), we have that 7(s) = m(t), which concludes the
proof of claim b.

(¢) Follows from b by performing induction on the length of the derivation. O

We are now in position to introduce the result relating infinite narrowing and
rewriting chains, allowing us to prove the absence of narrowing chains by analyzing
standard rewriting chains. This is obviously very useful, as it means that one can
reuse all the DP termination techniques available in the literature of rewriting to
prove the termination of narrowing.

Theorem 4.39. Let R be a GTRS over a signature 32, P be a GTRS over a signature
Y%, and w an argument filtering over ¥ s.t. 7(R) and w(P) are TRSs, and there is
at least one pair s — t € P such that w(t) is ground.

If (P,R) has an infinite narrowing chain, and s — t occurs at least once in the
chain, then (m(P),m(R)) has an infinite rewriting chain.

Proof. We prove the claim by means of a simulation between the narrowing derivation
and the filtered rewriting derivation.

We assume that m(¢1) is ground for the first pair s; — t; € P. There is no loss
of generality as we can always skip a prefix of P, and still have an infinite (P,R)—
narrowing chain.

By definition of narrowing chain, there is an infinite ~»px derivation of the form:

€ >ey

>€x €
U1 ,\’)0'1,81—>t1 U2 MTl,R us M02,82—>t2 Uq ,\,)TQ,R e

Then by the soundness of narrowing (cf. Proposition 2.2) there is also a —gup
derivation of the form:

€ >ex € >ex
u10 _>sl—>t1 Uga —R U30 _>82—>t2 U49 —R

where 6 is a substitution possibly carrying infinite terms.
By (c) in Lemma 4.38, there is also a —(grup) derivation of the form:

T(110) 1 (a1) ey T(U20) Sk T(us0) S oy p, T(ual) kg

Since 7(t1) is ground by assumption, we can apply (a) from Lemma 4.38 to obtain
m(uz0) = w(t1)010 = 7(t1), and since 7(R) and 7(P) have no extra variables, we can
simplify the filtered derivation as follows:

€ >ex € >e€x
T(u10) = (s1)men) TE) Zrr) T(U) Zr(sy)mm(ts) T(Ua) Zr(r)
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From this derivation it follows that w(s;) — m(t1),7(s2) — m(t2),... constitutes
a (m(P),m(R))-rewriting chain (the steps given with (P) are preserved by (b) in
Lemma 4.38 since the root position is always a regarded position). As P is infinite,
there are an infinite number of 7(P) steps in this filtered derivation, and we are done.

O

4.3 The Narrowing Dependency Pair framework

The DP framework (c.f. Section 4.1) is a formalism for simplifying the automation of
DP based techniques in a modular way. We consider in this section its generalization
to the narrowing relation, and introduce a number of NDP processors based on the
theoretical results developed in the previous sections of this chapter.

Definition 4.40 (NDP problems and processors). An NDP problem is a tuple (P, R,
)~ consisting of two GTRSs R and P and a minimality flag f € {m,a}, where m
and a stand for minimal and arbitrary respectively. We say that an NDP problem
(P, R, f)~ is finite if there is no associated infinite (minimal if f is m) (P, R)-
narrowing chain. An NDP problem (P, R, f)~, is infinite if it is not finite, or if ~g
18 not terminating.

An NDP processor is a function Proc which takes an NDP problem and either
returns a new set of (NDP/DP) problems or fails. Proc is sound if for any NDP
problem M, M is finite whenever all the problems in Proc(M) are finite.

As usual, we construct a tree whose root is labeled with the problem (NDPx,R,
m)., and whose nodes are produced by application of sound NDP processors. ~» is
terminating if all the leaf nodes of this tree are finite.

In the usual style | , ; , ], this section shows
how to adapt the essential DP processors to the NDP framework, and then a processor
that transforms an NDP problem into a DP problem is introduced.

While all the theoretical basis has been laid already in the previous sections of this
chapter and this section is mostly routine, there are still significant challenges that
need to be overcome before the approach can be made efficiently implementable. In
particular, finding a way to deal with strongly connected components of pairs instead
of cycles is a non trivial problem. Moreover, in this section we consider the notion of
usable rules and extend the simulation between narrowing chains and filtered rewriting
chains introduced in Theorem 4.39 to work also with usable rules.

The results in this section improve over the ones that originally appeared in
[ , ]. As already mentioned, the NDP framework now is able
to operate” on strongly connected components (SCCs) instead of cycles which makes
it much more efficient. In addition, the notion of usable rules for narrowing chains
and the extension of the simulation in Theorem 4.39 are also new contributions.

9based on suggestions contributed by | , ]
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(1737
v S \aJ
Figure 4.4: The single SCC in the dependency graph of R poicy

4.3.1 The Dependency Graph processor

For finite GTRSs, infinite chains show up as cycles in the dependency graph'®. We
can analyze every chain separately, that is, every cycle in the dependency graph.
Actually, we can focus on the strongly connected components of the graph. This is
accomplished by the Dependency Graph processor.

Theorem 4.41 (Dependency Graph Processor). Let 7 = (P, R, f)~. be an NDP
problem with P a finite set of pairs, and let Proc be the processor such that

Proc(7) = {(P1,R, f)u,-- -, (Pn, R, f)~}

where Py, ..., Py are the sets of nodes of every strongly connected component in the
estimated dependency graph. Then, Proc is sound.

Proof. We prove the theorem by contradiction. Assume that Proc is not sound. Then
there is an NDP problem 7 = (P, R, f)~, such that every subproblem 7 € Proc(r)
is finite whereas 7 is not. Then there is an infinite chain P; C P such that —since
P is finite— a tail B C P; of pairs is repeated infinitely. The nodes corresponding
to B form a cycle in the dependency graph, and by Theorem 4.29 in the estimated
dependency graph. This cycle must belong to some SCC; the subproblem 7; € Proc(r)
corresponding to this SCC is not finite, since B is also an infinite chain of 7;. Thus we
reach a contradiction with the assumption that all the subproblems are finite, which
proves the soundness of Proc. O

Example 4.42. In the graph obtained in the EDG of Example 4.50, the only SCC
consists of nodes (1) and (3). Thus the dependency graph processor deletes all the
other dependency pairs, and returns the problem {{{(1), (3)}, R, m)..}, corresponding
to the graph in Figure /./.

By making use of the dependency graph processor, we are now able to prove the
termination of Example 4.10. It has only one left dependency pair F(e(z)) — G(z),
giving the NDP problem:

(o)~ s T T wm)

Its associated dependency graph is empty. Since there are no cycles in the empty
graph, we can use the dependency graph processor of Theorem 4.41 to transform it
into the empty problem, succesfully proving termination of narrowing.

10The converse does not hold, i.e. not every cycle corresponds to an infinite chain.
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4.3.2 The Reduction Pair processor

We introduce now a processor that, given a suitable reduction pair (>, >) and an
argument filtering 7, decomposes a problem into two smaller problems, containing the
same rules but less pairs than the original one. The reduction pair processor presented
below is more efficient than the one originally presented in | , 15
as it is able to operate on SCCs of pairs instead of being restricted to cycles. This is
highly desirable for efficiency reasons | , ], namely since
in the worst case there are 2™ — 1 cycles for n pairs, while there are at most n SCCs.
In the following, for any GTRS P and relation >, let P = {s >t € P | s > t}.

Theorem 4.43 (Reduction Pair processor). Let 7 = (P, R, f)~. be an NDP problem,
(=, ») be a reduction pair, and ™ be an argument filtering such that w(P) and w(R)
are TRSs (i.e., satisfy the variable condition).

The following processor Proc is sound, where Proc(7) is defined as

o {(P\Pe ., R, )y P\ Pr,R, f)w} if the following conditions hold:

1. 7)>.ﬂ_ UPEW - P
2. Ry =R
3. P CP s.t. Pr#0, and n(r) is ground for every l —r € Py

o {(P,R, ).} otherwise.

Proof. Let 7 = (P, R, f)~. be an infinite NDP problem, and suppose that all the
conditions hold and Proc(r) = {7y _,7¢}, where 74 = (P \ P-_,R, f)~ and 7y =
(P\ Px, R, [)~ are the two subproblems defined as above.

Since 7 is an infinite problem, there must be an infinite chain @ C P. We distin-
guish two cases:

e If there is some n € N such that for every ¢ > n the pair s; — t; € Q belongs
to the non decreasing pairs, i.e. s; — t; € P\ P._, then this is a suffix Q' of Q
which is an infinite 7, chain. It follows that 7 _ is not finite and hence Proc
is sound for this case.

e Otherwise, there is some s; — t; € P._ which occurs infinitely often in Q. We
further distinguish two cases.

— QN Pr = 0. Then this is clearly a 7, chain, so 7 is not finite; Proc is
sound for this case too.

— otherwise, there is some pair s — t € P, which occurs at least once in
Q. Therefore we can apply Theorem 4.39 to prove that this is a finite
narrowing chain, as it follows from [ , , Theorems 7 and
11] that (7(Q),7(R)) is a finite rewriting chain.

Concretely, by stability and monotony of >, and condition (2) above, it
follows that ~»x is weakly decreasing. From (1) above, stability of =,
and the fact that >, or =, are compatible, we have that ~» o is also
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weakly decreasing. We have sqg =, tg = S1 =x --*S; »x t; =z --+-. The
assumption that s; — t; € P._ occurring infinitely often together with the
well-foundedness of >, yields that this must be a finite chain, reaching a
contradiction, which proves that this case cannot happen. O

The reduction pair processor introduced in our first version of the approach to
termination of narrowing with dependency pairs | , ] could only
deal with cycles, where the one presented in Theorem 4.43 can deal with SCCs instead.
The original version was also based in Theorem 4.39, but we missed a way to reconcile
the requirement of one ground filtered right hand side per cycle with the requirement
of decreasingness. This is accomplished in the processor of Theorem 4.39 by returning
two problems instead of one as it is usual. To understand why, suppose that we want
to prove the finiteness of a problem ({(1),(2),(3)},R,g)~. where the dependency
graph is:

Notice that there are three cycles grouped in a single SCC. For a succesful proof
of termination, Theorem 4.25 requires us to prove that there is no infinite chain.
There are three possibly infinite chains to consider, one for each cycle. Let (>=1,>1)
be a reduction pair and m; an argument filtering such that, using the definitions of
Theorem 4.43, we get P.._ = {(1)} and P, = {(3)}, and all the other conditions are
satisfied as well. From this information, Theorem 4.39 only allows us to conclude that
the outermost cycle corresponds to a finite chain. To succesfully show termination
we still need to prove finiteness of the chains associated to the two singleton cycles
in (1) and (3). This is consistent with the behaviour of our reduction pair processor,
which returns the two subproblems

On the other hand, consider a reduction pair (=2, =2) and an argument filtering
such that, using the definitions of Theorem 4.43, we get P.._ = {(1)} and P, = {(1)},
and all the other conditions are satisfied as well.

Example 4.44. Recall he NDP problem ({(1), (3)}, R poticy, M)~ Tesulting from Ezx-
ample 4.42. For convenience, (1) and (3) from Figure 4.2 are displayed below:

filter™ (pckt(194.179.1.x:p, dst,new)) — filter? (pckt(secure,dst,new)) (1)
filter” (pckt(158.42.x.y:p, dst,new)) — filter” (pckt(secure, dst,new)) (3)

We show how this problem can be solved by means of the reduction pair processor
of Theorem J.43. Soundness requires an argument filtering m that makes ground the
right-hand side of at least one of the pairs. We can use w(pckt) = [1,3] to ground
both pairs, with 7 the identity for any other symbol. The resulting filtered pairs are:

filter” (pckt(194.179.1.2:p,new)) — filter” (pckt(secure,new)) (1)
filter” (pckt(158.42.2.y:p, new)) — filter” (pckt(secure,new)) (3"
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and the resulting filtered rules are:

filter(pckt(src,established)) — accept
filter(pckt(ethO,new)) — accept
filter(pckt(194.179.1.a:port,new)) — filter(pckt(secure,new))
filter(pckt(158.42.z.y:port,new)) — filter(pckt(secure,new))
filter(pckt(secure,new)) — accept
filter(pckt(secure,new)) — drop
filter(pckt(pppO,new)) — drop
filter(pckt(123.123.1.1 :port,new)) — accept
pckt(10.1.1.1 :port, s) — pckt(123.23.1.1 :port, s)
pckt(10.1.1.2 :port, s) — pckt(123.23.1.1 :port, s)
pckt(src,new) — natroute(pckt(src, established)

pckt(src, established))
natroute(a,b) — a
natroute(a,b) — b

Both ©(P) and W(Rpolicy) satisfy the variable condition, so it is not needed to
refine m anymore. We can use an RPO based reduction pair [ , ] to
show that both pairs (1) and (3) are strictly decreasing, and enable the reduction pair
processor of Theorem 4.43 to obtain two NDP problems with no pairs, which can be
shown finite using the dependency graph processor of Theorem /.41, completing the
termination proof.

4.3.3 Usable Rules

In the reduction pair processor presented above, it is required that all the rules in
R are oriented with the non strict part >, of the reduction pair. But it turns out
that, given a chain C = s; — t1,82 — {2 ..., only a subset U(C) of the rules in R are
used to connect every t; to s;11. By taking advantage of this, we can formulate an
improved reduction pair processor in which only R~_ = U(C) is required.

In practice, the exact usable rules U(C) of a chain C are uncomputable, and a
number of approximations exist in the literature. These approximations differ in the
degree of refinement, degree of applicability (some are only applicable to innermost
termination, for instance), and the constraints they impose to the DP problem they
are applied to. A very accurate rendition of the topic is given in | , ].
Of course this is for termination of the rewriting relation, but it turns out that as
Proposition 4.24 suggests, the usable rules of an NDP problem coincide with the
usable rules of the corresponding rewriting DP problem.

Below we incorporate the usable rules of | , ] to the reduction pair
processor of Theorem 4.43. The impact of the usable rules refinement on the power
of this processor is even greater than in the rewriting setting, as in addition of having
potentially less ordering constraints which must be satisfied, there are also potentially
less rules on which the variable condition needs to be enforced after filtering a right-
hand side of P to make it ground.
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In the following, given a TRS R and symbol f € F, we let Defg (f) = {l = r €
R | root(l) = f} and Ry = R \ Defr (f).

We define the usable rules U% (P) of an NDP problem (P, R, f)~. with regard to
an argument filtering 7 as follows.

Definition 4.45 (Estimated Usable Rules w.r.t. an argument filtering |
). For any TRS R and any argument filtering 7, we define

o UE(z) =0 forz e V.

b Z/{% (f(tly tee ,tn)> - DefR (f) ) Ul—)’!‘EDef'R_ (f) u']g,(f) (T) U UiEREgPOS-,r(f) u%(f) (tz)
For any set of rules P we define U (P) = U, cp UR (1).

In addition, we introduce the notion of Cg-compatibility of a reduction pair. Most
of the reduction pairs used in practice are Cg-compatible.

Definition 4.46 (C¢ ). | ) , Def.21] We let C¢ denote the TRS

{ce(z,y) = zyce(x,y) — y}

where cg is a fresh function symbol.

A TRS R is said to be Cg-terminating if R U Cg is terminating.

A relation » is said to be Cg-compatible iff cg(x,y) = x and cg(x,y) = y.

A reduction pair (=, >) is said to be Cg-compatible iff »= is Cg-compatible.

Below we define the improved reduction pair processor with usable rules and prove
its soundness.

Theorem 4.47 (Reduction Pair processor with usable rules). Let 7 = (P, R, f).
be an NDP problem, (=, =) be a Cg-compatible reduction pair and 7 be an argument
filtering such that w(P) and w(UZ(P)) are TRSs. The following processor Proc is
sound, where Proc(t) is defined as

o {(P\Pe_, R, )y (P\Pr,R, f)w} if the following conditions hold:
1. f=m
2. Po UP-_ =P
3. R, =UR(P)
4. AP, CP, Pr #0, and 7(r) is ground for every l — r € Px
o {(P,R, ).} otherwise.

Before giving the proof, we need to extend the simulation between narrowing
chains and filtered rewriting chains given in Theorem 4.39 to enforce the variable
condition only upon the usable rules.

Theorem 4.48. Let R be a GTRS over a signature 32, P be a GTRS over a signature
S#, and 7 an AF over 5% s.t. m(US (P)) and w(P) are TRSs, and m(t) is ground for
at least one pair s — t € P. If (P,R) is an infinite minimal narrowing chain , then
(m(P), m(UF (P)) UCg) is an infinite rewriting chain.
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Proof. We prove the theorem by means of a simulation between the narrowing deriva-
tion and the filtered rewriting derivation. We assume that 7(r1) is ground for the
first pair [y — r; € P. There is no loss of generality as we can always skip a prefix of
‘P and still have an infinite narrowing chain.

Given an infinite minimal (P, R )-narrowing chain, by definition there is an infinite
~rup derivation with an infinite number of P steps of the form:

>ex

liog ~ R§* by s
101 ™ 101 71, R 2 o2,lo—T2 U2 MTZ,R

o1 ,ll —r1
By the soundness of narrowing, this is also an infinite rewriting derivation of the form:

€ >e€ € >e€
110 —>l1—>T1 7‘19 —);3 t20 —>12—)7‘2 UQ9 —)}kz cee

where 6 is a substitution possibly carrying infinite terms.
By claims (ii) and (v) of | ) , Lemma 4.35], we know that the deriva-
tion above implies that there exists the following filtered derivation:

T(11)Ze(0) =11y () T(r1) L (6) 3:(% Pyuce Tt2)Tx(0) = 1y)—m(ry) U2Za(8) - -

where Z refers to the transformation in | , , Definition 4.34]. Z.(6)
is only computable when the terms in 6 are finite and terminating. However this is
irrelevant here since, as 7(r1) is ground and 7w(R) has no extra variables, this is a
fully ground derivation where the Z,(6) substitutions are ignored and we have only
finite terms. Thus we have:

€ >e€x

>ex
T Ze () “ry)sm(ry) T1) riz (Pyyuce T(12) n(i)msm(ra) U2 —on(uz (P)uce -

From this infinite derivation, it follows that the sequence of pairs w(l1) — 7(r1),
w(lg) = m(r2), ..., constitutes a (w(P), U (P)UCs) rewriting chain. As P is infinite,
there are an infinite number of 7(P) steps in this filtered derivation, and we are
done. O

We proceed now with the proof of Theorem 4.47.

Proof of Theorem 4.47. The proof follows the scheme of the proof of Theorem 4.43,
using the simulation for usable rules given in Theorem 4.48 instead of the plain one
of Theorem 4.39.

Let 7 = (P,R,m)., be a non finite NDP problem, and suppose that all the
conditions hold and Proc(r) = {7y, 7¢}, where 7o = (P \ Po_,R, f)~. and 74 =
(P\ Px, R, f)~ are the two subproblems.

Since 7 is not finite, there must be an infinite chain @ C P. We distinguish two
cases:

e If there is some n € N such for every i > n the pair s; — t; € Q belongs to the
non decreasing pairs, i.e. s; — t; € P\ Ps_, then this is clearly a 7y chain
and we are done.
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e Otherwise, there is some s; — t; € P which occurs infinitely often in Q. We
further distinguish two cases.

— QN Py =0. Then this is clearly a 7, chain and we are done.

— Otherwise, there is some pair s — t € P, which occurs at least once in
the chain. We proceed now by contradiction. Assume that Q is an infinite
narrowing chain. By Theorem 4.48, we know that (7(Q), 7(UZ (Q))) must
be an infinite rewriting chain. However this contradicts the fact that from
the assumptions we can infer by | , , Theorems 7 and
11] that (7(Q), 7(U% (Q))) is actually a finite rewriting chain. O

Example 4.49. Consider the TRS given by the following set of rules:

f(a(z),z) — £(b(x),x) (4.6)
b(z) — ¢ (4.7)
h(b(z)) =« (4.8)

Narrowing is terminating in this TRS, as it can be proven with the reduction pair
with usable rules processor of Theorem /4.47. On the other hand the reduction pairs
processor of Theorem 4.43 does not lead to a succesful termination proof. We obtain
one ll-dependency pair (4.11) and two lr-dependency pairs (4.9) and (4.10).

F(a(z),z) — F(b(z), z) (4.9)
F(a(z),z) — B(z) (4.10)
H(e(z)) — B(x) (4.11)

The associated dependency graph contains only one SCC with a single pair {(4.9)}.
Therefore there is only one NDP problem to solve, which is:

f(a(z),z) — £(b(z),x)
<F<a<x>,x> S F(b(z),7), b() e m>

h(b(x)) —x -~
Let’s try first with the reduction pair processor of Theorem 4.43. In order to satisfy
condition 3, we need to synthetize an argument filtering © such that 7(F(b(x), z)) is
ground. There are only two options. Filtering the two arguments of F leads to the
filtered pair F — F which is clearly non-decreasing. Instead one can filter the second
argument of F and the argument of b, using w(F) = [1],m(b) =[], and 7 the identity
for any other symbol. The resulting filtering of the NDP problem is:

f(a(z),z) — f(b,x)
<F(a(:c)) — F(b), b —c m>
h(b) - -
In order to enforce the variable condition on P, we would need to fix the extra variable
in the rule h(b) — x, but there is no refinement of ™ which can filter the extra variable
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in the right-hand side. Therefore the processor of Theorem /.43 cannot be applied to
this problem.

On the other hand if we consider the reduction pairs processor extended with usable
rules, we can use the same filtering m as above to satisfy condition 4, which induces
a single usable rule b(x) — c. The resulting filtered problem is: (F(a(x)) — F(b),b —
c,m)., which can be oriented using a RPO reduction pair with precedence a >b > ¢,
succesfully obtaining a termination proof.

4.3.4 The Argument Filtering processor

We claim that it is possible to adapt most of the standard DP processors in order to
deal with the grounding AF requirement. But on the other hand, our next processor
can transform an NDP problem into an ordinary one. Afterwards, any existing DP
processor for rewriting becomes applicable.

Theorem 4.50 (Argument Filtering Processor). Let 7 = (P, R, f)~, be an NDP
problem and 7w be an argument filtering s.t. both w(P) and m(R) are TRSs, and m(t)
is ground for at least one pair s —t € w(P). Then, Proc(r) returns {7, ¢}, where:

o P, CP,Pr+#0, and w(r) is ground for everyl —r € P,

e Po={l—=r|l=reP,nl)>n(r)}

o 7= (P\Px, R, f)~ is an NDP problem,

o 7, = (n(P\P.),n(R),a) is a rewriting DP problem,
Proc is a sound NDP processor.

Proof. Suppose that 7 is not finite. Then there is an infinite narrowing chain (Q, R)
with @ C P. We distinguish two cases.

e QNP =0. Then this is clearly a 7, chain, and we are done.

e Otherwise, there is some pair from P, which occurs infinitely often in Q. By
Theorem 4.39, there is an infinite (7(Q),7(R))-rewriting chain. As the set
of discarded pairs 7(Ps) cannot produce infinite rewriting chains | ,

], this must be an infinite (7(P \ P, ), 7(R))-rewriting chain. Therefore the
problem 7_, is not finite, and we are done. O

Example 4.51. In example 4.44, we showed how to solve the NDP problem ({(1),
(3)}, Rpoticy, m)~, of Example 4.42, using the reduction pair processor. Now we show
how the AF processor and a tool for solving termination of rewriting (DP) problems
can be used for the same purpose.

As for the reduction pair processor, soundness requires an argument filtering T
which makes ground the right-hand side of at least one of the pairs. We can use the
same  as in example 4.4/, i.e. w(pckt) = [1,3], and the identity for all other sym-
bols. As seen in Example 4.4, this argument filtering already enforces the variable
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condition on both the rules and the pairs of the problem. We can apply the argument
filtering processor of Theorem 4.50, obtaining the NDP problem ({}, Rpoticy, M),
and the DP problem (mw(P), 7(Rpolicy),a)). The former is trivially finite by the De-
pendency Graph processor of Theorem 4.41. The latter can be solved by any modern
termination tool implementing the DP method, such as Aprove [ , /,
Mu-Term [ , ], or the small, RPO based reduction pair solver in our

tool [ .

The argument filtering processor of Theorem 4.50 cannot be used to solve Exam-
ple 4.49, where the variable condition on the rules precludes the use of an argument
filtering which leads to a successful proof. In this sense, the argument filtering pro-
cessor exhibits the same weaknesses as the first reduction pair processor introduced
in Theorem 4.43. For this reason we introduce a new version equipped with a notion
of usable rules, analogously to what we did in Theorem 4.47 for the reduction pair
processor.

Theorem 4.52 (Argument filtering with usable rules). Let 7 = (P, R, m) be a nar-
rowing DP problem, Py ... P, be the sets of nodes corresponding to the SCCs in its
associated estimated dependency graph, and 7 be an argument filtering s.t. w(P) and
w(UE (P)) are TRSs, and w(t) is ground for at least one pair s — t € w(P). Then,
Proc(t) = {1y, 7}, where:

e P CP,Pr#0, and w(r) is ground for every l — r € Py
e Po={l—=r|l—-reP,al)>n(r)}
o 7= (P\Px,R, f)~ is an NDP problem,
o 7, = (m(P\P,),Ux(P)UC¢,a) is a DP problem,
Proc is a sound narrowing DP processor.

Proof. Identical to the proof of Theorem 4.50, but using Lemma 4.48 instead of
Lemma 4.39.

Suppose that 7 is not finite. Then there is an infinite narrowing chain (Q, R) with
Q C P. We distinguish two cases.

e QNP = 0. Then this is clearly also a chain in 7, and we are done.

e Otherwise, there is some pair from P, which occurs infinitely often in Q. By
Theorem 4.48, there is an infinite (7(P),UR (P) U C¢) rewriting chain. This
must be in fact a (m(P \ Ps), UL (P) UCg) chain, since the pairs 7(P,) cannot
produce infinite rewriting chains | , ]. Therefore the problem 7,
is not finite and we are done. O

With the version of the argument filtering processor with usable rules, we are now
equipped to solve Example 4.49.
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Example 4.53. Consider the NDP problem of Example }./9:

f(a(z),z) = ( (z),z)
<F(a(l’),z) = F(b(z),z), b(z) — 7m>
h(b(z)) — -

Let’s try first with the reduction pair processor of Theorem 4.43. In order to satisfy
condition 3, we need to synthetize an argument filtering m such that w(F(b(x),x)) is
ground. There are only two options. Filtering the two arguments of F leads to the
filtered pair F — F which is clearly non-decreasing. Instead, we can use the same
7w employed in Example 4.49, ©(F) = [1],m(b) = [], and the identity for any other
symbol, which induces a single usable rule b(x) — c. Applying the argument filtering
processor of Theorem 4.52, we obtain an NDP problem:

f(a(z), z) = ( (z), )
<{} b(z) — ,m>

h(b(z)) = =

~>

and a DP problem

b—c
<F(a(:c)) — F(b), ce(z,y) = x ,a>

ce(w,y) =y

The NDP problem is trivially finite by the dependency graph processor of Theorem
4.41, and the DP problem can be trivially proven finite by any modern DP framework
tool.

4.4 Discussion

In the previous section we generalized the DP framework to narrowing by defining the
notions of NDP problem and processor, and adapted a number of existing DP proces-
sors, including the dependency graph processor and the reduction pair (with usable
rules) processor. Finally, we gave a processor, namely the argument filtering (with
usable rules) processor which can transform an NDP problem into a DP problem,
enabling the use of any existing DP processor to prove its finiteness.

