

Document downloaded from:

This paper must be cited as:

The final publication is available at

Copyright

Additional Information

http://hdl.handle.net/10251/192568

Alpuente Frasnedo, M.; Escobar Román, S.; Meseguer, J.; Sapiña-Sanchis, J. (2022).
Order-sorted Equational Generalization Algorithm Revisited. Annals of Mathematics and
Artificial Intelligence. 90(5):499-522. https://doi.org/10.1007/s10472-021-09771-1

https://doi.org/10.1007/s10472-021-09771-1

Springer-Verlag

Noname manuscript No.
(will be inserted by the editor)

Order-sorted Equational Generalization Algorithm
Revisited

Maŕıa Alpuente · Santiago Escobar · José

Meseguer · Julia Sapiña

the date of receipt and acceptance should be inserted later

Abstract Generalization, also called anti-unification, is the dual of unification.
A generalizer of two terms t and t′ is a term t′′ of which t and t′ are substitu-
tion instances. The dual of most general equational unifiers is that of least gen-
eral equational generalizers, i.e., most specific anti-instances modulo equations. In
a previous work, we extended the classical untyped generalization algorithm to:
(1) an order-sorted typed setting with sorts, subsorts, and subtype polymorphism;
(2) work modulo equational theories, where function symbols can obey any combi-
nation of associativity, commutativity, and identity axioms (including the empty
set of such axioms); and (3) the combination of both, which results in a modu-
lar, order-sorted equational generalization algorithm. However, Cerna and Kutsia
showed that our algorithm is generally incomplete for the case of identity axioms
and a counterexample was given. Furthermore, they proved that, in theories with
two identity elements or more, generalization with identity axioms is generally
nullary, yet it is finitary for both the linear and one-unital fragments, i.e., either
solutions with repeated variables are disregarded or the considered theories are
restricted to having just one function symbol with an identity or unit element.

This work has been partially supported by the EC H2020-EU grant agreement No. 952215
(TAILOR), the EU (FEDER) and the Spanish MCIU under grant RTI2018-094403-B-C32,
by Generalitat Valenciana under grant PROMETEO/2019/098, and by NRL under contract
number N00173-17-1-G002. Julia Sapiña has been supported by the Generalitat Valenciana
APOSTD/2019/127 grant.

M. Alpuente
Universitat Politècnica de València, Spain
E-mail: alpuente@upv.es

S. Escobar
Universitat Politècnica de València, Spain
E-mail: sescobar@upv.es

J. Meseguer
University of Illinois at Urbana-Champaign, USA
E-mail: meseguer@illinois.edu

J. Sapiña
Universitat Politècnica de València, Spain
E-mail: jsapina@upv.es

In this work, we show how we can easily extend our original inference system to
cope with the non-linear fragment and identify a more general class than one–unit
theories where generalization with identity axioms is finitary.

Keywords least general generalization · rule–based languages · equational
reasoning · order-sorted · associativity · commutativity · identity

1 Introduction

Computing generalizations is relevant in a wide spectrum of automated reason-
ing areas where analogical reasoning and inductive inference are needed, such as
analogy making, case-based reasoning, web and data mining, ontology learning,
machine learning, theorem proving, program derivation, and inductive logic pro-
gramming, among others (Armengol, 2007; Muggleton, 1999; Ontañón and Plaza,
2012).

Roughly speaking, in a pure syntactic and untyped setting, the syntactic gen-
eralization problem for two or more expressions consists in finding their least

general generalizer (lgg), i.e., the least general expression t such that all of the
given expressions are instances of t under appropriate substitutions. For instance,
the expression sibling(x,y), where x and y are variables, is a generalizer of both
sibling(john,sam) and sibling(tom,sam), but their least general generalizer is sib-

ling(x,sam).
In (Alpuente et al., 2014b), the notion of least general generalization is ex-

tended to the order-sorted modulo axioms setting, where any function symbol f
can obey any combination of the associativity axiom (f(f(x, y), z) = f(x, f(y, z))),
the commutativity axiom (f(x, y) = f(y, x)), and the identity axiom (f(x, e) = x

and f(e, x) = x, for unit element e) including the empty set of such axioms. For
instance, the least general generalizer of sibling(sam,john) and sibling(tom,sam) is
still sibling(x,sam) when sibling is a commutative symbol. In general, there is no
unique least general generalizer in the framework of (Alpuente et al., 2014b) due
to both the order-sortedness (Alpuente et al., 2009) and to the equational axioms
(Alpuente et al., 2008). However, it is often the case that a minimal and complete
set of such least general generalizers exists so that any other generalizer has at
least one of them as an instance modulo the considered set E of axioms. The in-
comparable elements in such a set are called E-lggs. For instance, for the case of
a set B of equations consisting of any combination of associativity and commuta-
tivity axioms for different function symbols, the set of B-lggs is finite. However,
as shown in (Cerna and Kutsia, 2020), this may not be the case when B contains
identity axioms, i.e., ACU, AU, CU, and U.

The generalization type of an equational theory is defined similarly (but dually)
to the unification types, i.e., based on the existence and cardinality of a minimal
and complete set of B-lggs (Cerna and Kutsia, 2020):

Unitary (type 1) Any generalization problem in the theory has one single B-lgg.
Finitary (type ω) Any generalization problem in the theory has a finite, minimal,

and complete set of B-lggs whose cardinality is greater than one for at least
one problem.

Infinitary (type ∞) There exists a generalization problem in the theory which has
a minimal, infinite, and complete set of B-lggs.

2

Nullary (type 0) There exists a generalization problem in the theory which does
not have a minimal and complete set of B-lggs, i.e., every complete set of
generalizers for this problem contains two distinct generalizers such that one
is less general modulo B than the other.

In the motivating example of Section 2 of (Cerna and Kutsia, 2020), it was
shown that our inference system in (Alpuente et al., 2014b) is incomplete for the
case of the identity.

Example 1 Let us assume the unsorted case where all symbols correspond to a
unique sort S, and consider two binary function symbols f and g such that1 f has
an identity element ef (i.e., for all x, f(x, ef) = x and f(ef , x) = x). Given three

extra constants a, b, and c, and the generalization problem g(f(a, c), a)
w
, g(c, b),

where w stands for a variable denoting the computed generalizer, the algorithm
of (Alpuente et al., 2014b) computes the generalizer given by {w 7→ g(f(x, c), y)},
where x and y are new variables. However, the algorithm of (Cerna and Kutsia,
2020) computes the more specific, non-linear solution g(f(x, c), f(x, y)), where x

and y are new variables, which is actually the (only) least general B-generalizer for
the input problem, proving that our original algorithm was generally incomplete.
Nevertheless, completeness holds for linear generalization problems as shown in
(Cerna and Kutsia, 2020).

In (Cerna and Kutsia, 2020), it was also proved that generalization with iden-
tity axioms is nullary, meaning that a complete and minimal set of least general
generalizers for a given generalization problem may not exist, not even infinite.

Example 2 Consider again the signature of Example 1, where the function symbol
g is now given an additional identity element eg. As shown in (Cerna and Kutsia,
2020), f(g(x, y), x) is a least general generalizer for the generalization problem

ef
w
, eg since both ef and eg are substitution instances of f(g(x, y), x) by {x 7→

ef , y 7→ eg} and {x 7→ eg, y 7→ ef}, respectively. Actually, (Cerna and Kutsia,
2020) shows that there is an infinite number of generalizers that are obtained by
instantiating variable x of each generalizer to the term f(g(x, y), x) itself, yielding
the sequence of generalizers x, f(g(x, y), x), f(g(f(g(x, y), x), y), f(g(x, y), x)), etc.
Note that each generalizer is less general (i.e., more specific) than the previous one
so that a minimal and complete set of B-lggs cannot be distilled from this infinite
sequence of generalizers, not even infinite.

Order-sorted specifications include many-sorted ones and these, in turn, in-
clude unsorted ones as special cases. Furthermore, the case of equational axioms
B includes the free case B = ∅ as a special instance. In such a highly general set-
ting, it might appear that finding practical and widely applicable conditions under
which order-sorted generalization modulo axioms B containing any combination of
associativity, commutativity, and identity axioms is finitary could be a challenging
problem. Yet, paradoxically, we have found out that the very generality of the
order-sorted setting makes solving this problem much easier than in the unsorted

1 Function g has also an identity element eg in Cerna and Kutsia’s counter-example but it is
unnecessary for the counter-example to work. We introduce eg only in Example 2 to illustrate
the nullary type.

3

case, and substantially reduces the chances of the problem appearing in actual
practice. This paper identifies such a widely applicable condition in a syntactic
way and provides the desired finitary order-sorted least general equational gener-
alization algorithm under such an easily checkable assumption. Below, we explain
our syntactic condition and show why it is widely applicable in practice by means
of some examples.

Recall that an order-sorted signature is a pair Σ = ((S,≤), F), where (S,≤) is
a partially ordered set of sorts/types, where s ≤ s′ specifies a sort/type inclusion,
and F are function symbols whose argument sorts and result sort belong to S.
For example, the sorts Nat, Int, and Rat for, respectively, naturals, integers and
rationals have natural subsort inclusion Nat < Int < Rat, which semantically cor-
respond to the set inclusions N ⊆ Z ⊆ Q. Since the nullarity problem of Example 2
is caused by (non-linear) B-generalizers modulo identity of binary operators f and
g, note that these problems are less likely to occur in a many-sorted setting for
the simple reason that, when the respective unit elements ef and eg have different
sorts, no generalizers exist at all. The order-sorted setting is even more flexible.
Our easily checkable syntactic condition is as follows: a signature Σ = ((S,≤), F)
is called U-tolerant modulo axioms B, where U ⊆ B denotes the set of identity
axioms, if and only if for any two different identity constants ef and eg with iden-
tity axioms for f and g in U , their respective least sorts2 LS(ef) and LS(eg) are
incomparable at the kind level, that is, [LS(ef)] 6= [LS(eg)]. The naturalness of this
property is later illustrated in Example 5.

