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Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS), a chronic disease

characterized by long-lasting persistent debilitating widespread fatigue and

post-exertional malaise, remains diagnosed by clinical criteria. Our group and others

have identified differentially expressed miRNA profiles in the blood of patients. However,

their diagnostic power individually or in combinations seems limited. A Partial Least

Squares-Discriminant Analysis (PLS-DA) model initially based on 817 variables: two

demographic, 34 blood analytic, 136 PBMC miRNAs, 639 Extracellular Vesicle (EV)

miRNAs, and six EV features, selected an optimal number of five components, and

a subset of 32 regressors showing statistically significant discriminant power. The

presence of four EV-features (size and z-values of EVs prepared with or without

proteinase K treatment) among the 32 regressors, suggested that blood vesicles

carry relevant disease information. To further explore the features of ME/CFS EVs, we

subjected them to Raman micro-spectroscopic analysis, identifying carotenoid peaks

as ME/CFS fingerprints, possibly due to erythrocyte deficiencies. Although PLS-DA

analysis showed limited capacity of Raman fingerprints for diagnosis (AUC = 0.7067),

Raman data served to refine the number of PBMC miRNAs from our previous model still

ensuring a perfect classification of subjects (AUC=1). Further investigations to evaluate

model performance in extended cohorts of patients, to identify the precise ME/CFS

EV components detected by Raman and to reveal their functional significance in the

disease are warranted.
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INTRODUCTION

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome
(ME/CFS) is a highly debilitating disease characterized by
unexplained profound fatigue lasting over 6-months (ICD-10
code R53.82 or G93.3 if post-viral) (1), which is exacerbated by
physical, mental, or emotional activity, a process known as post-
exertional malaise (PEM); lack of restoring sleep, dysautonomia,
and frequent additional comorbidities (2). Despite recent intense
biomarker research, its diagnosis relies on clinical symptom
assessment, after excluding potential underlying health problems
that could relate to patient symptoms (3–5).

Historically, pathway biomarkers that have been
interrogated in ME/CFS include cytokine profiles, immune
cell subpopulations and metabolites, as reviewed by Maes et
al. (6). The recognized value of microRNAs as liquid biopsy
biomarkers of complex disease (7, 8) led to genome-wide
screenings of miRNA profiles in ME/CFS blood fractions by
ours and other research groups (9–12). These encouraging
findings, however, have so far failed to provide a specific
biomarker signature of the disease (6). Extracellular vesicles
(EVs) released by most cell types in the organism can be collected
from blood potentially reporting information of the entire
organism physiology. This was the reason for our previous
study to evaluate ME/CFS EVs and their miRNA contents.
Although altered levels of overlapping markers were found for
some miRNAs from PBMCs and EVs (12), no miRNA has been
widely validated as a biomarker of ME/CFS, and all identified
so far appear to have limited diagnostic value, individually or
when combined.

Rudimentary statistical methods such as two sample tests
(i.e., t-test or Wilcoxon-Mann Whitney test), followed by
multiple comparison corrections [i.e., Bonferroni or False
Discovery Rate (13)] for the analysis of “omic” data have
several drawbacks. These include low statistical power, lack
of interpretability of results, and the omission of complex
relationships among variables which could, in principle, be
addressed using other statistical approaches such as linear
or generalized linear models. However, these methods suffer
from other problems when dealing with “omic” data, such
as large number of variables and low sample size, which
produces overfitting, and the high correlation among variables,
which produces multi-collinearity. Those limitations have
motivated the development of numerous novel statistical
techniques (14).

Prediction methods such as Partial Least Squares (PLS) (15) is
one of these novel techniques especially suitable for the analysis
of “omic” data due to its ability to deal with more variables
than observations, and its good model interpretation capacity
(16). Conceived as an alternative to classical regression, PLS, is
a statistical multivariate technique that models the latent space
of predictors and responses (X and Y subspaces, respectively)
finding the subspace which maximizes the covariance between
both latent subspaces. PLS-DA (Discriminant Analysis) is a
variant of PLS for binary responses (17). The work we are
presenting here used PLS-DA approaches to classify individuals
in the healthy control (HC) or the case group, but also to

determine which variables hold best discriminant power between
these two classes of participants.

The study includes three PLS-DA models. The first was
applied to over 800 variables obtained from 15 severe ME/CFS
female cases and 15 matched HCs from the UK ME/CFS
Biobank (UKMEB). Data included subject phenotyping with
validated instruments, complete blood analytics, miRNA profiles
from peripheral blood mononuclear cells (PBMCs) and from
plasma-isolated extracellular vesicles (EVs), plus EV associated
features, as previously described (9). The results showed that a
combination of 32 variables, including several EV features, best
discriminates severe ME/CFS cases from healthy subjects. The
value of EV features for the assessment of ME/CFS was further
supported by Raman spectroscopic data.

The second PLS-DAmodel focused on detecting discriminant
regions of the Raman spectra. These results were compared
with classification based on Raman spectra using three
other binary classification techniques: an adaptation of linear
discriminant analysis (LDA) (18) to deal with more variables
than observations, random forest (RF) (19) and support vector
machines (SVM) (20).

Finally, the relevant regions of the discriminatory spectra were
included in a third PLS-DAmodel with the previously mentioned
set of 32 variables. Using this approach, ME/CFS EV differences
detected by Raman helped to further refine our previousME/CFS
PLS-DA model reducing the number of required miRNAs from
PBMCs and further supporting the EV potential biomarker value
for the diagnosis of ME/CFS.