By means of the pairs of Examples (4.44, 4.51) and (4.49, 4.53) we hope to have
illustrated the duality of

1. adapting an existing DP processor P to the NDP framework, and
2. converting an NDP problem to a DP problem and then solving it with P.

While these two approaches have comparable power (although we do not provide any
formal proof of this statement), there are significant tradeoffs made in each case.

By choosing to transform an NDP problem into a DP problem it is possible to
directly reuse existing tools without modifying them. While this is obviously very
compelling, the problem of finding the argument filtering which enables this step
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is inherently incomplete and can only be solved by search; it cannot be cast as an
optimization problem. Moreover, it has an exponential complexity in the sums of
the arities of the symbols in the signature. In other words, it is terribly inefficient.
In practice, others have approached this problem by using heuristics |

, ] to find an argument filtering. Our position is that adapting existing DP
processors should be preferred over the argument filtering processors of Theorems
4.50 and 4.52.

By choosing to adapt existing DP processors to the NDP framework, an implemen-
tation effort needs to be made. We argue that this effort is very lightweight in most
cases, and this is the approach that we have followed in our own tool, the termination
prover | ]. NARRADAR offers a web interface accepting TRSs in the standard
TPDB format from the termination problem database'!, with a few extensions to
denote narrowing and initial goal problems, as well as logic programs.

The techniques of this chapter by themselves take roughly 500 lines of code. In
particular, NARRADAR provides an RPO based reduction pair implemented by encod-
ing the order restrictions in propositional form and then using the | ] SAT solver
to find the precedence and argument filtering which orient the rules and pairs. This
approach is described in detail in | , ; , ;

, ]. NARRADAR extends this approach with two additional constraint
in the propositions generated for narrowing problems, which ensure that:

e The argument filtering enforces the variable condition in the rules and pairs.
e At least one right-hand side of a pair is ground when filtered.

With the SAT encoding in place, these additional constraints together amounted to
less than 10 lines of Haskell. We claim that other reduction pairs can be similarly
adapted with moderate effort by including these two additional constraints. Addi-
tionally, NARRADAR implements all the processors described in this Chapter including
the notion of usable rules. The tool is capable of proving termination of narrowing in
e.g. the leading example of this chapter in less than a second.

We have not considered here the adaptation of other kinds of DP processors;
there are too many to fit in this chapter. But given the central role that argument
filterings play in proofs of termination of narrowing, we expect that graph refinement
processors, such as the instantiation and narrowing processors of | ,

] will prove very useful in the NDP framework. These processors can still be
applied after transforming to the DP framework, but by then the argument filtering
may have eliminated too much information from the problem.

Hhttp://www.Iri.fr/ marche/tpdb/format.html
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Automatic Termination from an
Initial Goal

In the previous section we discussed a method to automatically prove the termination
of narrowing in a TRS, for any initial query. In some cases, however, one is only
interested in those narrowing sequences which start from a term or a set of terms.
This chapter proposes a method for proving the termination of narrowing derivations
which stem from an initial set of terms. The method is built on top of two extensions
to the dependency pair framework. We consider these extensions individually, before
combining them to prove termination of narrowing. Moreover, the applicability of
termination of narrowing from an initial goal is showcased by considering proofs of
termination of logic programs obtained via termination of narrowing, and the effec-
tiveness of the technique developed is demonstrated by an empirical analysis before
concluding.
Concretely, the chapter contains the following three contributions.

The problem of proving finiteness of the derivations that start from a distinguished
set of terms has already been considered in some previous works, e.g., for proving

the termination of logic programs [ , ], for proving the
termination of Haskell programs [ , ], and for proving the termination
of narrowing | , ]. Unfortunately, these works only consider termination from

an initial goal as a by-product, and their results are ad-hoc and difficult to generalize.
As a first contribution of this chapter, in Section 5.1 we extend the dependency pair
framework in order to consider only derivations from a given initial set of terms.
The fundamental improvements are twofold: firstly, we introduce a notion of chain
that considers only reachable loops, thus reducing the number of pairs to consider;
secondly, we also present a notion of usable rules that regards as usable only those
rules occurring in the derivation from an initial goal, allowing us to reduce the number
of rules. In addition, our developments are generally useful in the sense that they can
be reused for any variant of the DP framework, including termination of rewriting,
the variant for termination of Haskell programs considered in | , ], or
the variant for termination of logic programs by translating them to rewrite systems
of | , ]. Most importantly, they are reused in this chapter
to study the termination of narrowing from an initial set of terms.
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As a second contribution of this chapter, in Section 5.2 we study a direct ap-
plication of the dependency pair technique to decide relative termination problems.
Roughly speaking, R terminates relative to B if all =g U —3 reductions contain
only finitely many —x steps. Because in essence the dependency pair approach is a
method for deciding the termination of a TRS R via the relative termination of the
TRS DP(R) w.r.t R, it is natural to ask the question of whether the dependency
pair approach can be reused to directly decide relative termination of R w.r.t B via
a dependency pair problem (R’,B’) for some B’ and R’ constructed in terms of the
original problem. | , ] points out that this is not possible in general. We
ascertain a set of sufficient conditions under which this can be done. Namely, relative
termination of R w.r.t. B can be decided via the problem (DP(R),R U B) when,
roughly speaking, B does not make calls to functions defined in R.

As the third and last contribution, the two previous contributions are combined in
Section 5.3 to develop a method for proving the termination of narrowing derivations
from a set of initial goals. In order to do so, we recast termination of narrowing as a
problem of relative termination of the original system w.r.t a set of generators, follow-
ing the approach of | , ]. The results obtained are strictly more general than
[ , ] which are limited to left-linear systems. They
are also strlctly more effective, since we replace heuristic-guided search by constraint
solving. Finally, they are also potentially more accurate when combined with the
framework of the previous chapter.

Termination of Logic Programs

One notable application of the results in this chapter is proving the termination of logic
programs. In | , |, logic programs are transformed into
TRSs such that the termination of infinitary constructor rewriting on the resulting
TRS implies termination of the original logic program. Unsurprisingly (| ,
]), narrowing can be used in place of infinitary rewriting with the same purpose,
yielding a new method for proving the termination of logic programs. Let us proceed
with a brief overview of the method described in [ ].

In the following, A usually denotes a set of predicate symbols, and AZ,A)Y)
the set of all atoms p(ti,...,t,), where p/n € A and tq,...,t, € T(3,V). A logic
program over (X,A) is as usual a set of clauses h :- pg,p1,...,pn for n > 0, where
h,p1,...,pn are atoms from A(X, A, V). A clause is called a fact if n = 0. A query
is a set of atoms, and O denotes the empty query. We briefly recall the procedural
semantics of logic programs based on SLD resolution with the left-to-right selection
rule. More details can be found in [Apt, ], for example.

Definition 5.1 (Logic Derivation). Let Q be a query A, ..., Ay, and c be a clause
H «+ By,...,By. Q' is a resolvent of Q and c using 0, denoted Q ‘.o Q' if 0 is the
most general unifier of Ay and H, and Q' = (B1,..., Bk, Aa, ..., An)b.

Given a program P and a query Q, a derivation of P and Q is a possibly infi-
nite sequence of queries Qq, Q1,Q2, ..., where Qo = Q and for all queries we have
Qi Feipr 0000 Qigr for some substitution 0,11 and fresh variant ¢,y of a clause of P.
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We often simply write Q; Fp Qiy1.
The query Q terminates for P if all derivations of P and Q are finite.

The following is the transformation from logic programs to TRSs defined in |

) ]'

Definition 5.2 (Transformation | , D). A logic program P
over (X,A) is transformed into the TRS Rp over Lp.

Yp =2U{p/in,Pout | p/1 € A}UU{qu...qu lc=h:-p1...px € P}
The rules of Rp are constructed as follows:
e For each fact p(a) € P, Rp contains the rule pin (@) — Pout(@)

e For each clause ¢ of the form p(a) :- p1(ay),...,pr(ax) € P, Rp contains the
rules:

pin(@) = uc,1(p1,, (a1), Var(a))
Uc,1(P1,..(@1), Var(@)) = uc2(p2,, (@z2), Var(a) U Var(ar))

Ue, ke (Pkoo, (@F), Var(@) U Var(@) U ... UVar(ag_1)) = Pout(@)

[ , ] shows how to prove termination of a query @ over
a logic program P in terms of the termination, from an initial set of terms derived
from @, of a special rewriting relation over the TRS Rp called infinitary constructor
rewriting.

Definition 5.3 (Infinitary Constructor Rewriting [ D.

Let T*°(X,V) denote the set of all possibly infinite terms over a szgnature E CwD
and a set of variables V. The infinitary constructor rewriting relation 3 is a binary
relation on terms of T (%, V) defined by Sr= (C[lo],, C[ro],) where C is a conteat,
p a position, o : V — T>°(C,V) an infinitary constructor substitution, and R a
generalized TRS withl —r € R.

Infinitary constructor rewriting restricts substitutions to be constructor, but on
the other hand it permits infinite terms. At the end of the chapter we will show that
given a logic program P, termination of narrowing over the transformed system Rp
implies the termination of the logic program P.

Example 5.4. Consider the logic program Pin., extracted from [
, , Section 7.2/, defined by the clauses:

p(X) :- q(£(Y)), p(Y).
pgX)) - pX).
q(g(¥)).
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The transformation of [ , | yields the TRS Rine given by
the rules:

Pin(8g(X)

pin (X

9in(g(Y")
ul(qout(f(y))7 X
Uz (pout(Y), X, Y
u3(Pout (X ), X

— uz(pin(X), X)
— u1(gin(f(Y)), X)
— Gout(g(Y))

= u(pin(¥), X,Y)
— Pout(X)

— Pout (8(X))

—_— — — — — —

Note that Rine is non-left-linear due to the rules for us and uz. The method introduced
in this chapter can show that narrowing terminates for any derivation starting from
a term of the form pin(z), which in turn, as we will see, implies the termination of
the logic program for all queries of the form p(< term >) for any ground term.

We note that the TRSs generated by the transformation of | ,

|, as seen in the example above, are non-left-linear and often contain extra
variables, which means that termination of narrowing from an initial goal cannot be
proven with any of the previously existing methods [ , ; ,

.

Structure of the chapter

We present the goal-directed extension of the dependency pair framework in Sec-
tion 5.1. First we introduce a specific notion of chain, and then build on top of it
to derive the practical notions of goal-directed dependency graph and goal-directed
usable-rules. For each of them, we give an algorithm to derive the goal-directed ver-
sion starting from a standard version. For example, one can reuse the estimations
of dependency graph and usable rules introduced in the previous chapter to derive
goal-directed versions. Section 5.2 considers the problem of deciding relative termina-
tion via the dependency pair approach when a sufficient set of conditions is satisfied.
Namely, when the involved TRSs form a hierarchical combination. In fact the hier-
archical combination restriction can be slightly relaxed, as seen in Section 5.2.1.
Termination of narrowing is not considered until Section 5.3. First we introduce
GEN(R), the generator of a system R, a set of rules which can generate every term
in 7(C,V). Then we show that —gUgey(®r) in left-linear systems (possibly with extra
variables) simulates ~»z. Hence, relative termination of =% w.r.t. —rarn(r) implies
termination of ~». Moreover, in Section 5.3.1, we lift the left-linear restriction by
extending GEN(R) to generate normal forms. Since the resulting problems contains
a potentially infinite number of rules, normal dependency pair processors cannot
be applied to them. In Section 5.3.2 we consider this problem and develop specific
versions of the dependency graph processor and the reduction pair processor which can
be applied to these problems. Termination of logic programs is briefly developed in
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Section 5.4. In short, we demonstrate the soundness of using termination of narrowing
in place of infinitary constructor rewriting to prove termination of logic programs in

the framework of | , ], The chapter ends with an extended
empirical evaluation in Section 5.5.
Part of the results in this chapter have been published in | , ]. In

this chapter we additionally:

e (Section 5.2.1) extend the relative termination criterion to relazed hierarchical
combinations, a generalization of hierarchical combinations. This is required for
the next contribution,

e (Sections 5.3.1 and 5.3.2) lift the left-linear restriction when proving termination
of narrowing from an initial goal, and

e (Section 5.4) provide the foundations for proving termination of logic programs
via termination of narrowing.

Since the TRS resulting from a logic program is almost always non-left-linear, the
third contribution is only enabled by the two former contributions.

We warn the reader of Chapter 4 that even though the method developed in this
chapter and the method developed in there are both based on the Dependency Pair
approach, they constitute unrelated instantiations. In particular, the notions of pair
and chain are different.

5.1 Goal-directed Dependency Pairs

The particulars of the dependency pair approach are introduced in Section 4.1. In
this section, we develop its goal-directed extension, where only derivations starting
from a given set of terms, denoted by means of an initial goal, are considered.

Definition 5.5 (Initial Goal). Let R be a TRS over F = DWC and to = f(x1,...,2y)
be a term. We say that tg is an initial goal for R if f € D is a defined function symbol
and x1,...,x, €V are distinct variables.

Intuitively speaking, an initial goal to represents the set [to] of (non necessarily
ground) constructor instances of the term ¢, i.e.,

[to] = { too | o is a constructor substitution }

For instance, given the signature F = DWC with f/1 € D and z/0,s/1 € C, the initial
goal f(z) represents the set [f(z)] = {f(x),f(2),f(s(x)),f(s(z)),...}.

It is worthwhile to observe that there is no loss of generality in our notion of
initial goal since any arbitrary term ¢ could be used as an initial goal by just adding
a new rule, goal(xy,...,x,) — t, where goal is a fresh function symbol with Var(t) =
{z1,...,2,}, and then considering goal(xy,...,z,) as initial goal. In the same vein,
if one wants to prove termination for more than one initial goal, then this can be



80 5. Automatic Termination from an Initial Goal

encoded by adding several goal rules, or by taking the conjunction of individual goal
proofs.

Two key ingredients of the dependency pair approach, as explained in detail in
Section 4.1, are the notion of dependency pair and the notion of chain. In the Goal-
directed extension of dependency pairs, the definition of pair remains the same (cf.
Definition 4.2). The auxiliary notion of initial pairs denotes the pairs that match an
initial goal (below, recall the notion of marked term ¢# introduced in Definition 4.2).

Definition 5.6 (Initial Pairs). Let R be a TRS and to be an initial goal. The asso-
ciated set of initial pairs from to, Iy, is defined as {s =t € DP(R) | s € [to]}.

On the other hand, the notion of chain is restricted to consider only reachable
chains. In order to formalize our definition of chains, we first introduce the notion of
reachable calls from a given term. Formally, given a TRS R and a term t, we define
the set of reachable calls, callsg (t), from ¢ in R as follows:

callsgp(t) ={ s|p | t =% s, and root(s|,) € D for some position p }

Also, given a set of terms T', we let callsg (T') = U, callsr ().
The goal-directed chains of a TRS R are the reachable subset of the chains of R.
This is formalized below.

Definition 5.7 (Goal-directed chain). Let R and P be TRSs over the signatures
F and F*, respectively. Let to be an initial goal. A (possibly infinite) sequence of
pairs s1 — t1, So — ta, ...from P is a (to,P,R)-chain if there is a substitution
o:V = T(F,V) such that the following conditions hold:'

1. there erists a term s € callsg ([to]) such that s* = sy0 and
2. tio =% Sit10 for every two consecutive pairs in the sequence.
The chain is minimal iff all t;o are terminating w.r.t. R.

Note that the only difference with the standard notion of chain (cf. Definition
4.3) is that only chains which are reachable from (an instance of) the initial goal
are considered. Put differently, we do not demand that goal-directed chains start in
an initial goal; our chains can start anywhere, i.e., we consider suffixes of (possibly
infinite) chains starting from an initial goal.

The following lemma states this more formally.

Lemma 5.8. Let R be a TRS, P C DP(R) be a TRS, tg be an initial goal, and
the sequence S : 81 — t1,...,8, — t, be a possibly infinite (tg, P, R)-chain. Let
Zi, € DP(R) be the initial pairs from t.

There is a term t € [tg], constructor substitution o, and a possibly empty prefix

S sy =t 8k, =t of pairs of P, such that the sequence S’S constitutes a

»9m

(to, P, R)-chain, and s\o = t# for the first pair s} — t; of S'S.

TAs in | , ], we assume fresh variables in every (occurrence of a) dependency
pair and that the domain of substitutions may be infinite.
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Proof. By definition of goal-directed chain, there is a term s € callsg([to]) and
substitution o such that s;o = s¥. By definition of calls, there is some term ¢ € [to]
such that ¢t =% CJs].

If t = s, then s10 = s# = u#. It follows that o is constructor since both u# and
s1 are constructor terms except at the root. Trivially, S’ is the empty prefix, and we
are done.

Otherwise, we must show that there exists a sequence S’ : s} — t1,...,s,, = t,,
such that S’S is a (tp, P, R)-chain. We show how to build this sequence from the
derivation t —% C[s]. By definition u is of the form ¢80 = £(z1,...,2,)0 for some
constructor substitution #. Then this sequence contains a first rewriting step given
at the root: ¢ %, _, ¢, and there is a position p such that either ', = s, or there

is a subterm t'|, i>l2_>T2 t" —% C[s]. From this step we can extract the first pair

s| — t,, which is I¥ — (r1]p)#. Moreover, note that in the case where t'|, = s,we
have S’ = s} — t}, and S’S constitutes a chain since 1) the first condition of the
definition of goal-directed chain holds by construction, and 2) t|, = s implies that
(r1]p,)#p = tip = s10 for some substitution p, (since we assume fresh variables in
every occurrence of a dependency pair), so the second condition of the definition of
goal-directed chain holds too. In the second case we repeat the process from t”, i.e.,
there must be a position p’ such that either t’|,, = s or t”|,; <, o =% C[s].

Then we can define s} — t}, to be I# — (raol7)#, and if ¢”|, # s continue repeating
this process, until eventually we reach s (as guaranteed by the definition of calls). O

Our termination criterion states that every derivation starting from an initial goal
to is finite if and only if there are no infinite chains.

Theorem 5.9 (Termination Criterion). Let R be a TRS and to be an initial goal.
All derivations starting from a term in [to] in R are finite iff there are no infinite
minimal (to, DP(R), R)-chains.

Proof. This is a trivial extension of the proof of Theorem 6 in | , ].
The (=) direction requires us to prove that an infinite derivation issuing from [#¢]
can be extracted from an infinite minimal (tg, DP(R), R)-chain. Given a sequence of
pairs S constituting a minimal (9, DP(R), R)-chain, by Lemma 5.8 there is a prefix
S’ such that S’S is a chain starting from an instance of ¢y. By the proof in |
, ], from S’S we can construct the desired infinite derivation starting from
an instance of tg.
For the («) direction, building an infinite minimal goal-directed chain from an
infinite derivation starting from a term in [ty] is required. Here the proof of |
, ] suffices without changes, as any infinite term in [#y] is minimal by
construction, and by the mentioned proof there is an infinite minimal standard chain
which satisfies both conditions of Definition 5.7. O

As in the standard DP framework [ , ], and in order to ease the
automation of the proof search, we introduce a goal-directed DP (GDP) framework
as follows:
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Definition 5.10 (GDP problems and processors). A GDP problem is a tuple (to, P,
R, f) consisting of two TRSs R and P over the signatures F and F*, respectively,
an initial goal to for R, and a minimality flag f € {m,a} where m and a stand
for “minimal” and “arbitrary”, respectively. A GDP problem is finite if there is no
associated infinite (minimal if f is m) (to, P, R)-chain, and infinite if it is not finite
orif [to] does not terminate in R.

A GDP processor is a function Proc which takes a GDP problem and returns
either a new set of GDP problems or fails. Proc is sound if for any GDP problem
M, M is finite whenever all GDP problems in Proc(M) are finite.

As usual, we construct a tree whose root is labeled with the problem (¢g, DP(R),
R, m) and whose nodes are produced by application of sound GDP processors. [tg]
is terminating in R if all the leaf nodes of this tree are finite problems.

5.1.1 Dependency Graphs

The notion of dependency graph (cf. Definition 4.5) is adapted to the goal-directed
extension simply by replacing the use of DP chains with the goal-directed version of
chain.

Definition 5.11 (Goal-directed Dependency Graph). For a GDP problem (to, P,
R, f) its dependency graph is a directed graph where the nodes are the pairs of P, and
there is an edge from s -t € P tou — v € P iff s = t,u — v is a (to, P, R)-chain.

Even though we consider the standard definition of dependency graph, note that
since our notion of chain is different, the GDP dependency graph usually contains
less pairs than the standard dependency graph. Concretely, all the edges which are
not reachable from the initial goal are not included in the GDP dependency graph,
as we will see in the following.

As mentioned earlier, dependency graphs are not generally computable. Several
approximations have been defined in the literature. Instead of adapting one of these
approximations, we show how any arbitrary approach can easily be reused in our
context.

Theorem 5.12 (Goal-Directed Estimated Dependency Graph). Let (to,P, R, f) be
a GDP problem such that P C DP(R). Let I;, C DP(R) be the set of initial pairs
from tg. Let Gy and G be the dependency graphs of the DP problems (DP(R), R, f)
and (P, R, f), respectively.

Define Gz, to be the subgraph of Go constituted by the nodes which are reachable
from a pair in Iy,. The dependency graph of the GDP problem (to, P, R, f) is the
intersection of G and Gz, .

Proof. Since every (tg, P, R)-chain is also a (P,R)-chain, G is by construction an
overestimation of the (o, P, R) graph.

By definition the nodes of G are a subset of the nodes in G,. We only need to
show that the edges removed do not constitute (¢g, P, R)-chains, which follows from
the first condition in Definition 5.7. O
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With the Theorem above, it is easy to adapt any existing estimation of the stan-
dard dependency graph (e.g. the one from Definition 4.28) to the GDP setting.

Example 5.13. Consider the following dependency graph Gy whose nodes are labeled
with (0),(1),...,(7):

G2 GO0~ 0

Given a GDP problem where the only initial pair is (0), we have that pairs (1) and
(2) do not belong to its dependency graph since they are not reachable.

Example 5.14. Recall the TRS Ry, from Exzample 5.4, and consider the GDP prob-
lem (pin(X), DP(Rinc)s Rine, f), where DP(Rine) contains the following set of depen-
dency pairs:

) (
) (
)()—>Qin(f Y)) (
) (
) (
) (

ot Ot Ut Ot Ot Ot
S O W N =

Y ~— Y ' ~—

The initial pairs are (5.1), (5.2), (5.3) and (5.4). We obtain the following estimated
dependency graph
(5.6) (5.5)

6o 5y 62

AN

(5.1)
)

where pairs (5.6) and (5.5) are unreachable, since there is no path connecting them
with a node corresponding to an initial pair, and therefore do not belong to the goal-
directed dependency graph.

By using the estimated dependency graph, it is immediate to define a sound GDP
processor that takes a GDP problem (to,P, R, f) and divides the problem into its
strongly connected components (SCC) as usual. The following is the standard defi-
nition of the dependency graph processor, the only change is that it uses the goal—
directed dependency graph instead of the standard one, and therefore it returns fewer
subproblems when some SCCs are not reachable from the initial goal.
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Theorem 5.15 (Dependency Graph Processor). Given a GDP problem (tg, P, R, Po)
with P a finite set of pairs, let Proc be the processor that returns the set of problems
{(to,P1, R, Po),--., (to, Pn, R, Po)}, where P1,..., P, are the sets of nodes of every
non-trivial strongly connected component (SCC) in an overestimation of the goal-
directed dependency graph. Then, Proc is sound.

Proof. The proof is virtually identical to the proof of the NDP dependency graph
processor of Theorem 4.41, since both are straightforward instances of the standard
dependency graph processor.

We prove the theorem by contradiction. Assume that Proc is not sound. Then
there is an GDP problem 7 = (¢, P, R, f) such that every subproblem 7 € Proc(7)
is finite whereas 7 is not. Then there is an infinite chain P; C P such that —since
P is finite— a tail B C P; of pairs is repeated infinitely. The nodes corresponding to
B form a cycle in the goal-directed dependency graph, and by definition also in the
overestimation. This cycle must belong to some SCC; the subproblem 7; € Proc(r)
corresponding to this SCC is not finite, since B is also an infinite chain of 7;. Thus we
reach a contradiction with the assumption that all the subproblems are finite, which
proves the soundness of Proc. O

5.1.2 Usable Rules

Another way for removing pairs from P is based on the notion of reduction pair
(7, =) (cf. Definition 4.6). For this purpose, recall the notion of argument filtering
from Section 4.2.4, given in Definition 4.35.

Theorem 5.16 (Reduction Pair Processor). Let (7, =) be a reduction pair and m be
an argument filtering. Given a GDP problem (to, P, R, f), if Proc returns:

e (to,P \P-,,R,f), if P-,UP~_ =P and R~ =R
e (to, P, R, f), otherwise
then Proc is sound and complete.

Proof. Completeness follows from the fact that Proc does not introduce any new rules

or pairs. Soundness is already shown in | , ] for standard minimal
(P, R)-chains. Since every (o, P, R)-chain is also a (P,R)-chain, this processor is
sound in the GDP framework too. O

Roughly speaking, this processor can be used to remove the strictly decreasing
pairs of P when the remaining pairs of P and all rules of R are weakly decreasing.
In fact, weak decreasingness is not required for all the rules but only for the usable
rules | , ]. The usable rules are those rules which may be needed to
connect dependency pairs in a chain. For GDP problems a notion of usable rules can
be defined which does not include rules that are not reachable from the initial goal.

There are several approaches for approximating the usable rules of a problem. In
this section we show how these can be adapted to our goal-directed setting.
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In the following, given a graph G and two sets of nodes Z and P, PATHg(Z,P)
denotes the smallest set of nodes of G which contains both Z and P and all the nodes
which are in a path from some node in Z to some node in P in G.

Definition 5.17 (Estimated Goal-Directed Usable Rules w.r.t. an Argument Filter-
ing). Let (to, P, R, f) be a GDP problem, Py its initial pairs, m an argument filtering,
and Gy a (standard) estimated dependency graph for the DP problem (DP(R),R, f).
A function U7, estimates the usable rules of a TRS R for a term t w.r.t. an argument
filtering m, written UR (t) if, for any constructor substitution o and term w:

If to =% u then w(to) — (U () 7w(u) and U (u) CURK(L) (5.7)

We lift UF to sets of rules in the usual manner: for any such set Q, UR(Q) =
Ulﬂreguﬁ(r)'

The goal-directed usable rules of P in R w.r.t. w and to, GU(to, P, R,7), are
defined as:

o UR(Py), if Var(m(t)) C Var(n(s)) for all s =t € PATHg,(Po, P),
e R, otherwise.

The definition of goal-directed usable rules above is parameterized with the regular
estimation of usable rules. Any such estimation can be used as long as it satisfies
condition (5.7) in page 85. This condition is pretty reasonable and we argue that any
standard estimation of the usable rules in the literature can be shown to satisfy it.
To be concrete, we show now that the estimation of | , ], introduced
in Chapter 4, Definition 4.45, does indeed satisfy it.