The contributions of this paper are the following:

(1) We identify U-tolerance as a mild syntactic condition on signatures frequently
achievable in practice, as explained above and in Section 3.2. As further evi-
dence of the wide applicability of this concept, we have verified that the large
collection of examples considered in (Alpuente et al., 2019) —where an efficient
implementation of (Alpuente et al., 2014b) called ACUOS2 was provided—
are all U-tolerant except for just one of the (untyped) generalization problems,
which is both non-linear and not U-tolerant and combines A and U.

(2) We complete the generalization calculi of (Alpuente et al., 2014b) with an
extra inference rule so that completeness holds for both linear and non-linear
order-sorted equational generalizations under the U-tolerance assumption.

(3) We show that, under the U-tolerance assumption, the completed calculus pro-
vides a finitary, minimal and complete set of order-sorted generalizers modulo
axioms B of associativity and/or commutativity and/or identity for any gen-
eralization problem.

(4) We provide a new implementation for our extended generalization calculus.

To the best of our knowledge, this is the first finite, minimal, and complete
procedure for order-sorted least general equational generalization modulo any com-
binations of associativity, commutativity, and identity axioms (i.e., A, C, U, AC,
AU, CU, and ACU) for different function symbols. Furthermore, it not only works
for unsorted and many-sorted specifications, but it also works for the more general
and expressive case of order-sorted specifications.

2 An easily checkable condition on Σ = ((S,≤), F) called pre-regularity ensures that any
Σ-term t has a least sort LS(t) ∈ S in the subsort ordering (see Section 2).

4

2 Preliminaries

We follow the classical notation and terminology from (TeReSe, 2003) for term
rewriting and from (Goguen and Meseguer, 1992; Meseguer, 1997) for order-sorted
equational logic.

We assume an order-sorted signature Σ = (S, F,≤) that consists of a finite poset
of sorts (S,≤) and a family F of function symbols of the form f : s1× . . .× sn → s,
with s1, . . . , sn, s ∈ S. Two sorts s and s′ belong to the same connected component
if either s ≤ s′ or s′ ≤ s. We assume a kind-completed signature such that: (i) each
connected component in the poset ordering has a top sort, and, for each s ∈ S,
we denote by [s] the top sort in the connected component of s (i.e., if s and s′ are
sorts in the same connected component, then [s] = [s′]); and (ii) for each operator
declaration f : s1×. . .×sn → s in Σ, there is also a declaration f : [s1]×. . .×[sn]→ [s]
in Σ. A given term t in an order-sorted term algebra can have many different sorts.
Specifically, if t ∈ TΣ has sort s, then it also has sort s′ for any s′ ≥ s; and because
a function symbol f can have different sort declaration f : s1× . . .× sn → s, a term
f(t1, .., tn) can have sorts that are not directly comparable (Goguen and Meseguer,
1992).

We assume a fixed S-sorted family X = {Xs}s∈S of pairwise disjoint variable
sets (i.e., ∀s, s′ ∈ S : Xs ∩ Xs′ = ∅), with each Xs being countably infinite. We
write the sort associated to a variable explicitly with a colon and the sort, i.e.,

x:Nat. A fresh variable is a variable that appears nowhere else. The set TΣ(X)s
denotes all Σ-terms of sort s defined by Xs ⊆ TΣ(X)s and f(t1, . . . , tn) ∈ TΣ(X)s if
f : s1× . . .× sn → s ∈ Σ, n ≥ 0 and t1 ∈ TΣ(X)s1 , . . . , tn ∈ TΣ(X)sn . Furthermore, if

t ∈ TΣ(X)s and s ≤ s′, then t ∈ TΣ(X)s′ . For a term t, we write Var(t) for the set of
all variables in t. TΣ,s is the set of ground terms of sort s, i.e., t is a Σ-term of sort
s and Var(t) = ∅. We write TΣ(X) and TΣ for the corresponding term algebras.
We assume that TΣ,s 6= ∅ for every sort s.

We assume pre-regularity of the signature Σ: for each operator declaration f :
s1 × . . .× sn → s, and for the set Sf containing all sorts s′ that appear in operator
declarations of the form f : s′1, . . . , s

′
n → s′ in Σ such that si ≤ s′i for 1 ≤ i ≤ n,

then the set Sf has a least sort. Thanks to pre-regularity of Σ, each Σ-term t

has a unique least sort that is denoted by LS(t). The top sort in the connected
component of LS(t) is denoted by [LS(t)]. Since the poset (S,≤) is finite and each
connected component has a top sort, given any two sorts s and s′ in the same
connected component, the set of least upper bound sorts of s and s′ always exists
(although it might not be a singleton set) and is denoted by LUBS(s, s′).

Throughout this paper, we assume that Σ has no ad-hoc operator overloading,
i.e., any two operator declarations for the same symbol f with equal number of
arguments, f : s1 × . . . × sn → s and f : s′1 × . . . × s′n → s′, must necessarily have
[s1] = [s′1], . . . , [sn] = [s′n], [s] = [s′].

The set of positions of a term t, written Pos(t), is represented as a sequence of
natural numbers, e.g., 1.2.1. The set of non-variable positions is written PosΣ(t).
The root position of a term is Λ. The subterm of t at position p is t|p, and t[u]p is
the term obtained from t by replacing t|p by u. By root(t), we denote the symbol
occurring at the root position of t.

A substitution σ = {x1 7→ t1, . . . , xn 7→ tn} is a mapping from variables to
terms which is almost everywhere equal to the identity except over a finite set
of variables {x1, . . . , xn}, written Dom(σ) = {x ∈ X | xσ 6= x}. Substitutions are

5

sort–preserving, i.e., for any substitution σ, if x ∈ Xs, then xσ ∈ TΣ(X)s. We as-
sume substitutions are idempotent, i.e., xσ = (xσ)σ for any variable x. The set
of variables introduced by σ is VRan(σ) =

⋃
{Var(xσ) | xσ 6= x}. The identity

substitution is id. Substitutions are homomorphically extended to TΣ(X). Substi-
tutions are written in suffix notation (i.e., tσ instead of σ(t)), and, consequently,
the composition of substitutions must be read from left to right, formally denoted
by juxtaposition, i.e., x(σσ′) = (xσ)σ′ for any variable x. The restriction of σ to
a set of variables V is σ|V . We call a substitution σ a renaming if there is another
substitution σ−1 such that (σσ−1)|Dom(σ) = id.

A Σ-equation is an unoriented pair t
.
= t′, where t and t′ are Σ-terms for which

there are sorts s, s′ with t ∈ TΣ(X)s, t
′ ∈ TΣ(X)s′ , and s, s′ are in the same connected

component of the poset of sorts (S,≤). An equational theory (Σ,B) is a set B of
Σ-equations. An equational theory (Σ,B) over a kind-completed, pre-regular, and
order-sorted signature Σ = (S, F,≤) is called kind-completed, pre-regular, and
order-sorted equational theory. Given an equational theory (Σ,B), order-sorted
equational logic induces a congruence relation =B on terms t, t′ ∈ TΣ(X), see
(Goguen and Meseguer, 1992; Meseguer, 1997).

The B-subsumption preorder ≤B (simply ≤ when B is empty) holds between
t, t′ ∈ TΣ(X), denoted t ≤B t′ (meaning that t is more general than t′ modulo B),
if there is a substitution σ such that tσ =B t′; such a substitution σ is said to be a
B-matcher for t′ in t. The equivalence relation ≡B (or ≡ if B is empty) induced by
≤B is defined as t ≡B t′ if t ≤B t′ and t′ ≤B t. The B-renaming equivalence t 'B t′

(or ' if B is empty) holds if there is a renaming substitution θ such that tθ =B t′.
In general, the relations =B , ≡B and 'B do not coincide; actually =B⊆'B⊆≡B .

Example 3 Consider terms t = f(f(a,X), Y) and t′ = f(a, Z) where f is associative
and commutative with identity symbol 0 (ACU), and a and b are two constants.
We have that t ≡ACU t′, i.e., t ≤ACU t′ and t′ ≤ACU t since f(f(a,X), Y)σ1 =ACU

f(a, Z) with σ1 = {X 7→ 0, Y 7→ Z} and f(a, Z)σ2 =ACU f(f(a,X), Y) with σ2 =
{Z 7→ f(X,Y)}. However, t 6=ACU t′, and moreover t 6'ACU t′, since they are not
even equal up to ACU-renaming.

For the sake of simplicity, we follow the common approach of order-sorted
equational languages such as Maude where the signature Σ is considered to be
aware of f ′s axioms by attaching to its sort declaration special attributes denoting
that the function f obeys associativity (assoc), commutativity (comm), and identity
(id: e), for unit element e.

3 Order-Sorted Least General Generalizations modulo Axioms

In this section, we complete the inference system for order-sorted, equational least
general generalization presented in (Alpuente et al., 2014b) by introducing an extra
inference rule. We ascertain a suitable requirement (called U-tolerance) ensuring
that generalization modulo identity is finitary, and moreover, that our extended
algorithm computes a finite, minimal, and complete set of B-lggs modulo any
combinations of associativity, commutativity and identity axioms.

6

3.1 Recovering completeness of the order-sorted equational least general
generalization calculus

In the following, we consider that each function symbol f in the signature Σ obeys
a subset of axioms ax(f) ⊆ {Af , Cf , Uf (e)} where e is the identity symbol for the
function f . Note that f may not satisfy any such axioms, i.e., ax(f) = ∅.

A term t is a generalizer modulo B of t1 and t2 if there are two substitutions
σ1 and σ2 such that tσ1 =B t1 and tσ2 =B t2.