To the best of our knowledge, this study is the first to provide
a PLS-DA model for the accurate diagnosis of severe ME/CFS
based on a discreet combination of variables. In addition, we
used for the first time Raman fingerprints of EVs to enhance the
ability to discriminate severely affected ME/CFS patients from
healthy subjects.

MATERIALS AND METHODS

Samples and Associated Clinical Data
Ethical approval of the study was granted by the Public Health
Research Ethics Committee DGSP-CSISP, Valencia (Spain), study
number UCV_201701 and by the UCL Biobank Ethical Review
Committee-Royal Free London NHS Foundation Trust (B-ERC-
RF), study number EC2017.01 before the samples were released
by the UKMEB.

Data for the initial PLS-DA analysis corresponded to
Nanostring datasets generated during a previous study of
our group (12), available from the NCBI Gene Expression
Omnibus (GEO) database (Accession Number GSE141770) and
the (supplementary material) of the cited article. The samples for
the Raman analysis consisted of EV aliquots from the cited study
isolated from 0.5ml of platelet poor plasma from 15 severely
ill ME/CFS females and 15 age-population matched healthy
females, obtained from dipotassium EDTA blood-collection
tubes by UKMEB professionals.

As previously described, patient recruitment and clinical
assessment for the UKMEB was mainly performed through the
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UKNational Health Service (NHS) primary and secondary health
care services (9). Compliance with the Canadian Consensus
(4), CDC-1994 (“Fukuda”) (3) and Institute of Medicine (21)
criteria were ensured for patient recruitment (22, 23). Clinical
diagnosis was complemented with score differences in the SF-36
questionnaire (24) and the GHQ (General health Questionnaire)
(25), the last also assessed by a Likert scale (9, 26).

Participants exclusion criteria were as follows: (i) take antiviral
medication or drugs known to alter immune function in the
preceding 3 months (ii) had any vaccinations in the preceding
3 months; (iii) had a history of acute and chronic infectious
diseases such as hepatitis B and C, tuberculosis, HIV (but not
herpes virus or other retrovirus infection); (iv) another chronic
disease such as cancer, coronary heart disease, or uncontrolled
diabetes; (v) a severe mood disorder; (vi) been pregnant or
breastfeeding in the preceding 12 months; or (vii) were morbidly
obese (BMI ≥ 40).

All methods were performed in accordance with relevant
guidelines and regulations. All subjects signed an informed
consent before samples could be included in the corresponding
sample collection.

Partial Least Squares-Discriminant
Analysis (PLS-DA)
In this work we used three PLS-DA models: a first multi-
block (27) PLS-DA model (Section PLS-DA Model to Classify
ME/CFS Identifies EV Features as Potential Disease Biomarkers),
a Raman-based PLS-DA model (Section ME/CFS Classification
Model Based on Raman Spectral Fingerprints) and a second
multi-block PLS-DA model (Section Refinement of the Initial
PLS-DA Model With EV Raman Profiles). It is important to
mention that different schemes of calibration and validation
were used.

The multi-block PLS-DA models had two goals: to obtain an
accurate classifier usable with new individuals and to interpret
the set of discriminant features. Given the small sample size
of the database, we followed a two-steps procedure. First,
we used all observations (i.e., participants) to fit a PLS-DA
model obtaining a set of statistically significant discriminant
predictors. This way, most observations could be used to fit
the PLS-DA model, reducing the uncertainty in the estimation
of the parameters of the model, which is a critical aspect for
the interpretation goal. Secondly, the dataset was split into
calibration and validation subsets. The PLS-DA model was fitted
using the relevant predictors of observations from the calibration
subset and the model was then used to predict new observations
from the validation set. Eight randomly selected individuals
were included in the validation subset (four ME/CFS cases
and four HCs). For preprocessing, a multi-block approach with
block scaling and variable autoscaling was applied. Each block
contained a different group of variables with similar features.
Five blocks were established: (i) Demographic Variables, (ii)
Analytic Variables, (iii) PBMCs’ miRNA expression levels, (iv)
EVs’ miRNA expression levels, and (v) EVs’ characteristics (9).
The second multi-block PLS-DA model included an additional
block with relevant Raman profile features.

For the Raman spectra PLS-DA model, the goal was to
determine if an accurate diagnostic tool could be developed solely
based on Raman spectra differences. It was crucial to compare
all classifiers not only in terms of classification performance,
but also in terms of model stability. For this reason, the chosen
setup consisted of a three-fold cross-validation scheme. Each fold
contained 1/3 of the data, i.e., each fold contained a set of 10
observations (five of each class). In each round, two-folds were
used to fit the model and the other fold was used as an external
validation set. This way, all observations were used to fit and
validate the model, studying the stability on its performance. In
this model, the preprocessing consisted of variable centering.

The performance of PLS-DA models was evaluated by the
R2 coefficient (goodness of fit) and the Q2 coefficient (goodness
of prediction). Permutation tests were used to assess the
statistical significance of the model using the SIMCA software.
A permutation test (28) consists in randomly permuting the
values of the response, yielding a randomized data structure.
Afterwards, a new PLS-DA model is fitted using the randomized
response, obtaining its corresponding R2 andQ2 coefficients. The
values for the R2 (and Q2) coefficients obtained in a series of
different permutation testing yields the null distribution of the R2

(and Q2) coefficients under the assumption of no discrimination
between both classes. Thus, this permutation framework also
offers the possibility of calculating p-values associated with
testing the hypothesis of model discrimination. Additionally, to
evaluate the classification performance of the model, the Receiver
Operating Characteristic (ROC) curve was obtained. For each
ROC curve, the AUC (AreaUnder the Curve) was calculated (29).

