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a b s t r a c t 

T - cell receptor (TCR) analysis is relevant for the study of immune system diseases. The expression of TCRs is 

usually measured with targeted sequencing approaches where TCR genes are selectively amplified. However, 

many non-targeted RNA-seq experiments also contain reads of TCR genes, which could be leveraged for TCR 

expression analysis while reducing sample requirements and costs. Moreover, a step-by-step pipeline for the 

processing of transcriptome RNA-seq reads to deliver immune repertoire data is missing, and these types of 

analyses are usually not included in RNA-seq studies of immunological conditions. This represents a missed 

opportunity for complementing them with the analysis of the immune repertoire. 

We present a Nextflow pipeline for T-cell receptor repertoire reconstruction and analysis from RNA sequenc- 

ing data. We used a case study where TCR repertoire profiles were recovered from bulk RNA-seq of isolated 

CD4 T cells from control patients, cirrhotic patients without and with Minimal Hepatic Encephalopathy (MHE). 

MHE is a neuropsychiatric syndrome, mediated by peripheral inflammation, that may affect cirrhotic patients. 

After the recovery of 498-1,114 distinct TCR beta chains per patient, repertoire analysis of patients resulted in 

few public clones, high diversity and elevated within-repertoire sequence similarity, independently of immune 

status. Additionally, TCRs associated with celiac disease and inflammatory bowel disease were significantly over- 

represented in MHE patient repertoires. The provided computational pipeline functions as a resource to facilitate 

TCR profiling from RNA-seq data boosting immunophenotype analyses of immunological diseases. 
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. Introduction 

T-cell receptors (TCR) are able to recognize an immense variety of

rocessed antigens. The approximate diversity of unique TCRs in a hu-

an individual is ∼10 8 − 10 10 [1–3] . A T-cell clonotype is a set of cells

hat share the same TCR, and the set of unique T-cell clonotypes in an

ndividual is called a TCR repertoire. 

The TCR is a two-chain protein and most human T cells consist of

/ 𝛽 chains (TRA and TRB) with a small proportion being 𝛾/ 𝛿 (TRC and

RD). TCR genes are formed by a process called V(D)J recombination,

hich consists of the rearrangement of the variable (V), diversity (D),
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oining (J), and constant (C) gene segments. Three complementarity-

etermining regions (CDRs) are important for recognizing antigens, with

DR3 𝛽 (CDR3 region of the TRB chain) as the preferential target of many

CR repertoire studies due to its high diversity and primary importance

or antigen binding [4] . 

High-throughput sequencing (HTS) is a powerful tool for the analysis

f these highly diverse immune repertoires, contributing to lymphocyte

iology research, antibody engineering, and vaccination [ 5 , 6 ]. For cap-

uring TCRs of 𝛼/ 𝛽 T cells, most of the HTS immune repertoire studies

also called Adaptive Immune Receptor Repertoire sequencing, AIRR-

eq [7] ) apply specific library preparation methods targeting receptor
arch 2022 

article under the CC BY-NC-ND license 

https://doi.org/10.1016/j.immuno.2022.100012
http://www.ScienceDirect.com
http://www.elsevier.com/locate/immuno
http://crossmark.crossref.org/dialog/?doi=10.1016/j.immuno.2022.100012&domain=pdf
mailto:victor.greiff@medisin.uio.no
https://doi.org/10.1016/j.immuno.2022.100012
http://creativecommons.org/licenses/by-nc-nd/4.0/


T. Rubio, M. Chernigovskaya, S. Marquez et al. ImmunoInformatics 6 (2022) 100012 

t  

i  

T  

s  

s  

w  

i  

R  

t  

c  

c  

o  

r  

f  

a  

e  

a  

i  

t  

a  

T  

t  

[  

s  

s  

d  

d  

i  

i

 

r  

[  

fl  

i  

A  

p  

t  

d  

s  

t  

t  

i  

w  

s  

e  

p  

m  

a  

t  

a  

h

2

2

 