We represent a generalization problem between terms t and t′ as a constraint

t
x
, t′, where x is a fresh variable that stands for a generalizer of t and t′, that

becomes more and more instantiated as the computation proceeds until becoming

a least general generalizer modulo the considered axioms. Given a constraint t
x
, t′,

any generalizer w of t and t′ is given by a suitable substitution θ such that xθ = w.

A set of constraints is represented by s1
x1

, t1∧ . . .∧sn
xn

, tn, or ∅ for the empty

set. Given a constraint t
x
, t′, we call x an index variable. We define the set of index

variables of a set C of constraints as Index(C) = {y ∈ X | ∃u
y

, v ∈ C}.

Note that, although it is natural to consider that a constraint t
x
, t′ is commuta-

tive, the inference rules that are described in this paper do not admit that commu-
tativity property for , since we need to keep track of the origin of new generated
generalization subproblems to avoid non-termination. However, the constructor
symbol ∧ that we use to build a set (conjunction) of constraints is associative and
commutative in the inference rules described in this paper.

Definition 1 A configuration 〈C | S | θ〉 consists of three components: (i) the
constraint component C, which represents the set of unsolved constraints; (ii) the
store component S, which records the set of already solved constraints, and (iii) the
substitution component θ, which binds some of the index variables previously met
during the computation.

We consider any two terms t and t′ in a constraint t
x
, t′ having the same top

sort; otherwise, they are incomparable and no generalizer exists. Starting from the

initial configuration 〈t
x:[s]

, t′ | ∅ | id〉 where [s] = [LS(t)] = [LS(t′)], configurations
are transformed until a terminal configuration 〈∅ | S | θ〉 is reached. When different
function symbols are considered that satisfy distinct combinations of associativity
and/or commutativity and/or identity axioms given by B, the inference rules of
Figures 1, 2, 3, 5, 6, and 7 must be used altogether to compute the set of B-lggs.
The new inference rule solving the generalization problem of Example 1 is given
in Figure 3; all of the other rules are taken from (Alpuente et al., 2014b) and
are included here for completeness. The transition relation → on configurations is
given by the smallest relation satisfying all of the rules.

Roughly speaking, given an equational theory (Σ,B) and the generalization

problem t
x
, t′, the basic rules DecomposeB , SolveB , and RecoverB in Figure 1

extend to the (order-sorted) equational setting the standard, syntactic generaliza-
tion of (Huet, 1976; Plotkin, 1970; Reynolds, 1970) by handling the constraints
modulo B. The meaning of the basic rules in Figure 1 is as follows.

7

DecomposeB
f ∈ (Σ ∪ X) ∧Af 6∈ ax(f) ∧ Cf 6∈ ax(f) ∧ f : [s1]× . . .× [sn]→ [s]

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
n) ∧ C | S | θ〉 →

〈t1
x1:[s1]

, t′1 ∧ . . . ∧ tn
xn:[sn]

, t′n ∧ C | S | θσ〉
where σ = {x:[s] 7→ f(x1:[s1], . . . , xn:[sn])}, x1:[s1], . . . , xn:[sn] are fresh variables, and n ≥ 0

SolveB

f = root(t) ∧ g = root(t′) ∧ f 6= g ∧ Uf (e) 6∈ ax(f) ∧ Ug(e′) 6∈ ax(g)∧

s′ ∈ LUBS(LS(t), LS(t′)) ∧ @y @s′′ : t
y:s′′

, t′ ∈B S

〈t
x:[s]

, t′ ∧ C | S | θ〉 → 〈C | S ∧ t
z:s′

, t′ | θσ〉

where σ = {x:[s] 7→ z:s′}, z:s′ is a fresh variable, and (t
y

, t′) ∈B S means that there exists

u
y

, u′ ∈ S such that t =B u and t′ =B u′.

RecoverB
root(t) 6= root(t′) ∧ ∃y∃s′ : t

y:s′

, t′ ∈B S

〈t
x:[s]

, t′ ∧ C | S | θ〉 → 〈C | S | θσ〉
where σ = {x:[s] 7→ y:s′}, and ∈B stands for membership modulo axioms.

Fig. 1: Basic inference rules for order-sorted least general B–generalization
(Alpuente et al., 2014b)

– The DecomposeB rule decomposes a constraint f(t1, . . . , tn)
x
, f(t′1, . . . , t

′
n)

into new constraints t1
x1

, t′1 ∧ . . . ∧ tn
xn

, t′n to be solved provided that f does
not obey either associativity or commutativity axioms. If n = 0, then no con-
straints are generated. Note that this rule can be applied if f has an identity
symbol e, i.e., Uf (e) ∈ ax(f), and even if f is the identity element of another
symbol. Additional, specialized decomposition rules are given in Figures 5, 6,
and 7 for the case when the root function symbol f obeys C, A, or AC, re-
spectively. Note that there is no inference rule for the ACU case, it is just a
combination of the rules that are applicable to AC and U.

– The SolveB rule moves a constraint t
x
, t′, with root(t) 6= root(t′), to the store

only when there is no constraint in S of the form u
y

, u′ for two terms u and u′

that are respectively B-equal to t and t′. Note that rule SolveB does not apply

to a constraint t
x
, t′ such that either t or t′ are rooted by a function symbol f

with Uf (e) ∈ ax(f), since it is given a more specialized treatment in the rule
ExpandB of Figure 2. If f or g are identity symbols of other symbols, the rule
is applied in the same way.

– The RecoverB rule checks whether there is an already solved constraint u
y

, u′

in S for two terms u and u′ that are respectively B-equal to t and t′. Then,
the previously computed generalizer given by the variable y is reused. This
allows us to handle common generalization subproblems that may appear more
than once, e.g., the least general generalizer of f(f(a, a), a) and f(f(b, b), a) is
f(f(y, y), a). Note that this rule may overlap with the specialized RecoverU
rule of Figure 3 and both rules would be non-deterministically applied.

8

ExpandU

c ≡ (t
x:[s]

, t′) (resp. c ≡ (t′
x:[s]

, t)) ∧
f : [s]× [s]→ [s] ∧ Uf (e) ∈ ax(f) ∧ root(t) ≡ f ∧ t′ 6=B e ∧ root(t′) 6= f∧

t′′ ∈ {f(e, t′), f(t′, e)} ∧

c′ ≡ (t
x:[s]

, t′′) (resp. c′ ≡ (t′′
x:[s]

, t))

〈c ∧ C | S | θ〉 → 〈c′ ∧ C | S | θ〉

Fig. 2: Order-sorted inference rule for expanding a term t using a function f with
identity element e (Alpuente et al., 2014b)

RecoverU

c ≡ (t
x:[s]

, t′) (resp. c ≡ (t′
x:[s]

, t)) ∧

∃y∃s′ : t
y:s′

, e ∈B S (resp. e
y:s′

, t ∈B S) ∧ Uf (e) ∈ ax(f) ∧ f : [s]× [s]→ [s] ∧

c′ ≡ (e
z:[s]

, t′) (resp. c′ ≡ (t′
z:[s]

, e))

〈c ∧ C | S | θ〉 → 〈c′ ∧ C | S | θσ〉
where σ = {x:[s] 7→ f(y:s′, z:[s])} or σ = {x:[s] 7→ f(z:[s], y:s′)}

Fig. 3: Order-sorted inference rule for recovering a partially computed generalizer
for a term t and the identity element e of f

Special rules are introduced for dealing with constraints that may involve an
identity axiom:

– The ExpandU rule in Figure 2 allows any constraint f(t1, t2)
x
, t to be reduced

to the constraint f(t1, t2)
x
, f(t, e) (or f(t1, t2)

x
, f(e, t)) whenever f has an

identity element e and root(t) 6= f . The rule is applied also when the constraint

has the form t
x
, f(t1, t2).

– The new inference rule RecoverU in Figure 3 applies to any constraint t
x
, t′

such that either t
y

, e or e
y

, t has been respectively stored in S, with e being
the identity element of a given function f of the signature. Then, the new

constraint e
z:[s]

, t′ (resp. t′
z:[s]

, e) is added to C in order to be solved in a
subsequent step, while the index variable y from the recovered, previously
solved common subproblem is reused to instantiate x into f(y, z) (resp. f(z, y)).
Note that this is equivalent to first introduce a new, intermediate constraint

f(t, e)
x
, f(e, t′) (resp. f(e, t)

x
, f(t′, e)) by exploiting Uf (e), and then derive

the added constraints e
z:[s]

, t′ (resp. t
z:[s]

, e) by decomposing this intermediate
constraint.

Let us briefly discuss why the original calculus (without the RecoverU rule of
Figure 3) is incomplete.

Example 4 Let us again consider the generalization problem g(f(a, c), a)
w
, g(c, b)

of Example 1. Our extended algorithm computes the least general generalizer
by means of the computation sequence of Figure 4, which applies the new rule
RecoverU at the penultimate step by exploiting the fact that g(f(a, c), a) is equal
modulo identity to g(f(a, c), f(a, ef)). Note that, without the new rule RecoverU ,

9

there is no way to generalize the constants a and b in the second argument of g to its
least general generalizer f(w11, w22) modulo identity. Also, for the generalization

problem g(f(a, c), f(a, ef))
w
, g(f(ef , c), f(ef , b)), these rules allow us to identify the

generalization sub-problem a
w11

, ef at two different locations, assigning them the
same variable w11.