Lemma 5.18. Let R be a TRS, m an argument filtering, and o a constructor sub-
stitution. Let UF (t) be the estimation of the usable rules for term t in R w.r.t. =«
defined as in Definition 4./5. For all terms t,u, we have the following:

1. If to —5 u, then either w(t) = w(u), or w(t) U (1) m(u) and UF(u) C
Uz (1),
2. If to —% u, then w(t) =z ) m(u) and UF (u) CUE(L).

Proof. This lemma is a slightly modified version of Lemma 23 in [ , ].
The proof is mostly routine. In the following, let UZ (o) denote U,UE (o(x)). Also,
we use the following fact, which holds for any ¢ (a proof can be obtained by straight-
forward structural induction on t):

UL (to) = URK(t) if o is a constructor substitution. (5.8)

1. By induction on the position of the reduction, which must be in ¢ since o is
constructor. Hence t is of the form f(¢1,...,%,). For the base case, assume
that the reduction is in the root position, and we have to = lo’ —;_,, ro’ = v
for some rule I — r € Defr(f) C UR(t). Thus, 7(to) —yzu w(ro’). Let
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u = w(rc’). Now to show the second part of the claim, we observe that every
term u in the range of ¢’ is a subterm of to, and hence UR (u) = U (ro’) C
UL (r) UUE (to). By fact (5.8), we can remove the constructor ¢ in the second
term, obtaining U (u) C UK (r) UUE (). Expanding the definition of the first
term, we have Uz (1) € Defr (f)UUp v cpefr (1) € Ur (1), and hence we conclude
Up (u) S UR(L).

For the induction case, we have
to =f(tyo...tio...t,o) 5>g £(t1o... w0 ... th,o) =u

If w(to) = w(u) then we are done, otherwise either ¢ € w(f) or 7(f) = i. By the
induction hypothesis, m(t;0) — (U (1)) m(u;), and it follows by monotonicity of
— that 7(to) = (U (1)) m(u). For the second part of the claim, we have:

o UL (u;) CUFK(t;) (by the induction hypothesis)
o UL (t;) CUFK(t) (by definition of m(UF(;)))

It is easy to see that UJ (u) C UK (t).
2. Trivial by induction on the length of the derivation using the previous result. [

Example 5.19. Let us consider again the dependency graph Gy from Example 5.13,
together with the set T = {(0)}. Then,

o if P is the SCC {(6),(7)} then PATHg,(Z,P) = {(0),(5),(6),(7)};
o if P={(3),(4)}, then PATHg,(Z,P) = {(0),(3),(4)}.

The following lemma states that for all (¢, P, R)-chain, given a argument filtering
m, there is a (w(tg), 7(P), 7(R))-chain where the only 7(R) rules intervening are the
usable rules. This justifies the use of goal-directed usable rules in termination proofs.

Lemma 5.20. Let ty be an initial goal and w an argument filtering. Let s1 —
t1,82 — ta,... be a (to, P, R) chain. If every s; — t; belongs to DP(R), then m(s1) —
m(t1), m(s2) = 7(ta),... is a (w(to), 7(P), 7(GU(to, P, R,m))))-chain.

Proof. We focus on the extended chain P'P starting from an instance [to]| of the
initial term, as described in Lemma 5.8. By said lemma, there is an extended chain
PP =1y — 19,01 = r1... with l[j — r¢ an initial pair, and a constructor instance ¢
of the initial goal, t € [#(], such that t# = [po. We can construct a derivation of the
form:

t# _€>l0*)7‘() (N Z;% tl i>l1‘>"'1 (5% 553‘2 R

In order to prove the lemma, we must show that there is a substitution ¢ such that
for all w(t), m(t:) =7 Gu(ty, P R.x)) T(Si+1). In such case, we can construct a filtered
version of the derivation above:

€ >eq € >ex
(%) “(lo) = (ro) T(U0) “rigury T(11) Zn)mn(ry) TW1) Zriguy
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where we abbreviate GU(to, P, R, ) by GU.

If 7(P) contains extra variables, then G = R and the result follows trivially from
Lemma 4.38.

Otherwise, we assume that 7(P) contains no extra variables and perform induction

on the index ¢ of the dependency pair I; — r; to prove that m(u;) Zgjr(gu) m(t;11) and
Ug(tiv1) C GU.

For the base case we consider the first dependency pair, and the segment 7(t#)

i>ﬁ(lo)ﬁﬂ(ro) 7(uo) Zi:(gu) m(t1) of the derivation. From the definitions of initial

goal and the [ ] operator, ¢ is of the form f(zy...xz,)0 for some defined symbol £
and constructor substitution 6. As t# = lyo, o is a constructor substitution. We
have 7(ug) = 7(roo). As o is a constructor substitution, and Iy — r an initial pair,
Ug (t) € GU and condition (5.7) in page 85 applies. We have m(ug) —7 g, 7(t1) and
UF (t1) CUFK(ro) € GU.

For the inductive case consider the segment

€ >e€ * € Ex
7 (Sniprpy * niau)” Tt n(i)smen) ™) gy T(tig1)

We have u; = 7,0 for some substitution 6. By definition, U%(r;) C GU. By the
induction hypothesis, U% (t;) C GU, hence UF (v;) C GU for every subterm v; of ¢; in
the range of 6. As l; — r; contains no extra variables, it follows that U7 (u;) C GU.
Applying condition (5.7) with ¢ = w; and o the empty substitution, proves that

m(u;) Zﬁ:(gu) m(ti+1) and UF (t;) € GU, and we are done. O

The goal-directed usable rules coincide with the usable rules for all the chains from
an initial pair to the pairs in P. While this means that they are a superset of the
usable rules of P, they are still advantageous as they are applicable in cases where
the usable rules are not. In particular, minimality is not required. This is critical in
Section 5.3 where we consider the termination of narrowing as a problem of relative
termination, since in this context minimality does not generally hold.

The reduction processor with usable rules in the Theorem below makes use of the
goal-directed usable rules when minimality is not ensured. Otherwise, the standard
usable rules are employed.

Theorem 5.21 (Reduction Pair Processor with Goal-Directed Usable Rules w.r.t. an
Argument Filtering). Let (72, >) be a reduction pair and m be an argument filtering.
Given a GDP problem (to, P, R, f) such that P C DP(R), then Proc returns:

e (to,P\P-.,Rm), if fism, P U P- =P, R- 2D UK(P), and  is
Cg-compatible;

i (thP\P>waR7 f); Z.flp>-ﬂ- U ,P?:ﬂ = P; and R?\‘ﬂr 2 gu(t05PaR7 7T),'
e (to,P,R,f), otherwise;

Proc is sound and complete.
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Proof. The processor is complete by definition since it adds no new rules or pairs. The
soundness of the first case is already proven in | , ] for a standard DP
framework, and can be generalized to the GDP framework since every (tg, P, R)-chain
is also a (P, R)-chain. We give the proof of soundness for the novel second case.

Let us suppose that the original problem is not finite and there is an infinite
(to,R,P)-chain s; — t1,82 — to,.... By Lemma 520 we know that w(s;) —
w(t1), m(s2) — w(t2),... is also a (w(to), 7(P), #(GU(to, P, R,m))))-chain. Since P =
P, U Px_, pairs of P, cannot occur infinitely since they are decreasing, otherwise
the chain cannot be infinite. Hence they can be safely removed as there is an infinite
suffix of the infinite chain in which they do not occur. O

Example 5.22. Consider the following GDP problem
(g03|($)7 {ADD(S(‘T)7 y) — ADD(I, y)}a Raddv a)
where Raqq s the following set of rules:

goal(xz) — add(x, gen)
add(s(z),y) — s(add(z, y))
add(zero,y) — y
gen — s(gen)
gen — zero

and as the reader can check, DP(Rq44) is the set of pairs:

GOAL(x) — ADD(x, gen)
GOAL(z) — GEN
ADD(s(z),y) — ADD(z,y)
GEN — GEN

Using the default argument filtering which filters nothing, we have that

e the usable rules w.r.t. goal(x) include only the rules for gen.

Using the argument filtering defined as w(add) = {1} (i.e., m(add(x,y)) = add(z) and
the identity otherwise), we have that

o the usable rules w.r.t. goal(x) are the empty set.

Since the rules of gen are increasing, the finiteness of the GDP problem can only be
proved in the second case.

As this section has shown, using this notion of usable rules it is straightforward
to adapt an existing reduction pair processor to the goal-directed setting. Adapting
other processors to the framework is straightforward too, since every GDP chain is a
DP chain and, thus, soundness is preserved as long as the processor does not introduce
new pairs in the graph.
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5.2 Relative Termination

In this section we show that it is possible to cast a relative termination problem as a
standard DP problem as long as the systems involved satisfy the condition that they
form hierarchical combinations.

Definition 5.23 (Hierarchical Combination | , D). A system RogURy is
the hierarchical combination (HC) of a base Ro over Fo = Do W Cy and an extension
R1 over F1 = D1 W if and only if Do N D1 = & and Co NDy = &.

And the notion of relative termination:

Definition 5.24 (Relative Termination). Given two relations —gr and — g we define
the compound relation —r/—g as =75 - =g - —%.

Given two TRSs R1 and Ry, we say that Ry terminates w.r.t. Ry if the relation
—R, /=R, S terminating, i.e., if every (possibly infinite) —r, U —r, derivation
contains only finitely many —r, steps.

Note that sequences of —x, steps are “collapsed” and seen as a single =%, /—r,
step. Hence, an infinite -, /—r, derivation must contain an infinite number of
—R, steps, and thus by assumption only finite —%, subderivations.

We say that a term ¢ is —g-terminating w.r.t. B or (—g / —g)-terminating, if
there is no infinite —% / —pg derivation issuing from ¢. Similarly, we say that T is
—r-terminating w.r.t. B if every term in T is —g-terminating w.r.t. B.

We make use of the standard notion of minimal (non-terminating) term, i.e., a
term which starts an infinite derivation while all its proper subterms are terminating.
In our setting, we say that a term that is not —x-terminating w.r.t. Bis (=g /—5)-
minimal if all its proper subterms are —x-terminating w.r.t. B.

Lemma 5.25. Let R and B be two TRSs over Fr and Fg respectively, such that
R U B is the HC of the base B and the extension R. Every (—g / —g)-minimal
term tg € T(Fp U Fr,V) starting an infinite —g /| —p deriwation is of the form
to =f(ug...uy), where f is an n-ary defined symbol from Fgr.

In the following we use w as a shorthand for a list of terms uy,us, .. ..

Proof. This follows by a standard minimality argument, showing that every step
which introduces a new minimal term is given with a rule of B, and therefore always
rooted by a B symbol. By minimality it follows that these minimal terms always
contain a finite number of R steps, and eventually this becomes a pure B derivation,
contradicting the assumption that this is an infinite —% / —p derivation. A more
detailed proof follows.

We proceed by contradiction. Suppose that there is a (—x / —g)-minimal term of
the form £ (@) with f € Fz. By assumption there are no infinite derivations starting
from the subterms w. Therefore we can assume that there are only a finite number of
R steps induced by these subterms.

W.lo.g. we assume that the arguments u are reduced in one or more steps,
including at least one —5 step, otherwise this would be a pure —p derivation instead
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of a =g / —p derivation. Eventually a reduction step must be given at the root
with some rule f(w) — r; € B. Now the infinite derivation continues from ro7,
so there must be a minimal subterm of ryo; which starts an infinite derivation. By
assumption the subterms wo; are all (—x /—p)-terminating. Hence r is of the form
C[t1] such that ¢10; starts an infinite derivation. Because of the HC condition we
have that 1) root(t1) € Fp, and 2) r; contains no R calls. The infinite derivation
starting from ty07 contains strictly less R reduction steps than the “parent” infinite
derivation starting from tg.

This process can be repeated infinitely, obtaining always a new minimal non-
terminating term rooted by a B symbol. As the number of R reduction steps in tg
is finite, and every t; contains strictly less R steps, eventually this becomes a pure B
derivation, which contradicts the assumption. O

Now we state the main result of this section. In order to prove relative termination of
a TRS R w.r.t. a TRS B, as long as they form a hierarchical combination, one only
needs to prove that the pairs of R are strongly decreasing, while the pairs of B can
be ignored, even if B is not terminating.

Theorem 5.26 (Relative Termination Criterion). Let R and B be two TRSs such
that R U B is the HC of the base B and the extension R. Then, R terminates w.r.t.
B if and only if there are no infinite (DP(R), R U B)-chains.

Proof. The proof follows the standard dependency pair proof scheme. First we will
show that the criterion is sufficient, i.e., we show that for any infinite —x / —p
derivation we can construct an infinite chain.

Let typ be the term that starts the infinite reduction. W.l.o.g. let us consider a
(—r / —g)-minimal term ty = fo(@y) such that none of its proper subterms starts
an infinite —x / —p derivation and by Lemma 5.25 f; € R. Consider an infinite
—r / — 5 reduction starting from such a term to. First the arguments ug are reduced
in zero or more R U B steps to Tg, and eventually a rewrite rule fo(wg) — 7o from R
is applied at the root position, i.e., there exists a substitution oy such that fo(vg) =
fo(wo)oo — ro00.

Since the subterms coming from vy are by assumption terminating, o must be of
the form C|[f;(u7)], and f1(@1)og is a =g / —p-minimal subterm starting an infinite
derivation. Again by Lemma 5.25 f; € R.

The first dependency pair of the chain that we construct is ff (wg) — ¥ (wr). The
rest of the pairs are constructed by a similar reasoning, obtaining a sequence of pairs

£ (wo) — ff (@), (@) — 5 (w), -

all coming from DP(R). It should be obvious that this sequence is really a (DP(R),
R U B) chain.

Now we show that the criterion is also necessary for relative termination. We
prove that any infinite (DP(R), R U B) chain corresponds to an infinite = / —p
derivation. Suppose we have a chain of the form:

5 (s0) = (&), ' (50) = F (B2), 1 (53) = ' (),
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By definition of chain, there is a substitution o such that ff*(7;)o —%uB f# (1),
#(T2)0 =% 7 (52), and so on.

As every dependency pair £ (55) — 7 (1) corresponds to a rule fo(sg) — C1[f1(%1)]
in R we can construct the derivation

fo(S0)o == Cilfi(t1)]lo =rup Cilfi(31)]o == C1[Calf2(t2)]]lo —=Rup -
which is an infinite —% / —pg derivation. This concludes the proof. O

The following example shows that the restriction to hierarchical combinations
is necessary. Observe that the systems in the example do not form a hierarchical
combination.

Example 5.27. Let R = {f — gen} and B = {gen — f} be TRSs, which are trivially
terminating. Moreover, the DP Problem (DP(R), RUB) = (&, RUB) is trivially finite
(here we assume that gen is a constructor symbol in R, hence the set of dependency
pairs DP(R) is empty). However, R is not terminating w.r.t. B since we have the
following infinite derivation: f — gen —f — ...

Note also that it does not suffice to prove the absence of minimal chains, as the
following example suggests:

Example 5.28. Let R = {f(s(x)) — f(z)} and B = {gen — s(gen)}. We have that
DP(R) contains a single pair F(s(z)) — F(z)}, and there are no infinite minimal
chains. However there is an infinite chain with a substitution o = {x — gen}.

The relative termination criterion can be combined with Theorem 5.9 for relative
termination from an initial goal.

Corollary 5.29 (Goal-Directed Relative Termination Criterion). Let R and B be two
TRSs such that RU B is the hierarchical combination of the base B and the extension
R, and let ty be an initial goal. For all - /| —p derivation D starting from a term in
[to], D is terminating if and only if there are no infinite (tg, DP(R), R U B)-chains.

5.2.1 Beyond hierarchical combinations

In this section we extend the relative termination criterion of the previous sections to
consider combinations which are almost hierarchical, but not quite. The motivation
for this refinement will be clear in the following section, when we consider termination
of narrowing.
Consider the TRS R given by the following rules:
f(z, ) — £(g(0), )
g(1) =1
together with the TRS Rgen defined by the rules:

gen — 0
gen — 1

gen — g(0)
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The system R U Rgen does not constitute a hierarchical combination because Rgen is
not a suitable base system, as it contains a call to g, a defined symbol in R. However,
observe that this call is actually a rigid head normal form, in the sense that any
instantiation is still a head normal form.

Definition 5.30 (Rigid Head Normal Form). A term s is a rigid head normal form

with regard to a TRS R if there is no substitution o and terms t,t' such that so i%
€,

t =5t

It is in general undecidable whether a term t is a rigid head normal form, but it
can be overapproximated by means of the cap function of Definition 4.28.

Calls to defined symbols of the extension which constitute rigid head normal forms
cannot lead to undesired behaviours as in Example 5.27. On the basis of this, we define
a class of modular combinations which relaxes the notion of hierarchical combination
to allow for these calls, and then prove that the termination criterion of the previous
section can be generalized to this class.

Definition 5.31 (Relaxed Hierarchical Combination ). A system Rg U Ry is the
relaxed hierarchical combination (RHC) of a base Rg over Fo = Do W Cy and an
extension Ry over F1 = D1 Wy if and only if

L] 'Doﬁplzg and

o for all rule | — r € Ry, if root(r|,) € D1 then r|, is a rigid head normal form
w.r.t. Ro U Rl.

Lemma 5.32. Let R and B be two TRSs over Fr and Fp respectively, such that
R U B is the RHC of the base B and the extension R. Every (—r / —g)-minimal
term tg € T(Fp U Fr,V) starting an infinite —g |/ —p derivation is of the form
to =f(ug...up), where f is an n-ary defined symbol from Fr.

Proof. The proof is an straightforward adaptation of the proof for Lemma 5.25. The
defining property which still holds for RHCs is that the right hand sides of Ry con-
tribute no R redexes, which is guaranteed in this case by the second condition in
Definition 5.31.

We proceed by contradiction. Suppose that there is a (—x / —g)-minimal term of
the form f(u) with f € F. By assumption there are no infinite derivations starting
from the subterms w. Therefore we can assume that there are only a finite number of
R steps induced by these subterms.

W.lo.g. we assume that the arguments @ are reduced in one or more steps,
including at least one —5 step, otherwise this would be a pure —p derivation instead
of a =g / —p derivation. Eventually a reduction step must be given at the root with
some rule f(w) — 7, € B. Now the infinite derivation continues from rj0, so there
must be a minimal subterm of 7107 which starts an infinite derivation. By assumption
the subterms wo; are all (—x / —p)-terminating. Hence r is of the form C[t;] such
that 107 starts an infinite derivation. Because of the RHC condition we have that
1) root(t1) € Fp, and 2) Every R redex in 107 is rooted at some p € Posy(r). That
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is, 71 contributes no R redexes. The infinite derivation starting from ¢;0; contains
strictly less R reduction steps than the infinite derivation starting from ¢g.

This process can be repeated infinitely, obtaining always a new minimal non-
terminating term rooted by a B symbol. As the number of R reduction steps in tg
is finite, and every t; contains strictly less R steps, eventually this becomes a pure B
derivation, which contradicts the assumption. O

Now we state the main result of this section, which is the generalization of Theorem
5.26 to relaxed hierarchical combinations.

Theorem 5.33 (Relative Termination Criterion(ii)). Let R and B be two TRSs such
that RUDB is the RHC of the base B and the extension R. Then, R terminates w.r.t.
B if and only if there are no infinite (DP(R), R U B)-chains.

Proof. The proof scheme used in Theorem 5.26 suffices, replacing the uses of Lemma
5.25 with Lemma 5.32. O

Using Theorem 5.33, we can produce a counterpart to Corollary 5.29 for goal-
directed relative termination in relaxed hierarchical combinations.

Corollary 5.34 (Goal-Directed Relative Termination Criterion). Let R and B be
two TRSs such that R U B is the RHC of the base B and the extension R, and let t
be an initial goal. Then, for all =g /—p derivation D starting from a term in [to],
D is terminating if and only if there are no infinite (to, DP(R), R U B)-chains.

5.3 Termination of Narrowing via Relative Termi-
nation

In this section, we consider the termination of narrowing and show how this problem
can be reduced to proving the relative termination (see below) of a GTRS from an
initial set of terms, putting to work the GDP framework introduced at the beginning
of the chapter and the technique for proving relative termination introduced in the
previous section.

Recently, | , ; , ] introduced a termination analysis
for narrowing which is roughly based on the following process®>. First, following
[ , ; , ], logic variables
are replaced with a fresh function, called gen, which can be seen as a data generator
that can be non-deterministically reduced to any ground (constructor) term. A first
result relates the termination of narrowing in the original GTRS and the relative
termination of rewriting using occurrences of gen to replace logic variables. However,
in order to avoid dealing with relative termination, [ , ] considers the use of
an argument filtering to filter away occurrences of gen in the considered computations
so that relative termination and termination coincide. Finally, termination is analyzed

2The termination analysis of logic programs of | R ] follows a similar
pattern but logic variables are replaced with infinite terms (the net effect, though, is similar).
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using the DP framework | , | for proving the termination of rewriting
over the filtered terms.

This approach has several problems all related to the use of an argument filtering
to filter the occurrences of gen. The most important one is that the search space for
an argument filtering that allows to prove termination is exponential in the sum of
the arities of the symbols in the signature, and moreover, this search cannot be casted
as an optimization problem. This leads to the application of complex heuristics (as
in [ , ]) which complicate the approach and diminish the
effectiveness of the automation. Another issue is related to collapsing rules. Consider,
for instance, a collapsing rule, i.e., a rule of the form f(z,y) — y, together with the
argument filtering 7(f) = {1}. The filtered rule f(z) — y contains an extra variable,
y, and no refinement”® of 7 will be able to eliminate it.*

Here, we argue that there is a better way to approach this problem. Instead of
using a global argument filtering to filter away occurrences of gen, we propose to not
filter them at all, and instead use the GDP framework developed in Section 5.1. As
we show next this effectively solves the mentioned issues.

In order to formalize our approach, we first need to recall some existing notation
and terminology from the literature.

Definition 5.35 (GEN¢(R)). Given a left-linear constructor GTRS R over the sig-
nature F = DWC, we define the generator of R, GENc(R), as the following set of
rules:

n times
GENg(R) = { gen —c(gen,...,gen) | ¢/neC, n=0 }
Following | , 1, t denotes the result of replacing the variables of a term ¢

by generators.

Definition 5.36 (gen-abstraction t). Given a term t € T(F,V), we let t = to, with

o={x > gen|x € Var(t)}. Given a GTRS R we denote by R the result of replacing
every extra variable in R (if any) with gen.

Note that 7 is ground for any term ¢ since all variables occurring in ¢ are replaced
by the function gen. As for R, we note that it contains no extra variables by definition.
We have that — gy () derivations are able to synthetize constructor terms.

Lemma 5.37. Let R be a TRS defined over a signature £ =CWD, t € T(X,V) be
a term, and o be a constructor substitution over 3. Then t —>CE1\ (R) io.

Proof. By the definition of gen we know that gen —7, (%) ¢ for any ¢ € T(C),

or equivalently = = GENG(R) ¢ for any € V and ¢ € T(C). Since the rewriting
relation is closed under contexts, and ¢ is a constructor substitution, it follows that

t _>CEN (72) 0

3An argument filtering 7’ is a refinement of another argument filtering 7 if it filters the same or
more arguments, i.e., either 7/(f) = w(f) or «’(f) C = (f) for every f.

4This is not a limitation of | , | since the considered rewrite systems
that are produced from the translation of logic programs never have collapsing rules.
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The completeness of replacing logic variables by generators is stated in the follow-
ing result. This is a slight generalization of Lemma 1 in | , ] to
the case of TRSs with extra variables.

Theorem 5.38 (Completeness). Let R be a left-linear constructor GTRS over a
signature ¥ = DWC and s € T(X,V) be a term. If s~ p t, then s =5/ —cpxne(R) t.

The statement is a slight variation of the completeness lemmas in |
, ]. Before giving a proof, we need to recall an auxiliary result from the
literature.

Lemma 5.39 ([ : D). Let ¥ = CWD be a signature and t =
f(t1,...,tn) be a linear term with £ € D and ty,...,t, € T(C,V). For any term
s € T(Z,V)\ V with Var(t) N Var(s) = 0, it always holds that mgu(t,s)|,” is a
constructor substitution.

With the above lemma it is trivial to show that the substitution computed by a
narrowing step in a left-linear constructor system is always a constructor substitution,
allowing us to proceed with the proof of Theorem 5.38.

Proof of Theorem 5.38. We first prove a one-step version of the claim:

*

If s %,  t,then 5 = &me(r) 50 —R t (5.9)

~ *
The first segment, s —epne

Lemma 5.39 introduced above.

Let I — r € R be the rule used in the narrowing step. Then so = lo with
o = mgu(s,l), and t = so[ro],. By assumption there must be a rule | — ry € R
with v = {z + gen | x € &ar(l — r)}. Therefore so —,_, . so[ryol,. By definition,
50 = sovy', where «/ is the substitution mapping every variable in Var(sc) to gen.
Closedness under instantiation of the rewriting relation yields so —,_,, . so/[ryoy/],.

(R) 5o, follows from Lemma 5.37 and the auxiliar

It remains to be shown that the term obtained, sov'[ryo7y'],, is equal to t. By
Definition 5.36, ¥ = 55[ro], = s0v"[roy"]p, where 4 maps all the variables in so
and all the extra variables in 7 to gen. Hence, 7" = ++’. Because o is a most general
unifier, for all x € &ar(l — 1)}, x € D(o). Therefore D(y) N D(c) =  which yields
~o = o7y, which in turn implies 7yoy’ = rovyy’. This concludes the proof for the
one-step version (5.9).

The original claim follows now easily by induction on the length of the derivation.
The base case, a derivation with zero steps, holds trivially. For the inductive case
we consider a derivation of 1 + n steps of the form s &01,72 81 "R .4, t- Claim (5.9)
yields 5 =5 / —gene(r) 51 for the first step, and the induction hypothesis provides

*

51 =5/ aEne (R) t, completing the proof. O

In | , |, the (possibly infinite) set of initial terms T was described by
means of an abstract goal.

5We assume that the unification algorithm produces idempotent substitutions.
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Definition 5.40 (Abstract Goal | ) D). Let ¥ = DWC be a signature. An
abstract goal over ¥ has the form f(mq,...,my), where f € D and m; is either g
(ground constructor term) or v (constructor term possibly with variables), for all
1=1,...,n.

Any abstract goal implicitly induces a (possibly infinite) set of terms, namely the
concretization of t%, in symbols y(t%), obtained as follows:

yf(my...mp)) ={f(t1...tn) | ;i €T(C) ifm; =g,
t; € T(C U V) mez = V}

Then, | , ; , | show that the termination of nar-
rowing can be recast in terms of the relative termination of rewriting. The theorem
below is a slight generalization to TRSs with extra variables. In the following, we
say that a set of terms T is ~»g-terminating if there is no term ¢; € T such that an
infinite sequence of the form ¢, ~» to ~x ... exists.

Theorem 5.41 (Termination of Narrowing). Let R be a left-linear constructor GTRS

and t* be an abstract goal. Then, y(t*) is ~>gr-terminating if y(t) is =5 / = aene (R)
terminating.

