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Simple Summary: Deep learning (DL) is expanding into the surgical pathology field and shows
promising outcomes in diminishing subjective interpretations, especially in dermatopathology. We
aim to show the efforts of implementing DL models for melanocytic tumors in whole slide images.
Four electronic databases were systematically searched, and 28 studies were identified. Our analysis
revealed four research trends: DL models vs. pathologists, diagnostic prediction, prognosis, and
regions of interest. We also highlight relevant issues that must be considered to implement these
models in real scenarios taking into account pathologists’ and engineers’ perspectives.

Abstract: The rise of Artificial Intelligence (AI) has shown promising performance as a support tool
in clinical pathology workflows. In addition to the well-known interobserver variability between
dermatopathologists, melanomas present a significant challenge in their histological interpretation.
This study aims to analyze all previously published studies on whole-slide images of melanocytic
tumors that rely on deep learning techniques for automatic image analysis. Embase, Pubmed, Web
Of Science, and Virtual Health Library were used to search for relevant studies for the systematic
review, in accordance with the Preferred Reporting Items for Systematic Reviews and Meta-Analyses
(PRISMA) checklist. Articles from 2015 to July 2022 were included, with an emphasis placed on
the used artificial intelligence methods. Twenty-eight studies that fulfilled the inclusion criteria
were grouped into four groups based on their clinical objectives, including pathologists versus deep
learning models (n = 10), diagnostic prediction (n = 7); prognosis (n = 5), and histological features
(n = 6). These were then analyzed to draw conclusions on the general parameters and conditions of
AI in pathology, as well as the necessary factors for better performance in real scenarios.

Keywords: skin; cancer; melanoma; melanocytic tumors; dermatopathology; computational pathol-
ogy; deep learning; classification; segmentation; computer-aided diagnosis

1. Introduction

Cutaneous tumors are the most common type of cancer. The bulk of deaths in
this category are caused by melanoma, although it counts for only 1% of skin tumors.
The histopathological diagnosis can sometimes be challenging, and it has demonstrated a
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significant discrepancy in pathologists’ interpretations [1–3]. The histopathological inter-
pretation prevails as the gold standard for tumor diagnosis in a standard light microscope.
Despite current genetic and epigenetic advances that have helped to understand the patho-
physiology of these melanocytic tumors, some still remain undeciphered completely and
represent a significant challenge in diagnosing and determining prognostic factors [4].
For instance, errors in cancer diagnosis might happen in as many as 11.8% of all cytologic–
histologic specimen combinations [5]. The number of errors poses a serious issue for society
as a whole, in addition to the patients.

In Digital Pathology (DP), the glass slide can be digitized to produce a high-resolution
image resembling the one from the microscope, called Whole-Slide Image (WSI). According
to studies, WSIs can be used for primary diagnosis just as successfully as a microscope [6].

A new chapter in pathology has been made possible by DP, including telediagnosis
and the use of Artificial Intelligence (AI) to analyze histological images [5,7]. The implemen-
tation of AI strategies in health care has been a subject of great attention because it has the
potential to augment the efficiency of experts. Regardless of whether the data chosen by the
algorithm are deemed significant or not to the human eye, Deep Learning (DL) applications
can leverage large amounts of data (including high-definition images) to identify important
patterns and make accurate predictions [8]. All kinds of work in tumor pathology can be
carried out using DL-based algorithms, including tumor diagnosis, subtyping, grading,
staging, and prognosis prediction, as well as identifying pathological features and genetic
changes. As AI can help improve diagnostic accuracy and objectivity, pathologists can
spend more time on high-level decision making and integrating DL biomarkers into clinical
workflows [9,10]. Additionally, the use of AI models in DP brings the promise of reducing
pathologists’ workload, as well as diagnosis uncertainty for ambiguous lesions such as
spitzoid melanocytic tumors.

To the best of our knowledge, this study is the first that aims to analyze the published
research works of DL methods for automatic image analysis of melanocytic tumors’ WSIs
exclusively. The chosen studies were reviewed and analyzed from both an engineering and
a medical perspective by way of a Systematic Review (SR), in compliance with the Preferred
Reporting Items for SRs and Meta-Analyses (PRISMA) standards [11]. In this work, we
propose to evaluate the significance of clinical data in the diagnosis and/or prognosis and
the performance of the established pipeline using DL. These are then used to discuss and
draw conclusions according to their specific clinical aims and highlight the related issues of
these methods to become more effective in real scenarios.

2. Materials and Methods
2.1. Literature Search Strategy

Embase, Pubmed, Web Of Science (WOS), and Virtual Health Library (VHL) were used
to search for histopathological image analysis of melanocytic tumors, with a focus on the
applied AI techniques and including papers from 2015 up to July 2022. The PRISMA [11]
guidelines were followed during data extraction, analysis, and reporting. The words
used for the search were the following: "(Nevi and Melanomas) AND (neural networks,
computer OR DL) AND (pathology)" according to Emtree terms for Embase, MesH terms
for PubMed, Keywords for WoS, and Decs/MesH terms for VHL.

2.2. Study Eligibility and Selection

For the SR, the inclusion criteria were studies on WSIs of melanocytic tumors using
DL models for image analysis and processing. As for the exclusion criteria, articles were
removed from this review if:

i. No DL-based methods were used;
ii. The writing language was different than English;
iii. The analyzed tissues containing melanoma were other than skin (e.g., lymph node

metastasis and uveal melanoma);
iv. The used data sets were not of human origin.
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Regarding the study selection, two reviewers, including one certified pathologist
(AMZ) and one engineer with image analysis experience (LL), independently screened
all the titles and abstracts from the publications and performed an eligibility assessment.
For the selected articles, the data retrieved from each study were the following: general
information regarding paper publication (author, publication year, and country), the aim of
the proposed work, clinical and histopathological data, data preparation information (WSI
scanners, magnification level, patch size, number of images, and image preprocessing steps),
Ground Truth (GT), evaluation metrics (accuracy, sensitivity, specificity, and segmentation
metrics), used GPU, and DL methodology (architectures, patch aggregation, etc.).