〈g(f(a, c), a)
w

, g(c, b) | ∅ | id〉

→ 〈f(a, c)
w1

, c ∧ a
w2

, b | ∅ | {w 7→ g(w1, w2)}〉 (DecomposeB)

→ 〈f(a, c)
w1

, f(ef , c) ∧ a
w2

, b | ∅ | {w 7→ g(w1, w2)}〉 (ExpandU)

→ 〈a
w11

, ef ∧ c
w12

, c ∧ a
w2

, b | ∅ | {w 7→ g(f(w11, w12), w2)}〉 (DecomposeB)

→ 〈c
w12

, c ∧ a
w2

, b | a
w′11
, ef | {w 7→ g(f(w′11, w12), w2)}〉 (SolveB)

→ 〈a
w2

, b | a
w′11
, ef | {w 7→ g(f(w′11, c), w2)}〉 (DecomposeB)

→ 〈ef
w22

, b | a
w′11
, ef | {w 7→ g(f(w′11, c), f(w′11, w22)}〉 (*RecoverU)

→ 〈∅ | a
w′11
, ef ∧ ef

w′22
, b | {w 7→ g(f(w′11, c), f(w′11, w

′
22)}〉 (SolveU)

Fig. 4: Execution of our inference rules for the generalization problem

g(f(a, c), a)
w
, g(c, b)

Termination was straightforward in the original calculus of (Alpuente et al.,
2014b), but the addition of the new rule RecoverU in Figure 3 breaks down termi-
nation unless suitable restrictions are imposed. Indeed, (Cerna and Kutsia, 2020)
proves that generalization with more than one identity symbol becomes nullary,
i.e., the existence of a minimal and complete set of least general generalizers is not
guaranteed (not even infinite), and two shortcut solutions are proposed: restrict-
ing to linear generalization problems for completeness (i.e., to compute a finite,
minimal and complete set of generalizers) and restricting to (unsorted) one-unit
signatures (i.e., with a unique function obeying identity) for finiteness of the set of
B-lggs, even though their algorithm may generate an infinite complete set of gen-
eralizers. In the following section, we revisit the one-unit restriction and ascertain
a more general notion that not only guarantees non-nullarity but also finiteness
of the set of solutions so that our extended algorithm computes a finite, complete
and minimal set of least general equational generalizers.

3.2 Ensuring finiteness of least general generalization modulo identity

The only inference rule that can be applied to the generalization problem ef
w
, eg of

Example 2 using our original order-sorted, equational least general generalization

10

calculus in (Alpuente et al., 2014b) is the rule SolveB in Figure 1. However, the
extended calculus proposed in Subsection 3.1 does not terminate on this problem as
shown by any of the following non-terminating computations that infinetely apply

the inference rule RecoverU : 〈ef
x
, eg | ef

y

, eg | θ〉 → 〈ef
x′

, eg | ef
y

, eg | θ{x 7→

f(y, x′)}〉 · · · , and 〈ef
x
, eg | ef

y

, eg | θ〉 → 〈ef
x′

, eg | ef
y

, eg | θ{x 7→ g(y, x′)}〉 · · · .
In the following, we generalize to our order-sorted equational setting the re-

striction to one-unit signatures of (Cerna and Kutsia, 2020). This is done by for-
malizing a new notion, called U-tolerance, which focuses on the generalization
problems themselves so that U-tolerance may hold for equational theories that do
not satisfy Cerna and Kutsia’s condition provided the connected component of
sorts that corresponds to the problem subsignature is one-unit.

Note that for any binary function symbol obeying any combination of A, C,
and U axioms (except for just C), the top sort of both arguments coincides with
the top sort of the result.

Definition 2 (U-tolerant signature of generalization problems) Given a kind-
completed, B-pre-regular, order-sorted equational theory (Σ,B), and a general-
ization problem Γ , consider the restriction ΣΓ = (S, F,≤) of Σ to the function
symbols of Γ . ΣΓ is called U-tolerant if it does not contain two different function
symbols f : sf × sf → sf and g : sg × sg → sg with different identity symbols ef and
eg, respectively, such that [LS(ef)] = [LS(eg)].

We may simply say that the whole signature Σ is U-tolerant when no general-
ization problem Γ is made explicit and Σ satisfies the U-tolerance condition.

Note that the one-unit requirement of (Cerna and Kutsia, 2020) implies U-
tolerance. In the following we show how our more relaxed, yet syntactic, U-
tolerance condition is widely applicable in practice by means of some examples.

Example 5 Consider the following Maude functional module that defines lists and
multisets of natural numbers:

fmod LIST+MSET-NO-U-tolerant is
sorts Nat List MSet Top .
subsorts Nat < List < Top .
subsorts Nat < MSet < Top .
op nil : -> List [ctor] .
op _;_ : List List -> List [ctor assoc id: nil] .
op null : -> MSet [ctor] .
op _,_ : MSet MSet -> MSet [ctor assoc comm id: null] .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

endfm

where the ctor declarations specify that all of these operators are data constructors,
as opposed to defined functions such as list reverse, or multiset cardinality, and
the axioms B are specified by the assoc, comm, and id: keywords. Note that,
since Nat < List and Nat < MSet, 0 is both a list of length one and a singleton
multiset, but the list 0 ; s(0) ; s(s(0)) and the multiset 0 , s(0) , s(s(0))

have incomparable least sorts List and MSet. Moreover these are also the least
sorts of nil and null, respectively. However, this signature is not U-tolerant, since
the kind of List and MSet coincide, i.e., the sort Top added for kind-completeness.

11

However, it is easy to repair it by using extra symbols [] and { } to encapsulate
a natural as an element of a list or multiset, respectively.

fmod LIST+MSET-U-tolerant is
sorts Nat List MSet .
op [_] : Nat -> List .
op {_} : Nat -> MSet .
op nil : -> List [ctor] .
op _;_ : List List -> List [ctor assoc id: nil] .
op null : -> MSet [ctor] .
op _,_ : MSet MSet -> MSet [ctor assoc comm id: null] .
op 0 : -> Nat [ctor] .
op s : Nat -> Nat [ctor] .

endfm

The former list and multiset are now represented as [0] ; [s(0)] ; [s(s(0))] and
{0} , {s(0)} , {s(s(0))}. They have incomparable least sorts List and MSet and
kinds [List] and [MSet], which coincide with the least sorts and kinds of nil and
null. Therefore, this signature is not one-unital in the sense of (Cerna and Kutsia,
2020) yet it is U-tolerant, and thus any generalization problem in this theory has
a finite set of least general generalizers.

Besides order-sortedness, there are two additional reasons why, in practice, the
U-tolerance requirement is a mild one.

First of all, most reasoning about generalization modulo B happens in the
context of algebraic specifications in which operators are naturally classified into
constructor symbols and defined function symbols. The point is that the use of axioms
B is much more important for constructor symbols —allowing us to define data
structures such as the lists and multisets above— than for defined functions, where
they are not really needed, although they may be useful to have. This distinction
can help us totally avoid lacks of U-tolerance that would seem unavoidable, such as
the possible conflict between identity elements 0 and 1 for + and ∗ in the natural
numbers as illustrated in the following example.

Example 6 Consider the following Maude functional module that defines addition
and multiplication of natural numbers:

fmod NAT-ACU .
sort Nat .
ops 0 1 : -> Nat [ctor] .
op _+_ : Nat Nat -> Nat [ctor assoc comm id: 0] .
op _*_ : Nat Nat -> Nat [assoc comm] .
vars N M : Nat .
eq N * 0 = 0 .
eq N * (1 + M) = N + (N * M) .

endfm

The constructor terms for this example are the additive monoid with identity
0 generated by 1. This means that any binary function f can be defined by recur-
sive equations of the form f(u1, u2) = t, where the u1, u2 are constructor terms.
Therefore, f itself will never occur in the u1, u2. This implies that even if f has an
identity element ef , specifying such an f with an identity axiom is entirely useless.
This is indeed the case for the multiplication function, even though associativity

12

and commutativity are still useful multiplicative axioms, and even if the identity
property is provable from the above equations:

x ∗ 1 =B x ∗ (1 + 0) = x+ (x ∗ 0) = x+ 0 =B x

Note that adding NAT-ACU to LIST+MSET-U-tolerant does not change the U-
tolerant property, since there are three connected components Nat, List, and MSet.

The second reason why U-tolerance can be achieved in practice in cases where
its failure might seem unavoidable can also be illustrated by a simple example.

Example 7 The U-tolerance of the LIST+MSET-NO-U-tolerant of Example 5 can be
easily obtained in a semantics-preserving manner. This is so for the following reason.
Suppose we have an order-sorted equational theory E = (Σ,E ∪ B) specified in
Maude as a functional module with axioms B and equations E, which, oriented
as rules, are confluent and terminating modulo B. Now let U0 ⊆ U ⊆ B be a set
of identity axioms for some of the operators in Σ. Then, as explained in (Durán
et al., 2009), there is an automatic theory transformation E 7→ EU0

such that: (i) E
and EU0

are equivalent equational theories and therefore have isomorphic initial
algebras; (ii) the axioms of EU0

are B \ U0, and the U0 now becomes additional
equations in EU0

; (iii) E is confluent and terminating iff EU0
is so. In other words,

the transformation E 7→ EU0
is semantics-preserving in the strongest way possible.

How would we apply this transformation to our LIST+MSET-NO-U-tolerant mod-
ule? We would just choose the identity axioms of nil and null as U0. The effect
of the E 7→ EU0

transformation for E in our LIST+MSET-NO-U-tolerant example
would be as follows: (i) we would drop the id: nil attribute; (ii) we would add
the following equations, where X and Y are of sort List:

eq nil ; X = X .
eq X ; nil ; Y = X ; Y .
eq Y ; nil = Y .

(iii) we would drop the id: null attribute; and (iv) we would add the following
equations, where Z is of sort MSet:

eq null , Z = Z .

The resulting module is a semantically equivalent specification that is now U-
tolerant.

As we have discussed so far, the U-tolerance condition is much more pow-
erful than it might appear at first sight. Actually, when order-sorted equational
generalization is applied in the context of rewriting logic tools such as program
transformers or correctors (Alpuente et al., 2020a,b) (where computing B-lggs is
key for ensuring correctness and termination of the transformation), only general-
ization problems that are normalized w.r.t. the equational theory are considered
so that any defined function symbols (together with their identity elements) have
been evaluated away prior to generalization.