Proof. Assume that there is an infinite ~»% derivation starting from a term ¢; € v(t®),
of the form t; ~ t3 ~»% .... Then by Theorem 5.38 there is a derivation t; -3
[ —aene(R) t2 =5 / —Faene(R) - - - Which is also infinite, proving the claim. O

5.3.1 Beyond left-linear systems

A novel contribution of this thesis is to show that the left-linearity restriction can
actually be lifted. For this some changes are required to the construction of the
generator function. Concretely, the generator must be extended to generate not only
every possible constructor term, but also every possible normal form. The resulting
rewriting with generators relation does not simulate ~»x derivations faithfully®. This
is not a problem, since we are interested in termination, and fortunately termination
of the resulting relation still implies termination of ~+ as in the case of left-linear
systems. The following example motivates the need to introduce of new generator
rules when the system is not left-linear.

Example 5.42. Let R be the TRS defined by the rules:

f(z,z) — £(g(0),z)
g(1) =1

Given the initial goal £(x,y), we have an infinite (~x) derivation:

£(z,y) ~r £(g(0), ) ~r £(g(0),8(0) ~% .-

6 Although it does faithfully simulate derivations where the substitutions computed by ~+% are
normalized, but this is not relevant for our purposes.
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-

However there is no infinite —5 / —>cune(r) derivation starting from £(x,y):

f(gel7 gen) _>RUGEN0('R,) f(g(O), gen) _>;k?,UGENc(R) °© 7L>7z

since there is no reduction from gen to g(0) for the corresponding definition of gen to
this TRS:

gen — 0
gen — 1

In the example, gen is not able to synthetize the normal form g(0) because it
is not a constructor term. Loosely speaking, in a constructor TRS we have a non
constructor normal form f(¢1,...,¢,) when t;...t, do not belong to the domain of
f, when seeing rules as a means of defining relations between sets of terms. That is,
if the relation induced by the rules of f is not completely defined, then there are non
constructor normal forms rooted by f£.

In the case of left-linear constructor TRSs, non constructor normal forms are not
observable since they cannot be pattern matched by the left-hand side of a left-linear
rule. However as Example 5.42 shows, this is not true for non-left-linear rules. As
completely defined rules are not a requirement for termination, in absence of left-
linearity we must extend the definition of gen so that it covers these normal forms
too. We introduce an additional set of rules GENyp(R):

Definition 5.43 (GENy:(R)). Let R be a GTRS over a signature ¥ = C WD such
that gen € 3. We define the (usually infinite) set of root-defined, ground normal form
generators:

GENyp(R) = {gen = t | £/n € D,t = £(tg,...,tn) € T(X)NNF(R)}

The union of the constructor generators plus the normal form generators is denoted
as GEN(R):
GEN(R) = GEN¢(R) U GENy: (R)
Although the definition of GENy(R) is not finitely computable —as it contains an
infinite number of rules as well as possibly infinite terms in the right-hand sides— we
will show later that this does not constitute a problem when proving —r / —qan(R)

termination.
For the TRS of Example 5.42, the infinite set GENyr(R) includes the rules:

gen — g(0)

gen — g(g(0))

gen — g(g(s(--.)))

gen — £(0,1)
(1,0)
(

gen — £(1,
gen — £(g(0),g(1))
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With the new definition of GEN(R), we generalize Lemma 5.37 to non left-linear
systems.

Lemma 5.44. Let R be a TRS over a signature X =CWD , t € T(3,V) be a term
and o be a normalized substitution. Then t —>(’§EN(R) to.

Proof. By the definition of gen, it is clear that gen —7. . ») t for any t € NF(R),

or equivalently = —aEN(R) t for any € V and t € NF(R). Since the rewriting
relation is closed under contexts and o is a normalized substitution, it follows that

t —>ZEN(R) to. 0

We take a small detour now to state a result about the commutation of a special
rewriting relation, the parallel reductions relation. We prove a version of the well-
known parallel moves lemma of | , |, which then enables us to prove a result
on the completeness of simulating ~x with —grweey(r) in non left-linear systems.

The original formulation of the parallel moves lemma assumes left-linearity; we
prove it here for non left-linear systems by restricting the available parallel positions
used in every step. First recall the parallel reduction relation.

Definition 5.45 (Parallel Reduction Relation | , , Definition
6.3.7]). Let R be a TRS and P = p; ...p, be a possibly empty set of pairwise disjoint

P
. . . . P
positions, each one associated to a rulel,, — rp, € R. We write s 3 t if s 411714”"171

o2 Lpy—rmy O p_ﬂ;lpn—wpn t. The decorations P and R can be dropped if they are
obvious from the context or irrelevant.

In order to extend the parallel moves lemma of | , ] to non-left-linear
systems, we demand that all reducts corresponding to a repeated variable are reduced
in parallel, and using the same rule. This ensures that the reduction never gets
“stuck”, and therefore both reduction paths are able to reach the same normal form.

Lemma 5.46 (Parallel Moves for non-left-linear systems). Let R be a TRS over a
signature ¥ = CWD, I — r € R be a rule, o be a substitution and P C Posp(lo) be a
patrwise disjoint set of positions such that for all p € P, there is some p' € Posy(l)
with p’ < p. That is, every position in P is below some variable position of I.

P
Then, if lo =g lo’, there exists a substitution o’ such that ro =g ro’ =g lo’,
as summarized in Figure 5.1.
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la—*>rq

I

! >ro

lo" > ro’

Figure 5.1: The parallel moves lemma for non-left-linear systems

Remark 5.47. There is an implicit condition in the above formulation which replaces
the requirement of left-linearity. Namely, we require that lo is reduced in parallel to
a term lo’. Since | is not linear, this imposes some conditions on the construction of
P. Concretely, all the copies of a redex below an occurrence of a repeated variable are
reduced in parallel using the same rule. More formally:

e For every variable occurring more than once in | at positions py ... pn, then for
any position q, either p;.q & P for alli, or p;.q € P for alli and l,, g — 7p,.q =
lpy.qg = Tpog = -

Before giving the proof of Lemma 5.46, we recall the following auxiliary lemma

from | ) ]. The proof is omitted since it can be found in the
source.
Lemma 5.48 (] ) , Lemma 6.4.2)). If xo = zo’ for all x €

Var(s), then so = so’

We are now ready to proceed with the proof of the parallel moves lemma for
non-left-linear systems.

Proof of Lemma 5.46. This generalization of the parallel moves lemma to non-left
linear TRSs should follow trivially from the original formulation. Our proof is based
on the proof found in | , ].

Define the set P, of the redex positions below an occurrence of x:

P, ={q € Pos(xo) | ¢z € Posz(l),q:.q € P}

Thus, for all p € P, there is a rule [, — r, € R and a substitution o, such that
(zo)lp = lpop.

Now define the substitution ¢’(z) = (z0)[rpoplpep, for x € Var(l). By definition
we have that zo = zo’. By Lemma 5.48 above, this implies ro = ro’.

On the other hand, clearly lo” —,_,, ro’, and we are done. O

Thanks to the parallel moves lemma, we are able to generalize the completeness
result of Theorem 5.38. As rewriting with generators does not simulate narrowing
anymore, the generalized result simply states that every narrowing derivation has an
associated rewriting with generators derivation.
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S0 —— {0

SU[S;UI]p o saro’],
>p — P V
_ _ N .
so! ——= s0'[s},0"], > s0'[ro], = to’

Figure 5.2: Proof of Theorem 5.49

Theorem 5.49. Let R be a constructor TRS over a signature ¥ = DWC and s €
T(3,V) be a term. Then, if s ~y, g to and every term in the range of o has a normal

* —~
form, there is a o' = ol such that 5 —5 /= aen(r) Lo
Proof. We prove the claim by performing induction on the length of the narrowing
derivation. The base case, for a derivation of length zero, is trivial. For the induction
case, assume a derivation of n + 1 steps, of the form s ~7 » uo «p’>97l_>r tof.

By the induction hypothesis, the n steps derivation s ~7 » uo yields

*

S _>7€/_>GEN(R) uo’

with ¢’ = (o],,)} a normal form of 0. We prove the claim by showing that the rest of
the derivation can be constructed, i.e. the segment

*

o ey
uo _>7€/_>GEN(R) to’f

Lemma 5.39 yields uo’ %ZEN(R) w00 Tn the following, let I — ry' € R be the
rule corresponding to I — r € R, where 7/ is a concretization substitution replacing
variables by calls to gen. Also, let us write ur'f' as uo’0'ylu,o’'6'v],, and to'@ as
uo’'0'y[rv'0’0’'v],. We can ignore the context uo’¢’, as well as the concretization sub-
stitutions -y, 7' and the concretization of R, R. Tt suffices to prove u,o'0’ =% ro’'¢’,
and from that, the claim is derived by monotonicity and stability of the rewriting
relation.

By the narrowing step, 6 is a mgu of u,o and [, so u,o = 0. Hence 0], is a
matcher of u,(of)l, and I. Let 6], = uy(c0)], =% u;(o’e’)[u; = 16|, be the
derivation which normalizes (09)[up while at the same time satisfying the parallel
reductions condition for non-left-linear systems (cf. Remark 5.47), i.e. it reduces
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every occurrence of a duplicated variable of [ in parallel. Because of the parallel
restriction, some steps in the derivation may occur inside u,, and hence we speak of
u;. And thanks to the parallel restriction, and the fact that all the subterms of [ are
constructor terms, it is clear that we can write u;,(o”¢’ )[u; as [0'],. The parallel moves

lemma yields 10'], = u,(o0")]

€ 1n!
u;—>lﬁrr<79.

Recall that we start from u,0’6’. From the parallel derivation above, and mono-

tonicity, it follows that there is a derivation u,o’6’ Z§%

ity and stability, this can be lifted to uo’0'~y[u,0'0'v], i?;% uo'0'y[u,0’0'v], gl_)m,

€ .
u,0'0" =5 T8, By monotonic-

uo’'0'y[rv'0"v],, or simply uo'f' —% to'0’. This is summarized in Figure 5.2 O
Example 5.50. Consider again the TRS R of Example 5./2:

f(x,z) — £(g(0), x)
g(l) =1

Let tg = £(x,y). Given the infinite (~r) derivation starting from to:
£(2,9) ~ R yoe) £8(0):%) ~r a0y £(8(0),8(0) ~ ik -
the =5_n/—cENn(R) derivation that mirrors it from to is:

£(gen, gen) —&u(r) £(gen, gen) =% £(g(0), gen) —uy(r) £(8(0),8(0)) =% -+

Example 5.51. Consider the TRS R given by the rules:

f(z,2) > x
a—b

and the initial term to = c(f(a, ), f(z, a)).
The following ~5 derivation starting from tq:

c(f(a,x), f(z,a)) R {zsa) c(a,f(a,a)) R c(a,a)

is simulated by the following (ﬁ =R) =RrR/=GEN®R):

C(f(&@)a f(@v a)) _>2EN(R) C(f(é’ b)? f(bv a)) —R
c(f(b,b),f(b,a)) —x c(b,f(b,a)) —x c(b,f(b,b)) =% c(b,b)

Thanks to Theorem 5.49, termination of narrowing in non left—linear systems can
also be shown via relative termination of rewriting. The key insight, which comes from
the results in Chapter 4, is that minimal infinite narrowing derivations in constructor
systems are always of the TRAT kind, as per the classification of Lemma 4.15, and
hence there are no HYBRID steps which render Theorem 5.49 unapplicable.
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Theorem 5.52 (Termination of Narrowing(ii)). Let R be a constructor GTRS and
t* be an abstract goal. Then, y(t%) is ~r-terminating if ¥(t*) is (=5 / —cen(r))-
terminating.

Proof. Assume that there is an infinite ~»x derivation starting from a term t; € y(t*):

tl Ma'l,R t2 Ma‘g,"R t3 ’\’)0'3,72 .

W.lo.g. we assume that ¢; is a minimal non-terminating term, i.e. t; € 73°. By
Corollary 4.33, we know that ~»% enjoys the TRAT property (cf. Definition 4.9).
Proposition 4.31 ensures that this infinite derivation is composed solely of TRAT steps.
By the classification of Lemma 4.15, we see that every ¢; computed in this narrowing
derivation has the property that all its bindings have normal forms, because:

e Every binding coming from a proper subterm of the term being narrowed is
(~g)-terminating by assumption, and

e Every binding coming from a proper subterm of the left-hand side is a con-
structor term instantiated with terminating terms. This is a (~)-terminating
term, as there are no ECHOING steps.

Therefore, because every computed binding is normalizable, Theorem 5.49 can be
applied in every step.

P: sy ~R 82~ ... starting from a minimal term s; € callsg (t1). By Corollary
4.33, ~»x enjoys the TRAT property, so eventually there is a top step in the derivation
P and we have P : s; 3573701 So01 «%HTGR’@ $3.... By minimality we can safely
assume that all the bindings in the range of ¢ are terminating. Hence the next
minimally non terminating term must be rooted in 71, i.e. s is of the form (C1[sa4],)
with p € Posp(r1). Since sy is a minimal term again, we can start over and apply the
TRAT property to have that eventually there is a narrowing step at position p. This
can be repeated an infinite number of times, and P is of the form:

. >€x € >P1x / D1 s
P s MR,o1 52 Pl ER,02 C1 [53]1)1 ~ R0 Ci [54]1)1 M Ros

In every narrowing step in the derivation, the terms in the range of the computed
substitution are terminating (and hence have normal forms). Hence Theorem 5.49

applies, and there is an infinite parallel rewriting derivation s; —5/—gen(R)- O

5.3.2 Checking the termination criterion

Theorems 5.41 and 5.52 provide a theoretical basis for proving the termination of
narrowing from an initial goal in terms of the termination of relative rewriting with
generators. From here, Corollary 5.34 provides a method for checking the termination
of relative rewriting from an initial goal. There are mainly two practical obstacles
in the way to obtain an effective method: 1) encoding abstract goals as initial goals,
and 2) handling the infinite number of generator rules in the case of non-left-linear
systems.
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First, let us recall that our GDP problems consider an initial goal rather than an
abstract goal. To overcome this minor difference, we embed the abstract goal into the
TRS by means of an additional rule.

Definition 5.53 (Goal Rule). Let R be a TRS and t® = f(t1,...,t,) be an abstract
goal with m occurrences of g. We let goal(t*) denote the rule

goal(zj,,...,xj;,.) = f(z1,...,25)

where 1, ...,T, are (fresh) distinct variables and j1,...,Jm are the positions of the
g arguments of t%.

Given a TRS R and an abstract goal t*, we denote by Ri« the TRS that extends
R with this rule; formally, Ry« = R U {goal(t*)}.

In other words, we replace the v arguments of the abstract goal t* by extra
variables. Extra variables occur very naturally in the context of narrowing since they
behave as free variables which can only be instantiated to finite constructor terms.
In our context they are simply replaced by occurrences of gen by the ~ operator.

The following result combining Corollaries 5.29 / 5.34 and Theorems 5.41 / 5.52,
is the basis of our termination proving method.

Theorem 5.54. Let R be a constructor GTRS over a signature ¥ = CW D, and
t* an abstract goal. Let goal(x1,...,x,) be the left-hand side of goal(t®). ~(t%) is
~rg -terminating when:

o (goal(zy,...,xy), DP(@), R U GEN¢(R),a) is finite, for R left-linear.

o (goal(z1,...,xn), DP(?E;),TQ—; U GEN(R), a) is finite, otherwise.

Proof. Suppose that y(t%) is not ~»g-terminating. Then, there is a term ¢y in v(¢%)
starting an infinite narrowing derivation. Then by Theorem 5.41 (resp. Theorem 5.52
if R is not left-linear), ¢ is not (=5 / —qene (r))-terminating (resp. (=5 / —aen(r))-
terminating).

Or equivalently, goal(¢,...,t,) is not (—>7€t\a / —aene(R))-terminating (resp.
(—>7€t\a / —cen(r))-terminating) for some ty,...,t, in T(C) such that goal(ty,...,
tn) 7 goal(t®) to.

Hence there is an infinite — 7 / —aene(r) derivation (resp. an infinite — 7
/ —raex(r) derivation) starting from goal(t1, ..., t,). Corollary 5.29 (resp. 5.34) yields
an infinite (tO,DP(R),ﬁ; U GEN¢(R)-chain (resp. an infinite (tO,DP(R),ﬁ; U
GEN(R)-chain), which means the associated GDP problem is not finite, concluding
the proof. O

Example 5.55. Consider the following TRS that is part of Example 5.22:

add(s(z),y) — s(add(z,y))

R —
add(zero,y) — ¥y

For the abstract goal t* = add(g,v), the initial GDP problem (goal(w),DP(ﬁZ),

R:, UGEN(R),a) is reduced to the finite GDP problem in Example 5.22. Therefore,

~v(add(g,Vv)) is ~g-terminating.
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When R is not left-linear, we obtain a GDP problem with an infinite number
of rules, but with still a finite number of pairs. Therefore the dependency graph
processor of Theorem 5.15 is still applicable. Even more, the estimation of Definition
4.28 can be paired with Theorem 5.12 to compute an estimated dependency graph.
However, due to the infinite number of rules, this may not be possible for other more
precise estimations, as the following one.

Theorem 5.56 (Improved Estimated Dependency Graph| , ). Let
R be a set of rules (possibly with extra variables), and P be a set of pairs (possibly
with extra variables). The ICAPg estimation function is defined inductively as follows:

ICAPR () =a', for a fresh variable z’
ICAPR (£(t1,...,tn)) =2, for a fresh variable a’

if I and £(1ICAPR(t1),...,ICAPR(t,)) unify for somel —1r € R
ICAPR (£(t1,...,tn)) = £(ICAPR(t1),...,ICAPR(ty)), otherwise.

The improved estimated dependency graph, where the nodes are the pairs of P and
there is an edge from s%* — t# to u? — v¥ iff ICAPR(t) and u are unifiable, is an
over-estimation of the exact dependency graph.

Because ICAPR uses unification instead of the syntactic test done by the CAP of
Definition 4.28, the resulting approximation of the dependency graph is more precise
and allows to prove termination in more cases. Unfortunately the improved estimation
is not computable if the number of rules is infinite, since there are an infinite number
of unification tests to perform for every non trivial right-hand side.

However, it is easily noticed that the rules of GENyz(R) can be ignored when
computing the simple estimated graph of Definition 4.28, since they add no new
defined symbols to the signature. It turns out that they can be ignored when using
the improved estimation too, since they add no new left-hand sides.

Theorem 5.57. Let R be a constructor TRS, and let (P,R U GEN(R), f) be a DP
problem. Then the improved estimated dependency graph of (P,R W GEN¢(R) W
GENxp(R), f) coincides with the improved estimated dependency graph of (P,R W

GEN¢(R), f)-

Proof. Let Gy be the graph estimated for the complete problem and G, for the problem
ignoring the rules of GENy:(R), and suppose that Gy containts an edge between two
pairs s — ¢, u — v which is not present in G;. Then ICAPRUGEne (R)UcEN(R) (t) and u
unify, whereas ICAPRgene () (1) and u do not. From the definition of 1cAP, it follows
that this is only possible if there is some rule [ — r € GENy(R) such that for some
subterm ¢’ of ¢, ICAPR(t') and [ unify. But this is impossible because either C # ()
and then there is already a rule gen — s € GEN¢(R), or C = ) and then GENg(R) =
GENyp(R) = (0. Therefore ICAPRUGun (R)Ucing(R) (t) and ICAPRUaune (r)(t) coincide,
and every edge in Gy is also an edge in G;. O

The infinite number of rules in GENyz(R) also poses a problem for the reduction
pair processors of Theorems 5.16 and 5.21, since an infinite number of rules implies an
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infinite number of order constraints to be satisfied, which is obviously uncomputable.
In order to overcome this issue, we overapproximate the infinite set of constraints

—
induced by the rules of GENyz(R) with a finite set of constraints Geng”. Below we
introduce a version of the reduction pair processor of Theorem 5.21 which handles
the rules from GENy(R) in this special way.

Theorem 5.58. Let (72, >) be a reduction pair and w be an argument filtering. Let
R = GEN¢(R') UR' be a non left-linear TRS. Given a GDP problem (tg, P, R U
GENyr(R")}, f), Proc returns:

e (to, P\ Po_,RUGENy:(R'),m), if
— [ ism,
- P, U P- =P,
- Ry, 2UR(P),

— gen — s € UK (P) (for any term s) implies gengF”, and
— = is Cg-compatible;”
o (to, P\ P..,RUGEN(R'),a), if
— fisa,
— P, U P =P, and

— gen — s € GU (to, P, R, ) (for any term s) implies gengp”, and
- Riﬂr 2 guﬂ.(tOv Pv Ra 77)7'

o (to, P, RUGEN(R'), f), otherwise.

-
where Genyy is the finite set of constraints defined by

n times

geng’ = {gen = f(gen,...,gen)} | £/n € Partial(R')}

and Partial(R) C D is the set

distinct

Partial(R) =D\ {f | £(Z1,...,2n) = 1T € R}
Proc is a sound and complete GDP processor.

Proof. This theorem is a particular case of Theorem 5.21, and therefore we focus
on the differences. Namely, the replacement of the constraints (GENyp(R'))»-_ corre-

sponding to the infinite set of rules GENy(R’), by the finite set genﬁ”. To prove that

TA quasi-rewrite order - is Cg-compatible if for a new function symbol c, c(z,y) 25 = and c(x,y) =
y.
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this change is sound, we show that every constraint in (GENxg(R'))-, is implied by

gen URs- .

By definition every rule in GENyy(R') is of the form gen — ¢, for t € T(X) N
(NF(R)\ T(C,V)). Then the left-hand side of every constraint is always gen. We
proceed now by structural induction on the term in right-hand side of the constraint.

For the base case, let ¢ be a 0-ary functiond € D. The induced constraint gen 7~ d
is trivially satisfied since it belongs directly to gen by definition.

For the inductive case, let t = £(¢1,...,t,) and we distinguish two cases:

e f € C. By assumption there is a rule gen — s which is usable, so it fol-
lows that all the rules in GEN¢(R) are usable, since they are of the form
gen — s'. Therefore (GENc(R))-, € Ry . By definition there is a rule

gen — f(gen,...,gen) € GEN¢(R), and hence the corresponding constraint
gen =, f(gen,...,gen) holds. By the induction assumption gen >, t; for
1 <i < n, and by monotonicity gen =, £(¢1,...,t,) follows.

e £ € D. Then £ & Partial(R), or otherwise £(¢1,...,%,) would not be a normal
form. We have a constraint gen = £(gen,...,gen) € GENEF". By the induction
assumption gen 7. t; for 1 < i < n, and by monotonicity gen =, £(t1,...,tn)
follows. 0

Example 5.59. Let R below be Rine from Example 5.4, and consider termina-
tion of ~x derivations starting from the abstract goal t* = pin(g). According to
Theorem 5.54, narrowing terminates in R from the above goal if the GDP problem

(goal(z), P', R/, a) is finite; where R’ is @U GEN(R). Therefore we have the rules
of R with a rule for the abstract goal, extra variables replaced by generators, the con-
structor generators, and the infinite set of root-defined normal form generators (which
are omitted below):

Pin(g ( ))—>U3(p,n(X) X)
pin(X) — u1(ain(f(gen)), X)
9in(8(Y)) = dout(g(Y))
u1 (qout ( ( ), X) — U2(p|n(Y)aX7Y)
)
)

X
U2(Pout( ) X,Y) = pout(X)
u3(Pout (X), X) = pout(g(X))
goal(z) — pin(x)

gen — f(gen)
gen — g(gen)
gen — pout(gen)
gen — dout(gen)

P’ is simply DP(Rgoal) i.e. the dependency pairs of Rgoal, with extra variables
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replaced by generators:

5.15
5.16

Pin(g(X)) = Pin(X) (5.10)
Pin(g(X)) = Us(pin(X), X) (5.11)

Pin(X) — Qin(f(gen)) (5.12)

Pin(X) 1(gin(f(gen)), X) (5.13)

U1 (dout (f(Y)), X) (5.14)
) (5.15)

) (5.16)

Note that the only initial pair is (5.16). The estimation of the dependency graph is
shown below, where elements not belonging to the goal—directed dependency graph are
greyed out.

(5.15)  (5.14) (5.16)

The only SCC in the directed—goal dependency graph is the pair Pi(g(X)) —
Pin(X), and that there is only the trivial path from the initial pair (5.16) to this
pair, which includes both. In this case the goal-directed usable rules are trivially the
empty set, and hence the set QenNz;‘ of additional constraints need not be considered
(even if Ryoar is not left-linear). From here it is easy to find an RPO that orients
the pair and solves the termination problem. On the other hand, the technique of
/ , | needs a global argument filtering that removes every
extra variable, which ultimately has to filter either the argument of P;, or g, precluding
a successful termination proof. The same remark applies to [ , ;

, | after filtering out the extra variables.

In conclusion, we have proven in this section that with a modest extension, the
approach can be adapted to automatically prove termination of narrowing in non
left-linear constructor systems. As we have seen, in practice it is not necessary to
regard the infinite set GENy:(R) of root-defined normal forms generators, and instead
it is possible to use the reduction pairs processor of Theorem 5.58 which imposes
additional constraints instead.

5.3.3 Admissible Derivations

The termination criterion of Theorem 5.54 based on relative termination of rewriting
with generators is not complete. Given a TRS R and an abstract goal t,, it can
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be that every ~x derivation stemming from a concretization of ¢, terminates while
the GDP problem (goal(z1,...,%,), DP(Rt), Ri« UGEN(R),a) is not finite. This is
caused by the loss of sharing: repeated variables in non linear terms of the derivation
are replaced by independent occurrences of gen, which can give rise to different values.
As a result, not every —¢py(r) derivation has a corresponding ~+ derivation.

Example 5.60. Consider the TRS R given by the single rule £(a,b,z) — £(z,z,x).
Narrowing terminates in R for any goal, as it can be proven in the framework of
Chapter 4: the corresponding NDP problem is given by R and a single dependency pair
F(a,b,x) = F(x,z,z). Then a single application of the Dependency Pair processor of
Theorem 4.41 can show the absence of cycles®.

However, both the approach of this chapter and [ , s

, | fail to prove termination of the abstract goal £(v,g,g). Following our
approach, one applies Theorem 5.5/ and obtains the GDP problem given by the goal
to = goal(x,y), the rules:

f(a,b,z) — f(z,z, x)
gen — a
gen — b

goal(z,y) — f(gen,z,y)
and the pair:
F(a,b,z) = F(z,z,x) (5.17)

which is not relatively terminating, as witnessed by the infinite —x / —cun(r) deriva-
tion:

f(gen, gen, gen) HZEN(R) f(a,b,gen) —x £(gen, gen, gen) %ZEN(R)

This issue was already pointed out by | , | and further dis-
cussed in [ , : , ]. It can be modelled using the notion
of admissible derivations.

Definition 5.61 (Admissible derivation | , ). Let GEN(R) be a
TRS over XU {gen} andt € T(X,V) be a term. A deriwation D is called admissible if
all the occurrences of gen originating from the instantiation of the same variable are
reduced to the same term.

The reader can check that the infinite derivation of Example 5.60 is not admissible.
A formalism for ensuring that only admissible derivations are possible, based on
a decomposition of terms in skeleton and enviroment, can be found in |
, ]. By means of this notion, one can give a complete version of Theorem
5.52 which considers only admissible derivations. This is done by | ,
| (Lemma 2 and Theorem 2).