M  

H  

w  

t  

t  

d  

w  

t  

t  

a  

d

 

s  

e  

m  

t  

i  

T

2

 

c  

s  

v  

l  

b  

s

2

 

a  

r  

e  

s

2

 

f  

p  

w  

2  

a

2

𝐷  

w  

q  

p

𝐷  

w  

o

 

c  

f  

(  

d  

S

𝐷  

 

fi  

f  

g

ranscripts [ 8 , 9 ]. Available HTS protocols for immune repertoire profil-

ng include multiplex PCR, with guided primers for the amplification of

CR transcripts at the CDR3 region; target enrichment to capture the

equences of interest using complementary RNA baits; and the more

tandard 5’RACE (rapid amplification of 5 ′ complementary DNA ends),

hich is able to retrieve the complete 5 ′ end of the mRNA [6] . However,

mmune repertoires can also be efficiently extracted from transcriptome

NA-seq data [10–12] , as TCR transcripts are part of the bulk-sequenced

ranscriptome. Using RNA-seq for immune receptor analysis reduces

osts and sample amount since both gene expression and immune re-

eptor transcripts are measured in the same experiment, at the expense

f less sensitivity as only the most abundant and expanded clones can be

ecovered. Different computational methods are able to reconstruct TCR

rom RNA-seq data such as MiXCR [10] , CATT [13] , or TRUST4 [12] . To

 certain extent, these repertoire reconstruction algorithms have been

valuated and compared against each other in terms of the sensitivity

nd specificity of TCR extraction. For instance, for the MiXCR software

t was suggested that it is able to extract high-frequency clonotypes bet-

er than the first version of TRUST at any tested read sequencing length

nd most of the MiXCR-reported clonotypes were confirmed by control

CR-seq data [10] . Additional methods for immune receptor reconstruc-

ion have been emerging, such as BASIC [14] , BRACER [15] , and BALDR

16] , but they are able to reconstruct only B-cell receptors (BCR) from

ingle-cell RNA-seq data, which was not applicable in our study. De-

pite the available collection of TCR repertoire reconstruction tools, a

etailed step-by-step pipeline for the processing of immune repertoire

ata from standard bulk RNA-seq data is not readily available, represent-

ng a missed opportunity for complementing gene expression studies of

mmunological conditions with the analysis of the immune repertoire. 

Here, we present an end-to-end pipeline for the analysis of TCR

epertoire profiles from bulk RNA-seq, implemented in Nextflow

17] for easy distribution and robust utilization. Nextflow is a work-

ow management system that provides native support to run pipelines

n multiple compute environments and with containerization systems.

IRR-seq and immune-related Nextflow pipelines have become very

opular [18–20] , mainly due to the simplicity to run an analysis while

ransparently managing common issues of shell scripting (e.g., required

ependencies, computational resources, code failure tracking, cumber-

ome transfer between collaborators). We apply our Nextflow pipeline

o a dataset of CD4 T cells isolated from control patients, cirrhotic pa-

ients without, and with Minimal Hepatic Encephalopathy (MHE). MHE

s a neuropsychiatric syndrome affecting about 40% of cirrhotic patients

ho show attention deficits, mild cognitive impairment, psychomotor

lowing, and impaired visuomotor coordination [21] . The main hypoth-

sis of MHE etiology is that peripheral inflammation together with hy-

erammonemia leads to neuroinflammation, which alters neurotrans-

ission and produces cognitive/motor impairment [22] . Specific alter-

tions in the immunophenotype of cirrhotic patients with MHE pointed

o CD4 T cells as key factors in the immune shift that triggers the appear-

nce of MHE [23] . The study of CD4 T-cell repertoires might therefore

elp understand the immune status of MHE patients. 

. Material and Methods 

.1. Patient recruitment 

Three groups of patients (healthy control, cirrhotic without, and with

HE) were recruited from the outpatient clinics of Hospital Clinico and

ospital Arnau de Vilanova (Valencia, Spain). The diagnosis of cirrhosis

as based on clinical, biochemical, and ultrasonographic data. Cogni-

ive function was evaluated by the Psychometric Hepatic Encephalopa-

hy Score (PHES), a set of five psychometric tests used as the gold stan-

ard for MHE diagnosis. Patients were classified as MHE when the score

as ≤ − 4 points [24] . All participants were enrolled after signing a writ-

en informed consent form. Study protocols were approved by the Scien-

ific and Research Ethics Committees of Hospital Clinico Universitario
2 
nd Arnau de Vilanova Hospital of Valencia, Spain, and were in accor-

ance with the ethical guidelines of the Helsinki Declaration. 

Blood samples were collected in BD Vacutainer® (Becton, Dickin-

on and Company, Franklin Lakes, NJ, USA) tubes with EDTA. Periph-

ral blood mononuclear cells were centrifuged over a density gradient

edium (Lymphoprep TM , Palex Medical, SA), according to the manufac-

urer’s instructions and CD4 T cells were purified from 5 × 10 6 PBMCs by

mmunomagnetic negative selection using the EasySep TM Human CD4

 Cell Isolation Kit (STEMCELL Technologies Inc.). 