The quality of the publications was evaluated according to the Checklist for Artificial
Intelligence in Medical Imaging (CLAIM) [12]. It is important to mention that one of the
studies was a letter to the editor [13]. After reviewing its eligibility and discussing it with
three reviewers, we decided that this publication would be included because it fulfilled the
eligibility criteria despite being a research letter.

2.3. Study Analysis and Performance Metrics

The three most important categorization performance indicators selected for this study
were accuracy, sensitivity, and specificity, when they were available. The amount of accurate
and inaccurate predictions made by a classification model affects how well it performs. One
of the most frequently used classification evaluation measures, accuracy, is calculated by
dividing the total number of predictions given a data set by the number of right predictions.
When the target classes in the data set are evenly distributed, accuracy is useful; nonetheless,
it should not be utilized as a unique measurement. In contrast to accuracy, sensitivity and
specificity are unaffected by imbalanced data. The algorithm diagnoses the proportion of
cancer patients and computes the sensitivity with a better performance expression for a
specific class. Opposite to sensitivity, specificity reports the portion of patients that did not
have cancer but were predicted by the model as noncancerous.

3. Results

As a result, 292 articles in total, including 100 from Embase, 83 from PubMed, 79 from
WoS, 18 from VHL, and 12 from other sources (citation searching and Google Scholar), were
found. Out of all these papers, 83 were duplicate studies that were eliminated. To establish
if the remaining 209 studies matched the eligibility requirements, their titles and abstracts
were carefully examined. The PRISMA flow diagram summarizing the included searches
and databases is shown in Figure 1.

All in all, 28 studies were included according to the inclusion criteria and were
categorized, after reviewing their objectives and methodology, into the four following
groups, as shown in Table 1:

• DL models vs pathologists (n = 10), where the algorithm is compared with a group of
pathologists apart from those who were in charge of GT;

• Diagnostic prediction (n = 7), where the algorithm demonstrates its performance
differentiating different groups of melanocytic lesions (e.g., melanoma and nevus);

• Prognosis (n = 5), where the algorithm recognizes important characteristics to deter-
mine the patient prognosis, i.e., lymph node metastasis and disease-specific survival
(DSS), among others;

• Histological features and Regions Of Interest (ROIs) (n = 6), where the algorithm
identifies key histopathological ROIs for further diagnosis (e.g., mitosis, tumor region,
and epidermis).

First and foremost, the number of data sets used as source data differed quite a bit.
Indeed, 13 studies (46%) used only one internal institutional source [14–26], while five
works (18%) [27–31] used open access repositories, such as The Cancer Genome Atlas
(TCGA) [32] and the National Cancer Institute (NCI) Genomic Data Commons (GDC) [33],
except for the work conducted by Zormpas et al. [31], who only used TCGA as their unique
source. It is noteworthy that Phillips et al. [27] used the largest number of sources (n = 10
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including TCGA). One of the studies (4%) did not describe the source that was used for the
DL model [34], and the remaining 32% used at least two different data sources (see Table 1).

These publications differ greatly in terms of the number of WSIs employed, size of
patches, and their magnification. For instance, the number of WSIs varies from 4 [22]
to 981 [35] among studies. Figure 2 illustrates these variations by giving an overview of
the minimum, median, and maximum amount of the used patch size, number of WSIs,
and magnification in the reviewed articles.

Records identified from*:
- Databases (n = 4 )
- Embase (n = 100)
- PubMed (n = 83)
- Web of Science (n = 79)
- VhL (n = 18)
- Registers (n = 280)

Records removed before 
screening:
- Duplicate  (n = 83 )
- Marked as ineligible by 
automation tools (n = 0)

- Other reasons (n = 0 )

Records screened
(n = 197 )

Records excluded**
(n =  164)

Reports sought for 
retrieval
(n = 25)

Reports not retrieved 
(n = 20)

Reports assessed for 
eligibility
(n = 33 )

Reports excluded:
- Meeting Abstracts (n = 10)
- Used with other types of 
tissue/tumors (n = 6)

- AI models not applied in WSI 
(n = 1)

Studies included in review (n = 16 )
Reports of included studies (n = 12 )

Records identified from:
Citation searching and 
Google Scholar (n = 12)

Reports assessed for 
eligibility
(n = 12)

Reports 
excluded: 
(n =  0)
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Figure 1. PRISMA flow diagram describing the search and selection process carried through for this
systematic review [11].

Figure 2. Minimum, median, and maximum amount of patch size, number of WSIs, and magnification.
The median amount of each parameter is represented by a red vertical bar.

All the studies used the pathologists’ interpretation as the GT. Out of these, 12 (42.9%)
added heat maps to explain the approach of the algorithm [17–19,23,27,29,34–39].

Nine studies (31%) used clinical metadata as a part of the pipeline for the prediction
of the algorithm [13,16,28–31,38,40,41]. All the studies in the prognosis group took clinical
information into account, and two of them used a follow-up of 24 months [40,41]. In the
ROI’s group, clinical information was not used for their predictions.

Below, we summarize these studies according to their objective, methodology, and re-
sults.
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Table 1. Studiesincluded in the systematic review, divided into the four previously defined categories, along with their main parameters. Mag.: magnification level.
n/a: not available. #: Number. xAI: studies that provide elements for explainable AI, e.g., GradCAMs or attention mechanism.