Regarding the benchmark examples in (Alpuente et al., 2019), we have verified
that all of the examples are U-tolerant, except for synthetic. The examples in
(Alpuente et al., 2019) which contain the identity axiom for some function symbol
are the following:

13

– spouses (AU) and children (ACU), two classical generalization problems bor-
rowed from the logic programming domain that are described in (Alpuente
et al., 2014a);

– only-U, a generalization problem without associative or commutative axioms;
– synthetic, an involved generalization example mixing U and A axioms for two

distinct binary symbols;
– chemical, a case-based reasoning problem for chemical compounds inspired by

(Armengol, 2007);
– graph, the leading example of (Baumgartner et al., 2018); and
– biological, a cell model for the analysis of biological systems.

All of the generalization problems spouses, children, only-U, chemical, and
biological are one-unit, hence U-tolerant. As for the graph example, it is U-
tolerant since the two identity elements in the signature (empty for the graph con-
structor and nil for the list constructor) have incomparable least sorts, similarly
to Example 5. The only generalization problem that does not fulfill U-tolerance
is synthetic, which can be seen as a more complex version of Example 1 that is
both non-linear and not U-tolerant (actually, it contains two functions f and g

with identity elements ef and eg, respectively, similarly to Example 2) and com-
bines U with A. As we have shown, in our order-sorted setting we can deal with
this problem by either introducing incomparable least sorts for ef and eg, or in
the case when this would not be appropriate, we could easily achieve U-tolerance
of the equational theory E by applying the transformation in (Durán et al., 2009)
that we sketched in Example 7.

More precisely, in a real application involving an equational specification E =
(Σ,E] B), we are interested to compute least general generalizers w.r.t. (Σ,B).
The transformation E 7→ EU0

of (Durán et al., 2009) technically relies on computing
variants3 for the equations in E with the axioms of U0 oriented as rules. In the
transformed specification EU0

, the new set of axioms is B \U0 while the equations
in U0 have been oriented as rules. Formally, EU0

= (Σ, (EU0
∪ U0)] (B \ U0)),

where the equations that are used as rules are: 1) EU0
, the set of variants that are

generated by E using the theory (Σ,U0] (B \ U0)), and 2) the equations of U0.
Note that the equational axioms to be used for generalization in the transformed
equational theory EU0

(which is semantically equivalent to E) are B \ U0 so that
the problematic identity axioms U0 have now become oriented equations of the
transformed specification, which are executed modulo B \ U0.

So far we have provided a modular algorithm for least general generalization
in equational theories containing different axioms such as associativity, commu-
tativity, and identify (and their combinations). However, our modular algorithm
does not provide, a priori, a minimal set lggE(t, t′) of least general equational gen-
eralizers for t and t′ so that it must be filtered out to obtain one of the possible
minimal sets of E-lgg’s (see (Alpuente et al., 2014b)). That is, first a complete set
of E-generalizers is computed by the inference rules of Figures 1, 2, 3, 5, 6 and 7,
given above, and then they are filtered to obtain lggE(t, s) by using the fact that,

3 Given E = (Σ,E] B), the equational variants (or simply variants) of a term t are the
set of all pairs (t′, σ), where t′ is the canonical form of tσ for a substitution σ (Escobar et al.,
2012). Intuitively, the variants of t are the “irreducible patterns” to which t can be symbolically

evaluated by applying ~E modulo B. An equational theory E has the finite variant property
(FVP) (or E is called a finite variant theory) iff there is a finite and complete set of most
general equational variants for each term.

14

DecomposeC

f : [s′]× [s′]→ [s] ∧ Cf ∈ ax(f) ∧Af 6∈ ax(f) ∧ i ∈ {1, 2}

〈f(t1, t2)
x:[s]

, f(t′1, t
′
2) ∧ C | S | θ〉 → 〈t1

x1:[s
′]

, t′i ∧ t2
x2:[s

′]
, t′

(i mod 2)+1
∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s′], x2:[s′])}, and x1:[s′], x2:[s′] are fresh variables

Fig. 5: Order-sorted decomposition rule for a commutative function symbol f
(Alpuente et al., 2014b)

DecomposeA−left

f : [s]× [s]→ [s] ∧Af ∈ ax(f) ∧ Cf 6∈ ax(f)∧
n ≥ 2 ∧m ≥ 2 ∧ k ∈ {1, . . . , n− 1}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉 →

〈f(t1, . . . , tk)
x1:[s]

, t′1 ∧ f(tk+1, . . . , tn)
x2:[s]

, f(t′2, . . . , t
′
m) ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

DecomposeA−right

f : [s]× [s]→ [s] ∧Af ∈ ax(f) ∧ Cf 6∈ ax(f)∧
n ≥ 2 ∧m ≥ 2 ∧ k ∈ {1, . . . ,m− 1}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉 →

〈t1
x1:[s]

, f(t′1, . . . , t
′
k) ∧ f(t2, . . . , tn)

x2:[s]

, f(t′k+1, . . . , t
′
m) ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Fig. 6: Order-sorted decomposition rules for an associative (non–commutative)
function symbol f (Alpuente et al., 2014b)

for all theories E in the parametric family of theories we consider in this paper,
there is a matching algorithm modulo E that provides the relation ≤E .

In the following section we establish the correctness and termination of our
resulting order-sorted, equational least general generalization algorithm.

4 Termination and Correctness of Order-sorted Equational Least General

Generalization

Let us first establish that the extended, order-sorted least general generalization
calculus modulo axioms of Section 3 terminates. The proof of this theorem is in
Appendix A.1.

Let us call a set B of Σ-equational axioms A∨C∨U iff B =
⋃
f∈Σ ax(f) and

ax(f) ⊆ {Af , Cf , Uf}.

Theorem 1 (Termination) Given a kind-completed, B-pre-regular, order-sorted equa-

tional theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem

Γ = t
x:[s]

, t′, with [s] = [LS(t)] = [LS(t′)], such that the subsignature ΣΓ is U-tolerant,

15

DecomposeAC−left

f : [s]× [s]→ [s] ∧ {Af , Cf} ⊆ ax(f) ∧ n ≥ 2 ∧m ≥ 2∧
{i1, . . . , in} =]̄{1, . . . , n} ∧ kn ∈ {1, . . . , n− 1} ∧ km ∈ {1, . . . ,m}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉 →

〈f(ti1 , . . . , tikn
)
x1:[s]

, t′km ∧ f(ti(kn+1)
, . . . , tin)

x2:[s]

, f(t′1, . . . , t
′
km−1, t

′
km+1, . . . , t

′
m) ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

DecomposeAC−right

f : [s]× [s]→ [s] ∧ {Af , Cf} ⊆ ax(f) ∧ n ≥ 2 ∧m ≥ 2∧
{i1, . . . , im} =]̄{1, . . . ,m} ∧ km ∈ {1, . . . ,m− 1} ∧ kn ∈ {1, . . . , n}

〈f(t1, . . . , tn)
x:[s]

, f(t′1, . . . , t
′
m) ∧ C | S | θ〉 →

〈tkn
x1:[s]

, f(t′i1 , . . . , t
′
ikm

) ∧ f(t1, . . . , tkn−1, tkn+1, . . . , tn)
x2:[s]

, f(t′i(km+1)
, . . . , t′im) ∧ C | S | θσ〉

where σ = {x:[s] 7→ f(x1:[s], x2:[s])}, and x1:[s], x2:[s] are fresh variables

Fig. 7: Order-sorted decomposition rules for an associative–commutative function
symbol f (Alpuente et al., 2014b)

every derivation stemming from an initial configuration 〈Γ | ∅ | id 〉 using the inference

rules of Figures 1, 2, 3, 5, 6 and 7 terminates in a final configuration of the form

〈∅ | S | θ〉.

In order to prove correctness (Theorem 2 below) and completeness (Theorem 3
below) of the order-sorted, least general equational generalization procedure, we
follow the same proof schema of (Alpuente et al., 2014b) and define order-sorted
B-lgg computation by subsort specialization. In other words, we mimick the com-
putation of least general generalizers by first removing sorts (i.e., upgrading vari-
ables to top sorts), then computing (unsorted) B-lggs, and finally obtaining the
right subsorts by a suitable specialization post-processing. Note that this näıve
procedure, formalized in Appendix A.3, is not used in practice but only as a useful
reference for the proofs of correctness and completeness of Appendix A.2.

Since we follow the proof scheme of (Alpuente et al., 2014b) and the only
change is in the identity case, we only need to modify the following lemma from
(Alpuente et al., 2014b), whose proof is in Appendix A.3.

Lemma 1 Given terms t and t′ such that every symbol in t and t′ is either free or has

an identity element, and a fresh variable x,

– if 〈t
x
, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, and 3,

then xθ is a generalizer of t and t′ modulo identity;

– if u is a generalizer of t and t′ modulo identity, then there is a derivation 〈t
x
, t′ |

∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, and 3, such that

u ≡B xθ.

In order to precisely state correctness, we need the following. We use flattened
versions of terms that use poly-variadic versions of the associative symbols, i.e.,

16

given an associative symbol f with n arguments, and n ≥ 2, flattened terms are
canonical forms w.r.t. the set of rules given by the following rule schema

f(u1, . . . , f(v1, . . . , vn), . . . , um)→ f(u1, . . . , v1, . . . , vn, . . . , um) m ≥ 1

Given an associative symbol f and a term f(t1, . . . , tn), we call f-alien terms (or
simply alien terms) those terms among the t1, . . . , tn that are not rooted by f .