.2. RNA sequencing experimental design 

Whole RNA from CD4 T cells was isolated using the miRNeasy Mi-

ro Kit (QIAGEN) following the instructions of the manufacturer and

equenced on an Illumina HiSeq2500 machine using HiSeq Sequencing

4 Chemistry. Ultra-low input RNA library preparation with polyA se-

ection and strand-specificity was used for RNA-seq. Paired-end of 125

p and 50 million reads of sequencing depth was selected for short-read

equencing. 

.3. Read trimming and filtering 

Reads were trimmed using Trimmomatic v0.38 [25] when the aver-

ge Phred quality score was below 20 in a sliding window of 20 bp and

emoved if the resulting read length was less than 80 bp. These param-

ters were selected as optimal after a comparative analysis of different

liding window values (from 4-20 bp). 

.4. Repertoire reconstruction 

MiXCR v3.0.13 [26] was used to align and assemble TCR repertoire

rom RNA-seq data using the “analyze shotgun ” command and default

arameters. Clones (i.e., CDR3 amino acid sequences of the TRB chain)

ere included in the analysis if they had a minimal abundance read of

 read counts and their CDR3 𝛽s were of 4 amino acids minimum length

s described previously [27] . 

.5. Hill-based evenness profiles 

Common diversity indices are Hill numbers defined as: 

 𝛼 = 

(∑𝑛 

𝑖 =1 
𝑓 𝛼
𝑖 

) 1 
1− 𝛼

, (1)

here 𝑛 is the number of unique clones in a repertoire, 𝑓 𝑖 is the fre-

uency distribution (proportional abundance of clones) and 𝜶 is a scale

arameter in (0,1) and (1, +∞). 

An 𝛼-Diversity profile ( 𝐷 𝛼) was previously defined [28] as: 

 𝛼 = 𝑆𝑅 × 𝐸 𝛼, (2)

here 𝐸 𝛼 is the evenness and 𝑆𝑅 is the species richness or the number

f unique clones in a repertoire dataset. 

Here, we calculated Evenness profiles ( 𝐸 𝛼), defined as 𝐷 𝛼∕ 𝑆𝑅 ac-

ording to the above Equation 2 . We used different values of 𝜶, ranging

rom 0 to 10 with a step size of 0.2, to obtain the Diversity profiles

 𝐷 𝛼) [28] . Diversity is not defined for the case 𝜶= 1 but L’Hospital’s rule

efines that as 𝜶 tends to 1, diversity tends to the exponential of the

hannon entropy: 

 𝛼=1 = exp 
(
− 

∑𝑛 

𝑖 =1 
𝑓 𝑖 ln 

(
𝑓 𝑖 
))

. (3)

All pairwise Pearson correlation coefficients of the Evenness pro-

les were calculated between samples. Hierarchical clustering was per-

ormed based on Euclidean distance for correlations and heatmaps were

enerated for visualization. 
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Fig. 1. Pipeline overview. Experimental steps comprise sample collection, cell 

isolation, RNA extraction, and sequencing. The computational pipeline analy- 

sis implemented in Nextflow included repertoire quantification, and repertoire 

properties screening. AIRR: Adaptive Immune Receptor Repertoire. 
.6. Shannon Evenness 

Shannon Evenness (S-E) is defined as Shannon entropy divided by

he Species Richness (SR). S-E is 1 if all clones in a repertoire have the

ame frequency (an “even ” repertoire), or it nears 0 if very few clones

ominate in the repertoire ( “polarized ” repertoire). 

.7. Jaccard similarity 

Pairwise clonal convergence between two repertoires A and B was

uantified using the Jaccard similarity coefficient, defined as the size of

he intersection of A and B divided by the size of the union of A and B:

 ( 𝐴, 𝐵 ) = 

| 𝐴 ∩ 𝐵 |
| 𝐴 ∪ 𝐵 | (4)

Values range between 0 and 1, where 1 means complete overlap of

epertoire A and B, and 0 indicates no overlapping receptor sequences

etween repertoires A and B. 

.8. K-mer-based TCR analysis 

Overlapping k-mers of length 3 (k = 3) were extracted from the

mino acid CDR3 𝛽 sequences [27] in each TCR repertoire and con-

ensed into a k-mer frequency distribution matrix using the immunarch

 package [29] . Hierarchical clustering and heatmap visualization were

erformed as described above in Section 2.5 . 