Study Year Studied
Structures Mag. # WSIs Patch Size Pre-Processing DL Method GPU Used # Sources Metadata xAI

C
om

pa
ri

so
n

vs
.p

at
ho

lo
gi

st
s

Ba et al. [42] 2021 Tumor 40× 781 256 × 256 Image quality review CNN and random
forest n/a 2 no yes

Bao et al. [36] 2022 Tumor 40× 981 224 × 224

Random patch
selection,

structure-preserving
color normalization

ResNet-152 NVIDIA
GTX 2080Ti 3 no no

Brinker et al. [43] 2022 Tumor n/a 100 n/a n/a ResNeXt50 n/a n/a no yes

Hekler et al. [14,15] 2019 Tumor 10× 695 n/a n/a ResNet50 n/a 1 no no

Phillips et al. [27] 2019
Tumor,
dermis,

and
epidermis

40× 50 512 × 512 Subtraction Modified FCN
NVIDIA

GTX 1080
Ti

10 † no yes

Sturm et al. [16] 2022 Mitosis 20× 102 n/a n/a n/a n/a 1 yes no

Wang et al. [37] 2020 Tumor 20× 155 256 × 256

Random cropping to
224 × 224, data

enhancement, and
augmentation

VGG16 n/a 2 no yes

Xie et al. [28] 2021
Tumor,
dermis,

and
epidermis

20× 701 224 × 224 Discard blank patches
(Otsu) ResNet50 n/a 3 † yes no

Xie et al. [17] 2021 Tumor n/a 841 256 × 256 Discard blank patches
(Otsu) ResNet50

NVIDIA
TITAN

RTX
1 no yes

D
ia

gn
os

is

Del Amor et al. [19] 2021 Tumor 10× 51 512 × 512 Discard blank patches
(Otsu) VGG16 with attention NVIDIA

DGX A100 1 no yes

Del Amor et al. [18] 2022 Tumor
5×,

10×,
20×

43 512 × 512
Discard blank patches
and with less than 20%

of tissue (Otsu)

ResNet18 with late
fusion of

multiresolution
feature maps

NVIDIA
GP102

TITAN Xp
1 no yes

Hart el al. [34] 2019 Tumor 40× 300 299 × 299 n/a InceptionV3
4 NVIDIA
GeForce

GTX 1080
n/a no yes
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Table 1. Cont.

Study Year Studied
Structures Mag. # WSIs Patch Size Preprocessing DL Method GPU Used # Sources Metadata xAI

Höhn et al. [38] 2021 Tumor n/a 431 512 × 512

Remove patches with
more than 50% of

background, random
selection of 100 tiles per

slide

ResNeXt50 with
fusion model to

combine patient data
and image features

NVIDIA
GeForce
GTX 745

2 yes yes

Li et al. [29] 2021
Tumor,
dermis,

and
epidermis

20× 701 224 × 224 Discard blank patches
(Otsu) ResNet50 n/a 2 † yes yes

Van Zon et al. [20] 2020 Tumor 40× 563 256 × 256 Data augmentation U-Net NVIDIA
2080 1 no no

Xie et al. [21] 2021 Tumor 40× 312 500 × 500 Filter out background
tiles

Transfer learning vs
fully trained:
InceptionV3,

ResNet50, MobileNet

n/a 1 no no

Pr
og

no
si

s

Brinker et al. [13] 2021 Tumor n/a 415 256 × 256 n/a ResNeXt50 n/a 3 yes no

Kim et al. [30] 2022

Tumor,
inflamma-
tory cells,
and other

20× 305 299 × 299 n/a
Inception v3 with

fivefold
cross-validation

n/a 2 † yes no

Kulkarni et al. [40] 2020

Tumor,
inflamma-
tory cells,
and other

40× n/a 500 × 500

Downsample to
100 × 100, nuclear
segmentation with

watershed cell detection

n/a n/a 2 yes no

Moore et al. [41] 2021

Tumor,
inflamma-
tory cells,
and other

40×,
20× n/a 100 × 100 n/a QuIP TIL CNN [44]

NVIDIA
GP102GL
[Quadro
P6000]

2 yes no

Zormpas-
Petridis et al. [31] 2019

Tumor,
inflamma-
tory cells,
and other

20×,
5×,

1.25×
105 2000 × 2000

(20× WSIs) n/a

Spatially constrained
CNN with spatial

regression,
neighboring ensemble

with softmax

NVIDIA
Tesla P100-
PCIE-16GB

1 † yes no
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Table 1. Cont.

Study Year Studied
Structures Mag. # WSIs Patch Size Preprocessing DL Method GPU Used # Sources Metadata xAI

R
O

I/
hi

st
ol

og
ic

al
fe

at
ur

es

Alheejawi et al. [22] 2021

Tumor,
inflamma-
tory cells,

and
epidermis

40× 4 960 × 960 Divide patches into 64
× 64 blocks ResNet50

NVIDIA
GeForce
GTX 745

1 no no

De Logu et al. [39] 2020
Tumor and

healthy
tissues

20× 100 299 × 299

Data augmentation,
discard patches with

more than 50%
background

Inception-ResNet-v2 n/a 3 no yes

Kucharski et al. [23] 2020 Tumor 10× 70 128 × 128

Data augmentation,
overlapping only for

minority class to
balance data set

Autoencoders n/a 1 no yes

Liu et al. [24] 2021 Tumor 10× 227
ROIs ‡ 1000 × 1000 Downscale

magnification to 5× Mask R-CNN
4 NVIDIA
GeForce

GTX 1080
1 no no

Nofallah et al. [25] 2021 Mitosis 40× 22 101 × 101 Data augmentation
ESPNet, DenseNet,

ResNet, and
ShuffleNet

NVIDIA
GeForce

GTX 1080
1 no no

Zhang et al. [26] 2021 Tumor n/a 30 1024 × 1024

Data augmentation,
color analysis for

tissue-contained patch
selection, normalization
of patches to a uniform
size, resize patches to

512 × 512

CNN, feature fusion
NVIDIA

RTX
2080-12G

1 no no

† At least one of the source institutions is open source, i.e., TCGA or NCI. ‡ Images are ROIs extracted from initial WSIs.
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3.1. Deep Learning Models vs. Pathologists

This group has the highest number of studies (n = 10) in our research. All showed
equal or better performance compared with the groups of pathologists who participated in
the studies.