Theorem 2 (Correctness) Given a kind-completed, B-pre-regular, order-sorted equa-

tional theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem

Γ = t
x:[s]

, t′, with [s] = [LS(t)] = [LS(t′)], such that t and t′ are flattened Σ-terms

and the subsignature ΣΓ is U-tolerant, if 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈∅ | S | θ〉 using the

inference rules of Figures 1, 2, 3, 5, 6 and 7, then (x:[s])θ is a generalizer of t and t′.

Theorem 3 (Completeness) Given a kind-completed, B-pre-regular, order-sorted

equational theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem

Γ = t
x:[s]

, t′, with [s] = [LS(t)] = [LS(t′)], such that t and t′ are flattened Σ-terms and

the subsignature ΣΓ is U-tolerant, if u is a least general generalizer of t and t′ modulo

B, then there is a derivation 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules

of Figures 1, 2, 3, 5, 6 and 7, such that u ≡B (x:[s])θ.

Note that, because of termination, the filtering procedure of (Alpuente et al.,
2014b) can be finally applied to get rid of those generalizers that are not least
general so that minimality of the set of E-lgg’s trivially holds.

5 Conclusions

We have completed the generalization calculus of (Alpuente et al., 2014b) with
an extra inference rule so that completeness holds for both linear and non-linear
order-sorted equational generalization under a mild syntactic condition on sig-
natures, called U-tolerance, ensuring finiteness of the set of B-lggs that is easily
achievable in practice. To our knowledge, this is the first finite, minimal, and com-
plete procedure for order-sorted equational least general generalization modulo
any combinations of associativity, commutativity, and identity axioms for differ-
ent function symbols (i.e., A, C, U, AC, AU, CU, and ACU). Furthermore, it not
only works for unsorted and many-sorted specification, but it also works for the
more general and expressive case of order-sorted specifications. This allows us to
deal with equational theories more expressive than the unsorted ones currently
handled by (Cerna and Kutsia, 2020). Furthermore, this is done without resorting
to heuristics or tree grammars.

We have implemented the extended, order-sorted, least general generalization
algorithm described in this paper in the ACUOS2 system, which is publicly avail-
able at http://safe-tools.dsic.upv.es/acuos2. We also endowed the ACUOS2

system with a new capability to check the U-tolerance property, which can be
accessed as a suitable tool option.

17

http://safe-tools.dsic.upv.es/acuos2

References

Alpuente M, Escobar S, Meseguer J, Ojeda P (2008) A modular equational general-
ization algorithm. In: Hanus M (ed) Logic-Based Program Synthesis and Trans-
formation, 18th International Symposium, LOPSTR 2008, Valencia, Spain,
July 17-18, 2008, Revised Selected Papers, Springer, Lecture Notes in Com-
puter Science, vol 5438, pp 24–39, DOI 10.1007/978-3-642-00515-2\ 3, URL
https://doi.org/10.1007/978-3-642-00515-2_3

Alpuente M, Escobar S, Meseguer J, Ojeda P (2009) Order-sorted generalization.
Electr Notes Theor Comput Sci 246:27–38, DOI 10.1016/j.entcs.2009.07.013,
URL https://doi.org/10.1016/j.entcs.2009.07.013

Alpuente M, Escobar S, Espert J, Meseguer J (2014a) ACUOS: A System for
Modular ACU Generalization with Subtyping and Inheritance. In: Proceedings
of the 14th European Conference on Logics in Artificial Intelligence (JELIA
2014), Springer-Verlag, Berlin, Lecture Notes in Computer Science, vol 8761,
pp 573–581

Alpuente M, Escobar S, Espert J, Meseguer J (2014b) A modular order-sorted
equational generalization algorithm. Information and Computation 235:98–
136, DOI 10.1016/j.ic.2014.01.006, URL https://doi.org/10.1016/j.ic.2014.

01.006

Alpuente M, Ballis D, Cuenca-Ortega A, Escobar S, Meseguer J (2019) ACUOS2:
A High-Performance System for Modular ACU Generalization with Subtyping
and Inheritance. In: Proceedings of the 16th European Conference on Logics in
Artificial Intelligence (JELIA 2019), Springer-Verlag, Berlin, Lecture Notes in
Computer Science, vol 11468, pp 171–181

Alpuente M, Ballis D, Sapiña J (2020a) Efficient Safety Enforcement for Maude
Programs via Program Specialization in the ÁTAME system. Mathematics in
Computer Science 14(3):591–606

Alpuente M, Cuenca-Ortega A, Escobar S, Meseguer J (2020b) A Partial Evalua-
tion Framework for Order-Sorted Equational Programs modulo Axioms 110:1–
36

Armengol E (2007) Usages of Generalization in Case-Based Reasoning. In: Proc.
of the 7th International Conference on Case-Based Reasoning (ICCBR 2007),
Springer-Verlag, Lecture Notes in Computer Science, vol 4626, pp 31–45, DOI
10.1007/978-3-540-74141-1 3

Baumgartner A, Kutsia T, Levy J, Villaret M (2018) Term-graph anti-unification.
In: FSCD, Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, LIPIcs, vol 108,
pp 9:1–9:17

Cerna DM, Kutsia T (2020) Unital anti-unification: Type and algorithms. In: Ari-
ola ZM (ed) 5th International Conference on Formal Structures for Computation
and Deduction, FSCD 2020, June 29-July 6, 2020, Paris, France (Virtual Con-
ference), Schloss Dagstuhl - Leibniz-Zentrum für Informatik, LIPIcs, vol 167,
pp 26:1–26:20, DOI 10.4230/LIPIcs.FSCD.2020.26, URL https://doi.org/10.

4230/LIPIcs.FSCD.2020.26

Durán F, Lucas S, Meseguer J (2009) Termination modulo combinations of equa-
tional theories. In: Ghilardi S, Sebastiani R (eds) FroCos, Springer, Lecture
Notes in Computer Science, vol 5749, pp 246–262

Escobar S, Sasse R, Meseguer J (2012) Folding variant narrowing and optimal
variant termination. J Log Algebr Program 81(7-8):898–928

18

https://doi.org/10.1007/978-3-642-00515-2_3
https://doi.org/10.1016/j.entcs.2009.07.013
https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.1016/j.ic.2014.01.006
https://doi.org/10.4230/LIPIcs.FSCD.2020.26
https://doi.org/10.4230/LIPIcs.FSCD.2020.26

Goguen J, Meseguer J (1992) Order-sorted algebra I: Equational deduction for
multiple inheritance, overloading, exceptions and partial operations. Theoretical
Computer Science 105:217–273

Huet G (1976) Resolution d’equations dans des langages d’order 1, 2,. . . ,ω. PhD
thesis, Univ. Paris VII

Meseguer J (1997) Membership Algebra As a Logical Framework for Equational
Specification. In: Parisi-Presicce F (ed) Proc. of 12th International Workshop
on Recent Trends in Algebraic Development Techniques, WADT’97, Springer,
LNCS, vol 1376, pp 18–61

Muggleton S (1999) Inductive Logic Programming: Issues, Results and the Chal-
lenge of Learning Language in Logic. Artif Intell 114(1-2):283–296

Ontañón S, Plaza E (2012) Similarity measures over refinement graphs. Machine
Learning 87(1):57–92, DOI 10.1007/s10994-011-5274-3

Plotkin G (1970) A note on inductive generalization. In: Machine Intelligence,
vol 5, Edinburgh University Press, pp 153–163

Reynolds J (1970) Transformational systems and the algebraic structure of atomic
formulas. Machine Intelligence 5:135–151

TeReSe (ed) (2003) Term Rewriting Systems. Cambridge University Press, Cam-
bridge

A Proofs of technical results

A.1 Proof of Theorem 1

Theorem 1 (Termination). Given a kind-completed, B-pre-regular, order-sorted equational

theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem Γ = t
x:[s]

, t′,
with [s] = [LS(t)] = [LS(t′)], such that the subsignature ΣΓ is U-tolerant, every derivation
stemming from an initial configuration 〈Γ | ∅ | id 〉 using the inference rules of Figures 1, 2,
3, 5, 6 and 7, terminates in a final configuration of the form 〈∅ | S | θ〉.

Proof Identical to the proof of (Alpuente et al., 2014b) since it is not possible to have a

generalization problem of the form ef
w

, eg in a U -tolerant signature. ut

A.2 An auxiliary least general generalization procedure

In order to prove correctness and completeness (Theorems 2 and 3, respectively, in Ap-
pendix A.3) of the order-sorted, equational least general generalization procedure, we follow
the same proof schema of (Alpuente et al., 2014b) and define order-sorted B-lgg computation
by subsort specialization. In other words, we mimick the computation of least general general-
izers by first removing sorts (i.e., upgrading variables to top sorts), then computing (unsorted)
B-lggs, and finally obtaining the right subsorts by a suitable specialization post-processing.

First, we recall the notion of a conflict pair.

Definition 3 (Conflict Position/Pair) Given terms t and t′, a position p ∈ Pos(t)∩Pos(t′)
is called a conflict position of t and t′ if root(t|p) 6= root(t′|p) and for all q < p, root(t|q) =
root(t′|q). Given terms t and t′, the pair (u, v) is called a conflict pair of t and t′ if there exists
at least one conflict position p of t and t′ such that u = t|p and v = t′|p.

The following notions of pair of subterms and conflict pair are specialized to the case when
function symbols obey C, A, AC, and U and are the basis for our overall proof scheme.

19

Definition 4 (Commutative Pair of Subterms) Given terms t and t′

such that every symbol in t and t′ is either free or commutative, the pair (u, v) of terms is
called a commutative pair of subterms of t and t′ if and only if there are positions p ∈ Pos(t)
and p′ ∈ Pos(t′) such that:

– t|p = u, t′|p′ = v, depth(p) = depth(p′),
– for each 0 ≤ i < depth(p), root(t|p|i) = root(t′|p′|i), and
– for each 0 < j ≤ depth(p):

– if root(t|p|j−1
) is free, then (p)j = (p′)j , and

– if root(t|p|j−1
) is commutative, (p)j = (p′)j or (p)j = ((p′)j mod 2) + 1.