.9. TCR sequence similarity architecture 

TRB repertoire similarity networks were generated as previously de-

cribed [ 27 , 30 , 31 ], where nodes represent amino acid CDR3 𝛽 sequences

nd edges were drawn between sequences differing by 1 amino acid

Levenshtein distance = 1). The degree (number of links per node) dis-

ributions of each repertoire were calculated using the degree function

rom the R package igraph [32] . 

.10. Graphics generation 

Statistical analysis and graphics were performed using the program-

ing environment R v4.0.5 [33] . The matrix of public clones gener-

ted in the repertoire overlap analysis was generated using the immu-

arch R package [29] with the repOverlap() and vis() functions. All

eatmaps were created using the aheatmap() function of the NMF R

ackage [34] . Mean quality sequencing plots for paired-end reads were

btained from FastQC [35] report and barplots summarizing MiXCR

utput were drawn using the ggplot2 R package [36] . The ggpubr R

ackage [37] functions ggboxplot() and ggscatter() were used for clone

tatistics and correlations, respectively. 

.11. Antigen/Disease-specific TCR databases 

McPAS-TCR is a curated database of TCR sequences linked to the

ssociated antigen target or pathology based on published literature

38] . The database was downloaded and filtered by pathological cate-

ory, maintaining human TRB sequences associated with autoimmunity

nd pathogens. VDJdb is a curated repository of antigen-specific TCR

equences utilizing experimental information from recently published

CR specificity assays [39] . At the moment of download, McPAS-TCR

nd VDJdb databases had been last updated on 6 March 2021 and 2

ebruary 2021, respectively. 

.12. Fisher’s exact test analysis 

The overrepresentation of clones associated with diseases or antigens

McPAS-TCR and VDJdb) in our CDR3 𝛽 sequences was evaluated using
3 
 one-tailed Fisher’s exact test applied to each group of patients (con-

rol, with MHE, without MHE), using the disease categories included

n the McPAS-TCR and VDJdb databases. TCRs present in the samples

ut absent in the McPAS-TCR and VDJdb databases were excluded from

he analysis as described previously [30] . Fisher’s exact test was used

o test the overrepresentation of specific disease-associated receptors in

he database within the measured receptors of the sample. The obtained

-values were adjusted for multiple testing using Benjamini-Hochberg

DR correction considering both the number of diseases and the number

f sample groups tested. 

.13. Nextflow pipeline 

Nextflow v21.10.6 was used to implement the pipeline. In addition,

he DSL2 syntax extension was enabled at the beginning of the workflow

cript to allow the definition of module libraries and simplify the writing

f the data analysis pipeline. 

.14. Data and code availability 

The transcriptomic dataset used in this study is available in

he GEO database repository, GSE184200, https://www.ncbi.nlm.

ih.gov/geo/query/acc.cgi?acc = GSE184200 . The code and complete

ocumentation of the Nextflow pipeline are publicly available from the

ithub repository: https://github.com/ConesaLab/TCR _ nextflow . 

. Results and Discussion 

.1. Step-by-step analysis overview 

The step-by-step pipeline for the processing of immune repertoire

ata from whole transcriptome RNA-seq reads is summarized in Fig. 1 .

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE184200
https://github.com/ConesaLab/TCR_nextflow
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he pipeline consists of four main steps representing both the experi-

ental procedure and the computational analysis steps: (1) Experimen-

al design, (2) Transcriptome profiling, (3) AIRR (Adaptive Immune

eceptor Repertoire) pre-processing, and (4) AIRR analysis. The ex-

erimental procedure includes sample collection, immune cell isola-

ion, RNA extraction, sequencing design (e.g., library strand specificity,

aired- or single-end reads), and RNA sequencing (RNA-seq). The com-

utational analysis starts with ‘fastq’ files in which the sequencing qual-

ty ( step 1 ) needs to be verified. The MiXCR software [26] was used to

ssemble TCR repertoires from sequencing reads after quality control.

e chose this well-established repertoire reconstruction tool because

t is able to extract high-frequency clonotypes from RNA-seq data with

 comparable yield to other similar tools (TRUST3, TRUST4) in case

f sufficient sequencing read length [12] . MiXCR assembly algorithm

voids the introduction of false-positive clones, which might appear ei-

her by alignment of reads to non-target molecules or by overlapping

etween two sequences from different clones in the reconstruction of

artially covered CDR3 regions. The Nextflow pipeline starts with the

iXCR repertoire extraction step ( Fig. 1 ) and was performed using the

iXCR function “analyze shotgun ” command, which consists of the fol-

owing workflow: sequence alignment against reference V, D, J, and

 genes ( step 2 ), followed by clustering of identical sequences into

lonotypes (default, clustering by CDR3 𝛽) ( step 3 ) and correction of

CR/sequencing errors ( step 4 ) to output a tab-delimited file contain-

ng the quantification as a clonotype matrix ( step 5 ). 