Beyond its performance, one of the advantages of PLS-
DA models is their interpretability. The PLS (b) coefficients
coefficients represent the direct relationship between the original
predictors’ subspace (X) and the response categories (Y). The
higher a b coefficient of a variable is (in absolute value), the
more discriminant that predictor will be. The sign of the
coefficient indicates the type of the relationship between the
variable and the class to be predicted (negative or positive
relationship). For the parameters and outcomes of the PLS-DA
model, statistical significance was assessed by jackknife intervals
at a 95% confidence level. These intervals are calculated in a
cross-validation scheme implemented by the Aspen ProMV©

software used to obtain the PLS-DA model.
Once a PLS-DA model is fitted, it is quite common to follow

an iterative depuration procedure variable-wise and observation-
wise. On one hand, it is frequent to find that some predictors are
not relevant. This can occur when the confidence interval of a
b coefficient contains a zero value. In this case, it is possible to
perform an initial variable selection, retaining only the relevant
predictors to refit the PLS-DA model. For this variable selection
the b coefficients and the Variable Importance for the Projection
(VIP) coefficients, are used. VIP coefficients (30) represent the
influence of each predictor, accounting its weight in each of the
latent variables and the percentage of variability of the Y matrix
explained by each latent variable. The threshold value of ≥1 for
the VIP coefficients is a common threshold to identify variables
which are potentially important in the model. Thus, predictors
having a VIP with a confidence interval clearly under the 1 value
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and b coefficients not statistically significant were removed from
the modeling.

In this work, the iterative depuration of predictors also helped
to reduce uncertainty of the model estimates by decreasing the
number of parameters of the model.

On the other hand, it is also common to perform an iterative
model fitting until a PLS-DA model without outliers and relying
only in relevant predictors, is obtained. Outliers were studied in
terms of the Squared Prediction Error (SPE) and Hotelling’s T2

(31) metrics.
Finally, to confirm and visualize the discriminant properties of

the selected variables (i.e., those showing statistical significance
in the PLS-DA) a two sample t- test was applied a posteriori
to each potential biomarker included in the final multi-
block PLS-DA model. These results can be found in the
Supplementary Material.

Isolation of EVs From Plasma
EVs studied corresponded to aliquots isolated from 0.5ml
aliquots of human plasma supernatants from blood collected
in dipotassium EDTA tubes (Becton Dickinson, Franklin
Lakes, NJ, USA) (undergoing a single freeze/thaw cycle),
upon being centrifuged at 10,000 × g for 10min, with
Total Exosome Isolation Reagent (TEIR) (Invitrogen by
Life Technologies, Cat. 4484450), following manufacturer’s
recommendations, as previously described (12). The isolated
EVs were characterized following MISEV (Minimal information
for studies of extracellular vesicles) recommendations (32), as
described in Almenar-Pérez et al. (12).

Raman Spectroscopy
After dilution of the isolated EVs to a concentration of 5 × 108

EVs/ml in distilled water, 1.5 µL of the suspension was deposited
on aluminum Raman slides and exposed to room temperature
until the sample was completely dry. Spectra were acquired using
an HR Evolution confocal Raman microscope (Horiba Jobin-
Yvon, UK, Ltd.) equipped with a 532 nm laser. Laser power was
4.5 mW and a filter of 25%. The acquisition time per spectrum
was 3 s at a resolution of 4 µm.

For the analysis of the Raman spectra, all spectra were
preprocessed by cosmic ray correction, polyline baseline
correction, and area normalization using the entire spectral
region, using LabSpec 6 (Horiba Scientific, France). Data
analysis, statistics and visualization were carried out using in-
house scripts in R. Quantification of important biomolecules was
performed by integrating the corresponding Raman bands. The
quantification results were represented as box plots and sample
means of the patients were compared with HCs by using Welch’s
two sample t-test for unequal variance.

Four classification models were trained with a three-fold cross
validation setup to classify a spectrum as either severe ME/CFS
or HC using an adaptation of linear discriminant analysis (LDA)
(18) to deal with more variables than observations, random
forest (RF) (19), a support vector machine (SVM) (20), and
PLS-DA. For the LDA, RF, and SVM models, the classifier
learning app in MATLAB was used, enabling the optimization of

model hyperparameters. The AUCwas calculated for eachmodel,
enabling the comparison of their classification performance.

Pathway and Gene Enrichment Analysis
Analysis of predicted and validated miRNA-mRNA interactions
was performed with the freely available software MiRTargetLink
2.0 (https://www.ccb.uni-saarland.de/mirtargetlink2) (33). Gene
ontology (GO) enrichment analysis was performed using the
miEAA tool incorporated into MiRTargetLink 2.0, targets were
retrieved, sorted by adjusted p-value, and presented in table
format. Selected networks of mRNAs targeted by at least two
miRNAs were drawn using Adobe Illustrator software.

RESULTS

As described in a previous study (12), study participants were
women with an average age of 46.8 (age range 38–53) for the
disease cohort and 45.2 (age range 18–52) years for the matched
HC group. Median ages were 48 years and 47 for the ME/CFS
and HC group, respectively. Average time from disease onset
was 17.5 (range 1.5–30.9) years, with a median value of 18.4
years. Health survey SF-36 and General Health Questionnaire
(GHQ) scores, including Likert scale for the GHQ, scores clearly
separated ME/CFS and HC groups (p < 0.05). Score details can
be consulted in the referred work by Almenar-Pérez et al.

PLS-DA Model to Classify ME/CFS
Identifies EV Features as Potential Disease
Biomarkers
Given the small sample size of the cohort, this first PLS-DA
modeling step focused on finding the most statistically significant
biomarkers for identifying the severe ME/CFS subjects. All
observations (i.e., participants) were used to fit the model in an
attempt to reduce as much as possible the uncertainty in the
estimation of the model parameters.