Definition 5 (Commutative Conflict Pair) Given terms t and t′ such that every symbol
in t and t′ is either free or commutative, the pair (u, v) is called a commutative conflict pair
of t and t′ if and only if root(u) 6= root(v) and (u, v) is a commutative pair of subterms of t
and t′.

Definition 6 (Associative Pair of Positions) Given flattened terms t and t′ such that
every symbol in t and t′ is either free or associative, and given positions p ∈ Pos(t) and
p′ ∈ Pos(t′), the pair (p, p′) of positions is called an associative pair of positions of t and t′ if
and only if

– depth(p) = depth(p′),
– for each 0 ≤ i < depth(p), root(t|p|i) = root(t′|p′|i), and
– for each 0 < j ≤ depth(p):

– if root(t|p|j−1
) is free, then (p)j = (p′)j , and

– if root(t|p|j−1
) is associative, then no restriction on (p)j and (p′)j .

Definition 7 (Associative Pair of Subterms) Given flattened terms t and t′ such that
every symbol in t and t′ is either free or associative, the pair (u, v) of terms is called an
associative pair of subterms of t and t′ if and only if either

1. (Regular subterms) for each pair of positions p ∈ Pos(t) and p′ ∈ Pos(t′) such that t|p = u,
t′|p′ = v, then (p, p′) is an associative pair of positions of t and t′; or

2. (Associative subterms) there are positions p ∈ Pos(t), p′ ∈ Pos(t′) such that the following
conditions are satisfied:
– (p, p′) is an associative pair of positions of t and t′,
– u = f(u1, . . . , unu), nu ≥ 1, v = f(v1, . . . , vnv), nv ≥ 1, f is associative,
– t|p = f(t1, . . . , tk1 , u1, . . . , unu , tk2 , . . . , tnp), np ≥ 2, t′|p′ = f(t′1, . . . , t

′
k′1
, v1, . . . ,

vnv , t
′
k′2
, . . . , t′np′

), np ≥ 2, and

– k1 = 0 (no arguments before u1) if and only if k′1 = 0 (no arguments before v1), and,
– k2 > np (no arguments after unu) if and only if k′2 > np′ (no arguments after vnv).

Definition 8 (Associative Conflict Pair) Given flattened terms t and t′ such that every
symbol in t and t′ is either free or associative, the pair (u, v) is called an associative conflict
pair of t and t′ if and only if root(u) 6= root(v) and (u, v) is an associative pair of subterms of
t and t′.

Definition 9 (Associative-commutative Pair of Positions) Given flattened terms t and
t′ such that every symbol in t and t′ is either free or associative-commutative, and given
positions p ∈ Pos(t) and p′ ∈ Pos(t′), the pair (p, p′) of positions is called an associative-
commutatve pair of positions of t and t′ if it satisfies the conditions for being an associative
pair of positions of t and t′.

Definition 10 (Associative-commutative Pair of Subterms) Given flattened terms t
and t′ such that every symbol in t and t′ is either free or associative-commutative, the pair
(u, v) of terms is called an associative-commutative pair of subterms of t and t′ if and only if
either

1. (Regular subterms) for each pair of positions p ∈ Pos(t) and p′ ∈ Pos(t′) such that t|p = u,
t′|p′ = v, then (p, p′) is an associative-commutative pair of positions of t and t′; or

2. (Associative-commutative subterms) there are positions p ∈ Pos(t), p′ ∈ Pos(t′) such that
the following conditions are satisfied:

20

– (p, p′) is an associative-commutative pair of positions of t and t′, and
– u = f(u1, . . . , unu), nu ≥ 1, v = f(v1, . . . , vnv), nv ≥ 1, f is associative,
– t|p = f(t1, . . . , tnp), np ≥ 2, t′|p′ = f(t′1, . . . , t

′
np′

), np′ ≥ 2,

– for all 1 ≤ i ≤ nu, there exists 1 ≤ j ≤ np s.t. ui =B tj , and
– for all 1 ≤ i ≤ nv , there exists 1 ≤ j ≤ np′ s.t. vi =B t′j .

Definition 11 (Associative-commutative Conflict Pair) Given flattened terms t and t′

such that every symbol in t and t′ is either free or associative-commutative, the pair (u, v) is
called an associative-commutative conflict pair of t and t′ if and only if root(u) 6= root(v) and
(u, v) is an associative-commutative pair of subterms of t and t′.

Definition 12 (Identity Pair of Positions) Given terms t and t′ such that every symbol
in t and t′ is either free or has an identity, and given positions p ∈ Pos(t) and p′ ∈ Pos(t′), the
pair (p, p′) of positions is called an identity pair of positions of t and t′ if and only if either

1. (Base case) p = Λ and p′ = Λ;
2. (Free symbol) p = q.i, p′ = q′.i, root(t′|q′) = root(t|q) is a free symbol, and (q, q′) is an

identity pair of positions of t and t′;
3. (Identity on the left) depth(p) > depth(p′), p = q.i, root(t|q) has an identity symbol e, and

(q, p′) is an identity pair of positions of t and t′; or
4. (Identity on the right) depth(p′) > depth(p), p′ = q′.i, root(t′|q′) has an identity symbol

e, and (p, q′) is an identity pair of positions of t and t′.

Definition 13 (Identity Pair of Subterms) Given terms t and t′ such that every symbol
in t and t′ is either free or has an identity, the pair (u, v) of terms is called an identity pair of
subterms of t and t′ if and only if for each pair of positions p ∈ Pos(t) and p′ ∈ Pos(t′) such
that t|p = u, t′|p′ = v, then (p, p′) is an identity pair of positions of t and t′.

Definition 14 (Identity Conflict Pair) Given terms t and t′ such that every symbol in t
and t′ is either free or has an identity, the pair (u, v) is called an identity conflict pair of t and
t′ if and only if root(u) 6= root(v) and (u, v) is an identity pair of subterms of t and t′.

We also recall a special notation for subterm replacement when we have associative or
associative-commutative conflict pairs and order-sorted information.

Definition 15 (A-Subterm Replacement) Given two flattened terms t and t′ and an
associative conflict pair (u, v) with a pair of conflict positions p ∈ Pos(t) and p′ ∈ Pos(t′) such
that u = f(u1, . . . , um), m ≥ 1, v = f(v1, . . . , vn), n ≥ 1, f is associative, t|p = f(w1, . . . ,
wk1 , u1, . . . , um, w

′
1, . . . , w

′
k2

), k1 ≥ 0, k2 ≥ 0, and t′|p′ = f(w′′1 , . . . , w
′′
k3
, v1, . . . , vn, w′′′1 , . . . ,

w′′′k4), k3 ≥ 0, k4 ≥ 0, we write t[[x:s]]p and t′[[x:s]]p′ to denote the terms t[[x:s]]p = t[f(w1,

. . . , wk1 , x:s, w′1, . . . , w
′
k2

)]p, and t′[[x:s]]p′ = t[f(w′′1 , . . . , w
′′
k3
, x:s, w′′′1 , . . . , w

′′′
k4

)]p′ .

Definition 16 (AC-Subterm Replacement) Given two flattened terms t and t′ and an
associative-commutative conflict pair (u, v) with a pair of conflict positions p ∈ Pos(t) and
p′ ∈ Pos(t′) such that u = f(u1, . . . , um), m ≥ 1, v = f(v1, . . . , vn), n ≥ 1, f is associative-
commutative, t|p = f(w1, . . . , wk1) s.t. for each i ∈ {1, . . . ,m}, there is j ∈ {1, . . . , k1} with
ui =B wj , and t′|p′ = f(w′1, . . . , w

′
k2

) s.t. for each i ∈ {1, . . . , n}, there is j ∈ {1, . . . , k2} with

vi =B w′j , then we write t[[x:s]]p and t′[[x:s]]p′ to denote the terms t[[x:s]]p = t[f(w1, . . . , wk1 ,

x:s)]p where {w1, . . . , wk1} =
⋃
{wi | 1 ≤ i ≤ k1, ∀1 ≤ j ≤ n,wi 6=B uj}, and t′[[x:s]]p′ =

t[f(w′1, . . . , w
′
k2
, x:s)]p′ where {w′1, . . . , w′k2} =

⋃
{w′i | 1 ≤ i ≤ k2, ∀1 ≤ j ≤ n,w′i 6=B vj}.

Note that B-pre-regularity is essential here because it ensures that after replacing a sub-
term by a variable, the least sort does not depend on the chosen representation within the
equivalence class of a term, i.e., it does not depend on how the flattened version of the term
is obtained.

We recall order-sorted B-lgg computation by subsort specialization using top-sorted gen-
eralization and sort-specialized generalization.

21

Definition 17 (Top-sorted Equational Generalization) Given a kind-
completed, B-pre-regular, order-sorted equational theory (Σ,B) with a set B of A∨C∨U ax-
ioms, and flattenedΣ-terms t and t′ such that [LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk) be the
B-conflict pairs of t and t′, and for each such conflict pair (ui, vi), let (pi1, . . . , p

i
ni
, qi1, . . . , q

i
ni

),

1 ≤ i ≤ k, be the corresponding B-conflict positions, and let [si] = [LS(ui)] = [LS(vi)]. We
define the term denoting the top order-sorted equational least general generalization as

tsgE(t, t′) = t[[x11:[s1], . . . , x
1
n1

:[s1]]]p11,...,p1n1
· · · [[xk1 :[sk], . . . , x

k
nk

:[sk]]]pk1 ,...,pknk

where x11:[s1], . . . , x1n1
:[s1], . . . , xk1 :[sk], . . . , x

k
nk

:[sk] are fresh variables.

The order-sorted equational lggs are obtained by subsort specialization.