Additional AIRR analysis steps are needed to study different im-

une receptor features: overlap for clonal convergence ( step 6a ), di-

ersity indexes for clonal expansion ( step 6b ), network analysis for

lonal sequence architecture ( step 6c ), k-mer distribution for repertoire

equence similarity ( step 6d ) and public databases screening for anti-

en specificity ( step 6e ). Steps 1–6 were implemented in the Nextflow

ipeline as parallel processes that receive MiXCR files as input and pro-

ide ready-to-publish plots and tables as well as a final report summaris-

ng all results for better user interpretability. 

.2. T-cell receptor sequences can be recovered from RNA-seq data (steps 

–5) 

CD4 T cells were isolated and sequenced by bulk paired-end RNA-seq

rom a total of 20 patients (8 control, 6 cirrhotic without MHE, and 6

irrhotic with MHE). Sequencing read pre-processing included trimming

nd filtering (see Methods), which resulted in good quality scores (mean

 > 30) for all samples (Supplementary Fig. 1A). 

Read alignment against the reference VDJ genes (IMGT database

40] ) showed a range of successfully aligned reads between 0.05–0.1%.

he majority of reads matched TCR regions (24.1–67.6% of success-

ully aligned reads), although some reads aligned with immunoglobulin

IG) chains (27.1–75.0% of successfully aligned reads) indicating slight

ontamination during T-cell isolation (Supplementary Fig. 1B). A high

roportion (52.5–87.7%) of the recovered clones, i.e., CDR3 amino acid

equences, matched TRA and TRB chains. Bulk RNA-seq data cannot de-

ermine the pairing of specific 𝛼/ 𝛽 receptor chains within the population

f T cells, something that can only be achieved by sequencing single T

ells. Therefore, we decided to focus on the TRB chain for all subsequent

nalyses. TRB is more appropriate than TRA for identifying T-cell clones

ecause around 7–30% of T cells may have two different alpha chains

xpressed on the same clone [41] while only 1% of T cells may have

wo different beta chains on the same clone [42] . 

We have compared three groups of patients using the Kruskal-Wallis

est for various repertoire statistics – number of isolated cells, RNA quan-

ity, number of reads obtained, the number of recovered clones, i.e.,

DR3 𝛽 amino acid sequence, and their Shannon evenness (Supplemen-

ary Fig. 2A). The clone recovery yield ranged from 498 to 1,114 distinct

DR3 amino acid sequences per individual in TRB. None of the men-

ioned measurements showed any significant difference between groups

f patients (Kruskal-Wallis test, p-value > 0.05) except for the number
4 
f clones, which was significantly increased in cirrhotic patients without

HE versus control (post hoc Wilcoxon test, p-value = 0.024). 

To determine whether sequencing depth sufficiently covered the

lonal repertoire of the samples, we calculated pairwise correlations

s previously described [27] between the cell number, the number of

lones, and the Shannon evenness across all samples (Supplementary

ig. 2B). When sequencing depth is saturating with respect to clone de-

ection, the number of clones solely depends on the sample type and

ot on the number of reads. We found a positive correlation (Pearson

oefficient = 0.77, p-value = 6.5 × 10 − 5 ), that may indicate insufficient

equencing depth. Nevertheless, the number of distinct CDR3 sequences

ssembled was of similar magnitude as reported in other studies of TCR

econstruction from bulk RNA-seq data: 367–936 TRB extracted clono-

ypes from the central nervous system and 1,684–2,977 extracted TRB

lonotypes from the spleen using paired-end data from isolated CD4 T

ells [10] . 

.3. TCR sequences profiling in MHE 

.3.1. Low clonal convergence among patient samples (step 6a) 

Repertoire overlap analysis is the most common approach to un-

over clonotypes shared between given individuals, which are also de-

ominated as “public ” clones [43–46] . Using the Jaccard similarity (see

ethods), we found a low clonal convergence (0.00027 ± 0.00041 Jac-

ard average measure) between healthy and cirrhotic patients with or

ithout MHE ( Fig. 2 A). 