8The naive estimation used in Chapter 4 cannot actually prove absence of cycles in this example,
but a more advanced estimation such as the EDG* of [ , ] can.
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Although a very desirable extension, the termination of admissible derivations is
beyond the scope of this thesis and planned for future work. We only suggest that
the approach presented in this chapter is complemented with the dependency graph
processor of Theorem 4.41, which operates directly on narrowing derivations and does
not suffer from the uncompleteness problem.

5.4 Termination of Logic Programs

In this section, we briefly consider the application of these results to prove the termi-
nation of logic programs in terms of the termination of narrowing.

As in the case of standard rewriting, in TRSs without extra variables there is a
lifting between infinitary constructor rewriting derivations and narrowing derivations
with possibly infinite terms. But in the standard rewriting case we saw, in Proposition
2.2, that the lifting is lost in presence of extra variables. The constructor restriction
brings the lifting back, as formalized by the following proposition.

Proposition 5.62 (Extended Lifting Lemma for Infinitary Constructor Rewriting).
Let R be a generalized TRS over a signature . For all term t € T (X,V) and
constructor substitution 6 : V — T>°(C,V), if s0 3;2 t then there exist a term s’ and
substitutions 8 and o such that:

sl s,

o 5’0 =1t,

e o6/ =0 [Var(s)],

e 0':V = T>®(C,V) is a constructor substitution.

and one can assume that the narrowing derivation uses the same rules at the same
positions as the rewriting derivation.

Proof. We offer only an informal proof, which proceeds by induction on the length
of the rewriting derivation. The base case is trivial. For the inductive case, consider
the rewriting sequence s6 gf iyt ﬁ; t’. Then there is a substitution o such that
(s0) = lo and the substitution 7 = o6 is a unifier for s and [. Notice that ¢ must be
a constructor substitution because of the constructor rewriting restriction. Hence 7
is a constructor substitution by construction. Moreover, as the domains are disjoint,
0 = o U 6. Therefore there is a most general unifier’ 7/ of s and [, and there is a
substitution p such that 7 = 7/p. Again, 7’ and p are constructor substitutions. As 6
is normalized, then p € Pos(s) and (s6)|, = s|,0. By definition, s «p»T,’R s'. Applying
the equivalences obtained so far, we obtain s'p = s7/p[r7’p|, = s0[ro], =t. As p|,,
is constructor and therefore normalized, the induction hypothesis yields s’ ~7, » s”
and a constructor substitution p’ such that 7o’ = p [Var(s")]. Hence s ~7, . r 5",
0" = pp’ is a constructor substitution, and s”6' = t'. O

9And as usual, idempotent by assumption
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Roughly speaking, the finiteness of all ~»z, derivations starting from a set of
terms p;n(...) entails the termination of the query p(...) over the logic program P.
The next proposition formalizes this. In the following, argument filterings are used
as a convenient tool to characterize the set of queries considered, and ¢ denotes a
sequence of terms tq,...,t,.

Proposition 5.63 (Termination of logic programs via termination of narrowing).
Let A be a set of predicate symbols, P be a logic program and m be a non-collapsing
argument filter over X U A, extended so that w(p) = 7(p) for all p € A. Define the
set of terms S = {pin(t) | p € Ayt; € T(E, V), m1(pin(t) € T(Z,)}.

If all terms s € S are (~g, )-terminating, then all logic queries @Q € A(X,A,V)
with 7(Q) € A(Xr, Ar) are terminating in P.

We need to introduce two auxiliary results. The first is a mapping between logic
and narrowing derivations.

Lemma 5.64. Let P be a logic program, t be terms from T (X,V), and let p(t) Fp » Q.
If Q = O then pin(t) ~} », Pout(t)o. Otherwise, if Q is q(v), then pin(t) ~} z, 1>
Qin(@)'

Proof. By [ , , Lemma 3.4] there is a constructor rewriting
derivation pi, (t)o =g, Pout(t)o if @ = O, or pi(t)o =%, r & ¢in(?) if Q = q(v),
and in both cases ¢ is constructor. The lifting lemma for constructor rewriting with
extra variables of Proposition 5.62 yields p;,(t) ~ % Rp Pout (t)o’ and p;, (1) ~r R
r’. respectively. Since the original substitution o computed by the logic program is a
composition of mgu’s, it can be shown that o’ = . Hence v’ = r > ¢;,,(¥), completing
the proof. O

We also need another lemma that allows us to focus on single-atom non-termina-
ting queries.

Lemma 5.65 (Non-terminating queries | , , Lemma 3.5]).
Let P be a logic program. For all infinite derivation Qo Fp Q1 Fp - -+, there is a Q;
of the form q(T),... with i > 0 such that the query q(T) is also non-terminating.

We can now proceed with the proof of Proposition 5.63

Proof of Proposition 5.63. Follows from the proof of | , ,
Theorem 3.7], by making use of Lemma 5.64 in places where the analog lemma for
infinitary rewriting was used.

Assume that there is a non-terminating query p(t) as above, with p(f) Fp Q1 F
Q2 ---. By Lemma 5.65 there is an 41 > 0 with Q;, = ¢1(77), and an infinite derivation
(1) Fp Q) Fp Q Fp ---. Lemma 5.64 yields pin(f) ~%,, 7 > q1,0(70).
Applying Lemma 5.65 again, there is an iy > 0 with Q;, = ¢2(72), ..., and an infinite
derivation go(72) Fp Q7 Fp Q3 Fp ---. Lemma 5.64 yields rq ~%  , 72 & q2,n(02).
By this reasoning, we obtain an infinite narrowing sequence starting from p;, (t) But
since m(p(t)) € A(Xx, Ar), and hence (p;n(t)) € T(X,), which is a contradiction. [
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Recall the logic program P;,., and the resulting TRS Ry, of Example 5.4. Prov-
ing (~g,,.)-termination of the abstract goal p(g), as it is done in Example 5.59,
implies that every query p(t) for a ground term ¢ terminates in P;p.. Similarly, prov-
ing (~x,,.)-termination of the abstract goal p(v)'" would imply that every query
p(t) for a term, possibly with variables, ¢ terminates in P;.

Since we prefer to focus on the novel aspects of termination of narrowing in this
thesis, we conclude this brief section by referring the interested reader to |

) Y ’ ].

5.5 Results and Discussion

The technique for proving termination of narrowing introduced in this chapter is
strictly more general than [ , ; ) ], which is restricted
to left-linear systems with no extra variables. Our technique is also much more
efficient in practice, thanks to the replacement of search heuristics for the global
argument filtering by a constraint guided approach. A considerable shortcoming of
our approach is the loss of minimality. This means that many desirable techniques,

such as the subterm criterion of | , ], cannot be applied
without restrictions. The same remarks apply when comparing our new approach
to the infinitary rewriting framework of [ , ], which also

employs a global argument filtering and heuristics. Even so, we expect that the ability
to automatically infer the best argument filtering without the use of heuristics makes
up for this shortcoming.

In order to see how well the new approach behaves in practice, we benchmark it
versus the termination of narrowing method of | , ; , ]
and the termination of logic programs method of | , .

We employ two sets of examples generated from the Logic Programming category
of the Termination Problem Database (TPDB) 5.0 | ) -
The first set, called LPCLEAN here, turns these logic programs into TRSs using the
transformation of Definition 5.2. After excluding those examples containing meta
cuts, arithmetic or other non declarative primitives, there are in total 295 termination
problems.

The second set, called LPSOLVE here, uses the same 295 logic programs as base.
Each logic program is transformed into a new “meta” logic program, and then trans-
formed into a TRS using again the transformation of Definition 5.2. For example,
given the logic program for the ackerman function:

ack(0,N,s(N)).
ack(s(M),0,Res) :- ack(M,s(0),Res).
ack(s(M),s(N),Res) :- ack(s(M),N,Resl),ack(M,Resl,Res).

the “meta” version generated by this program is:

10This can be shown using the star-estimation of the dependency graph of [

) ]
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clause(ack(0,N,s(N)),true).
clause(ack(s(M),0,Res),ack(M,s(0),Res)).
clause(ack(s(M),s(N),Res), (ack(s(M),N,Res1),ack(M,Res1,Res))).
solve(true).

solve((X,Y)) :- solve(X),solve(Y).

solve(X) :- clause(X,Y),solve(Y).

goal(A,B,C) :- solve(ack(A,B,C)).

This transformation preserves termination, while at the same time heavily altering the
shape of the program, arguably making the job of termination provers much harder.
The reason for including the LPSOLVE sets of problems is to observe how heuristic
based approaches are highly dependent on the shape of the termination problem. We
argue that there is no set of heuristics that works for all cases, and it is doubtful that
an automated tool can detect which heuristic is most appropriate for a particular
problem in all cases. In contrast, our approach is not affected by this since it is fully
constraint based.

In both example sets, the resulting TRSs are non-left-linear and contain extra
variables, and hence | , ; , ] cannot prove termination
of narrowing. Even so, for the sake of the benchmark, we filter extra variables from the
initial problem and proceed to apply their method to the filtered system. Although
the resulting TRS is still non-left-linear and hence the method cannot be used to
prove termination of narrowing, we still find the results can be useful for orientative
purposes.

A huge number of techniques for termination have been developed in the recent
years. In order to provide a fair comparison we focus on a small set of DP processors:
the dependency graph processor, the RPO reduction pair implemented by means of
the SAT encoding of | , ; , ; ,

] extended to account for our notion of goal-directed usable rules, the subterm
criterion of | , ] and the narrowing and instantiation
graph refinement processors | , ]. Tt is our opinion that this set of
processors constitutes a realistic tool which can be used to solve a very reasonable
class of termination problems. The (very fast) subterm criterion processor is included
to illustrate the shortcomings of the loss of minimality.

We have implemented our approach in the termination tool NARRADAR. NAR-

RADAR recognizes the TPDB format | , ] with extensions for
expressing initial goals and narrowing. In order to perform the test we also imple-
mented the approach of | , ; , ] and |
; J.
e For | , ; , | NARRADAR uses three different

heuristics for computing argument filters:

heu is the binding-time analysis described in | , ].
inn is a naive heuristic which always filters the innermost position.

search generates and tries all the candidate filterings in depth-first search style.
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LPCLEAN # Successes  Avg. success time
NARRADAR 174 0.97 seconds

[ , ] 168 0.23 seconds

[ , ] inn 157 0.30 seconds

[ , | search 151 2.46 seconds

[ , ] heu 120 0.17 seconds
LPSOLVE 7 Successes  Avg. success time
NARRADAR 89 0.79 seconds

[ , ] inn 84 0.40 seconds

[ , | search 64 13.71 seconds

[ , ] 56 0.27 seconds

[ , ] heu 0

Table 5.1: Benchmark results

e For | , ] NARRADAR uses the unbounded positions
heuristic which does a type analysis of the logic program and computes an
optimal filtering. Note that while [ , ] introduces

two type-based heuristics, we consider only the most powerful one.

All the problems were run in automated mode on a 2.5Ghz Intel CPU with a 60
seconds timeout The results are displayed in Table 5.1.

The new approach is the best performer in the LPCLEAN set of examples, beating
[ , ] by 6 examples and the best performing heuristic of
[ , ] by 17 examples. The time to produce a proof is 0.74 seconds higher on
average, mainly because the fast subterm criterion processor cannot be applied, but
also because the constraints to solve are larger. We observe that the binding-time
analysis heuristic of | , | performs rather poorly; the reason is
that this heuristic never filters constructor symbols, and therefore seems to be of
limited usefulness in practice.

The LPSOLVE set of examples draws a more extreme picture. Our approach beats

the previous best contender, | , ], by a total of 33 exam-
ples, solving 45% more termination problems. As expected, the type heuristic used
by [ , ] is easily confused by the program transformation,

while our approach is not affected since it does not rely on a heuristic. For the pro-
grams in the LPSOLVE set, an innermost heuristic often produces the best results, as
can be seen from the results of | , ] inn. On the other hand, since the predi-
cates of the original program become constructor symbols in the transformed program,
filtering on constructor symbols is essential here; correspondingly, the binding-time
analysis of | , | does not manage to solve any example in the LPSOLVE set.

Let us come back to the LPCLEAN results. The new approach solves a total of 9
examples that none of the previous approaches manage to solve using solely the set
of processors mentioned above:

BCGGVO5/map_color.pl
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BCGGVO5/transpose-bf.pl
SGST06/incomplete.pl
talp/dds/reverse-iio.pl
talp/plumer/pl8.4.2.pl
talp/talp/binary2.pl
terminweb/cti/som.pl
terminweb/type-based/transpose.pl

The unsoundness of Theorem 5.54 related to the issue of admissible derivations
commented in Section 5.3.3 is responsible for one missed example (SGST06/toyama.pl,
developed above in Example 5.60) with regard to the approach of |

, ]. This example can be solved by combining the approach of this chapter
with the dependency graph of Chapter 4 (cf. section 5.3.3).

Aside from SGST06/toyama.pl, there are two examples remaining which our tech-

nique does not handle, whereas the previously existing approaches do:

SGSTO06/intlist.pl
SGST06/prime.pl

We consider the case of SGST06/intlist.pl below.

Example 5.66. Consider the TRS R below, obtained after transforming SGST06/

intlist.pl from the logic programming category of the Termination Problem Databa-
se into a TRS.

int;, (0,0, cons(0,nil)) — inteu (0,0, cons(0,nil))
intiy (0, s(y), cons(0, zs)) — up(intin(s(0), s(y), zs), xs,y)
intin(s(x),0,nil) — inteus(s(x), 0, nil)
intiy(s(x),s(y), xs) — us(intiny(z, v, 28), z, 8, y)
intlist;y(cons(z, xs), cons(s(x),ys)) — ui(intlistiy(zs, ys), x, s, ys)
uy (intlistews (28, ys), z, s, ys) = intlistey(cons(z, xs), cons(s(z), ys))
s (intout (s(0),s(y), x8), 28, y) — inteu: (0, s(y), cons(0, xs))
uz(intou (z,y, 28), , 28, y) — wa(intlisti,(zs, xs), z, xs,y, z8)
)

uy(intlisteus (28, 28), 2, x8,y, 28) — inteu(s(z), s(y), xs)

Narrowing derivations in this TRS starting from the abstract goal t* = inti,(g, &, V)
are finite as far as we can tell. Following Theorem 5.5/, narrowing terminates in R
from t if the GDP problem (goal(x), P',R',a) is finite; where R’ is Rgoq UCGEN(R),
that is, R plus a rule for the abstract goal, extra variables replaced by generators,
together with the generator rules (we omit the rules for root-defined normal forms):

int;y (0,0, cons(0,nil)) — intey (0,0, cons(0,nil)) (5.18)
inti, (0, s(y), c(0,x8)) — ua(intin(s(0),s(y), xs), xs,y) (5.19)
intin(s(x),0,nil) = inteu(s(x),0,ndl) (5.20)
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Figure 5.3: Dependency Graph of Example 5.66

inti(s(z),s(y),x

intlistiy(c(z, xs), c(s(x),ys)) — ui(intlisti, (s, ys), x, s, ys)

— uB(intin(x7 yu gen)7 x,Ts, y)

5)
)
uy (intlistous (s, ys), z, xs,ys) — intlisteus(c(z, xs), c(s(x),ys))
Up(intout (s(0), s(y), x8), 28, y) = inteu (0, s(y), c(0, zs))
uz(intou (z,y, 258), 2, 28, y) — wa(intlisti,(zs,xs), x, zs,y, 25)
u(intlistou (28, 28), z, x8,y, 28) — intew(s(z), s(y), xs)
goal(x,y) — intiy(x,y, gen)
gen — 0
gen — s(gen)
gen — nil
gen — c(gen, gen)
gen — inty,.(gen)
gen — intlistey(gen)

The dependency pairs of the problem are listed below:

INT;n(0, s(y), c(0,25)) — INTi,(s(0), s(y), zs)

INTin(0, s(y), c(0,28)) — Ua(intin(s(0), s(y), xs), zs,y)
INTin(s(z),s(y),xs) — INTi,(z,y, gen)
INTin(s(2x),s(y), zs) — Us(intin(x, y, gen), x, s, y)
INTLIST:n(c(2, xs), c(s(x),y
INTLIST;n(c(2, xs), c(s(x), ys

s)) — INTLISTi,(xs,ys)

5)
US(intout(zvyazS)axaxsay

Y

)

) — Uy (intlisti,(zs,ys), z, zs,ys)

) — INTLIST;,(zs,xs)
Us(intowt (2, ¥, 28), x,x8,y) — Us(intlistiy(2s, xs), z, xs,y, 28)

GOAL(z,y) — INTin(x,y, gen)

where the single initial pair is 5.42. The corresponding dependency graph is shown in

Figure 5.3. We have three SCCs: {5.58}, {5.56} and {5.54,5.36%}.
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Consider the problem given by the first SCC {5.38}. To compute the usable rules
we need to look at the dependency pairs in a path from an initial pair to this SCC, i,e,
PATH g, ({5.42}, {5.38}), which in this case is the set {5.42, 5.34, 5.56, 5.37, 5.40,
5.38}. Therefore we need a filtering which drops the generators in the right hand sides
of pairs 5.42, 5.36 and 5.37, while enforcing the variable condition in the rest of the
pairs in the path, as well as in the rules. We can start with 71, defined as

71 (INTy,) = [1, 2]
1 (INTLISTy,) = [1]
m1(Us) = [1,2,4]
m1(intsy,) = [1,2]
m1(intlistsy,) = [1]
m(ug) = [1,2, 3]
m1(up) = [1, 3]
m1(uz) = [1,2,4]
mi(u) = [1,2,4,5]

and the identity for any other symbol. We use this filtering and the pairs in the path
to compute the usable rules; in this case all the rules are usable (brought in by pair
5.37) except the rules of gen and goal. In order to orient the rules, NARRADAR tries
to compute a refinement wo of 1 and an RPO reduction pair (>=,=) such thatl =, r
for each one of the usable rules. Unfortunately there is no such ms.

To see why, let us look at the filtered version of rule 5.19

intin(0,s(y)) — us(intia(s(0),5(y)),y)

Note that the inti, in the right hand side is strictly larger than the one in the left
hand side, which forces the refinement pii(s) = 2.
Similarly, in the filtered version of rule 5.24

u2(intout (Oa Y, IS), y) — intout(oa ya C(O7 IS))

the intoy, subterm appearing in the right hand side is strictly larger that the intous
subterm in the left hand side, forcing the refinement piy (intey:) = [1,2], which pre-
cludes a successful termination proof. The filtering of pair 5.0 yields now

Us(intous (2,9), x,y) — INTLIST;,(2s)

where zs has become an extra variable, forcing the filtering of INTLIST;,/1. But now
the filtering of the dependency pair 5.38 yields

INTLIST;, — INTLIST;,

which cannot be oriented strictly by any reduction pair.
In the approach of [ ; \ ], one can apply the
initial version of w1 (since it actually enforces the variable condition on all the pairs
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and rules) to obtain a vanilla DP problem (w1 ({5.38}), 71 (R), m) which can be easily
solved by any reduction pair, since thanks to minimality the set of usable rules is
empty. Although since the example is neither left-linear nor free of extra variables,
this proves nothing in practice. In the approach of [ s | one
can proceed in the same way, proving termination of infinitary constructor rewriting.

Before concluding, let us remark that the results must be regarded as orientative
only, as we have restricted here to a limited subset of DP processors. Henceforth,
these results only represent the relative power of these techniques, with regard to this
subset.
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The NARRADAR termination tool

All the automated techniques for proving the termination of narrowing presented in
the two previous chapters have been implemented during the course of this thesis.
The motivation for producing this implementation was twofold:

e validating of the research performed and the techniques obtained, and

e producing a tool of general applicability which can be reused by other researchers
working with narrowing.

Our efforts have crystallised in the termination tool NARRADAR. NARRADAR is a
tool based on the dependency framework described in Section 4.1. It implements a
number of dependency framework processors, including all the processors introduced
in the previous chapters, which enable it to produce proofs of termination for:

e Narrowing,

Rewriting,

Relative Rewriting,

e Narrowing from an initial goal,

Rewriting from an initial goal,

Relative Rewriting from an initial goal, and

Logic programs (from an initial goal).

While NARRADAR can tackle termination of rewriting, relative rewriting, and logic
programs, it was mainly designed to solve problems of termination of narrowing.
Therefore, it is far less powerful than other termination tools intended for proving
termination of rewriting and/or logic programs.
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6.1 Input

NARRADAR offers a web interface accepting TRSs in the standard TPDB format of
the termination problem database', with a few extensions to denote narrowing and
initial goal problems,

e To demand termination of narrowing, append a section (STRATEGY NARROWING).

e To demand termination from an initial goal, append a section (STRATEGY GOAL
<goal>), where goal is either an initial or an abstract goal, depending on
whether the problem is rewriting or narrowing.

e It is possible to manually specify the pairs of a DP problem, instead of using the
pairs derived from the rules of the problem. For this, append a section (PAIRS
...) containing the list of rules denoting the pairs® of the problem.

e To enforce minimality when manually entering the pairs of a problem, append
a section (MINIMALITY).

These sections can be combined to specify, e.g., an initial goal termination of nar-
rowing problem with a manually defined set of pairs. Note that the ordering of the
sections does not matter.

Example 6.1. Recall the TRS Rpolicy from Example 4.1. The following input asks
NARRADAR to prove termination of narrowing in Rpoticy:

(VAR src dst x y port s)
(RULES
filter(pckt(src,dst,established)) -> accept
filter(pckt(ethO,dst,new)) -> accept
filter(pckt(address(ip(194,179,1,x) ,port) ,dst,new)) ->
filter(pckt(secure,dst,new))
filter(pckt(address(ip(158,42,x,y) ,port) ,dst,new)) ->
filter(pckt(secure,dst,new))
filter(pckt(secure,address(dst,80) ,new)) -> accept
filter(pckt(secure,address(dst,other) ,new)) -> drop
filter(pckt (pppO,dst,new)) -> drop
filter(pckt(address(ip(123,123,1,1) ,port),dst,new)) -> accept

pckt(address(ip(10,1,1,1) ,port) ,ppp0,s) —->
pckt(address(ip(123,23,1,1) ,port) ,ppp0,s)

pckt (address(ip(10,1,1,2) ,port) ,ppp0,s) ->
pckt(address(ip(123,23,1,1) ,port) ,ppp0,s)

Thttp://www.lri.fr/ marche/tpdb/format.html

2Note that the signature used in the (RULES..) section and the signature used in the (PAIRS..)
section are disjoint and currently there is no way to relate a regular symbol with a tuple symbol.
This can be important when introducing initial goal problems with explicit pairs.
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pckt(src,address(ip(123,123,1,1) ,port) ,new) ->
natroute(pckt(src,address(ip( 10,1,1,1),port) ,established)
,pckt (src,address(ip(10,1,1,2) ,port) ,established))

natroute (x,y) -> x
natroute (x,y) ->y
)

(STRATEGY NARROWING)

Example 6.2. Consider the initial goal narrowing problem presented in Example 5./.
We can ask NARRADAR to solve it with the input:

(VAR X Y)

(RULES
p_in(g(X)) -> u_3(p_in(X),X)
p_in(X) -> u_1(g_in(f(gen)),X)
q_in(g(Y)) -> g_out(g(Y¥))
u_1(g_out(£(¥)),X) -> u_2(p_in(¥),X,Y)
u_2(p_out(Y),X,Y) -> p_out(X)
u_3(p_out(X),X) -> p_out(g(X))

(STRATEGY GOAL p_in(g))
(STRATEGY NARROWING)

Narradar also accepts logic programs. The syntax for logic programs is a (fairly
sensible) subset of prolog syntax, with a one-line comment specifying the initial query
in the form:

%query: ackermann(i,i,o).

where i specifies an input (definitely ground) argument and o specifies an output
(possibly variable) argument.

Example 6.3. Recall the logic program Pinc, introduced in Section 5. We can ask
NARRADAR to prove termination of this logic program for the initial goal p (X) with
the input:

p(X) = q(£(Y)), p(Y).
q(g(¥)).
%query: p(o)

6.2 Output

Currently NARRADAR only offers two modes of output: textual and schematic repre-
sentation. Both are available to the user of the web interface.

Example 6.4. When called with the input shown in Example 6.2, NARRADAR takes
40 ms to find a succesful proof. The schematic representation of the proof generated
by NARRADAR s shown in Figure 6.1, and the textual representation generated is:
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Narrowing Problem
TRS: p_in(g(X)) -> u_3(p_in(X),X)
p-in(X) -> u_1(q_in(£f(gen)),X)
q_in(g(Y)) -> g_out(g(Y))
u_1(q_out (£(Y)),X) -> u_2(p_in(¥),X,Y)
u_2(p_out(Y),X,Y) -> p_out(X)
u_3(p_out(X),X) -> p_out(g(X))
DPS: p_in#(g(X)) -> p_in#(X)
p_in#(g(X)) -> u_3#(p_in(X),X)
p_in#(X) -> q_in#(f(gen))
p_in#(X) -> u_1#(q_in(f(gen)),X)
u_1#(q_out (£ (Y)),X) -> p_in#(Y)
u_1#(q_out (£(¥)),X) -> u_2#(p_in(Y),X,Y)
GOALS: [abstract p_in#(b)]
PROCESSOR: Finiteness of the following relative termination
problem implies the termination of narrowing (LOPSTR’09)
NarrowingGen Rewriting Problem
TRS: p_in(g(X)) -> u_3(p_in(X),X)
p-in(X) -> u_1(q_in(f(gen)),X)
q_-in(g(Y)) -> g_out(g(¥))
u_1(g_out (£(¥)),X) -> u_2(p_in(Y),X,Y)
u_2(p_out(Y),X,Y) -> p_out(X)
u_3(p_out(X),X) -> p_out(g(X))
GOAL(v2) -> p_in(v2)
DPS: p_in#(g(X)) -> p_in#(X)
p_in#(g(X)) -> u_3#(p_in(X),X)
p_in#(X) -> q_in#(f(gen))
p_in#(X) -> u_1#(q_in(f(gen)),X)
u_1#(q_out (£(Y)),X) -> p_in#(Y)
u_1#(q_out (£(Y)),X) -> u_2#(p_in(Y),X,Y)
GOAL#(v2) -> p_in#(v2)
GOALS: [concrete GOAL#(v2)]
TRS’: GEN ->= f(GEN)
GEN ->= g(GEN)
GEN ->= gen
GEN ->= p_out (GEN)
GEN ->= q_out (GEN)
PROCESSOR: The two systems form a Hierarchical Combination
and hence the result from LOPSTRO9 applies.
Finiteness of the following DP problem implies
relative termination.
NarrowingGen Rewriting (no minimality) Problem
TRS: p_in(g(X)) -> u_3(p_in(X),X)
p_in(X) -> u_1(q_in(f(gen)),X)
q_in(g(Y)) -> q_out(g(¥))
u_1(g_out(£(¥)),X) -> u_2(p_in(Y),X,Y)
u_2(p_out(Y),X,Y) -> p_out(X)
u_3(p_out(X),X) -> p_out(g(X))
GEN -> f(GEN)
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GEN -> g(G
GEN -> gen
GEN -> p_o

EN)

ut (GEN)

GEN -> q_out (GEN)

GOAL(v2) -
DPS: p_in#(g(X)
p_in#(g(X)
p_in#(X) -
p_in#(X) -
u_1#(q_out
u_1#(g_out
GOAL# (v2)
GOALS: [concret
PROCESSOR: Depe
NarrowingGe

> p_in(v2)

) —> p_in#(X)

) => u_3#(p_in(X),X)

> g_in#(f(gen))

> u_1#(q_in(£f(gen)) ,X)
(£(Y)),X) -> p_in#(Y)
(£(Y)),X) -> u_2#(p_in(V),X,Y)
=> p_in#(v2)

e GOAL#(v2)]

ndency Graph Processor (SCCs)
n Rewriting (no minimality) Problem

TRS: p_in(g(X)) -> u_3(p_in(X),X)

p_in(X

) => u_1(q_in(£f(gen)),X)

q_in(g(Y)) -> g_out(g(Y))

u_1(q_
u_2(p_
u_3(p_
GEN ->
GEN ->
GEN ->
GEN ->
GEN ->
GOAL (v
DPS: p_in#(

out (£(Y)),X) -> u_2(p_in(Y),X,Y)
out(Y),X,Y) -> p_out(X)

out (X),X) -> p_out(g(X))

£ (GEN)

g(GEN)

gen

p_out (GEN)

q_out (GEN)

2) -> p_in(v2)

g(X)) -> p_in#(X)

GOALS: [concrete GOAL#(v2)]

PROCESSOR :

Narrowi.
TRS: p_
pP-
q-
u_
u_
u_

RPO reduction pair

The following pairs are strictly decreasing:
p_in#(g(X)) —-> p_in#(X)

The argument filtering used was:
f: 1, g: [1], gen: [], p_in: [], p_out: [I,
g_in: [1, g_out: [1, u_1: [1, u_2: [1, u.3: (1,
GEN: [1, GOAL: [1, p_in#: [1], q_in#: [I,
u_1#: [1, u_2#: [1, u_3#: [], GOAL#: 1

The usable rules are:

Precedence: g > p_in#

Status function:

status(g)=LEX with permutation Nothing

status(p_in#)=LEX with permutation Nothing

ngGen Rewriting (no minimality) Problem

in(g(X)) -> u_3(p_in(X),X)

in(X) -> u_1(q_in(£f(gen)),X)

in(g(Y)) -> q_out(g(Y¥))

1(g_out (£(¥)),X) -> u_2(p_in(Y),X,Y)

2(p_out(Y),X,Y) -> p_out(X)

3(p_out(X),X) —-> p_out(g(X))
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GEN -> £ (GEN)
GEN -> g(GEN)
GEN -> gen
GEN -> p_out (GEN)
GEN -> g_out (GEN)
GOAL(v2) -> p_in(v2)
DPS:
GOALS: [concrete GOAL#(v2)]
PROCESSOR: We need to prove termination for all the cycles.
There are no cycles, so the system is terminating
RESULT: Problem solved succesfully

The graphical representation uses colors to classify the different types of nodes in
the dependency graph. Red is used to denote an initial pair. Unreachable pairs are
shown in grey. Pairs not involved in an SCC are shown in black. And finally, (the
nodes of) every SCC in the graph is rendered in a different colour. In figure 6.1 there
is a single SCC, which is rendered in yellow.