Definition 18 (Sort-specialized Equational Generalization) Given a
kind-completed, B-pre-regular, order-sorted equational theory (Σ,B) with a set B of A∨C∨U
axioms, and flattened Σ-terms t and t′ such that [LS(t)] = [LS(t′)], let (u1, v1), . . . , (uk, vk)
be the conflict pairs of t and t′, and for each such conflict pair (ui, vi), let pi1, . . . , p

i
ni

,

1 ≤ i ≤ k, be the corresponding B-conflict positions, let [si] = [LS(ui)] = [LS(vi)], and
let x11:[s1], . . . , x1n1

:[s1], . . . , xk1 :[sk], . . . , x
k
nk

:[sk] be the variable identifiers used in Definition 17.
We define

sort-down-subsE(t, t′) = {ρ | Dom(ρ) = {x11:[s1], . . . , x1n1
:[s1], . . . , xk1 :[sk], . . . , x

k
nk

:[sk]} ∧
∀1 ≤ i ≤ k,∀1 ≤ j ≤ ni :
(xij :[si])ρ = xi:s′i ∧ s′i ∈ LUBS(LS(ui),LS(vi))}

where all the xi:s′i are fresh variables. The set of sort-specialized B-generalizers is defined as
ssgE(t, t′) = {tsgE(t, t′)ρ | ρ ∈ sort-down-subsE(t, t′)}.

A.3 Proof of Theorems 2 and 3

The auxiliary notions and results in this section are similar to the corresponding ones in
(Alpuente et al., 2014b), although the proofs of some of the results were just sketched there
and we have completed them.

Let us prove that the range of the substitutions partially computed at any stage of a
generalization derivation coincides with the set of the index variables of the configuration,

except for the generalization variable x of the original generalization problem t
x

, t′. This is
stated in the following lemma that is similar to Lemma 28 of (Alpuente et al., 2014b).

Lemma 2 (Range of Substitutions) Given terms t and t′ and a fresh variable x such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, 3, 5, 6 and 7, then
Index(S ∪ C) ⊆ VRan(θ) ∪ {x}, and VRan(θ) = Var(xθ).

Proof Immediate by construction. ut

The following lemma establishes an auxiliary property that is useful for formulating the
notion of an identity conflict pair of terms. It is similar to Lemma 30 of (Alpuente et al.,
2014b).

Lemma 3 Given terms t and t′ such that every symbol in t and t′ is either free or has an

identity, and a fresh variable x, then there is a sequence 〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧C | S | θ〉
using the inference rules of Figures 1, 2, and 3 such that there is no variable z such that

u
z

, v ∈ S if and only if (u, v) is an identity pair of subterms of t and t′.

Proof Straightforward by successive application of the inference rule
DecomposeB of Figure 1 and the inference rule ExpandU of Figure 2. ut

22

The following lemma expresses the precise connection between the constraints in a deriva-
tion and the identity conflict pairs of the initial configuration. It is similar to Lemma 31 of
(Alpuente et al., 2014b).

Lemma 4 Given terms t and t′ such that every symbol in t and t′ is either free or has an

identity, and a fresh variable x, then there is a sequence 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | u
y

, v ∧ S | θ〉
using the inference rules of Figures 1, 2, and 3 if and only if (u, v) is an identity conflict pair
of t and t′.

Proof (⇒) Since 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | u
y

, v ∧ S | θ〉, then there must be two configurations

〈u
y

, v ∧ C1 | S1 | θ1〉, 〈C2 | u
y

, v ∧ S2 | θ2〉 such that

〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ C1 | S1 | θ1〉,

〈u
y

, v ∧ C1 | S1 | θ1〉 →SolveB 〈C2 | u
y

, v ∧ S2 | θ2〉,

〈C2 | u
y

, v ∧ S2 | θ2〉 →∗ 〈∅ | u
y

, v ∧ S | θ〉,
and, by application of the inference rule SolveB , root(u) 6= root(v). By using Lemma 3 with

the derivation 〈t
x

, t′ | ∅ | id 〉 →∗ 〈u
y

, v ∧ C1 | S1 | θ1〉, (u, v′) is an identity pair of subterms
of t and t′. Therefore, (u, v) is an identity conflict pair.

(⇐) By Lemma 3, there is a configuration 〈u
y

, v ∧ C1 | S1 | θ1〉 such that 〈t
x

, t′ | ∅ |

id 〉 →∗ 〈u
y

, v ∧ C1 | S1 | θ1〉, and root(u) 6= root(v). Then, the inference rule SolveB is

applied, i.e., 〈u
y

, v ∧ C1 | S1 | θ1〉 → 〈C1 | u
y

, v ∧ S1 | θ1〉 and u
y

, v will be part of S in the
final configuration 〈∅ | S | θ〉. ut

Finally, the following lemma establishes the link between the computed substitution and
a proper generalizer. It is similar to the proof of Lemma 32 of (Alpuente et al., 2014b). We
have underlined the beginning of the extra necessary cases that allow us to repair the original
proof of (Alpuente et al., 2014b).

Lemma 1. Given terms t and t′ such that every symbol in t and t′ is either free or has an
identity, and a fresh variable x,

– if 〈t
x

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, and 3, then xθ
is a generalizer of t and t′ modulo identity;

– if u is a generalizer of t and t′ modulo identity, then there is a derivation 〈t
x

, t′ | ∅ |
id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, and 3, such that u ≡B xθ.

Proof By structural induction on the term xθ (resp. u). If xθ = x (resp. u is a variable), then
θ = id and the conclusion follows. If xθ = f(u1, . . . , uk) (resp. u = f(u1, . . . , uk)) and f is free,
then the inference rule DecomposeB of Figure 1 is applied and we have that t = f(t1, . . . , tk)
and t′ = f(t′1, . . . , t

′
k). If f has an identity symbol e and xθ = f(u1, u2) (resp. u = f(u1, u2)),

then we have two possibilities: (1) the inference rule ExpandU of Figure 2 is applied and we
have that either: (i) t = f(t1, t2) and t′ = f(t′1, t

′
2); (ii) t = f(t1, t2) and root(t′) 6= f ; or (iii)

root(t) 6= f and t′ = f(t′1, t
′
2). (2) the inference rule RecoverU of Figure 3 is applied and we

have that root(t) 6= f and root(t′) 6= f .
For the case when f is free, by using the induction hypothesis, ui is a generalizer of ti and

t′i, for each i.
For the case when f has an identity symbol e and the inference rule ExpandU was

applied, by using the induction hypothesis, u1 is a generalizer of either t1 and t′1, t1 and t′

(by applyingf(x, e)
.
= x to t′), or t and t′1 (by applyingf(x, e)

.
= x to t). Similarly, u2 is

a generalizer of either t2 and t′2, t2 and t′ (by applyingf(e, x)
.
= x to t′), or t and t′2 (by

applyingf(e, x)
.
= x to t).

For the case when f has an identity symbol e and the inference rule RecoverU was
applied, by using the induction hypothesis, either u1 is a generalizer of t and e and u2 is a

23

generalizer of t′ and e, or u1 is a generalizer of t′ and e and u2 is a generalizer of t and e.
Now, if for each pair of terms in u1, . . . , uk there are no shared variables, then the conclusion
follows. Otherwise, for each variable z shared between two different terms ui and uj , there is

a constraint w1

z

, w2 ∈ S, and, by Lemma 4, there is an identity conflict pair (w1, w2) in ti
and t′i. Thus, the conclusion follows. ut

Correctness and completeness are finally proved as follows.

Theorem 2 (Correctness). Given a kind-completed, B-pre-regular, order-sorted equational

theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem Γ = t
x:[s]

, t′,
with [s] = [LS(t)] = [LS(t′)], such that t and t′ are flattened Σ-terms and the subsignature ΣΓ

is U-tolerant, if 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈∅ | S | θ〉 using the inference rules of Figures 1, 2, 3, 5,
6 and 7,then (x:[s])θ is a generalizer of t and t′.

Proof By Lemma 1. ut

Theorem 3 (Completeness). Given a kind-completed, B-pre-regular, order-sorted equa-
tional theory (Σ,B) with a set B of A∨C∨U axioms, and a generalization problem Γ =

t
x:[s]

, t′, with [s] = [LS(t)] = [LS(t′)], such that t and t′ are flattened Σ-terms and the subsig-
nature ΣΓ is U-tolerant, if u is a least general generalizer of t and t′ modulo B, then there

is a derivation 〈t
x:[s]

, t′ | ∅ | id 〉 →∗ 〈C | S | θ〉 using the inference rules of Figures 1, 2, 3, 5,
6 and 7 such that u ≡B (x:[s])θ.

Proof By contradiction. Consider a derivation 〈t
x

, t′ | ∅ | id〉 →∗ 〈∅ | S | θ〉 such that xθ is not
a least general generalizer of t and t′ up to renaming. Since xθ is a generalizer of t and t′ by
Lemma 1, there is a substitution ρ which is not a variable renaming such that xθρ =B u. By
Lemma 2, VRan(θ) = Var(xθ); hence, we can choose ρ with Dom(ρ) = Var(xθ). Now, since
ρ is not a variable renaming, either:

1. there are variables y, y′ ∈ Var(xθ) and a variable z such that yρ = y′ρ = z, or
2. there is a variable y ∈ Var(xθ) and a non-variable term v such that yρ = v.

In case (1), there are two conflict positions p, p′ for t and t′ such that u|p = z = u|p′ and
xθ|p = y and xθ|p′ = y′. Specifically, this means that t|p = t|p′ and t′|p = t′|p′ . However, this
is impossible by Lemmas 4 and 2. In case (2), there is a position p such that xθ|p = y and p is
neither a conflict position of t and t′ nor is it under a conflict position of t and t′. Since this
is impossible by Lemmas 4 and 2, the claim is proved. ut

24