ME/CFS Modeling With PLS-DA
ME/CFS PLSA-DA was performed on a collection of data
obtained from 30 participants (15 severe ME/CFS females and
15 healthy subjects matched by sex and age (±5 y) of the
UKMEB, as previously reported by our group (12) [Nanostring
datasets available from the NCBI Gene Expression Omnibus
(GEO) database, Accession Number GSE141770]. The complete
set of data included 34 blood analyte variables, 775 miRNAs
expressed above threshold levels (136 in PBMCs and 639 in
EVs), EV concentration, size and z-potential of vesicles prepared
with and without proteinase K treatments for a total of six EV-
associated measures, together with two demographic variables.
The 15 variables obtained from the SF-36 questionnaire (24) and
the GHQ questionnaire (25), the last also assessed by a Likert
scale (26) were not included since a diagnostic based solely on
objective measurements was pursued.

The initial model was fitted with three latent variables
(obtained by cross-validation) with a cumulative value of 96%
for the R2 coefficient (goodness of fit) and 68% for the Q2

coefficient (goodness of prediction). After obtaining the PLS-
DA model, we checked for potential outliers, removing subjects
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with an SPE (i.e., Euclidean distance to the model) overpassing
the control limit (an example of outlier can be seen in
Supplementary Figure 1).

The initial PLS-DA model presented a large number of
predictors having a VIP with a confidence interval clearly
below 1 and non- statistically significant b coefficients
(Supplementary Figure 2). Thus, after performing an iterative
variable selection, as described in Section Materials and
Methods, the final model with the most discriminant variables
was obtained.

This depurated PLS-DA model with 32 variables
(Figures 1A,B) had similar cumulative R2 and Q2 values
(98.71 and 96.31%, respectively), and the optimal number of
components based on cross-validation was three (as the initial
model). This model was based on a set of N=24 observations,
having 12 of each class.

The permutation test illustrated in Supplementary Figure 3

shows that the R2 and Q2 values of the obtained PLS-DA model
(points belonging to the 100% correlation between original y
and permuted y) are greater than any of those belonging to
the permuted datasets. Thus, the statistical significance of the
98.71 and 96.31% values for the R2 and Q2, respectively, is
accepted, rejecting the hypothesis of having obtained these values
by chance (with p < 0.05).

Furthermore, the stability and reliability of the final PLS-DA
model in terms of its prediction performance can be visualized
both in the scores scatterplot (Figure 1C) and in the observed vs.
prediction plot (Figure 1E).

The score scatterplot (Figure 1C), showing a clear separation
between groups, is directly related with the weighting plot
(Figure 1D), which shows the correlation structure between
the original and the latent variables. Thus, the probability of
being a severe ME/CFS individual (orange triangle in the score
scatterplot) is positively correlated with the variables at the
same side (left) of the weighting plot, which are the same
variables with a positive b coefficient for the ME/CFS class.
This means that those variables tend to have greater values
in ME/CFS than in HCs. Analogously, the set of variables
placed at the opposite semi plane (right part) of the weighting
plot (with negative b coefficients for the ME/CFS class), are
negatively correlated to the probability of belonging to the
ME/CFS class. This means that these variables tend to have
lower values in ME/CFS than in HCs. Finally, variables near to
the origin (0,0) point are those with coefficients not statistically
different from zero (i.e., no statistical differences in both groups
of participants).

Finally, the observed vs. prediction results for the participants
showed a class prediction with 95% confidence intervals
(magenta lines) using just three components, allowing all 12
patient observations to be correctly classified in the ME/CFS
group and all 12 observations from healthy subjects in the
HC group (Figure 1E). The ROC curve of the model shows
a perfect classification of the samples (Figure 1F), since the
AUC for both classes reach a value of 1. This means that the
model has a perfect sensitivity and specificity (both equal to
1), i.e., it detects all patients and differentiates all controls as
healthy individuals.

Classification Performance of the PLS-DA Model

With Calibration and Validation Set
The second modeling approach focused on evaluating the
potential of our PLS-DA model as a tool to correctly assign
new observations into ME/CFS and HC groups. For this second
PLS-DA model, the database was partitioned in a training
and validation subsets, as explained in the Section Materials
and Methods.

The trained model with three components (the same number
as the previous model with all the observations) reaches
cumulative values of 99.32% for the goodness of fitting coefficient
(R2) and 88.52% for the goodness of prediction coefficient (Q2).

The b coefficients obtained are almost of the same order,
according to their importance, but with wider confidence
intervals (Figures 2A,B). This is caused by the removal of
the validation samples from the training set, decreasing the
sample size and leading to an increase in model uncertainty.
Once the model is fitted, the observations of the validation
set are projected onto the latent subspace, obtaining their
correspondent scores and predictions (Figures 2C,D). These
results support the validity of the model developed in the Section
ME/CFS Modeling With PLS-DA for the diagnosis of severe
ME/CFS patients. The ROC curve for the validation samples
(Figure 2E) shows a perfect discrimination (AUC=1) when the
PLS-DA model is used to classify new individuals as healthy or
those affected by severe ME/CFS. This means that the model
maintains the perfect detection of ME/CFS patients (perfect
sensitivity) while keeping the perfect discrimination of healthy
controls (specificity= 1).