6.3 Implementation details

The implementation consists of around 9.000 lines of Haskell | , ], of
which

about 350 are dedicated to the parsing of TPDB input files,
about 410 are dedicated to the parsing and manipulation of logic programs,

about 1780 are dedicated to the implementation of term rewriting systems,
rewriting and narrowing,

about 2500 are dedicated to the implementation of the RPO-SAT reduction pair
(cf. Section 4.4),

about 600 are dedicated to producing the output,

the remaining 3710 implement the DP framework and all the techniques de-
scribed in Chapters 4 and 5.

3

The source code is publicly available online®>. NARRADAR makes use of the mod-
ern SMT solver [ ] to solve the propositional constraints generated by the RPO
reduction pair.

3 http://github.com/pepeiborra/narradar
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VAR x 1)
(RuLES
P_in(g(X)) > u_3(p_in(X),X)
p_in(X) -> u_1(q_in(F(gen)) ,X)
inian) 5 q sut (ol
U 1(a_0ut(F(Y)),X) -> u_2(p_in(¥),X,Y)
2(p out(1),X,Y) -> p_out(X)
U 3(p out(X)X) > p_out(g(X)))
(PaTRs.
p_in#(g(X)) -> p_in#
Sin(a) > b3etp dnx 00
p_in#(X) -> q_ink(f(gen))
pLITHR) > (@ in(f(gen) 1)
U 1#(Q_out(f(Y)),X) -» p_in#(Y.
16wt 1)) = o 261p dncr X))
(rnTvaLTTY)
(STRATEGY NARROWING)
(STRATEGY GOAL abstract p_in#(b))

Finiteness of the following relative termination
problem implies the termination of narrowing (LOPSTR09)

The wo systems form a Hierachical Combition
hence the result from LOPSTRO9 applic:
Finitencssof the following DP problem implics relative termination

VAR X Y v2)
RULES
P_An(a(X) > u 3(p 1n(X).,X)

p_in(X) -> u_1(q_in(f(gen)),X)
Cinion) > g autio(n)
U100 0ut(F(Y)),X) -> u 2(p_in(¥),X,Y)
u2(p_out(Y) X, Y) > p_out(x)
u_3(p_out(X),X) -» p_out(g(X))
GOAL(v2) -> p_in(v2))
PATRS
p_ink(g(X) > p_in#(X)
P_in#(g(X)) -> u3#(p_in(X),X)
P ink(X) -> q_in#(f(gen))

pIneIR) > 10(q in(gem)) X)
U 8(q out(f(1) 50 = B anelh
Pttt e il M
GOAL#(v2) -> p_in#(v2
MINIMALTTY)
STRATEGY GOAL concrete GOAL¥(v2))

GEN ->= f(GEN)
GEN ->= g(GEN)

GEN >=

GEN ->= p_out (GEN)
GEN ->= q_out(GEN))

VAR X Y v2)

RULES

b_in(g(X)) > u3(p_in(X),X)

BoinR) > e infrigen). 1)
in(g(v)) -> q_out(g(¥))

e out (1) 0 2w 2(p onn X

_2(p_0ut (V). X,V) -> p_out(X:

U306 eut0 0 5 uttatn)

GEN > 1(GEN)

GEN -> g(GEN)

GEN

GEN -> p_out(GEN)

GEN -> q_out (GEN)

GOAL(v2) -> p_in(v2))

PAIRS

p_in#(g(X)) > p_in#(X)

pine(gix)) > u 3415 1n(X). 1)
n#(X) -> q_in#(f(gen))

B im0 > o 1e(q dnrigen)) X

U 1#(q Ut (F(V)),X) > p_in#(Y)

_1#(q_out (F(Y)),X) -> u_ 2#(p_in(¥) X, Y)

v2))
STRATEGY GOAL concrete GOAL#(12))

Figure 6.1: Proof of Example 6.2
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var x v v2)
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p_in(a(X) > u 3(p in(X),X)
p_in(X) -> u_1(q_in(f(gen)),X)
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w_2(p_out(Y),X,Y) -> p_ou
U306 et > 5 uttatn)
GEN -> F(GEN)
GEN -> g(GEN)
GEN >
GEN -> p_out (GEN)
BN > q_ovt(GEN)
OAL(v2) > p_in(v2))
[(STRATEGY GOAL concrete GOAL#(v2))




126 6. The NARRADAR termination tool




Modularity of Basic Narrowing
Termination

In Section 3.1 we recalled Hullot’s basic refinement of narrowing | , ] and
discussed its termination properties. Basic narrowing is widely used for solving equa-
tional unification problems since it is decidable in far more cases than full narrowing
while still being complete for equational unification in canonical TRSs.

As already mentioned before, the termination of basic narrowing was established
in Hullot’s PhD thesis for canonical TRS’s, as we saw in Proposition 3.4 at Chapter
3. Namely, basic narrowing terminates in a canonical TRS R if every derivation
stemming from the right-hand side of a rule is finite. In Theorem 3.14 (Section
3.2) we generalized the result above by showing that the canonicity requirement is
superfluous.

In this chapter, we ascertain several criteria for modular termination of basic nar-
rowing in hierarchical combinations of TRSs, including generalized proper extensions
with a shared subsystem and a novel generalization of this class called (generalized)
relaxed proper extensions. We assume a standard notion of modularity, where a prop-
erty ¢ of a TRS is called modular if, whenever R, and R, satisfy ¢, then their
combination R{ UR, also satisfies ¢. Our modularity results for basic narrowing rely
on the commutation of basic narrowing sequences, which is studied in Section 3.1.

Structure of the chapter

Section 7.1 studies an interesting connection between basic narrowing and innermost
rewriting. Namely, termination of basic narrowing implies termination of innermost
rewriting. In Section 7.2 we provide a novel commutation result for basic narrowing
derivations. Section 7.3 recalls some standard notions from the modularity of rewrit-
ing, and then studies the modularity of basic narrowing termination in the standard
classes of modular combinations of TRSs. We demonstrate that termination of ba-
sic narrowing is highly modular in some of these classes, including disjoint unions,
constructor-sharing unions and the unions of composable systems. The restriction
to basic narrowing is of key importance for these results, which do not carry out to
unrestricted narrowing. Modularity of basic narrowing termination in hierarchical
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combinations of TRSs is studied in Section 7.4. Our most general result for the mod-
ularity of basic narrowing termination is proved for the novel class of (generalized)
relaxed proper extensions.

As a direct application, Chapter 8 discusses the modularity of decidability of
equational unification via basic narrowing. There, the conditions that guarantee
the preservation of termination and completeness of equational unification via basic
narrowing in the combination of TRSs are identified, making use of the modularity
results presented in this chapter.

The results in this chapter have been published in | , ]

7.1 Basic narrowing and innermost rewriting

In this section we establish an interesting connection between the termination prop-
erties of basic narrowing and those of the rewriting and the innermost rewriting
relations.

Basic narrowing | , ] is a restriction of narrowing which is essentially
based on forbidding narrowing steps on terms brought in by instantiation. In Section
3.1.1 basic narrowing was introduced using the traditional formulation based on the
notion of basic positions.

In this section however, we will make use of the skeleton-environment formulation,
introduced in Section 3.2. In this formulation, the expression to be narrowed is split
into a skeleton ¢t and an environment part 6, i.e., (¢,0). The environment part keeps
track of the accumulated substitution so that, at each step, substitutions are composed
in the environment part, but are not applied to the expression in the skeleton part,
as opposed to ordinary narrowing.

Definition 3.15 (Basic narrowing (skeleton-environment)| , D). Given
a term s € T(X,V) and a substitution o, a basic narrowing step for (s,o) is defined

by (s,0) “b”p,R,@ (t,0') if there exist p € Posx(s), | = r < R, and substitution 6§ such
that 0 = mgu(s|,o,l), t = (s[r]p), and o’ = (c0)[t].

Along a basic narrowing derivation, the set of basic occurrences of each term t6
occurring in the sequence (given by (t,)) is Posx(t), and the non-basic occurrences
are Posy(t0) —Posx(t). When p is not relevant, we simply denote the basic narrowing

relation by «6»7219. By abuse of notation, we also often relax the skeleton-environment
notation for basic narrowing steps, i.e., (s, o) '\137%79 (t,c’), and use the more compact
notation so «b»Rﬂ tof instead, but then a suitable track of the basic positions along
the narrowing sequences is implicitly done.

We say that R is («b»)—terminating (or that basic narrowing terminates in R)
when every basic narrowing derivation issuing from any term terminates. All modu-
lar termination results in this chapter are based on the termination result for basic
narrowing introduced in Theorem 3.14 This termination criterion provides a semi-

decidable criteria for («l;)—termination by just executing the rhs’s of the rules. In the
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literature, the original criterion that all basic narrowing derivations issuing from the
rhs’s of rules terminate has been approximated by two different sufficient syntactic
conditions: every rhs of a rewrite rule is either (i) a constructor term | , ]
(e.g. a variable) or (ii) a ground term (provided that R is (—)-terminating) |
, ]. In the light of the results of Chapter 3, it is obvious that we can
consider a third syntactic characterization: every right hand side of a rule is a rigid
normal form and R is confluent.
The following well-known example can be used to show a slightly surprising fact:

(«b»)-termination does not entail (—)-termination.

Example 7.1. Let us consider the reference example by Toyama [ , | that
shows the non-modularity of (—)-termination for disjoint unions (see [ ,

]):
Ro:£(0,1,2) — f(x,z, ) Ri:glx,y) =z glz,y) =y

Both, Ry and Ry are (— )terminating, whereas the system R = Ro UR; is not (—)-
terminating as witnessed by

£(0,1,9(0,1)) == £(9(0,1),9(0,1),9(0,1)) =% £(0,1,9(0,1)) == ...

Regarding basic narrowing, both Ro and R1 are (mb»)—termmating since every rhs is

unnarrowable, and trivially R s also («b»)-terminatmg, since the right hand sides are
still unnarrowable in the disjoint union Ro UR;.

The basic narrowing relation and the innermost rewriting relation termination
properties are related, as we show in the following.

Definition 7.2 (Innermost restriction). A reduction step t =P t' at position p is
called innermost if no strict subterm of t|, is reducible by =.

Given a TRS R, we let s denote the innermost restriction of the rewriting
relation, or simply innermost rewriting.

Note that the system R = R U R; is innermost terminating', i.e. the rela-

tion l>7€ou721 is terminating. Actually, by formalizing the idea that every innermost
rewriting sequence is a basic sequence | , ; , ;

, ], we are able to prove that («lia)—termination entails (-5)-termination,
even if does not entail (—)-termination. To the best of our knowledge, this is the first
time that this result is explicit (and exploited) in the technical literature.

In order to formalize this proof, we find it convenient to recall the original definition
of basic narrowing based on tracking sets of positions that are enabled for narrowing,
as it was introduced in Section 3.1.1.

We introduce an auxiliary notion of basic rewriting derivations, based on the basic
positions of Definition 3.2.

Tts innermost dependency graph contains no cycles and the results in | , ]
apply directly.
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Definition 7.3 (Basic Rewriting Derivations). Given a rewrite derivation
P P Pr
to #lo—wo 131 4l1—>r1 _sln—wn tpt1

we say it is based on a set of positions B (or simply called basic), with By, By, ..., By,
defined as

BO = POSg(to)
B; = (Bi—1 \ {pi-p | p € Pos(ti—1lp,)}) Ups.Poss(r;)

if B= By, and p; € B; for 1 <i <n.

In absence of extra variables, every basic rewriting derivation is also basic narrowing
derivation. The following result stating that innermost rewriting derivations are basic
was already proved by [ , ]

Proposition 7.4. | ) ] Let R be a TRS, t € T(X,V) be a term and o be a
normalized substitution. Any innermost rewriting derivation starting from a term to
is based on Poss(t).

Hence every innermost rewriting derivation is also a basic narrowing derivation.
Now it is immediate to derive the result that termination of basic narrowing entails
termination of innermost rewriting, which will be very useful later in Chapter 8.

Proposition 7.5. Termination of basic narrowing implies termination of innermost
rewriting.

Proof. By contradiction. Let R be a («b»)—terminating TRS and suppose that there
exists an infinite innermost rewriting derivation in R. Since this sequence is basic,
it is also a basic narrowing derivation. This contradicts the initial assumption of R

being («b»)—terminating. O

7.2 Commutation of basic narrowing derivations

This section is devoted to study the commutation properties of basic narrowing deriva-
tions, which are essential for proving the modularity of basic narrowing termination
in Section 7.4.2. The commutation of ordinary narrowing derivations was extensively
studied by Rety in | , ] (cf. Section 3.1.1). We follow the same style here.
Let us recall from Chapter 3 (Def. 3.7) the notion of antecedent of a position in a
rewriting sequence | ) ].

Definition 7.6 (Antecedent of a Position | , ). Lett %, .t be a rewriting
step, v € Pos(t), and v' € Pos(t'). We say position v is an antecedent of v’ iff either

1. v | p, i-e., v and p are disjoint, and v ="', or

2. there exists an occurrence v’ € Pos(r) of a variable x in v s.t. v/ = pu'w and
v = p.uw, where u € Pos(l) is an occurrence of x in l.
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With the notations of the previous definition, we have:
1. t]y =)o,
2. v' may have no antecedent if v' = p.u’ with v’ € Posx(r), or if v' < p,

This notion extends to a rewrite sequence by transitive closure of the rewriting
relation in the usual way. As seen in Chapter 3 (Def. 3.9), the notion of antecedent
can be extended to narrowing sequences. Below we define it for basic narrowing
sequences.

Definition 7.7 (Basic Narrowing Antecedent of a Position | , D-

Let ¢ «baa‘z’a t', v € Pos(t), and v' € Pos(t'). We say v is a basic narrowing
antecedent of v' iff v is an antecedent of v’ in the rewrite sequence to —% t'.

Note that if v is an antecedent of v’ in the basic narrowing sequence above, then
t|,u0' = t/‘v’ .

In the following, we consider basic narrowing derivations of the form

b b b
$ Mp,g—)d,o’ t /\’)q7l—>r79 U~ (71)

and we are interested in the conditions that allow us to commute the first two steps
by first applying to s the rule [ — r and then the rule ¢ — d to the resulting term.
If the subterm |, already exists in s, i.e., if ¢ admits at least one antecedent in s,
the idea essentially consists in applying [ — 7 to all the antecedents of ¢, and then
applying g — d to the resulting term. Let us give an example for motivation, which
at the same time illustrates the notion of antecedent.

Example 7.8. | , | Let us consider the following TRS R:
R flx,2) — =z (r1)
g(z,h(z)) — = (r2)

and the following basic narrowing derivation:

<h(f(0, l‘), g(l‘, y))v {}> ’\b’>p:17rl,{g;._>o} <h(.1‘, g(l‘, y))’ {l‘ — O}>

b
~q=2,r2,{y—h(0)} <h(l’, iK), {.’E — 0}>

The occurrences p and q are disjoint, therefore ¢ € Pos(h(x,x),{x — 0}) has an
antecedent in s at qo = 2. By first applying ro at qo, and then r1 at p we get:

(8(£(0,2), 8@, 9), {}) v tyoniey BEQ,2),2), {})
b

p,r1,{z—0} <h(.’L‘, LU), {LL’ = 0}>

The following result establishes that, in a basic narrowing derivation, the an-
tecedent of a position is always in the skeleton, and case 2 of Definition 7.6 cannot
happen.
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Lemma 7.9. Given a basic narrowing derivation t «gp’lﬁr,g t ’\b»q,’gﬁd,e u, and
q € Pos(t), if q is an antecedent of ¢/, then q and p are necessarily disjoint, ¢’ is in

the skeleton part of t', and q = ¢'.

Proof. Suppose that g and p are not disjoint, then we are in case 2 of Definition 7.6,
and ¢’ = p.u'.w for some u € Pos,(r). But this means ¢’ is in the environment, and
hence the narrowing derivation is not basic, which contradicts the initial assumption.

O

In the view of this fact, we can give a simpler definition of the basic narrowing
antecedent of a position which is equivalent to the one given in Definition 7.7.

Definition 7.10 (Basic Narrowing Antecedent of a Position). Let ¢ /\b’)p,lﬁr, t' be a
basic narrowing step, and v be a position such that v € Pos(t) and v € Pos(t'). We
say that v € Pos(t) is a basic narrowing antecedent of v € Pos(t) iff v || p, i.e., v

and p are disjoint.

This simpler definition of basic narrowing antecedent leads to the fact that basic
narrowing steps can be commuted only when the positions used are disjoint. This is
stated in the proposition below. The commutation of basic narrowing sequences is
the basis for the modularity results later in Section 7.4.2.

Proposition 7.11 (Commutation of Basic Narrowing). Every basic narrowing deri-
vation of the form
A

(t[d],)or > u (7.2)

p,g—d,o1 q,l—r,02

where q admits an antecedent int, i.e., p and q are disjoint positions, can be commuted
to an equivalent basic narrowing derivation:

b b
3 Mq,l—)r,ag (t[’l"]q)0'3 Mp,g—>d,o4 U (73)

and 0109 = 0304.

Proof. The following proof is an adaptation of the proof found in | ,
, Lemma 26].
It is useful to make explicit here the skeleton-environment formulation of the
derivations involved:

b b
<S’ 9> Mp,g%d,al <S[d]1)’ 901> Mq,l%r,c@ <8[d]P[T]q5 00102) (72)
b

b
(8,0) ~4 1oy (8[rlq, 003) ~) 046, (s[rlgld]p, Oos04)  (7.3)

where t = s6 and u = (s[d],[r]q)00102 = (s[d]p[r]4)00304. Note that positions ¢ and

p come from the skeleton.

We need to prove that o3 and o4 exist and that o109 = 0304. Existence of o3
follows from the fact that t|, and [ are unifiable.

t|qo102 = to1l|g 02 = (t[d]p)o1lq o2 = log = lo109
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Note that the second step in (7.2) uses the fact that p and ¢ are disjoint positions;
the first step formulation in (7.3) follows from (7.2); and the last step uses the fact
that [ is the lhs of a fresh variant of a rule, and hence Var(l) N D(oq) = 0.

So t|, and [ are unifiable; let o3 be an idempotent most general unifier of these
two terms. By definition, o3 < 0102 and there exists p such that o3p = 0102. We
show now that the terms t[r]qo3], and g are unifiable.

(tlrlg)osly p = (trlglp) o3p = (t[rlglp) o102 = go102 = gozp = gp

In (7.3), the second step formulation takes advantage of the fact that Var(g)ND(c3) =
(. To see why, consider that g is a fresh variant and D(c3) C Var(t|4) U Var(l).

By analogous reasoning, since (t[r],)o3|, and g are unifiable let 0 be an idempotent
most general unifier, & < p. It follows that 039 < o3p and hence 036 < o105. It should
also be clear that o3d is a unifier of ¢|,, and g, using the fact that Var(g) N D(o3) =0
since D(o3) C Var(t|,) U Var(l).

tlpo30 = (t[r]glp)osd = (t[r]q)osl, 6 = g6 = gosd

Because o is a most general unifier for these two terms, o7 < 036, and there is
a substitution py such that o1ps = 03d. By considering that Var(l) N D(o1) = 0, we
conclude

(tldlg)olp p2 = (tld]qlp)or1p2 = (t[d]qlp)o3d = logd = lo1p2 = lp2

Now, since o5 is an idempotent most general unifier of (¢[d],)o1|, and [, it follows
that oo < po, and therefore o100 < o1p2 = 039. But we also have 03§ < o109,
therefore there is a variable renaming 7 such that o109 = 0367. Now define o4 = d7;
04 is still a most general unifier of (¢[r],)o3|, and g as required, because most general

unifiers are closed under variable renaming | , , Corollary 9]. Hence
0109 = 0304, which concludes the proof. O
Example 7.12. | , | Ezample 7.12 above showed two basic narrowing steps

starting from the term h(£(0,x), g(z,y)) which could be commuted with each other. As
stated by Proposition 7.11, the positions used, p =1 and q = 2, were indeed disjoint.
On the other hand, if we consider the derivation starting from the term g(£f(z,y), 2):

(@E@ ), 2), 1) ety sy @2 D) Lo oy

then by Proposition 7.11 there is no way to commute these two basic narrowing steps
given at the non-disjoint positions p =1 and q = €.

7.3 Modularity of Basic Narrowing Termination
In this section we recall the standard classes of modular combinations of TRSs, and

discuss the standard notion of C.-termination that we lift to basic narrowing. Then we
present the first set of results about the modularity of basic narrowing termination,
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Do (D) D
(efier) @

constructor sharing  composable  hierarchical combination generalized
hierarchical
combination

&
@
&

Figure 7.1: Standard modular combinations

including only those combinations in which termination is always modular. We discuss
the combinations in which modularity requires additional restrictions in Section 7.4.

The following classes of combinations are standard in the literature. Note that we
sometimes use the word “union” to denote a combination of two TRSs (sometimes
simply called systems). In the case of a hierarchical combination, we sometimes write
“an extension system” to denote the combination of two TRSs without clarifying
which is the base and which is the extension. We sometimes write (D W D' & C, R)
to denote a TRS where C is the set of constructor symbols and D W D’ is the set of
defined symbols such that D and D’ are disjoint. We borrow the presentation from

[ , 2002].

disjoint Ry = (X¢, Ry) and Ry = (X1, Ry) are disjoint if they do not share symbols,
i.e., ¥ NY1 = &. Their union, called direct sum, is denoted R = Ro W R1.

constructor sharing (DyWCy, Ry) and (D1 WCy, Ry) are constructor sharing if they
do not share defined symbols, i.e., Dy ND; = 2.

composable Two systems (DoWD,, WCo, Ry) and (D1 WD, WCy, Ry) are composable
if DoND; = DyNCy =Dy NCy = D and both systems share all the rewrite
rules that define every shared defined symbol, i.e., Rg, C Rg N R; where
Rsp={l—=r € RyUR; |root(l) € Dsp}.

hierarchical combination A system R = Ry U R; is the hierarchical combination
(HC) of a base system Ry = (Do W Cy, Rp) and an extension system R; =
(Dl L‘HCth) iff D() le = @ and C() n Dl =J.

generalized hierarchical combination A system R = RoUR; is the generalized
hierarchical combination (GHC) of a base system Ry = (Do W Dsp, WCo, Ro) and
an extension Ry = (D W Dy, Wy, Ry) with a shared subsystem (F, Rgp,) iff
DoNDy =2,CoND1 =3, R, = RyNRy = {l —r € RyUR; ‘ TOOt(l) S Dsh}’
and F = {f € F| f occurs in Rgp}.
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Figure 7.2: Modular combinations

Figure 7.1 shows diagramatic renditions of the definitions introduced above. Roughly
speaking, in a hierarchical combination R = Ry U R; the sets of function symbols
defined in Ry and R4 are disjoint, and the defined function symbols of the base (Rg)
can occur in rules of the extension, but not viceversa. Note that constructor sharing
unions generalize disjoint unions, and are themselves generalized by both composable
unions and HCs. Finally, these last two combinations are subsumed by GHCs. These
relations of subsumption are illustrated in Figure 7.2.

The following example borrowed from [Ohlebusch, 2002] illustrates these notions.

Example 7.13. Consider the following TRSs:

R, — O+y — wy
* s(x)+y — s(z+y)

0—s(y) — O
R_ = r—0 — =«
s(z) —s(y) — z—y

R Oxy — O
o s(x)xy — (zxy)+y

B pow(z,0) — s(0)
Rpow = {pow(x,s(y>) —  xxpow(z,y)

R o nil++ys — ys
app (x:xs)++ys — x: (rs++ys)

R+ and Rapp are disjoint, R4 and R_ are constructor-sharing, R4 UR. is composable
with R4 U Rapp, and R, U Ry is a HC where R, extends Ry. Lastly, the system
R1 = RpowUR+ extends Ro = R URy in a GHC with a shared subsystem R, = Ry.