Most of the works in this category used a ResNet architecture or one of its variants as
a basis to train their models. Brinker et al. [43] built an ensemble of pretrained ResNeXt50
CNNs to compare their classifier with 18 international expert pathologists in a task that
discriminates melanomas from nevi. To do so, the authors leveraged both annotated
and unannotated WSIs (i.e., both with and without the ROI delineation) and performed
the predictions at patch level. The patches’ malignant scores were then averaged to
obtain the WSI-level prediction. With a discordance of 13%, the algorithm had a better
accuracy compared with pathologists in the slides without annotation (92% [SD = 1%]
vs.90% [SD = 4%], respectively).

Moreover, Hekler et al. [14] performed the first head-to-head comparison of the
classification results for randomly cropped images with 11 practicing histopathologists.
The main goal of this study was to illustrate the benefit of DL techniques in medical
diagnosis, especially with limited information between nevi and melanoma. The proposed
CNN exceeded its performance with statistical significance (McNemar tests, p = 0.016) in
respect to the pathologists with an accuracy of 68% (SD = 8%) vs 59% (SD = 5%), respectively.
A previous study by the same author, using the same data set, showed that the algorithm
had a discordance with histopathologists of 19%, similar to results seen in the literature
between pathologists [15].

ResNet50 was employed in two articles by Xie et al. [17,28] as well. The first suggested
utilizing a trust counting method to automatically diagnose melanoma, junctional nevi,
intradermal nevi, and compound nevi. The patch preparation, patch-level model inference,
and trusted computing approach for WSI diagnosis composed the three components of the
diagnostic system. To obtain the classification probability at the slide level, the authors
applied a trust counting method by averaging the weights of patches predicted as a given
class with respect to all patches. The system’s effectiveness was then demonstrated by
comparing results with 20 pathologists and attained an Area Under the Receiver Operating
Characteristic (AUROC) of 98.6%, a sensitivity of 93.8%, and a specificity of 95.7% [28].
Additionally, Xie et al. proposed an interpretable diagnosis process in another work [17],
performing WSI-level classification with a similar counting method from the patches’
inference results. To provide interpretable results, the authors generated heat maps by
means of the Grad-CAM method to highlight the key feature regions of pathological
images at the patch-level inference step. In this study, five responsible board-certified
pathologists designated the lesion area and confirmed the labels that were obtained on the
WSIs. The achieved accuracy at the best point was 93%, although for pathologists’ average
point it was 73% [17].

It is important to highlight that most of the studies in this group performed a binary
classification of the lesions under study (i.e., benign/malignant), and only three works
also considered the performance for atypical melanocytic lesions [16,36,42]. In their work,
Bao et al. [36] developed a DL-based fully automated diagnostic method to classify into
these three classes, divided into patch prediction and patient diagnosis stages. While the
first step was based on a ResNet-152 architecture to perform a patch-level classification,
the second part consisted of aggregating the previous results for the final patient diagnosis.
Specifically, the authors leveraged previous studies [45,46] to perform a patch voting
aggregation strategy, where a WSI is assigned the class of the majority of patches. The results
of the proposed framework were then compared with one junior pathologist and two
senior pathologists. In diagnosing benign, atypical, and malignant melanocytic lesions,
the technique outperformed pathologists in both the internal and external testing sets,
reaching better F1-scores. The three pathologists reevaluated the type of melanocytic lesion
in these patients after receiving the diagnosis results from the suggested method, which
showed an improvement, particularly for the junior pathologist with statistically significant
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accuracy. This was carried out to confirm the clinical utility of the suggested method.
Another study that included atypical lesions was that of Sturm et al. [16], who applied a
DL algorithm previously developed for breast carcinoma mitosis cells based on a marker
Phosphohistone-H3 (PHH3) [47], to melanocytic lesions. In this work, the authors aimed to
demonstrate whether the initial mitosis algorithm could be used for cutaneous melanocytic
tumors’ analysis on H&E-stained images. The original algorithm relied on an ensemble
of networks trained on different data sets. The performance was compared with eight
pathologists (two academic and six dermatopathologists) in two rounds: first without,
and second with the help of a mitosis detection algorithm, with a washout period of at least
two months in between. The overall concordance of the pathologists with the consensus
diagnosis for all cases excluding nevoid melanoma (n = 89) appeared to be comparable with
and without AI (89% vs. 90%). However, the concordance increased using AI in nevoid
melanoma cases (n = 10) (75% vs. 68%).

In the pipeline of some studies, we found that two papers combined random forests
with a CNN model [37,42]. Among them, Ba et al. [42] introduced a DL algorithm for dis-
criminating melanoma from nevus. The proposed framework was conducted by integrating
three modules: an ROI tissue extraction stage, a CNN-based melanoma patch detection
step, and a slide-level classification module that considered atypical melanocytic tumors
as well. In this approach, the random forest enabled the slide-level classification, taking
as input the heat map of the patch-level prediction. Then, the algorithm was compared
with seven dermatopathologists who used MPATH-DX [48] for their diagnosis. There
was no statistical difference between the algorithm’s sensitivity and specificity and the
main performance of the pathologists. A weighted error was used to reflect the fact that a
false-negative result (failing to diagnose) was more detrimental than a false-positive result
(making a melanoma diagnosis when it was not). The DL algorithm outperformed all
except one dermatopathologist based on the weighted error scale, where the lower score
presented a better diagnostic performance yielding a score of 1%, and the weighted error
of the seven dermatopathologists ranged from 1% to 7%. In addition, Wang et al. [37]
established a model for the detection of neoplasia in melanocytic tumors of the eyelid.
While patch-level classification was based on a VGG16-based model architecture, WSI-level
prediction consisted of a random forest ML algorithm on the features extracted from the
visualization heat map. The outcome reached an accuracy of 98%, compared with the mean
accuracy of seven pathologists of 92% ± 6.2%.