Raman Spectroscopy Analysis Supports
Composition Differences in ME/CFS
Plasma EVs
Intrigued by the fact that four out of the six physical
associated parameters of EVs (EV concentration, size,
and z-potential obtained with or without proteinase
K pretreatment), corresponding to the size and zeta
potential of vesicles [as described in Almenar-Pérez et al.
(12)] were discriminating features selected by our initial
PLS-DA model (Figures 1A, 2A), we decided to further
explore the differential nature of ME/CFS EVs by Raman
spectroscopy analysis, an approach that has proven to
differentiate EVs from various cell sources (34) and has
been successfully used to detect ME/CFS specific changes in
PBMCs (35).

Raman analysis of the 15 severe ME/CFS cases and 15 HC
EVs isolated from aliquots of the plasma used in our earlier
study (12), clearly show prominent Raman bands at 1,158 and
1,521 cm−1 (Figure 3A; Supplementary Table 2). These bands
are characteristic of carotenoids with the C–C stretching mode
(coupled with C–H in-plane bending) contributing to the 1,158-
cm−1 band and the C = C stretching mode of the conjugated
chain in carotenoids contributing to the 1,510-cm−1 band (36).
Further quantification of results for these two bands are shown in
Figure 3B, illustrating a significant higher content of carotenoids
in ME/CFS patients than in HCs (p= 0.003 and p= 0.005).
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FIGURE 1 | Partial Least Squares (PLS)-Discriminant Analysis (DA) multiblock model based on 32 variables measured from 12 ME/CFS patients and 12 HCs. (A)

ME/CFS class jackknife b coefficients for the X subspace. The color code corresponds to the block each variable belongs to, being those analytical variables (blue),

PBMCs’ miRNAs (orange) and EVs’ characteristics (green). Jackknife confidence Intervals were calculated at a 95% confidence level. (B) VIP coefficients with

(Continued)
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FIGURE 1 | jackknife confidence intervals at 95% of confidence for the X subspace using the calibration dataset. Data set legends can be consulted on

Supplementary Table 1. The color code is the same as in the rest of the figures. (C) Score plot, of the 1st and 2nd components (horizontal and vertical, respectively).

(D) Weighting plot, of the 1st and 2nd components (horizontal and vertical, respectively). The color code for each variable block is the same as in the rest of the

figures. (E) Observed vs. Prediction results for participants shows the class prediction with 95% confidence intervals (magenta lines) using three components. The

color code is orange for ME/CFS patients, and black markers for Healthy Controls (HCs). RMSEE stands for Root Mean Square Error of Estimation. (F) ROC curve for

the classification of the observations with the dataset. The red cross locates the optimal performance point (maximum specificity and sensitivity) using the

classification threshold between 0.0869 and 0.8732.

ME/CFS Classification Model Based on
Raman Spectral Fingerprints
To further investigate the power of Raman spectroscopy to
differentiate patients from healthy subjects, we used again PLS-
DA as a classifier solely based on the whole Raman spectra. We
also compared PLS-DA with a modified version of the LDA, RF,
and SVMs to evaluate if there were more suitable techniques to
classify individuals using only the Raman spectra as an input.

PLS-DA Model
To evaluate the biomarker value of the observed differential
Raman peaks we applied PLS-DA analysis to Raman data.
Complete spectra of individuals within each group are
represented in Supplementary Figure 4 (HCs in blue and
ME/CFS patients in red). As it can be appreciated, signals
were already preprocessed and can be directly used for their
further analysis with multivariate statistics techniques. Due to
a slight (though not relevant) mismatch in the wavelengths of
different records, abscises axes in Supplementary Figure 4 are
representing wavelength bins that contain the signal recorded
for wavelengths within each interval.

An PLS-DA model was fitted to determine if the spectra
contained information able to discriminate between the groups.
The wavelength intervals that carry discriminant information,
should appear with significant b or VIP coefficients. The first
PLS-DA model (R2 of 23.95% and Q2 of 16.33%) was not
able to separate the groups since many variables are non-
statistically significant in terms of the b and VIP coefficients.
This can be observed from the high number of jackknife
confidence intervals for the VIPs below the VIP = 1 threshold
(see Supplementary Figure 5A), and by the jackknife confidence
intervals for the b coefficients that contain a zero value (see
Supplementary Figure 5B).

All non-significant variables according to these parameters
were deleted and the model re-estimated. The resulting model
selects only one latent variable, slightly increasing its goodness
of fit (R2 of 29.57%) and of prediction (Q2 of 26.36%). The
classification performance of the depurated PLS-DA model
(Figure 4) is illustrated in the observed vs. predicted values
(Figure 4D) and in its corresponding ROC curve generated
using the 3-fold cross validation scheme (Figure 4E). The model
reaches an optimal AUC value of 0.7067 setting a threshold of
0.3935 on the predicted response. Despite the poor performance
of the model in terms of classification, there might still be
statistically significant information which could be useful in
discriminating the two groups.

Note that Figures 4A,B display the b PLS and VIP coefficients
for the prediction of the ME/CFS class, respectively. Variables

with positive b coefficients, indicate wavelengths of the spectrum
for which the ME/CFS patients show a statistically significant
higher signal when compared to the signal of HCs. Relevant
variables according to the b PLS coefficients highlight the
importance of the characteristic peaks on which the previous
univariate analysis was focused. In the b bar graph, the left
window encloses the region close to the 1,158 cm−1 peak,
while the right window encloses wavelengths close to the 1,521
cm−1 peak.

Comparison of PLS-DA Model to Other Classification

Models
To further investigate the value of the Raman spectra in
differentiating severe ME/CFS patients from HCs, we trained
three other binary classification models. We used an adaptation
of linear discriminant analysis (LDA) for cases with more
variables than observations, a random forest (RF), and a support
vector machine (SVM). Some of these techniques (such as RF
and SVMs) can model non-linearities which could improve the
outcome yielded by the PLS-DA model. The same 3-fold cross
validation setup as for the PLS-DA model was used, to make
results comparable. All ROC curves with their respective AUCs
were obtained, as presented in Figure 5. Further information
about the comparison between these models can be found on the
Supplementary Methods.