136 7. Modularity of Basic Narrowing Termination

As noted by | , ], this classification of combinations of TRSs is straightfor-
wardly applicable to programming languages and incremental program development.
The modularity results of direct-sums can be used when two subsystems are defined
over different domains, e.g. the natural numbers and the Boolean domain. The mod-
ularity results of constructor sharing unions can be used when two subsystems define
independent functions (none of the two systems use the procedures defined in the
other) over a common domain. HCs model the notion of modules in programming
languages. In this context, modular termination proofs can pave the way towards ap-
plying standard termination analyses and tools to real-life languages since this offers
a means to connect termination problems in programming languages to lower-level,
rewriting-based solutions. Actually, for proving termination of programs of real-life
programming languages supporting a wide range of programming and software de-
velopment features, termination problems are often step-by-step transformed into
“simpler” ones, and then finally translated by rewriting-based termination tools into
constraint-solving problems of a given logic which can be handled by standard solvers

(see | , 2008; ; )-

In the rest of this section, we show that the («b»)—termination is modular for disjoint
unions, constructor-sharing unions, and the union of composable systems.
We start the discussion by extending to basic narrowing the standard notion of

Cc-termination and proving that C.-termination of basic narrowing is implied by («b»)—
termination.

7.3.1 (C.-termination

The notion of C.-termination is used in the literature for proving termination of
rewriting in a modular way | , ]. A popular proof technique is essen-
tially based on finding sufficient conditions for the modularity of the more restrictive
Ce-termination property, which is a sufficient condition for the modularity of (—)-
termination. We recall the notion of C.-termination from page 67 in Section 4.3.

Definition 7.14 (C¢). | , , Def.21] We let C¢ denote the TRS
{Cg(x, y) — X Cg(x,y) - y}

where cg 18 a fresh function symbol.
A TRS R is said to be Ce-terminating if R UCg is terminating.

Example 7.15 (] , ). Consider the system R given by the rule £(0,1,x) —
f(x,z,x). R is terminating, but it is not Cg-terminating. To see why, consider the
following infinite — R U C¢ derivation:

f({Cg(O, 1), Cg(O, 1), Cg(O, 1)) —ce
1

f({O, Cg(O, ), Cg(O, 1)) —Ce

1({0,1,¢£(0,1)) ==
f({Cg(O, 1), Cg(o, ), Cg(o, 1)) —Ce -+
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This definition can be lifted in the obvious way to (basic) narrowing termination of

RWC,, which we call CE—(«b» )-termination. The following consequence of Theorem 3.14
is interesting.

Proposition 7.16. Let R be a TRS. R is Cg—($)—terminating if and only if the TRS
RWC, is (Nb»)—terminating.

Proof. Immediate by Theorem 3.14 because the rhs’s of the rules in C. satisfy the
termination condition for basic narrowing derivations of Theorem 3.14 and c¢ is a
fresh function symbol. O

In contrast, a similar property does not hold for rewriting, but only for innermost
rewriting (see | , ]). That is, C.-termination is a sufficient condition for

(—)-termination, whereas C;(@)—termination (resp. CE—(«b»)—termination) is a suf-
ficient and necessary condition for (-%)-termination (resp. («b»)—termination). This

means that both («b»)—termination and (-%)-termination are unaffected by non de-
terministic collapses produced by sets of collapsing rules such as the two rules for

g in Example 7.1. As a result, (-»)-termination is much more modular than (—)-
termination and, as we will see in the following sections, («b»)—termination is at least

as modular as (-)-termination.

7.3.2 Disjoint and Constructor-sharing Unions

We start by showing that («b»)—termination is modular in constructor-sharing unions,
a result easily derivable from Theorem 3.14.

Theorem 7.17 (Modularity of Constructor-sharing Unions). Termination of basic
narrowing is a modular property for the union of constructor-sharing systems.

Proof. Let R = Ro U R; be a constructor-sharing union of two («I)»)—terminating
TRSs. We need to prove that any basic narrowing derivation issuing from every right
hand side in R is finite. Every derivation stemming from the right-hand side of a rule
of Ry only uses rules from Rg (there is no redex w.r.t. R1), and then such derivations

are finite by hypothesis, since Rq is ('\I)»)—terminating. The same argument applies
to the right-hand sides of the rules of R;. Finally, by Theorem 3.14, the conclusion
follows. 0

Obviously, modularity of («b»)—termination for constructor-sharing unions implies mo-
dularity for disjoint unions as well. Example 7.1 illustrates this.

Corollary 7.18 (Modularity of Disjoint Unions). Termination of basic narrowing is
a modular property for the union of disjoint systems.
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7.3.3 Composable unions

Composable unions generalize constructor-sharing unions in that the two systems are
allowed to have a set Dy, of shared defined symbols and the rules Ry defining them
are all included in both systems. A consequence of this is that the rules in Ry, cannot
contain calls to functions defined out of Ryj,.

Lemma 7.19. Let (Do W Dy, W Co, Ry) and (D1 W Dy, Wy, Ry) be two composable
systems with a shared system Rgp, = {l = r € Ry U Ry | root(l) € Dsp}. Then no
right-hand side of a rule in Ry contains a function symbol in Dy U Dy.

Proof. Let us assume that there is a rule in Ry, whose right hand side contains a
function symbol f € D; where i € {0,1}. f cannot be a defined symbol in the
other system D;_;, since by definition Dy N D; = @. This implies that f must be a
constructor symbol in the other system, i.e., f € C;_;. But also by definition this is
not allowed, as Dy NC; = D1 NCy = @. Then f must be a shared symbol, f € Dy,
which contradicts the initial assumption. O

The next theorem extends the modularity of («g)—termination to composable sys-
tems.

Theorem 7.20 (Modularity of Composable Unions). Termination of basic narrowing
18 a modular property of composable systems.

Proof. Let R = Rop UR; be the union of two composable, («b»)—terminating TRSs.
We can partition the rules in R in the following disjoint sets:

Rsh = RoNRy
0 =Ro\ Ran
Rll :Rl\Rsh

Basic narrowing derivations issuing from the right-hand sides of the rules in R or R}
terminate by an argument analog to the one used in the proof of Theorem 7.17. By
Lemma 7.19, derivations issuing from the right-hand sides of R, include no redex
w.r.t. either R, or R}. Because basic narrowing never reduces any redex occurring at
a non-basic position (i.e. in the environment part of the tuple representation), these
derivations must also terminate. By Theorem 3.14, the conclusion follows. O

7.4 Modularity in Hierarchical Combinations

So far we have seen that («b»)—termination is modular without additional conditions for
the unions of disjoint systems, constructor-sharing systems and composable systems.

For the class of (generalized) hierarchical combinations however, («lz»)—termination is
not modular in general, but only under some restrictions. In this section we prove that
modularity holds for the novel class of generalized relazed proper extensions (GRPE).
Proper extensions (PE) are a restriction of hierarchical combinations introduced by
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Figure 7.3: More modular combinations

Krishna Rao in [Fao, 19954] in order to model the modularity of (-)-termination,
although they have proved useful in other contexts too, see [Ohlebusch, 2002] for an
extensive survey. Generalized proper extensions (GPE) extend proper extensions to
systems with a shared subsystem. Generalized relaxed proper extensions are less re-
strictive on the right hand sides than generalized proper extensions. For our proof of
modularity of basic narrowing termination, we consider generalized relaxed proper ex-
tensions and generalized relazed nice extensions (GRNE), two less restrictive versions
of generalized proper extensions and generalized nice extensions (GNE), respectively.
Figure 7.3 shows the different modular combinations studied in this section.

Let us first introduce the auxiliary notion of functional dependency. The function
f depends on g, in symbols f B> g, if the evaluation of f involves a call to g after one
or more rewrite steps.

Definition 7.21 (Dependency relation >x [Rao, 1995a]). For a TRS (D WC,R)
the dependency relation >x is the smallest preorder satisfying the condition f g g
whenever there is a rewrite rule f(s1,...,8,) = r € R and g(t1,...,t,) is a subterm
of r, with g € D.

We often omit R when it is clear from the context. We say that a symbol f € D
depends on a symbol g € D if f > g.

Definition 7.22 (Split [ao, 1995a]). Let (D WC,R) be a GHC of a base system
Ro = (Do W Dsp, WCo, Ry) with an extension Ry = (D1 WDs, WCy, Ry). The set Dy of
defined symbols of Ry is split into two sets DY and D} where

e D! ={feDy|3geDy,flr g}
° D%:'Dl\p(l].
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Figure 7.4: Proper extension

That is, DY contains all the functions from Dy which depend on functions from R,
and D} contains those which do not. We also split Ry into two subsystems R) and
R!:

e RY={l—reRy|root(l) € DV}
e Ri ={l—reRy|root(l) € Di}.
We are now ready to introduce the class of generalized proper extensions.

Definition 7.23 (Generalized Proper Extension (GPE) [Rao, D). Let R = RoU
R1 be a GHC of a base system (DoWDspWCo, Ro) and the extension (D1 WD, WC, Ry).
Define the sets DY, Di, RY and R} as in Definition 7.22. Ry is a generalized proper
extension (GPE) of Ro iff Rsn, C Ri and every rewrite rule | — r € RY satisfies that,
for every subterm t of r such that root(t) € DY and root(t) >x root(l), t contains no
function symbol from Dy U DY strictly below its root.

By abusing notation, we often say that R; U Ry is a GPE to mean that it is a
GHC where R; is a GPE of Ry. This applies not only to GPEs but also to the rest
of restrictions of (generalized) hierarchical combinations defined from now on. Figure
7.4 illustrates the notion of proper extemsion, i.e., a generalized proper extension
without a common subsystem. The following two examples illustrate the notion of
(generalized) proper extensions.

Example 7.24. Consider computing the factorial of a number in tail recursive style.

factacc(0,2) — =z

fact(z) — factacc(zx,1)
R, - {
factacc(s(y),z) — factacc(y,z *s(y))

R, — Oxy — O
T os(@)xy = (zxy)ty
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R is a hierarchical extension of R, but it is not a GPE, because of the call to the (x)
operator below the recursive call to factacc in the right hand side of the 3rd rule of
Ri. (%) is an operator defined in the base R., and below a recursive call, occurrences
of defined symbols of the base system are forbidden by the proper restriction.

On the other hand, a direct, non tail recursive definition of factorial is a GPE.

Example 7.25. Consider computing the factorial of a number.

R — fact(0) — 1 _ Oxy — O
T fact(s(z)) — s(z)sfact(z) ) s(z)xy — (zxy)+y

Ry is a hierarchical extension of R. and it is a GPE, since there are no calls to a
defined symbol of the base mested below a recursive call in a right hand side of the
extension.

To understand why non-proper extensions can be troublesome for the modularity

of ('\b»)—termination (and (=%)-termination), consider the following example.

Example 7.26. Consider the following TRSs, whose combination is hierarchical but
not proper since there is a call to b in the one rule of R1:

Rq:{f(a) = £(b)} Ro:{b— a}
Individually, basic narrowing is clearly terminating in both systems since their right-

hand sides are constants. However, there exists the following infinite “/)RSURl deriva-
tion
b b b
f(a) ~ £(b) ~ f(a) ~ -
produced by the nesting of a redexr w.r.t. Rqy inside the recursive call to £ in the rhs
of the rule of R1.

Let us now introduce the main idea behind our relazed generalization of GPEs by
means of the following example.

Example 7.27. Consider the following TRS, an encoding of the exponentiation xY
with group axioms that are commonly used in the specification of many cryptographic
protocols [ , ; , |, where the constructor symbol g
s used as a generator for the exponentiation.

Ri: exp(exp(g, X),Y) — exp(g, X+Y)
Ro: X+xX1-51 X*x1 — X 1+ X - X

Basic narrowing trivially terminates on each system separately, since every rhs is
unnarrowable. However, Ry is not a GPE of Ry, and even so it is easy to see that
basic narrowing does terminate in the union Ri1 U Ry. The reason is that the outer
function symbol exp in the recursive invocation occurring in the right-hand side of
the rule of R1 is blocked forever, and therefore cannot cause non-termination. Our
notion of generalized relaxed proper extension captures this idea.
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Figure 7.5: Relaxed proper extension

We recall the notion of root-stable rigid normal form introduced in Definition 3.29
in Chapter 3, which lifts to narrowing the standard concept of head normal form.
By a slight abuse of terminology, in this chapter we consider root-stable rigid normal
forms with regard to a basic narrowing relation, instead of the unrestricted narrowing
relation. The following definition formalizes this.

Definition 7.28 (Root-Stable Rigid Normal Form for Basic Narrowing). A term s
is a root-stable rigid normal form (rs—rnf) w.r.t. R iff either s is a variable or there

. . >e b
are no substitutions 6 and ¢’ and terms s’ and s" s.t. s =5 '~ g 4 8"

Roughly speaking, a term t is a root-stable rigid normal form if and only if it is
a variable or if there is no possible instantiation of ¢ which enables a basic narrowing
step at the root after giving arbitrary rewriting steps below the root. The notion of
root-stable rigid normal form is stronger than the notion of rewriting head normal
form, i.e., every root-stable rigid normal form is also a head normal form, but the
opposite is not true. Constructor terms as well as ground normal forms are trivial
cases of root-stable rigid normal forms.

We are ready now to formalize the notion of generalized relaxed proper extensions.

Definition 7.29 (Generalized Relaxed Proper Extension(GRPE)). Let R = (D W
C,R) be a GHC of a base system Ro = (Do W Dsp, W Co, Ry) and the extension Ry =
(D1 WDy, WCi, Ry). Define the sets DY, D}, Ry and Ri as in Definition 7.22. Ry
is a generalized relaxed proper extension (GRPE) of R iff Rsn, C R} and every rule
I — 1 in RY satisfies the following condition:

(H1) for each subterm t of r such that (a) root(t) € DY, (b) t is not a rs—mf, and
(c) root(t) =g root(l), t does mot contain a function symbol from Doy U DY
strictly below its root.

Figure 7.5 illustrates the notion of relazed proper extension rather than generalized re-
laxed proper extension, i.e., a generalized relaxed proper extension without a common
subsystem. The reader can check that the TRS of Example 7.27 is a GRPE.
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The most general result of this chapter states that termination of basic narrowing
is a modular property for GRPEs.

Corollary 7.30. Termination of basic narrowing is a modular property for finite
generalized relaxed proper extensions.

The proof of this statement is developed throughout the sections ahead and stated
at the end of the chapter. We adapt a succesful proof scheme introduced by Kr-
ishna Rao in [ , ] to study modularity of innermost rewriting termination.
This scheme is based on modularly decomposing a proper extension into a number
of layered nice extensions, a class of hierarchical combinations smaller than proper
extensions. Nice extensions are appealing because modularity results that hold in
this class can be lifted to proper extensions by means of a suitable modular argu-
ment. Informally, modularity of innermost termination is proved for nice extensions
as follows:

1. given a base system R and an extension R1, a set Sg,ur, of terms that contains
the right hand sides of the nice extension Ro U R; is identified,

2. innermost termination of a nice extension is proved to be equivalent to innermost
termination over the set Sg,uRr,,

3. a nice extension is split into two TRSs belonging to an even smaller class of
modular combinations, called crosswise independent unions, and modularity of
innermost termination for crosswise independent unions is proved,

4. finally, a commutation result on two specialized relations obtained from Sg,u%r,
and the modularity of innermost termination for crosswise independent unions
are used to prove innermost termination over the set Sg,ur, -

In Section 7.4.3, for proving the termination of basic narrowing in generalized relaxed
proper extensions, a similar decomposition scheme based on generalized relaxed nice
extensions is applied. Then, our proof of modularity of basic narrowing termination
for generalized relaxed nice extensions proceeds as follows:

1. given a base system Ry and an extension R, a set Sgg&'};l of terms that

contains the right hand sides of the generalized relaxed nice extension Ry U Rq
is identified (Section 7.4.2),

2. the equivalence between basic narrowing termination for generalized relaxed
nice extensions and basic narrowing termination over the set Sgg&'}';l follows

from Theorem 3.14 (Section 3.1),

3. a generalized relaxed nice extension is split into two crosswise independent sys-
tems (Section 7.4.2) and modularity of basic narrowing termination for crosswise
independent unions is proved (Section 7.4.1),

4. finally, the commutation result for basic narrowing of Proposition 7.11 (Sec-
tion 7.2) is applied to two specialized relations obtained from S;g;&'}le and the
modularity of basic narrowing termination for crosswise independent unions is

used to prove basic narrowing termination over the set S;go_tj};l (Section 7.4.2).
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Figure 7.6: Crosswise independent union

7.4.1 Crosswise Independent Unions

Crosswise independent unions (CIU) are a generalization of composable unions in
which the non-shared defined symbols of the other system are not allowed in right-
hand sides. As for composable unions, defined symbols in D, depend only on func-
tions in Dgp. We study them as an instrumental step for achieving the proof of
modularity of basic narrowing termination for nice extensions in the next section.

Definition 7.31 (Crosswise Independent Union (CIU) [Rao, D. [Rao, ]
Two TRS’s Ry = (Do W Dsp, W Co, Ry) and Ry = (D1 W Dgp, W1, Ry) are crosswise
independent if

(Z) Rsn = RoN Ry Z{l—)TER()URl |T00t(l) EDS}L}
(i) for all f € D; UDg, and g € D14, i € {0,1}, we have f ¥ ryuR, 9-

We say that R = RoUR1 is a crosswise independent union (CIU) iff Rg and R are
crosswise independent.

Figure 7.6 illustrates the notion of a crosswise independent union. Let us show

that («b»)-termination is modular for CIUs.

Theorem 7.32. Termination of basic narrowing is a modular property for crosswise
independent unions.

Proof. Let R = Ro U R4 be the union of two crosswise independent systems. The
scheme of the proof is similar to the proof of Theorem 7.20. Essentially, since all the
derivations starting from the rhs of a rule in R = Rg U R use only rules that belong
either to Ry or Rq, and are, hence, finite in both cases, by Theorem 3.14 every basic
narrowing derivation w.r.t. R is finite. O
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Figure 7.7: Nice extension

7.4.2 Nice Extensions

In this section we prove that («b»)—termination is modular for generalized relaxed nice
extensions, the relaxed variant of generalized nice extensions introduced by Krishna
Rao in [lao, .

Definition 7.33 (Generalized Nice Extension (GNE) [Rao, D). Let R = (DY
C,R) be a GHC of a base system Ro = (Do W Dsp, W Co, Ry) and the extension Ry =
(D1 & Dgj, WCi, Ry). Define the sets DY, DI, RY and R} as in Definition 7.22. R4
is a generalized nice extension (GNE) of Rq iff Rsn C R and every rulel — r € RY
satisfies that for each subterm t of r and root(t) € DY, t contains no function symbol
from Do UDY strictly below its root.

Example 7.25 is a GNE where R, is an extension of R,. Figure 7.7 illustrates a
nice extension (i.e., a GNE with no shared subsystem).

Note that every GNE is also a GPE by construction. GNEs are a useful restriction
of GPEs, because it can be shown that every GPE can be modelled as a pyramid of
GNEs. The same applies to GRPEs and GRNEs. Therefore in some cases we can lift
results from GRNEs to GRPEs.

Definition 7.34 (Generalized Relaxed Nice Extension (GRNE)). Let R = (DWC, R)
be a GHC of a base system Ry = (Do W Dsp W Co, Ry) and the extension Ry =
(D & Dgj, WCi, Ry). Define the sets DY, DI, Ry and R} as in Definition 7.22. Ry
is a generalized relaxed nice extension (GRNE) of Ro iff Rsn C R} and every rule
I — r € RY satisfies the following condition:

(N1) for each subterm t of r such that t is not a rs—rnf and root(t) € DY, t contains
no function symbol from Dy U DY strictly below its root.

Example 7.27 shows two systems R; and Ry where R; is a GRNE of Ry but not a
GNE nor a GPE.

In a hierarchical combination Ry U R of a base system Ry and a GRNE R4, it is
not allowed in the right-hand sides of the extension R, to nest calls to functions which



146 7. Modularity of Basic Narrowing Termination

depend on the base system Rg, unless the subterm in the right-hand side of R; under
consideration is a root-stable rigid normal form. This contrasts with the less restricted
right-hand sides of proper extensions, where one is allowed to nest function calls that
are non rigid and dependent on R as long as they are not mutually recursive.
Following Rao’s proof scheme, we prove the result that basic narrowing derivations
starting from a special set E;J};l of terms are finite. Let us recall the standard notion
of context here. A context is a term C with zero or more ‘holes’, i.e., the fresh constant
symbol O. If C is a context with k holes and ¢ a list of k terms, C[t] denotes the

result of replacing the k holes in C by the terms in ¢.
Definition 7.35 (S;;;S};l terms). Let R = (DWC, R) be a GRNE of a base system
Ro = (Do W Dgp WCo, Ry) and the extension Ry = (D1 W Dy, Wy, Ry). Define the
sets DY, D}, RY and Ri as in Definition 7.22. We define S;O_J;fal as the set of all
terms of the form C|[sy,...,s,|, where C is a context in (D UC) and the following
conditions hold:

1. every subterm s of C with root(s) € DY is a rs—rnf in R.

2. for all i, root(s;) € DY.

3. for all i, s; is not a rs—rnf in R.

4. s; contains no function symbol from Do U DY strictly below its root.

The reader can check that the right-hand sides of the rules in a GRNE belong to

the corresponding set of 87'30_[]'}‘;1
By definition, 87%;3;;1 terms have the property that no RY{ reduction step is
possible within the context C. Also, when we consider the skeleton-environment

formulation of basic narrowing, the set 85307&'};1 is skeleton-closed under ’\ZJ”ROURI if
R =RoUTR; is a GRNE. Lemma 7.36 states this formally.

Lemma 7.36. Let R = (DWC, R) be a GRNE of a base system Ro = (Do W Dgp, W
Co, Ro) and the extension Ry = (D1 W Dsp, Wy, Ry). Ift € 8;;0_5'};1 and either

(t,0) Lo, , (', 00) or (t,0) Lo (1, 00), then t' € ST .
Proof. First we consider the closedness of Rq. Let t = C[s1,...,s,], and let [ — r €

Ry be the rule applied in the basic narrowing step. We consider two cases depending
on whether root(l) is in DY or not.

(a) root(l) ¢ DY. That is, root(l) € (Dt UDgyp). There are two subcases:

1. The step took place in C. By definition, no DY symbol occurs in 7, hence ¢/
has the form C'[ty, ..., t,,], where each ¢; is a subterm of some s;, root(t;) €
DY, and no reduction is possible in R at a position within the context C.
Since it is always possible to cast ¢’ in this form, the lemma holds.

2. The step took place in a proper subterm of some s;. By definition root(r) €
D and ' has the form C[sy, ..., s}, ..., sn], where s} = s;[r], for some po-
sition p > €. Since no DY symbol occurs in r, 53 satisfies all the conditions

of Definition 7.35 and ¢ € Sig_ ¥ .
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(b) root(l) € DY. Therefore, the reduction happened at the root of some s;, since:
— any ocurrence of a D symbol in C is a rs—rnf and hence by definition not
narrowable.

— s, itself is not a rs—rnf and hence there exists some instance s;0 which is
eventually narrowable.

— there are no DY function symbols below the root of s;, hence the reduction
cannot take place in a proper subterm of s;.

Let r = C'[ug, . .., uy]; note it is by definition a term in S%;J}le Then, t' has
the form C[s1,...,8i—1,7, Sit1,---,Sn], and can be written as C"'[s1,...,s;_1,
ULy ooy Um,y Sitls- -« Sn), Where C” is the context resulting of appropriately join-

ing C' and C’ so that any subterm r of C” with root(r) € DY is a rs—rnf. This
means that ¢ satisfies all the conditions of Definition 7.35, and the lemma holds.

Now let us consider the closedness of Ry. Let t = C[s1,...,s], and I = r € Ry
be the rule applied in the basic narrowing step. The reduction takes place in C, and
since no symbol in Dy occurs in 7, we can write t' as C'[t1, ..., t;] where:

e (' is the context resulting of replacing a subterm in C' with r. By construction,
every subterm s in C’ with root(s) € DY was also in C (since r could not
introduce it) and therefore it is by assumption a rs—rnf.

e cach ¢; is a subterm of some s; with the following properties:

— root(t;) € DY.

— t; is not a rs—rnf.

e since t; is a subterm of s;, the following holds: t; contains no function symbol
in Do U DY strictly below its root.

This concludes the proof. O

Having defined and proved some properties about the set 87';07&"7;1, we are now
ready to consider ('\b»)—termination. Concretely, we show that the union of two systems
which are (ﬂ)-terminating over Sﬁo_g}le is itself (’\b»)—terminating. We prove the
result by using Proposition 7.11 given in Section 7.2 and some general results on
quasi-commutation of abstract relations, which we recall below.

Definition 7.37 (Abstract Reduction System [ , D). An
abstract reduction system (ARS) is a structure A = (A, {—a| @ € I}) consisting of a

set A and a set of binary relations —, on A, indexed by a set I. We write (A,—1,—2)
instead of (A, {—a| o € {1,2}}).

Definition 7.38 (Quasi-commutation | , D). Let —¢
and —1 be two relations on a set S. The relation —1 quasi-commutes over — if, for
all s,u,t € § s.t. s =ou—1 t, there exists v € S s.t. s =1 v ={; t, where =, is the
transitive-reflexive closure of —og U —1.
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Theorem 7.39. | ) | If the relations — and —1 in the
ARS(S, —0, —1) are terminating and —1 quasi-commutes over —q, then the relation
—o U —1 18 terminating too.

We now define an ARS with skeleton-environment tuples as elements, where the
skeletons come from the set S;;O_S;;l of terms, and the relationships —¢ and — of
the ARS are restrictions of basic narrowing.

Definition 7.40 (A(Ro,R1)). Let R = RoUR; be a hierarchical combination where
R1 is a GRNE of Ro. Define the sets DY, D1, R and R} as in Definition 7.22. We
define the ARS A(Ro,R1) = (S;é;ﬂ;;l X Subst, —q,—1), where the relations —¢ and

—1 are defined as follows. Let s = Clsq, ..., Sn] be a term in S;;O_J}le below. Then:
[ ]
<C[807 ey Sn],(7> —0 <C/[U()7 . ,’U,k]7 90)
if (Clso, ..., Sn],0) '\l)’)RouR},o (C'ug, . - . ,ug],08) is a basic narrowing step given

within the context C.

(C180y -+ 8n)s0) =1 (C[S0s -+ s 8i—1, Sty Sit1s- -+ 8n), 00)
if (C[s0,--.,8n],0) “b”Rl.,e (C[S0y---38i—1, S5 Sit1y -+, 8n],00) is a basic nar-
rowing step given at a subterm s;, with i € [0,...,n].

The relation —; U —q is exactly the basic narrowing relation over S;;O_J;;l In
the following we establish that both —¢ and —; are terminating relations.

Lemma 7.41. Given the ARS A(Ro,R1) of Definition 7.40, the relations —o and

—1 are terminating if Ro and R are («lzé)—termz'natmg.

Proof. The relation — is a subrelation of «b/ml, and hence terminating.

On the other hand, Ry and R} are crosswise independent: condition (i) in Defi-
nition 7.31 is satisfied by construction, and condition (ii) is satisfied since R} \ Rsp
does not depend on Ry by definition, and neither does Ry (as R, C R1 by Defini-
tion 7.34). Hence, their union is terminating by Theorem 7.32.

It should be obvious from the definition of A that —¢ can be seen as a restriction
of the system Ry U R} to the terms in S;;O_S;;l, and therefore termination of —
follows. O

We are now in a position to prove the quasi-commutation of the relation —; over
the relation —¢ in the ARS A(Ro,R1). The proof of this result relies on Proposi-
tion 7.11.