Finally, Phillips et al. [27] proposed to segment the epidermis, dermis, tumor areas,
and essential structures for the Breslow thickness prognostic assessment. More precisely,
the authors leveraged Long et al.’s FCN-style network implementation [49] and modified
it to generate three levels of output granularity maps that they combined by means of a
weighted and element-wise summation. To assess the accuracy of the model’s predictions,
four pathologists measured the Breslow thickness with an inter-rater agreement of 87%
with a fixed marginal kappa of 0.5.

3.2. Diagnostic Prediction

This group’s principal objective was to differentiate two types of melanocytic le-
sions. We found six of them, mainly focused on melanomas and nevus [18–21,29,38].
Hohn et al. [38] combined histologic features with patient data (age, sex, and anatomical
site of the lesion) by means of fusion models in order to increase the accuracy in a binary
classification task (melanoma/nevus). For the former, a baseline ResNetX50-based image
classifier was trained, while the patient data classifier consisted of a random forest ensemble
learning method. The reported results in this article confirm that patient data integration to
CNN did not improve the accuracy.

In a study performed by Li et al. [29], the authors suggested an approach for melanoma
detection and localization using WSIs of several melanocytic tumor types (melanoma,
intradermal nevi, compound nevi, and junctional nevi). A ResNet50-based CNN model
was first trained for patch-level inference, followed by the WSI-level prediction, where
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averaging the patches’ predicted scores showed a slightly better performance than counting
the percentage of patches of each class. The system had an AUROC of 97% when using an
average technique to assess the performance of melanoma categorization.

In parallel, Van Zon et al. [20] applied a U-Net architecture for patch-level semantic
segmentation of tissues into melanoma, nevus, or negative for both. The authors then
combined the resulting masks with their corresponding tissue patches to feed a CNN model
to perform slide-level classification. The results on the melanoma data set have a sensitivity
of 97% and 96%, and a specificity of 98% and 99%, respectively.

Additionally, Xie et al. [21] examined the precision of using Inceptionv3, ResNet50,
and MobileNet on WSIs in separate and nonoverlapping patches. In total, 195 nevi and
117 melanoma were classified using two alternative training methods: transfer learning
and fully trained models. In this study, tissue areas were manually delineated by three
dermatologists and two pathologists for the purpose of analyzing the outcomes. The results
demonstrate that three convolutional network models are capable of accurately classifying
diseased skin images, with an accuracy ranging from 96.69% to 99.88% and an AUC of
99.44% to 99.99%. As can be observed, different models perform similarly while using the
same training technique. The experiment demonstrated that in the classification of skin
pathological image, the fully trained technique outperformed transfer learning.

Only three of the studies in developing predictions for diagnostic purposes included
Spitz tumors. Del Amor et al. [19] proposed an attention-based weakly supervised method
for spitzoid melanocytic lesion diagnosis in 51 WSIs. Specifically, the authors trained a
VGG16-based feature extractor with an attention module [50] for aggregation, refined with
Squeeze-and-Excitation blocks [51] for contextual information. The test results achieve an
accuracy of 92.31% at a 10× magnification. Subsequently, a year later, Del Amor et al. pre-
sented a multiresolution framework to assess morphological features at different resolution
levels and combine them to provide a more accurate diagnosis for Spitz tumors [18]. After op-
timizing the weights at a single resolution to enable transductive learning, the multiresolu-
tion model allowed to combine the perspective of three different resolutions
(5×, 10×, and 20× magnification levels) by means of a late fusion concatenating the
obtained feature maps. The experiments demonstrated that the proposed method out-
performed single-resolution frameworks in Spitz tumor classification. The comparison
of the results obtained by the model at 5× resolution and the proposed multiresolution
framework showed that the latter outperformed with an AUC of 83% compared with 54%.

Finally, Hart et al. [34] applied a CNN based on the Inception V3 network architecture
to distinguish between conventional and Spitz nevi. The model was trained at the patch
level, both with WSIs curated by two certified dermatopathologists and noncurated ones.
Then, the number of patches predicted as Spitz or conventional was tallied, and the
overall slide prediction was computed with whichever category was more abundant.
The classification accuracy of the 200 testing WSIs was 92%. Sensitivity was 85%, with a
specificity of 99%. On a per-class basis, 99 of 100 conventional nevi were classified correctly
(99%), compared with only 85% for Spitz nevi. Of the 16 misclassified WSIs, 94% were due
to Spitz-type lesions being classified as conventional. When further exploring the false-
positive calls, a strong edge effect was observed around the decision boundary, meaning
that the incorrect calls were primarily driven by minor differences in the expected versus
observed classes.

3.3. Prognosis

This group of studies focused on the prediction of prognosis (survival, metastasis, and
genetic mutations) using WSIs as a source. All the studies used clinical metadata, and two
registered a follow-up of 2 years ([40,41]).

Kulkarni et al. [40] proposed a DL method to predict visceral recurrence and DSS in
patients with primary melanoma. They designed a deep neural network (DNN) architecture
consisting of a CNN and a recurrent neural network (RNN). More precisely, the CNN
enabled the extraction of high-dimensional features from the patches, and these features
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were then processed to identify spatial patterns. The concatenation of features with the
RNN output to feed a fully connected layer then allowed to generate the final recurrence
prediction. An ROC analysis showed that the predictor strongly correlates with Distant
Metastatic Recurrence (AUC = 90.5%, 90%, and 88% in the two participating institutions),
independent of tumor location or tumor type. The multivariable regression shows that
the DNN predictor correlated with DSS when other clinical predictors were included as
covariables with HR= 58.7 (p < 0.001).