These results suggest that the Raman spectroscopy data
by itself does not hold enough information to accurately
discriminate between ME/CFS patients and healthy subjects: to
achieve a 100% of true positive rate, classifiers would produce
a high rate of false positives. However, AUC values close to 0.7
(Figure 5) suggest that EVs might still be representing part of the
phenotype of the disease. For this reason, we proposed the last
model, combining our initial biomarkers and EV Raman profiles.

Refinement of the Initial PLS-DA Model
With EV Raman Profiles
The results of Raman spectrometry analysis show that to be
developed as a more comprehensive diagnostic tool the use
of further information is required. Therefore, we proceeded
to reanalyze our first multi-block PLS-DA model (Figure 2)
to check if the relevant Raman wavelengths selected by the
PLS-DA model on the spectroscopy data (Figure 4) could
be useful predictors when combined with the previously
identified biomarkers.

To study this possibility, we fitted a PLS-DA model using
the selected variables from the former PLS-DA model, adding
the key differential wavelengths from our PLS-DA analysis of
Raman spectroscopy data. It is important to highlight that the
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FIGURE 2 | Classification performance of the PLS-DA model with calibration and validation set. (A) ME/CFS class b jackknife coefficients for the X subspace using

the calibration dataset. The color code corresponds the block to which each variable belongs, being those analytical variables (blue), PBMCs’ miRNAs (orange) and

EVs’ characteristics (green). Jackknife confidence intervals were calculated at a 95% confidence level. (B) VIP coefficients with jackknife confidence intervals at 95% of

confidence for the X subspace using the calibration dataset. Data set legends can be consulted on Supplementary Table 1. The color code for each variable block

is the same as in the rest of the figures. (C) Score plot, of the 1st and 2nd components (horizontal and vertical, respectively) for the validation samples. (D) Observed

vs. Prediction results for the validation samples shows the class prediction with 95% confidence intervals (magenta lines) using three components. The color code is

orange for ME/CFS patients, and black markers for Healthy Controls (HCs). RMSEE stands for Root Mean Square Error of Estimation. (E) ROC curve for the

classification of the validation observations with the trained dataset. The red cross locates the optimal performance point (maximum specificity and sensitivity) using

the classification threshold at 0.4801.
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FIGURE 3 | Main differences in plasma derived-EVs Raman spectroscopic profiles from ME/CFS (ME, red, N = 15) and matched healthy subjects (HC, blue, N = 15).

(A) Mean profile plot values with indication of chemical nature of peaks with prominent differences. (B) Relative quantification of carotenoids by integrating Raman

bands at 1,158 cm−1 (p = 0.0032) (left) and 1,521 cm−1 (p = 0.0049) (right). The quantification results were represented as box plots and sample mean of the

ME/CFS group (ME) compared with the healthy control’s (HC) (N = 15/group) by using Welch’s two sample t-test for unequal variance.

adequacy of this approach resides in the fact that the samples
used to generate the two models came from the same blood
samples. The reason for maintaining the use of PLS-DA, was that
according to the previous results, it was a technique yielding one
of the best classification performances and the only one enabling
the interpretation of the discriminant power of the predictors,
establishing a set of statistically significant biomarkers.

An initial PLS-DA model was fitted using all observations
to allow for the selection of key discriminating variables
and removal of potential outliers. The initial fused
model selects an optimal number of nine latent variables
(R2 of 99.37% and Q2 of 81.15%). This model was
depurated observation-wise and variable-wise, as previously
described. The b coefficients and VIP coefficients
of the final set of selected variables are shown in
Figures 6A,B, respectively.

This refined PLS-DA model based on the final set of selected
predictors was fitted excluding the observations used for external
validation in the first PLS-DA model. The final model obtained
presents a similar performance (R2 of 93.38 and Q2 of 77.06).
Supplementary Figure 6 shows the result of the permutation test
performed on the PLS-DA model fitted with the calibration set,
proving the statistical significance of the yielded coefficients.

The observed vs. predicted values for the observations in the
calibration set (Figure 6C) and in the external validation set,
show that classes can be perfectly separated (Figure 6E). This is
also illustrated by the ROC curves in Figures 6D,F, showing that
a threshold on the predicted outcome of 0.481 yields a perfect
classification with an AUC of 1.

Inspecting the b PLS and VIP coefficients (Figures 6A,B,
respectively), although some of the predictors still appear as
statistically non-significant, their jackknife confident intervals
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FIGURE 4 | Summary of the b PLS coefficients (A), the VIP coefficients (B), the scores (C), the observed vs. predicted values (RMSEE stands for Root Mean Square

Error of Estimation). (D) and ROC curve (E) of the depurated PLS-DA model with the Raman spectroscopy data. The red cross locates the optimal performance point

(maximum specificity and sensitivity) using the classification threshold at 0.3935. Data set legends can be consulted on Supplementary Table 1. Black triangles

represent healthy controls, whereas orange triangles represent ME/CFS cases.

FIGURE 5 | ROC curves with their AUCs of the four models classifying ME/CFS or HC based on their Raman spectra. The ROC curve is plotted with true positive rate

against false positive rate.

are almost under or above zero for the b coefficients, or
almost contain the value VIP = 1 for the VIP coefficients.
This suggests that the width of the confidence intervals
might be influenced by the small sample size, which leads
to wide jackknife confidence intervals. In conclusion, this
final model yields a perfect classification (AUC=1) and
has 35 predictors, meaning that some of the most relevant
predictors according to the previous PLS-DA model, have been

replaced by wavelength intervals of the Raman spectroscopy
analysis. Among these relevant wavelengths, both peaks
(around 1,158 and 1,521 cm−1) hold important information
as potential biomarkers. The majority of eliminated predictors
from the previous PLS-DA model, carried information about
PBMC miRNAs.