.3.2. High clonal expansion in all samples independently of immune 

tatus (step 6b) 

The expansion of individual T-cell clones that bind their matching

ntigen can be analyzed using Hill-based evenness profiles, a diversity

easurement derived from ecology (see Methods). Unlike single diver-

ity indices, which can produce different clonal expansion results, diver-

ity profiles capture the entire immune repertoire and reflect immuno-

ogical statuses more sensitively [28] . CD4 T cells in this work showed a

ositive correlation in diversity profiles of T-cell clones (Pearson coeffi-

ient from 0.59 to 1), regardless of the cognitive impairment or cirrhosis

ondition of the studied patients ( Fig. 2 B). 

.3.3. Increased within-repertoire similarity based on repertoire 

rchitecture is unconstrained by immune status (steps 6c-d) 

The adaptive immune response is determined by immune receptor

equences: the higher their dissimilarity, the wider the range of antigens

hey are able to recognize. The all-to-all sequence similarity within a

epertoire represents the repertoire architecture, which was measured

n our patients using both k-mers and network analysis. 

First, the number of overlapped 3-mers (k-mers length = 3 amino

cids) were calculated per patient, as previously described [27] . A large

ositive Pearson correlation, ranging from 0.96 to 1 was obtained be-

ween k-mers vectors ( Fig. 2 C). This result might indicate that patients

hare similar sequence architecture patterns independently of their im-

une status. 

To complete the repertoire architecture analysis, a sequence simi-

arity network was constructed using CDR3 𝛽 amino acid sequence as

odes and adding an edge when sequences differed in 1 amino acid

Levenshtein distance = 1). Then, the number of similar clones (net-

ork degree) was calculated and represented as a heatmap ( Fig. 2 D).

6.8% of the clones had degree = 0 (single nodes) in all the samples

nd the maximum degree obtained was 5 in one cirrhotic patient with-

ut MHE (PC149). This substantial proportion of clones with degree

ero was also found in CD4 cells from patients with Multiple Sclero-

is while CD8 cells presented a more homogeneous degree distribution

27] . Moreover, the majority of cirrhotic patients without MHE showed

 significantly higher (Wilcoxon test, p-value = 0.013) number of sin-

le nodes ( Fig. 2 E), which may be related to underlying differences in
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Fig. 2. Different characteristics of TCR (beta chain) repertoire analysis showed specific within-sample profiles independent of immune status. A) Overlap 

analysis of CDR3 𝛽 sequences to uncover clonal convergence or shared clonotypes between individuals. Jaccard similarity coefficient matrix indicates a high (red) 

or low (blue) match between two sample sets. B) Diversity profile analysis to measure clonal expansion. The heatmap contains high (light yellow) or low (dark 

purple) pairwise Pearson correlation coefficients of the Evenness profiles calculated for control (blue), cirrhotic without MHE (red) or cirrhotic with MHE (black) 

patients. C) K-mer analysis to examine repertoire similarity. The heatmap represents the highest (light yellow) to the lowest (dark purple) pairwise Pearson correlation 

coefficients of the 3-mers (amino acid k-mers of length 3) frequency distribution matrix. D) Network analysis to study clonal architecture. Colors from light yellow 

to dark purple represent the number of nodes with degree 0–5 of each repertoire. Most of the nodes are single (i.e. degree = 0). E) Network single node (degree = 0) 

distribution between patient groups to test if the number of degree = 0 nodes in cirrhotic patients without MHE (red) were significantly higher than control (blue) or 

cirrhotic with MHE (black) patients. The test was performed after removing PC134 (outlier in the withMHE group). 

5 
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Table 1 

Top p-values of the overrepresentation CDR3 sequence analysis for the diseases 

collected in the McPAS-TCR database [38] . 

McPAS-TCR 

Disease association control withoutMHE withMHE 

Celiac disease 0.011 ∗ 0.214 < 0.001 ∗ ∗ 

Cytomegalovirus (CMV) 1 1 0.723 

Diabetes Type 1 1 1 0.510 

Epstein Barr virus (EBV) 1 0.510 1 

HTLV-1 1 0.877 0.823 

Inflammatory bowel disease (IBD) 1 < 0.001 ∗ ∗ 0.001 ∗ ∗ 

Influenza 0.510 0.510 0.066 

Narcolepsy 0.723 1 1 

Psoriatic Arthritis 0.064 1 1 

Ulcerative Colitis 1 0.066 1 

Yellow fever virus 1 0.723 1 

P-values were adjusted for multiple testing using Benjamini-Hochberg FDR cor- 

rection considering both numbers of diseases and the number of sample groups. 