Subsequently, Brinker et al. [13] developed a digital biomarker to predict lymph
node metastasis from digitized H&E slides of primary melanoma tumors, based on Kulka-
rni et al.’s [40] cell feature extraction process. These were computed and combined with
patient clinical information and fed into a multilayer perceptron classifier with a Squeeze-
and-Excitation module [51], while a ResNeXt50-based CNN was also trained for patch-level
feature extraction. Finally, all the information extracted in parallel was combined through
a final classifier that gave a patch-level score, then averaged to give the final WSI pre-
diction. A matched vs. unmatched analysis between Sentinel Node (SN)-positive and
SN-negative cases was used for patient age, ulceration, and tumor thickness. The best
accuracy was achieved in trained and tested unmatched cases, (61% ± 0.2) AUROC only
using image features, with a sensitivity of 48% ± 14.2 and a specificity of 64% ± 11.1, re-
spectively. The ANNs trained and tested on matched cases achieved (55% ± 3.5%) AUROC
or less. The combination with the clinical features did not perform better, with an AUROC
of 61% ± 0.4.

Regarding the importance of the tumor microenvironment as a prognostic feature,
Zormpas et al. [31] described the importance of tumor infiltrating lymphocytes in DSS.
The authors proposed a multiresolution hierarchical framework aiming to leverage both
global and local context to improve cell classification. To do so, they first trained a spatially
constrained CNN [52] (SC-CNN) at a higher resolution to detect and classify cells (cancer
cells, stroma cells, lymphocytes, and epidermis cells). Then, they combined the cellular
neighborhood information with that of regional tumor classification (cancer area, normal
stroma, normal epidermis, lymphocyte cluster, and lumen/white space) on lower resolution
images by means of a conditional random field [53] that connected single-cell nodes to
regional classification results. The proposed model demonstrated the importance of spatial
neighboring and global context, with an accuracy of 96.5% compared with that of SC-
CNN alone (84.6%) on single-cell classification results. It also showed that a high ratio of
lymphocytes to all lymphocytes within the stromal compartment (p = 0.026) and a high
ratio of stromal cells to all cells (p < 0.0001 compared with p = 0.039 for SC-CNN only) are
associated with poor survival in patients with melanoma.

Two years later, Moore et al. [41] used a previously validated software called Quan-
titative Imaging in Pathology to detect tumor-infiltrating lymphocytes (TIL), or QuIP
TIL CNN, in early-stage melanomas. A Multivariable Cox proportional hazards analysis
was performed using automated digital TIL analysis (ADTA), depth, and ulceration as
covariables. It showed that the model contributed significantly to DSS prediction with a
Hazard Ratio (HR) of 4.18 (Confidence Interval CI 1.51–11.58, p = 0.006) compared with
the conventional TIL’s grading, depth, and ulceration made by pathologists; only depth
contributed to the prediction. (HR = 1.40, CI 1.03–1.89, and p = 0.031). Within the validation
set, depth, ulceration, T stage, and TIL grade correlated with DSS by univariable analysis;
ADTA significantly exceeded with HR = 4.79, CI 1.74–13.22, and p = 0.002.

Targeting the prediction of genetic mutations using H&E WSIs, Kim et al. [30] used
two approaches to predict BRAF mutations in melanoma. The first one used the Inception
V3 architecture to predict the presence of BRAF mutation from WSI and the possible
associated image features, and the second approach was detecting and quantifying nuclear
differences from WSIs. More precisely, the former started by identifying ROI patches with
an Inception-V3-based model before training the model for BRAF mutation prediction on
ROI patches only, with transfer learning. The final slide prediction was then computed by
averaging the patches’ probabilities. In parallel, the latter approach consisted of annotating
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nuclei on patches and then measuring nuclear features and relied on two previously
developed tools [54,55]. Here, Kim et al. combined these methods with clinical information
and showed that they outperformed the predictive power of any single model, achieving
an AUC of 89% (95% CI = 0.75–1) and an AUC of 79% (95% CI = 0.55–1) on the internal and
TCGA data sets, respectively.

3.4. Histological Features and ROIs

This last group focuses on identifying different histological regions or features relevant
to diagnosing melanocytic tumors. Only one of the selected papers used immunohisto-
chemical markers as the GT, in addition to the pathologist’ interpretation [22]. In this work,
Alheejawi et al. proposed a two-step method to segment cutaneous melanoma regions
within a WSI using MART-1 stained slide images for the GT. The authors made use of four
WSIs to first identify and segment melanoma against nonmelanoma nuclei using a 25-layer
CNN architecture inspired by the U-Net architecture [56], before highlighting the complete
ROI by applying morphological operations to the detected nuclei. The model succeeded in
segmenting the nuclei with more than 94% accuracy and segmenting the melanoma regions
with a Dice coefficient of around 85%.

Liu et al. [24] used a pretrained Mask-R-CNN model to segment potential ROIs to help
in melanoma diagnosis, starting by roughly identifying relevant entities before refining
these and generating the final segmentation masks. The metrics were based on the pixel
populations and reached an accuracy of 92%.

Additionally, Zhang et al. [26] proposed a melanoma recognition model based on the
multiscale features and probability maps. The model used convolutional layers, including
deformable convolution and channel attention. The proposed method could achieve 97%
precision in comparison with pathologists’ labels.

In parallel, De Logu et al. [39] trained a per-patch Inception-ResNet-v2 CNN model able
to discriminate, within a WSI, healthy tissues from pathological tissues in melanoma WSIs. It
can recognize portions of pathological and healthy tissues on independent testing data sets
with an accuracy, sensitivity, specificity, and F1-score of 96%, 95%, 97%, and 97%, respectively.