Theorem 7.42. Given the ARS A(Ro,R1) of Definition 7.0, the relation —1 quasi-
commutes over the relation —g.
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Proof. We have to show that

Vs, u,t € S;;;S}fal st.sBouSt, e S;S;J}le,p' € Poss(s) sit. s By v =5 t
(7.4)
where, by abusing notation, p, ¢ and p’ refer to positions that are in the skeleton part
of the tuples denoted by s,u,t and v.

As —¢C—p1 and —1C—(1, we can equivalently see these as —(; derivations. And
now, since —1 is a basic narrowing relation, we can use Proposition 7.11 to prove the
result. We only need to show that ¢ admits an antecedent in s. It is easy to see that
this is satisfied, because —¢ cannot create new — redexes, which means that redex
ulq was already there in s|;. On the other hand, since no redex can be propagated by
basic narrowing, p and ¢ must be disjoint. Applying Proposition 7.11, we have:

rs—rnf P, q rs—rnf q P,
Vs,u,t € Sp R, St 8 o1 u =g t, I ESE TR, st s 1 v g t (7.5)

from which we observe that (1) p’ = ¢, (2) t is reached in a single —¢; step, and (3)
the step s —¢1 v is indeed given in —1, which suffices to prove the result. O

We only need to combine Theorem 7.39 and Theorem 7.42 to obtain the desired

result on basic narrowing termination of S‘;;O_J;fh terms.

Corollary 7.43. Let R1 and Ry be two ('&)—terminatmg systems where R1 is a

GRNE over Ry. Let 85307&'};1 be a set of terms constructed following definition 7.35.

Then every basic narrowing derivation in Rog U Ry starting from a term of 87'30_3%1

terminates.

And now by Theorem 3.14, we can derive the modularity of («b»)—termination in
generalized relaxed nice extensions.

Corollary 7.44. Termination of basic narrowing is a modular property for general-
ized relazed nice extensions.

7.4.3 Proof of modularity in proper extensions

In this subsection, we take advantage of the fact that it is possible to model any
finite GRPE as a finite pyramid of one or more GRNEs. Essentially, the idea is
similar to the modular decomposition of a TRS given in | , ]. A given
GRPE is reduced to the canonical modular form, a modular partition such that each
of the individual modules cannot be split up. In order to achieve this we employ the
graph induced by the dependency relation > on defined function symbols, and the
rules corresponding to the symbols of every strongly connected component become a
module (i.e., a GRNE).

In order to prove the main result of this section, we first need two auxiliary defi-
nitions and one proposition.
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Definition 7.45 (Equivalence relation ~ and partial order I [Rao, D). Let
(DWC, R) be a generalized hierarchical combination of a base system (DoWDspWCo, Rp)
and the extension (D1 W Dy, W C1, R1). Define the sets DY, Di, RY and Ri as in
Definition 7.22. We define an equivalence relation ~% from the dependency relation
D>x , where the equivalence class containing f is denoted by [f]r , and a partial ordering
Tr on the set of equivalence classes:

o frRrgiff fBrgand gr f, where f,g € DY.
o [flr Irlglr f frR gand g #r f.

Since the signature of any TRS is a countable set, the equivalence relation ~
partitions DY into a countable set E of equivalence classes. Provided that the ordering
T is noetherian, it can be extended to a well-ordering of type A, where X is a countable
ordinal.

Definition 7.46 (X,, Su). Let (DWC, R) be a GHC of a base system (Do & Dy, W
Co, Ro) and the extension (D1 W Dy, W Cy, Ry). Define the sets DY, Di, Ry and R}
as in Definition 7.22. For any ordinal o we denote the a-th element in the above
well-ordering by E, (if « > X\ then E, = &), and the rules defining its elements as
R, ={l =1 €Ry|root(l) € E,}. We define the TRS Xo = Rsp URIURE, and
the combined system S, = Ry U (Uﬁ<a X3g). So is Ro and Sk, for k> X is Ro UR;.

The following result establishes the precise relation between GRPEs and GRNEs.

Proposition 7.47. Let (DWC, R) be a GRPE of a base system (Do W Dgp, W Co, Ro)
and the extension (D1 W Dy W Cy, Ry). Define the sets DY, DI, RY and R as in
Definition 7.22. If the relation Jr is noetherian, then X, is a GRNE of S, for every
ordinal o, where S, and X, are defined as in Definition 7.46.

Proof. As Ry is a GRPE of Ry, we know the shared system Ry, is a subset of Rl and
hence by construction the first condition in Definition 7.34 is satisfied for any a. We
have to show that (N1) holds in X,. That is, for every | — r € X,,, if s is a subterm
of r s.t. root(s) € E, and there is a subterm u of s that contains a defined symbol
depending on Def(S,) — Def(X,), then s must be a rs—rnf. Since root(s) € E,,
it follows that root(l) € E, and, by definition, root(l) € DY and root(s) ~ root(l).
Therefore root(s) > root(l). Now, since Ry is a GRPE and root(s) € DY, the following
holds by (H1): if s contains a defined symbol depending on Dy, then s is a rs—rnf.
Finally, since Def(S,) — Def(X,) C Do UDY?, X, is a GRNE of S,. O

Now, we are ready to establish how GRNEs relate to GRPEs.

Theorem 7.48. Let R1 be a finite TRS s.t. it is a GRPE of Rg. R1 can be seen as
a finite pyramid of GRNEs.

Proof. By Proposition 7.47, assuming that the relation Jg,ur, is noetherian. O

With the results developed since Section 7.4.1, the proof of Corollary 7.30 is now
a trivial consequence.

Proof of Corollary 7.30. Follows from Corollary 7.44 and Theorem 7.48. O
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7.5 Discussion

The completeness and termination properties of basic narrowing have been studied
previously in landmark work | , ; ; ,

]. In this chapter, we contribute to the characterlzatlon of basic narrowing ter-
mination by providing modularity results for several modular decomposition classes.
It turns out that basic narrowing termination is surprisingly modular. In the next
Chapter we take advantage of these properties to provide results of modularity of ter-
mination plus completeness, leading to a study of the modularity of the decidability
of equational unification.

A study analog to the one developed in this chapter for basic narrowing would
be even more interesting for full unrestricted narrowing, as results of modularity of
termination for disjoint unions would provide important theoretical basis for studying
the persistence of narrowing termination. In the context of many-sorted rewriting,
a property is said to be persistent if whenever it holds for a many-sorted TRS R, it
also holds for the one-sorted version of R obtained by disregarding type information.
In the case of termination, persistence means that termination of a many-sorted TRS
R implies termination of the one-sorted version of R. While persistence of rewriting
termination has been widely studied in the literature | , ; , b;

, ; , ], as far as I can tell the narrowing case has not been
studied yet. Persistence of narrowing termination would have immediate implications
for the initial goal termination method of Chapter 5. There, we replaced logic variables
with generators. In a many-sorted setting, we would replace a logic variable of sort
S by a generator of the same sort. This would lead to a dramatical increase in the
precision of the approach. Reusing sort information for proving termination is not
an idea of our own; we are in good company [ , ; ].
Therefore, we anticipate that studying the modularity propertleb of full narrowmg is
a highly relevant line of future work.
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Modularity of Decidability of
Equational Unification

Unification of terms with respect to an equational theory E is the following problem

[ ) ; ; ]:

Given a set of equations I' = {s1 = ¢1,..., s, = t,} g, find all substitutions
o (called solutions) such that all equations are solved with respect to E,
i.e., E implies s;0 = t;o for all 1.

Usually, one is only interested in finding a finite representation of all solutions. One
important case of FE-unification problem is when the equational theory E can be
represented by a canonical set of rewrite rules, where basic narrowing is complete as
an equational unification procedure | , ]: informally, for every (normalized)
solution o, a more general substitution is computed by narrowing.

Relying on the results of Chapter 7 for the modular termination of basic narrowing,
the aim of this chapter is to identify combinations of classes of TRSs where equational
unification is decidable.

The results appearing in this chapter have been published in [ ,

].

8.1 Existing results

Modularity of unification is a central problem in automated deduction in equational
theories that are presented by a finite TRS. In particular, it is known that any dis-
joint combination of BNT-theories (basic narrowing terminates) is of unification-type
finitary [ , ]. As we will show basic narrowing terminates in the
combined theory too, which means that equational unification is decidable in the
combined theory (provided this theory additionally satisfies the conditions for the
completeness of basic narrowing as a unification procedure).

For the best of our knowledge, modularity of unification in hierarchical combina-
tions of theories has not been previously studied in the related literature. Without
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loss of generality, we restrict ourselves to the union of two equational theories. The
results for the union of several theories can be derived in the obvious way.

As far as we know, [ , ] proves the only previous modularity result for
the decidability of equational unification (via termination of narrowing) in canonical
TRSs. However, this result does not imply the modularity of narrowing termination
for a particular class of TRSs but rather the possibility to define a terminating,
modular narrowing procedure. The result in | , | is as follows: given a
canonical TRS R = Rq1 U Ro such that narrowing terminates for R, and Ro and
RIC Ri{IRo| (i.e. the normalization with R can be obtained by first normalizing
with Ry followed by a normalization with Rs), there is a terminating and complete,
modular narrowing strategy for R. Any complete strategy can be used within the

modular procedure given in | , ], including the basic narrowing strategy.
The original completeness result proved by Hullot for canonical TRSs was later
generalized in [ , | by Yamamoto to weakly innermost normalizing",

weakly canonical®> TRSs. Yamamoto also conjectured that weak canonicity would
suffice for completeness, but it was refuted by a counterexample in Middeldorp and
Hamoen | , ].

We summarize the existing completeness results for basic narrowing below. But
first let us recall the notions of critical pair and orthogonal system. Two (possibly
renamed) rules | — r and I’ — 1’ overlap if there is p € Posx(l) and substitution o
such that {|,0 = l'0. The pair (lo[r'o],,ro) is called a critical pair. A left-linear TRS
without critical pairs is called orthogonal. Orthogonality implies confluence | ,

).

Proposition 8.1 (| , ). Basic narrowing is a complete E-unification algo-
rithm for canonical TRSs.

Proposition 8.2 (| , ). Basic narrowing is a complete E-unification
algorithm for weakly canonical, weakly innermost normalizing TRSs.

Proposition 8.3 (] , ). Basic narrowing is a complete
E-unification algorithm for weakly normalizing, orthogonal TRSs.

Proposition 8.4 (] , ). Basic narrowing is a complete
FE-unification algorithm for weakly canonical, right-linear TRSs.

Note that Proposition 8.2 is strictly more general than Proposition 8.1, since
canonicity implies weak canonicity and the property of weak innermost normalization.
Weak normalization (WN) is therefore an important property for completeness.

b
As termination of basic narrowing (SN™) implies innermost rewriting termination

(SN i*), which in turn implies weak normalization, we have that termination of basic

LA TRS is called weakly innermost normalizing if every term has a normal form which can be
reached by means of an innermost reduction sequence.

2 Weakly canonical TRSs are confluent & weakly normalizing TRSs. A TRS is called weakly
normalizing if every term has a normal form. Weakly canonicity is referred to as semicompleteness
in other works, e.g. [ , 1.
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narrowing implies weak normalization:
b 3
SN~ = SN~ = WN
Lemma 8.5. If basic narrowing terminates in R, then R is weakly normalizing.

We focus now on termination of the E-unification process via basic narrowing,
and its completeness. We say that a narrowing calculus is an effective E-unification
algorithm for R if it provides all the solutions in R for a given E-unification problem
or fails when there are no solutions, in a finite amount of time. The following corollary
characterizes the conditions under which basic narrowing constitutes an effective F-
unification algorithm.

Corollary 8.6. Basic narrowing is an effective E-unification algorithm for (f\b»)—
terminating confluent TRSs.

Proof. Termination is one of the assumptions, and completeness follows from Lemma 8.

and Proposition 8.2. O

It can be seen that this corollary subsumes all the completeness criteria enumer-

ated above as a consequence of the assumption of ('\b»)—termination: with respect to
Proposition 8.1, termination is dropped; regarding Proposition 8.2, WN and WIN are
dropped; since orthogonality implies confluence, Proposition 8.3 is also subsumed,;
and right-linearity as well as WN from Proposition 8.4 can also be dropped when

(«ﬁ)-termination holds.

8.2 Modularity of decidability of E-unification via
basic narrowing

In this section, we discuss the modularity of decidability of F-unification via basic
narrowing; or more precisely, the preservation of the effectiveness of basic narrowing
as a F-unification algorithm in modular combinations of TRSs. Let us start with the
case of composable systems.

Theorem 8.7 (Modular Unification in Composable Unions). Decidability of E-
unification via basic marrowing is a modular property for the union of composable

(«b» )-terminating, confluent systems.

Proof. We have shown modularity of basic narrowing termination for composable
unions in Theorem 7.20. As for completeness, confluence is shown to be modular for
weakly normalizing composable unions in | , , Theorem 5.2], and weak

normalization is implied by («b»)—termination using Lemma 8.5. The result follows
from Corollary 8.6. O

ot
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Note that the previous result implies also the modularity of F-unification decid-

ability in the unions of disjoint and constructor-sharing («b»)—terminating confluent
systems.

None of the classes of hierarchical combinations considered previously in this arti-
cle enjoy modularity of E-unification decidability without additional conditions. The
following example shows that modularity of equational unification cannot be directly
extended to proper extensions, in this case due to the absence of confluence.

Example 8.8. | , , Example 8.1.3] Consider the linear, canonical, C.-
terminating systems Ry and R1.

Ro:a —=>b Ry : fla) = c

R1 is a proper extension of Rg but the combined system is not even locally confluent.
We have:
c+ f(a) = £(b)

that is, the term £(a) has two different normal forms.

Under the additional restriction that the union is an overlay TRS, we prove next
that decidability of equational unification is modular for GRPEs. Let us recall the
standard notion of overlay system. A critical pair (lo[r'o],,ro) is called an overlay
if p =€ Given a TRS R, a critical pair (lo[r'c],,ro) is called joinable if there is
a term u such that lo[r'o], =% u and ro —% u. A TRS whose critical pairs are
overlays is called an overlay TRS. The proof reuses a number of standard results from
the literature, which we include here for self-containment.

Lemma 8.9 (Huet’s Critical Pairs Lemma | , ). A term rewriting system is
locally confluent if and only f all its critical pairs are joinable.

Lemma 8.10 (Newman’s Lemma | , D). A terminating TRS is confluent
if and only if it is locally confluent.

Lemma 8.11. | , , Theorem 3.23] Every locally confluent overlay system
1s terminating if and only if it is innermost terminating.

Before formulating and proving the result for GRPESs, let us introduce an auxiliary
lemma.

Lemma 8.12. Local confluence is a modular property of hierarchical combinations of
two systems where one is a generalized relaxed proper extension of the other and the
union is an overlay system.

Proof. This result is stated in [ , , Lemma 30] for GNEs, and we generalize
it here GRPEs.

By the Critical Pairs Lemma, to show local confluence one needs to show joinability
of every critical pair. Since every individual system is locally confluent, we only need
to consider critical pairs resulting from the overlapping of a symbol from the extension
system with a symbol from the base. As the union is an overlay system, overlapping
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is only possible at the topmost position, and moreover, only in rules from R (since
DoNDy = 0). Hence, since these rules are included in both systems, the critical pairs
induced are, by assumption, joinable, and by the Critical Pairs Lemma the union
system is locally confluent. O

Now we are ready to prove that decidability of F-unification via basic narrowing
is modular for GRPEs (and GPEs) if the union is an overlay system.

Theorem 8.13 (Modular Unification in Relaxed Proper Extensions). Decidability
of E-unification via basic narrowing is a modular property for the union of two fi-

nite («b»)—terminating, confluent systems where one is a generalized relaxed proper
extension of the other and the union is an overlay system.

Proof. Local confluence in the union system follows from Lemma 8.12. Termination
of basic narrowing in the union system follows from Corollary 7.30. This implies that

the union system is SN - by Proposition 7.5, and SN “ina locally confluent overlay
system implies termination by Lemma 8.11. Thus, confluence follows from Newman’s
Lemma. Finally, completeness follows from Corollary 8.6. O

Looking at Example 8.8 now, it can be seen that the union of Ry and R; fails to
be an overlay system and therefore the union is not confluent and hence not suitable
for E-unification by using basic narrowing.

Though the decidability of equational unification is modular for proper extensions
only under the additional condition of overlay system, the following subclass of proper
extensions enjoys modularity in every case, with no additional restrictions.

Definition 8.14 (Generalized Restricted Proper Extension(GrtPE)). [Fao, ]
Let R = RoUR be a GHC of a base system Rg = (DoWDspWCo, Ry) and the extension
R1 = (D1 W Dgj, W C1, R1). Define the sets DY, D, R} and R} as in Definition 7.22.
R1 is a generalized restricted proper extension (GrtPE) of Rg if it is a generalized
proper extension and additionally, no left-hand side of R1 contains a function symbol
from Do UDY strictly below its root.

Figure 8.1 shows how this new combination is related to previous combinations.
Now, we can see that Example 8.8 is not a GrtPE because the extension R, contains
a defined symbol from the base system R in one left-hand side. On the other hand,
in Example 7.25, R, is a GrtPE of R.,.

The next theorem states the conditions under which decidability of equational
unification is modular for GrtPEs.

Theorem 8.15 (Modular Unification in Restricted Proper Extensions). Decidability
of E-unification via basic narrowing is a modular property for the union of two fi-

nite («b» )-terminating, confluent systems where one is a generalized restricted proper
extension of the other.

Proof. Basic narrowing termination is modular for finite GrtPEs since it is modular
for finite GRPEs by Corollary 7.30. Confluence is shown to be modular for weakly
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Figure 8.1: Modular combinations for E-unification

normalizing GrtPEs in [Rao, 1995b, Theorem 10]. Weak normalization is implied by

('\b»)-termination using Lemma 8.5. Finally, completeness follows from Corollary 8.6.
O

For the modularity of completeness we also consider a restricted version of relaxed
proper extensions called restricted relaxed proper extensions. Generalized restricted
relaxed proper extensions are essentially generalized relaxed proper extensions with
the extra condition on the left hand sides introduced in Definition 8.14. In the fol-
lowing we prove that decidability of E-unification is also fully modular for this class
of combinations.

Definition 8.16 (Generalized Restricted Relaxed Proper Extension). Let R = (DW
C,R) be a GHC of a base system Rog = (Do W Dgp, W Co, Ry) and the extension Ry =
(D & Dgp, WCh, R1). Define the sets DY, Di, R and Ri as in Definition 7.22. R4
is a generalized restricted relaxed proper extension (GrtRPE) of Ro if and only if
it is a generalized relazed proper extension and additionally, no left-hand side of Rq
contains a funtion symbol from Dy U DY strictly below its root.

Figure 8.1 shows how this new combination is related to previous combinations.
The following result states the modularity of E-unification decidability in this class
of combinations and strictly subsumes Theorem 8.15.

Theorem 8.17 (Modular Unification in Restricted Relaxed Proper E.). Decidability
of E-unification via basic narrowing is a modular property for the union of two fi-

nite ('\11» )-terminating, confluent systems where one is a generalized restricted relazed
proper extension of the other.
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TRS Disjoint|Shared C.|Composable| GrtPE |GrtRPE GPE GRPE

Confl Th. 8.7] Th. 8.7 | Th. 8.7 |Th. 8.15|Th. 8.17|No(Ex. 8.8)|No (Ex. 8.8)

Confl 4+ Ov|Th. 8.7 Th. 8.7 Th. 8.7 |Th. 8.15|Th. 8.17| Th. 8.13 Th. 8.13
Legend

Confl Confluent
Ov The combination is an overlay system

Table 8.1: Modularity of Decidability of F-unification via basic narrowing

Proof. Let Ry and R be two finite («g)—terminating confluent TRSs such that R, is
a GrtRPE of Ry. We define Ry;, as the system that results of replacing with a fresh
symbol the root symbol in every rs—rnf in a right-hand side of R. For instance, for
the TRS of Example 7.27 we have:

Ri: exp(exp(g, X),Y) — exp(g, X+Y)
Ry exp(exp(g, X),Y) = Qexp(g, XY

where Qeyp is a fresh symbol.

R1p is by construction a GrtPE of Ry, and hence by Theorem 8.15 basic narrowing
provides an effective F-unification algorithm for the union system R, = Rip U Ry.
That is, basic narrowing is complete and terminating in R;.

In order to show that basic narrowing is complete and terminating in the union
R = Rq1 U Ry too, we proceed by contradiction. Suppose that it is complete and
terminating for R, but not for R. Then either:

e R is not («b»)—terminating,
e R is not complete.

But neither case is possible, since by definition of rs—rnf, R; and R have the
same derivations, i.e., one can establish a bisimulation between R; and R. Hence
basic narrowing is also an effective F-unification algorithm for the union R, which
concludes the proof. O

8.3 Discussion

In this section we have presented a number of modularity results for the decidability
of E-unification via basic narrowing. Table 8.3 summarizes all these results. Note

that ('\li»)—termination is an implicit condition in all cases in the table. The hierar-
chical combination of theories where basic narrowing terminates and is complete as
an equational unification procedure was studied. The conditions for the decidability
of F-unification under the combinations of theories were identified and characterized.
These results are relevant to powerful functional languages featuring narrowing and
equational unification, such as Maude (e.g., see | , 1), which include
effective unification algorithms based on the basic narrowing strategy. Furthermore,
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in the context of cryptographic protocol verification, equational unification (e.g. via
basic narrowing) is the basis for effective security and safety analyses (see |

) Y ])



Conclusion

Narrowing has numerous applications, including equational unification, reachability
analyses, termination of programming languages, to name a few. The recent emphasis
on equational unification procedures for analysing security protocols | ,

] is an example of a recent practically oriented research project where narrowing
plays a key role for deciding equational unification.

In the mentioned applications and in most of the applications of narrowing, termi-
nation of the rules under consideration gives the very strong property of decidability,
which is often not only desirable but required. In this dissertation we presented a
number of techniques which significantly extend the state of the art in termination
of narrowing, and we do so covering a broad spectrum of termination properties, in-
cluding full termination, termination from an initial goal, and modularity properties.

All these developments not only work in theory but can also be efficiently auto-
mated. We presented NARRADAR, a tool that gives the user an automated proof of
termination of narrowing where possible. NARRADAR is also quite capable of proving
termination of logic programs, with minimal research effort from our part. All these
claims are backed by empirical evaluations.

We conclude by pointing out the directions for future work amongst the different
topics presented. We started in Chapter 3 with a study of syntactic classes of systems
where narrowing always terminates. While we focused on full, unrestricted narrowing,
it would be interesting to generalize the study to cover the basic restriction, as its
applications in equational unification would surely benefit from a characterization of
the systems in which basic narrowing always terminates.

Chapter 4 introduced an automated method for proofs of narrowing termination
in term rewriting systems in general. Again, the study was focused mainly on full
narrowing, and it would be desirable to extend this study to other narrowing vari-
ants. In particular, not only basic narrowing, but also innermost and needed nar-
rowing, which are pervasively used in the semantics of functional logic programming
languages, should be considered, with the goal of eventually yielding a method for
proving the termination of programs. Moreover, we haven’t discussed here the prob-
lem of non-termination of narrowing. Non-termination analysis can help to improve
the quality and efficiency of automated termination provers, as pointed out in the
related literature | , ; , , b
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, ; , ]. In the case of narrowing, we anticipate a big efficiency
improvement from quickly identifying non-termination problems. However,it is not
possible to directly reuse the techniques developed for non-termination of rewriting,
since the transformation of a narrowing problem into a rewriting problem developed
in Chapter 4 is sound but not complete. Either a new, complete projection should
be developed, or the non-termination analysis be performed directly in the narrowing
setting.

Chapter 5 proposed two different extensions to the dependency pair framework,
in order to consider initial goal problems as well as relative termination problems. As
these two extensions address only the essential aspects required for their application
to termination of narrowing from an initial goal, we anticipate considerable room for
improvement, including;:

e the use of strategies or the Q-restricted rewriting relation of | , ]
to more accurately model infinite relative rewriting derivations.

e an extension to restore minimality after the application of the relative termina-
tion criterion.

These enhancements would have a direct effect on automated proofs of termination
of narrowing from an initial goal. But there is also room for improvement at the
narrowing level itself. As already mentioned in the conclusion of Chapter 7, replacing
a logic variable with a wniversal generator is an extremely coarse approximation
of the values that narrowing could instantiate this logic variable to. Instead, in
a many-sorted setting, a logic variable z of sort S could be replaced by a specific
generator which only produces values of sort S. If the TRS is well-sorted, then this
correctly approximates the possible instantiations of z. This technique can be applied
to unsorted TRSs too, following the type introduction approach of | , IR
which employs a simple preprocessing step that, given an unsorted TRS, returns a
many-sorted TRS with the most general sort. Overall, this can potentially lead to a
much more powerful technique for automated proofs of termination of narrowing from
an initial goal. But beforehand, a study of the persistence of narrowing termination
is required.

As already mentioned in the conclusion of Chapter 7, in the context of many-sorted
rewriting a property is said to be persistent if whenever it holds for a many-sorted
TRS R, it also holds for the unsorted version of R obtained by disregarding type
information. In the case of termination, persistence means that termination of a
many-sorted TRS R implies termination of the unsorted version of R. Persistence of
a property P is directly related to the modularity of P for disjoint unions. In Chapter
7, we studied the modularity of termination of basic narrowing for disjoint unions and
beyond. Hence these results could lead to results on the persistence of termination of
basic narrowing. In the light of this, we identify two possible research directions:

(a) Generalizing the method for termination of narrowing from an initial goal of
Chapter 5 to consider also basic narrowing, derive a result on the persistence of
termination of basic narrowing from the modularity results of Chapter 7, and
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combine these two to construct a method for termination of basic narrowing from
an initial goal based on type reconstruction.

(b) Proceed by extending the modularity results of Chapter 7 to full narrowing, with
the ultimate goal of obtaining a result on the persistence of full narrowing termi-
nation, which can then lead to an extension of the technique of Chapter 5 based
on type introduction.

Either way, the resulting method has a direct applicability to prove the termi-
nation of logic programs. Termination of logic programs is not only of interest for
programmers, but has many other applications. For instance, because of its solid
theoretical roots, termination of logic programming can lead to proofs of termination
for other programming languages, e.g. Java bytecode [Albert et al., 2008]. A look to
the literature reveals that termination of logic programs is a highly active research
field: [Schneider-Kamp et al., 2009b; Schneider-Kamp, 2008; Schneider-Kamp et al.,
2009a; Nguyen et al., 2009; Genaim and Codish, 2003; Codish and Genaim, 2003;
Bruynooghe et al., 2007; Codish and Taboch, 1999; Arts and Zantema, 1996; Mar-
chiori, 1996; Colussi et al., 1995]. Even so, our empirical results in Chapter 5 suggest
that an approach based on the termination of narrowing could outperform the cur-
rently most succesful® approach, [Schneider-Kamp et al., 2009b]. This is only mildly
surprising, as there is a very direct connection between narrowing and the operational
semantics of logic programming [Bosco et al., 1988].

las per the Termination Competition edition of 2009.
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