HTLV1: Human T cell Leukaemia virus 1; ∗ p-value < 0.05; ∗ ∗ p-value < 0.01 

t  

m  

M  

t  

t  

a

3

C

 

w  

(  

d

 

t  

q  

t  

c  

c  

r  

z  

V  

t  

C  

t

 

w  

d  

m  

r  

(  

T  

s  

t

5  

a  

s  

c  

M  

w  

c  

b  

r  

a  

s  

o  

m  

w  

[

4

 

t  

R  

s  

f  

t  

d  

p  

m  

u  

u  

a  

m  

a  

o  

i  

i

 

e  

c  

c  

s  

o  

t  

s

2  

s  

h  

t  

R  

m  

h  

T  

t  

t  

o  

i  

r  

s  

t  

f  

f  

m  

b  

s  

v  

c  

p  

s  

b  

i  

a

 

d  

o  

t  

v  

a  

c  
he number of TRB clones between the three different groups (Supple-

entary Fig. 2A). Noteworthy, sample PC134 (cirrhotic patient without

HE) presented 1064 single nodes, the highest number compared with

he rest of patients (472–935 single nodes), which could be explained by

he highest number of recovered clones (1,114 clones) in this sample,

nd we considered it as an outlier in this analysis ( Fig. 2 E). 

.4. TCRs with known disease association are overrepresented in MHE 

DR3 repertoires (step 6e) 

To evaluate if the clones in our patients were significantly associated

ith previously described diseases or antigens, we assessed the overlap

see Methods) between our CDR3 𝛽 sequences and two different TCR

atabases: VDJdb and McPAS-TCR. 

VDJdb contained a total of 41,169 human TRB sequences with Cy-

omegalovirus being the species epitope with the highest number of se-

uences, compressing nearly a half of them. McPAS-TCR contained a

otal of 30,052 TRB sequences within the autoimmune and pathology

ategories, with over half of them belonging to Mycobacterium tuber-

ulosis . The sequence intersection between the two databases was low,

anging from 2 to 1,032 in the common pathologies/pathogens: Influen-

aA, Cytomegalovirus, Epstein-Barr Virus, Human Immunodeficiency

irus, Yellow fever virus, Human T cell Lymphotropic Virus, Hepati-

is C virus, Mycobacterium tuberculosis, Herpes Simplex Virus 2 and

ovid-19, sorted by decreasing order of shared sequences (Supplemen-

ary Table 1). 

CDR3 𝛽 sequences were grouped by type of patient (control, cirrhotic

ithout MHE and cirrhotic with MHE) to test overlap with McPAS-TCR

atabase ( Table 1 and Supplementary Table 2). We found that Inflam-

atory bowel disease (IBD) has a significant overrepresentation in cir-

hotic without MHE (p-value = 3.082 × 10 − 5 ) and with MHE patients

p-value = 5.470 × 10 − 4 ). Traditionally, IBD has been associated with a

h1-mediated inflammation [ 47 , 48 ], but more recent discoveries have

hown the involvement of Th17 cells contributing to inflammation by

he secretion of proinflammatory cytokines such as IL-17 and IL-21 [49–

1] . Previous studies have also shown alterations in Th1, Th17, IL-17

nd IL-21 in patients with MHE [ 23 , 52 ], which may constitute a plau-

ible link between these two disorders. Celiac disease was also signifi-

ant in control (p-value = 1.127 × 10 − 2 ) and cirrhotic patients without

HE group (p-value = 4.836 × 10 − 4 ). There was no significant overlap

ith a p-value level below 0.05 between our dataset and VDJdb asso-

iated CDR3 𝛽s (Supplementary Table 3). While the overlap studies of

ulk sequencing data with antigen-specific data are interesting, results

emain challenging to interpret, as it is unclear why specific antigens

re enriched. The polyreactivity of the TCR repertoire might be a rea-

on. Specifically, each TCR maps to several antigen specificities, or in
6 
ther words, there is no one-to-one TCR-antigen map, only a many-to-

any. We have observed a similar association of bulk sequencing data

ith seemingly unrelated antigens in two recent publications of ours

 27 , 30 ]. 