GO pathway analysis of DE miRNAs from PBMCs selected
by our refined PLS-DA model (Figure 6) show that six out of
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FIGURE 6 | Summary of the VIP coefficients (A), b PLS coefficients (B), observed vs. predicted values for the training set (C), ROC curve for the training set with red

cross indicating the point of optimal performance (D) observed vs. predicted values for the validation set (RMSEE stands for Root Mean Square Error of Estimation)

(E) and ROC curve for the validation set with red cross indicating the point of optimal performance (F) of the depurated PLS-DA model with the Raman spectroscopy

data. Data set legends can be consulted on Supplementary Table 1. Black triangles represent HCs, whereas orange triangles represent ME/CFS patients. Predictor

coefficients in (A,B) are colored according to their block of information (blue for analytical features, orange for PBMCs miRs features, green for EVs’ features and

purple for Raman spectra features).
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FIGURE 7 | Network of DE miRNAs in ME/CFS PBMCs selected by PLS-DA (shaded green) and their target genes (shaded purple). GO enrichment performed with

the miRTargetlink software (33). Adobe Illustrator was the drawing tool used.

seven share common gene targets with top cellular functions
belonging to immunity, neuroinflammation, and metabolism
(Supplementary Table 3; Figure 7), all being widely associated
with ME/CFS in the literature.

DISCUSSION

Because of the lack of an objective diagnostic laboratory test, the
diagnosis of ME/CFS is made by ruling out other conditions.
ME/CFS patients may not get a diagnosis in many developed
countries while in developing countries ME/CFS is still not
considered a “real” illness. The burden on patients and their
families is enormous.

In 2015 the Institute of Medicine (IOM) in the US (37)
informed that ME/CFS is a medical illness and should not
be considered a psychiatric condition. In support of IOM
conclusions that ME/CFS has a biological basis numerous
studies show neurologic (38), immune (39), and metabolic
(40) disturbances in these patients. Still, ME/CFS biomarker
validation remains an important challenge with many research
groups identifying putative diagnostic markers which could help
move forward our understanding of the affected pathways in
the disease. Research efforts in ME/CFS remain hampered by
low numbers of participants in the cohorts studied with disease
heterogeneity also playing a role.

The UK National Institute for Health and Care Excellence
(NICE) has recently changed the guidelines to treat ME/CFS
patients in the NHS (National Health System) (41). The new
guidelines do not include graded exercise as a therapeutic
strategy. Recent studies have showed that more than 50%
of patients either could not start a GET program or failed
to complete it, emphasizing the problems of introducing any
exercise support program (42, 43). This highlights the urgent
need for not only a diagnostic test but the importance of
identifying biological/clinical variables able to select patients
who are likely to benefit from a particular treatment program.
With rising numbers of Long-Covid patients and the possibility
that many end-up developing ME/CFS, having good diagnostic
test to help patients manage their condition is more important
than ever.

Our previous study by Almenar-Pérez et al., although
limited in scope by a low number of participants (N =

30, 15/group) attempted to improve patient homogeneity by
restricting the inclusion of participants to only severe female
cases. The selection of severe cases was based on the premise
that severity concurs with highest differential biomarker levels.
Although the scope of the findings may be limited to this
patients’ group, it remains possible that the mechanisms and,
therefore, the detected biomarkers turn up valid to diagnose
moderately or mildly affected patients. A design including the
study of a large number of variables encompassing PBMC
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and EV miRNomes, together with complete blood analytics,
thorough patient phenotyping by validated questionnaires, and
the study of EV physical features (12) led to the identification
of biological differences with limited diagnostic potential at the
individual level.

In the current study we combine these variables and add
Raman spectroscopic profiling as a new marker of EV function
in the same blood samples. By applying PLS-DA analysis to
this large set of data: 34 blood analytic variables, 775 different
miRNAs being expressed above threshold levels (136 in PBMCs
and 639 in EVs), EV concentration, size and z-potential, we
identified 32 variables that can effectively differentiate ME/CFS
cases from HCs (AUC=1, i.e., sensitivity and specificity = 1)
(Figure 1). Moreover, a second model using calibration and
validation sets further confirms the effective diagnostic power
of the selected variables (Figure 2), with an AUC still equal
to 1 (i.e., sensitivity and specificity are perfect). Strikingly, EV
physical features, including EV size and z-potential measures
were detected by this model as relevant features for the effective
diagnosis of patients indicating a potential important role of EVs
in ME/CFS.

Althoughwe and others have consistently found higher counts
of EVs in different cohorts of ME/CFS patients (12, 44, 45),
even by applying different isolation procedures, EV count in
the PLS-DA model was not among the 32 features selected
that could discriminate severe ME/CFS patients from healthy
subjects. The reasons behind this result are not understood at
present. However, the fact that increased EV numbers have been
reported for other diseases with an inflammatory component
(46, 47) may argue for a restricted disease specificity of
this feature.