Furthermore, Kucharski et al. [23] were the first to implement a framework aiming
at segmenting nests of melanocytes. In this work, the authors used a semisupervised
convolutional autoencoder and leveraged both unsupervised and supervised learning to
first train the encoder and decoder to reconstruct the input images and then generate masks,
respectively. Despite the limited number of GT annotations, their approach reached a Dice
score of 81% on the nests’ segmentation task.

Nofallah et al. [25] published the first study regarding mitotic figures in WSIs of
melanoma tissue using two different state-of-the-art encoding units, ESPNet [57] and
DenseNet [58], efficient spatial pyramid of dilated convolutions, and densely connected
CNNs, respectively. The authors used images of mitosis and nonmitosis samples with their
corresponding labels as training input. The results show a sensitivity of 97% and 96%,
and specificity of 98% and 99%, respectively, with F-scores of 96% and 97%, respectively.

4. Discussion

To our knowledge, this SR obtained the largest number of articles (n = 28) published
about DL models for WSIs of melanocytic tumors. Indeed, most studies analyzing skin
tumors mostly focused on other image modalities such as dermoscopic or clinical im-
ages [59,60], since few research studies involving DL have yet to be carried out for skin
melanocytic tumors in WSIs. These image modalities strongly differ, both in terms of the
diagnostic information they provide and the technical handling they suppose (i.e., type
of features, size of the images, preprocessing required, etc.). This is why this SR aims to
bridge the gap in that regard, by highlighting the promise brought by DL for WSI analysis
and the need for more efforts in that sense.

In this section, we describe four research tendencies where DL can be applied in
dermatopathology for future ancillary tools in clinical practice. We organized them in
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pathologists’ comparisons with DL algorithms, diagnostic differences in a binary classifi-
cation between benign and malignant tumors, prognostic approaches, and relevant histo-
logical features. Our study differentiates from other SRs, such as Haggenmuller et al. [61],
focused on comparative studies between experts and the algorithm performances gathering
dermoscopic, clinical, and H&E-stained WSIs. In the histopathological images group, two
studies met the inclusion criteria. Zhang et al. [62] also gathered several studies, including
dermoscopic images. They included five studies using AI in predicting melanoma in
histopathology diagnosis and prognosis, including DL and non-DL models’ publications
between 1994 and 2020. Popescu et al. [63] focused on the different neural-network-based
systems explaining each one of them. They gathered studies of various data sources of WSI
and non-WSI. Moreover, Cazzato et al. [64] reviewed the AI models in skin lesion images,
including both melanocytic and nonmelanocytic ones.

4.1. Assistance Utility in Clinical Practice

All the studies analyzed in this SR achieved a promising performance according to
their objectives. This would suggest that these algorithms can be helpful for clinical practice.
Still, some issues must be contemplated to ensure their performance as a helpful tool in
the pathology laboratory workflow and avoid diagnostic mistakes in real scenarios. In this
section, we discuss the parameters that should be considered for applicability in the practice
of the pathologists’ workflow, thus achieving a better generalizability performance for
future research.

Regarding the number of institution sources for the data sets, 13 studies (41.38%) used
only one data source. Studies with only one source of data generally used local data sets,
while those using several sources tended to leverage open-access data sets as well. Despite
yielding good results concerning the objective of their research, studies using only one
source face a critical limitation in determining the reliability of studies in real scenarios
if they were to be applied to the clinical practice. The differences in the tissues between
diverse geographical and ethnic populations, or in the tissue processing (including gross
sectioning, fixation, section thickness, manual or automated staining, and digitization,
including scanners), can affect the image, thus resulting in differences among pathology
laboratories [65]. For these reasons, in order to be efficiently applied to the clinical practice,
models need to be trained with data sets coming from different sources: the more data
variety a model learns from, the better it will generalize to accurately predict unseen data.

DL models are also limited, because the pathologist is the usual GT to train them.
In some cases, the ambiguous characteristics of the lesion under analysis do not al-
low experts to perform an adequate and reliable diagnosis, as is the case for some spe-
cific melanocytic tumors. In particular, these clinically ambiguous tumors are called
"melanocytic tumors of uncertain malignant potential" (MELTUMP) or "borderline", terms
that are far from satisfactory or sufficient for adequate clinical management of patients [66].
Most of these tumors of uncertain malignant potential belong to spitzoid tumors. In our
study, we found that only three studies included MELTUMP in their research (10.71%)
[16,36,42]. Moreover, three studies used Spitz tumors in their data set (10.71%) [18,19,34],
although no atypical melanocytic Spitz tumors were included. Therefore, in these types of
tumors, there is a critical need for an early and more precise diagnosis to achieve the best
possible clinical outcome in addition to the valuable pathologist interpretation. DL models
will have to leverage pathologists’ experience combined with other biological data free
of subjectivity to diagnose these tumors more accurately, such as, for example, genetics,
epigenetics, survival, and outcome [64,67].

The clinical information helps obtain more accurate diagnosis in dermatopathol-
ogy [68]. However, it seems that in DL methods, these variables can provoke a kind of
batch effect that, instead of helping the adequate prediction of the algorithm, could affect it
negatively and cause a critical pitfall during the experimental DL pipeline [69]. In one of the
studies analyzed in this SR, Hohn et al. [38] showed that the clinical metadata integration to
CNN did not improve the accuracy. In addition, Brinker et al. [13] showed that the combi-
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nation of the model with the clinical features did not perform better compared with the one
that only used image features. Instead, the other articles for prognostic purposes showed
that the use of clinical variables was beneficial for their target [30,31,40,41]. Homeyer [65]
established that overpassing the negative impact of these variables starts by making use of
a considerable and miscellaneous data set.