. Conclusion 

We have presented here a step-by-step computational pipeline for

he processing of immune repertoire data from whole transcriptome

NA-seq reads that leverages the presence of immunological receptor

equences (TCR) extracted from RNA-seq transcriptomics datasets. As

ar as we know, this is the first pipeline that includes both TCR ex-

raction from RNA-seq data as well as a complete immune repertoire

ata analysis. Different repertoire features can be calculated to inter-

ret the immune repertoire variation. Repertoire overlap analysis is the

ost common approach to uncover shared clonotypes between individ-

als also known as “public ” clones [45] . Diversity measurement helps

nderstand the expansion of individual T-cell clones [28] . Repertoire

rchitecture is represented by receptor sequence likeness, which deter-

ines adaptive immune response and can be quantified both by k-mers

nd network analysis [27] . Finally, evaluating the overrepresentation

f immune receptors with a known pathological association in patient

mmune repertoires guides the assessment of cross-reactivity with other

mmunological conditions [30] . 

We present a case study where TCR repertoire profiles were recov-

red from bulk RNA-seq of isolated CD4 T cells from control patients,

irrhotic patients without and with MHE. A total of 498–1,114 distinct

lones (i.e. CDR3 𝛽 amino acid sequences) per individual were recon-

tructed using MiXCR. The authors of this tool have shown similar yields

n 100 bp paired-end RNA-seq data using ileocecal lymph node metas-

asis samples (around 3,000 recovered TRB), small intestine resection

amples (around 150 TRB), or isolated CD4 T-cells from spleen (1,684–

,977 TRB) and central nervous system (367–936 TRB) [10] . Our re-

ulting range of clones across patients from isolated CD4 T-cells from

uman blood samples is halfway between those from spleen and cen-

ral nervous system, showing a good extraction of clonotypes from the

NA-seq dataset. From clonotype data analysis, we found that the im-

une repertoires of our three groups of patients are highly similar. The

igh similarity could have either a biological or technological origin.

hree main different reasons can be suggested. (1) The fact that reper-

oire changes to immune perturbations are more subtle than previously

hought. This is in line with recent results on larger cohorts. Specifically,

ur findings suggest that for autoimmune diseases, the immune signal

s very weak if not isolated by cell type for example [53] . (2) Another

eason could be the low sample number. However, we have previously

hown that even large sample numbers may not lead to separation be-

ween patient classes unless specific machine learning algorithms and

eature encoding are used [ 54 , 55 ]. (3) It may also be that the proposed

eatures (repertoire overlap, repertoire diversity, network analysis, k-

er, and comparison with existing databases) do not capture the full

iological heterogeneity of TCR repertoires. However, we have recently

hown that these features cover a large part of immune repertoire di-

ersity [53] . That said, crucial features that have been taken into ac-

ount are HLA-associated or antigen-specific sequences [ 54 , 56 , 57 ]. Our

ipeline can be applied to any bulk RNA-seq dataset obtained from a

ample containing T cells, thanks to the Nextflow implementation. We

elieve that is a useful resource to study the immune repertoire similar-

ty landscape across different biological scenarios (e.g., health, disease,

utoimmunity, infection, vaccination). 

Taking advantage of the generation of a vast amount of RNA-seq

atasets for different immune cell populations in the last few decades,

ur Nextflow pipeline can be applied for the study of TCR repertoires

o understand patient immune status in multiple diseases. The current

ersion of this pipeline is useful for the study of T-cell subtypes (CD8

nd CD4 subpopulations) but it can be easily adapted to the study of B

ells. Additionally, it only supports two input species for the moment
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 Homo sapiens and Mus musculus ), but they can be expanded as soon

s the information on antigen/disease-specific TCR databases increases.

owever, only the most abundant and expanded clones can be recov-

red using bulk RNA-seq data for immune repertoire quantification and

airing of specific 𝛼/ 𝛽 receptor chains cannot be determined rendering

imulation [ 58 , 59 ] and benchmarking [ 8 , 60 ] studies necessary, which

ill need to determine to what extent the present workflow can be used

o identify immune-state-related immune signals. Since bulk RNA-seq

atasets combine dual biological information measured in one single

xperiment, the Nextflow pipeline will allow for parallel analysis of im-

une repertoires and gene expression. In previous work, we performed

he gene expression analysis of the RNA-seq dataset used here, in which

he integration of both RNA-seq and miRNA-seq datasets from CD4 T-

ells of our MHE patient cohort were analyzed (data not shown). Formal

ntegration of TCR and gene expression analysis results will require the

evelopment of adequate mathematical methods that are able to deal

ith the different structure of both datasets [ 53 , 61 ]. 
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