4.2. The Rise of DL for WSI Analysis: Requirements and Promises

Numerous DL methods have been applied to medical image analysis, going from
quality enhancement and filtering or Content-Based Image Retrieval (CBIR) to segmentation
and classification.

In this SR, we identified relevant parameters that can affect DL models’ performance,
such as the number of input WSIs, which varied a lot among studies. While the largest data
set contained 981 WSIs [36], one study used only four WSIs to predict cutaneous melanoma
regions [22]. In particular, in the latter, the authors extracted 100 H&E-stained images out
of the original WSIs and divided them into training (70), validation (15), and testing (15)
subsets. Most of the studies analyzed in this review chose high-detailed magnification
levels to train their models, i.e., 40× (36%) and 20× (32%). On the contrary, low-detail
magnifications, such as 10× magnification level, were used less (18%), while magnifications
lower than 10× were almost never leveraged in DL studies. Two studies made use of a 5×
magnification level [18,31], and one of them also leveraged the 1.25× level as well. When
using these low magnification levels, studies demonstrated the benefits of combining them
with higher ones, as these focus more on the lesion context.

Yet, independently of the magnification used, WSIs generally need to go through
a patch extraction process in order to enable to train DL models without computational
limitations. As a matter of fact, most of the studies in this SR divided WSIs into smaller
patches, generally from 128 × 128 to 512 × 512 pixels each. To optimize model training,
additional preprocessing steps are often applied after the patch extraction process. Since
the patches containing a majority of background or blank parts might add noise to the
data set, and thus hinder an optimal training, most studies applied filtering operations
to discard them before feeding them to the models. In particular, we found most of the
works in this SR applied the Otsu method [70] to identify tissue parts within a WSI and
thus remove irrelevant patches.

Additionally, having a pool of images to train, validate, and test a model is a time-
consuming and arduous process. The alternative preprocessing technique used as a general
baseline in DL to provide additional samples with the intention of improving performance
is data augmentation.

After applying preprocessing to the input images, most studies leveraged well-known
architectures such as ResNet, VGG-series or Inception networks. Pretrained models provide
a background about the general features of the image such as edge or color characteristics.
This can be more efficient in time and computational costs than training a model from
scratch. As mentioned earlier, WSI-based tumor analysis usually requires patch extrac-
tion to apply such models, thus dividing studies into patch-level and WSI-level analysis.
In particular for diagnostic purposes, studies aiming at the latter need to aggregate patch
features in order to perform the overall classification. In these works, patch aggregation
can be performed in different ways and, more often than not, either involves an average of
their prediction scores [13,29,35] or the majority class among patches [34]. To implement
such methods, all the studies that provided the information (n = 11) made use of either Ten-
sorflow or Keras with Python (46% of the computed studies that provided the information),
PyTorch with Python (18% of them), or MATLAB (36%).

All this preprocessing, training, validating, and testing on histopathological patches
and WSIs is not computationally compatible with CPUs. To be able to handle these heavy
images in the different DL stages, significant GPU resources are required. In some articles
studied in this SR, the authors reported the type of GPU used because its power can affect
the DL time. The more powerful GPU can deliver the results faster and allow to consider
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more patches given an input WSI. GPUs are capable of handling several computations at
once. Yet, even with powerful and state-of-the-art GPUs, training DL models for WSI-level
analysis in recent studies in this SR still requires a previous patch extraction to avoid
computational limitations. Additional improvements in GPU hardware development and
distributed training procedures might help optimize DL training for WSI analysis.

4.3. Making the Bridge between Pathologists and AI Developers

Explainable AI (xAI) is a set of methods and processes to describe an AI model that
is gaining traction in the medical field. In our SR, 42.9% of studies open the door to the
explainability of the DL models by providing heat maps. Additionally, only one study [19]
made use of the attention mechanism [50] in the patch aggregation step to identify patches
that had more relevance in the model’s classification decision and make the final WSI-level
classification. Explainable methods are increasingly in demand in the field to explain DL
models’ decisions, a requirement to make them usable for further clinical use. Indeed,
in clinical practice, it is transcendent for pathologists to know how these algorithms
make their predictions; understanding why a system made a particular diagnosis can
help convince a pathologist that it is legitimate and will help refine the prediction of the
algorithm. This will promote not only the reliability of the algorithm but pave the way
for other applications using AI, such as clinical trials, feedback, and teaching purposes,
among others [71,72].

4.4. Limitations

In our study, the variety of statistical methods, the absence of available raw data,
and the different DL pipelines and aims in each article limited the possibility to create a
statistical comparison in a meta-analysis method.

5. Conclusions

DL methods have a promising future in pathologist workflow to help clinical inter-
pretations become more objective and will likely help pathologists make more precise and
reliable diagnoses. Yet, a necessary clue to make way for pathologists to integrate DL
algorithms into the clinical practice is to use xAI in the studies. Indeed, in addition to
allowing pathologists to trust models’ predictions, xAI will enhance the positive feedback
for the algorithm to maximize its accuracy and for the pathologists to consider regions that
seemed irrelevant at first according to their way of thinking.

In parallel, while most models mainly focus on the morphological features of input
images, clinical information is also crucial for diagnosis and treatment. The use of such
information has until now not proved to be much helpful in diagnostic studies, but it did
show to be promising for prognostic purposes, using variables such as survival or the
presence of tumor progression. There is a clear need for more research leveraging other
sources of data such as clinical information or molecular studies, among others, and to
investigate different ways to integrate them into the DL pipeline.

This exciting chapter of pathology comes with a significant challenge for expert
pathologists and engineers in image analysis: the constant interaction between these two
worlds. AI has the capacity to gather all types of information from different sources or
studies. Its performance will improve with broader data sets, bringing unprecedented
changes to the pathology field. Pathology is the bridge between clinical science and cell
biology, and AI could help us to build it up.
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