It is worth mentioning that among the blood analytic group of
variables the iterative PLS-DA modeling process selected, blood
creatine phosphokinase (CK, labeled as cpkbloodb, please see
Supplementary Table 1 key tab for variable nomenclature used)
level was a feature retrieved with and without the inclusion of
Raman data (Figures 1, 2, 6). CK levels being a clinical feature
that had been previously reported as a potential biomarker of
ME/CFS for showing significant reduced levels in an expanded
cohort of patients (48). Highly expressed in muscle, heart, and
brain the CK enzyme holds a key role in ATP homeostasis.
The low levels found by Nacul et al., possibly reflecting energy
dysregulation in these tissues, may be linked to the profound
fatigue found in ME/CFS patients with the severe having the
lowest levels.

The increased absolute zeta potential values of ME/CFS
EVs detected in a previous study by our group (12) suggested
differences in the relative abundance of charged groups
in their membranes. Modifications of EVs membrane
potential has been related to other pathological conditions,
including cancer where the change in EV net charge was
attributed to a disbalance in the relative abundance of
sialic acid (49). Interestingly polysialylation of exosomal
membranes has been shown to provide a thermo-protecting
effect being able to modulate exosome-plasma membrane
interactions and thus their signaling capacity (50). Further
evaluation of these modifications present in ME/CFS EVs

will be an important component of future studies aimed at
determining their functional impacts as proposed in our recent
publication (51).

Raman spectroscopy has shown its utility in detecting
composition differences in patient’s EVs (52, 53) and could be
developed as a cost-effective diagnostic method by its ability to
identify complex patterns in biological materials. Encouraged by
the discriminating potential of this method to unveil composition
differences in biological materials, EVs isolated from severe
ME/CFS patients which had shown reduced diameter and
reduced zeta potential (increased electronegativity) (12), were
compared to HC EVs by Raman micro-spectroscopic analysis.
The main difference in the EVs Raman spectra between severe
ME/CFS patients and HCs related to two carotenoid peaks
(Figure 3; Supplementary Figure 4). Zhang et al., have recently
found a shift of a peak at 1,553 cm−1 (tryptophan/amide II) to
1,528 cm−1 (carotenoid) in trophoblast-derived EVs during late
stages of pregnancy (54), time at which circulating EVs counts
increase and inflammatory responses vary (55, 56).

In the 1970’s Raman spectroscopy was used to study
the protein properties of red blood cells (RBC) ghosts (57).
RBC ghosts are pale cells which turn up on blood smears,
coming from the hemolysis of RBCs, are typically linked
to disease. Verma and Wallach identified two Raman peaks
in RBC ghosts which were later identified as carotenoids
(58, 59). Recent studies have showed RBC deformability was
reduced in ME/CFS (60). Thus, it is tempting to speculate
that the EV differences we are observing by Raman are
due to EVs of RBC origin being generated when the
RBC are stressed in the patient’s circulation. In support of
this hypothesis, it is interesting to observe that increased
mean corpuscular hemoglobin (mch) and mean corpuscular
hemoglobin concentration (mchc), which have been related to
decreased deformability of RBCs (61), were identified by our
PLS-DA analysis as variables with high discriminant diagnosis
capacity (Figure 6; Supplementary Table 1). It seems relevant to
mention that Fiedor et al., have recently shown that increased
beta-carotene concentration in RBC membranes affect cell’s
shape, sensitivity to osmolysis and alters hemoglobin-oxygen
affinity with potential physiologic implications (62).

Regardless of EV composition differences we were
interested in exploring if the Raman spectroscopic data
was sufficient to efficiently distinguish ME/CFS cases from
HCs. Despite its potential discriminatory capacity of ME/CFS
body fluid components (Figures 4, 5), in good agreement
with the disease “plasma factor” hypothesis reported by
Ron Davis’ group at Standford University (63), which is
also supported by differences in proteins or lipid plasma
levels (64, 65), the diagnostic value of Raman data seems
limited when compared to our PLS-DA model including
analytic variables, PBMC miRNA profiles and EV features
(Figures 1, 2).

It needs to be considered that a particular isolation
method used to purify EVs from plasma may lead to
the purification of EV sets that may differ from another
procedure. Despite the high purity attributed to EVs prepared
by ultracentrifugation, this procedure is laborious, and
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requires both a large volume of fluid and the provision of
expensive equipment. A diagnostic method based on EVs
requires a much simpler method preferably allowing the
analysis of small volumes of fluids without compromising
performance. Total Exosome Isolation Reagent (TEIR) was
selected from the available kits because according to Helwa
et al., it provides higher yields using smaller amounts of
plasma when compared to other commercial alternatives
or with respect to ultracentrifugation, ultrafiltration, or gel
chromatography (66). Moreover, exploratory EV studies
using highly purified EV sets (i.e., exosomes) could turn into
missing relevant EV subsets, and thus a less restrictive method
was preferred.

Unexpectedly our PLS-DA iterative method did not select any
of the 639 miRNAs detected above threshold levels in ME/CFS
EVs. All miRNAs in our panel of discriminatory measures
came from the PBMC’s group. Although this may associate
with the complexity of ME/CFS, and thus the requirement
of features from different compartments for its definition,
the possibility that a more selective EV isolation method
may render homogenous EV subpopulations with distinctive
ME/CFS miRNA profiles cannot be ruled out at present.
In support of the first argument, we find that GO pathway
analysis of six out of the seven DE miRNAs from PBMCs
selected by our PLS-DA model (Figure 6) share common gene
targets with top cellular functions belonging to immunity,
neuroinflammation, and metabolism (Supplementary Table 3;
Figure 7), all being widely associated with ME/CFS in
the literature.

In summary, this work describes for the first time an
ME/CFS model based on PLS-DA of 32 analytical variables
capable of diagnosing the disease with perfect sensitivity and
specificity (AUC=1), further confirming the biologic nature
of this disease and highlighting the relevance of patient EV
features for their diagnosis. AnME/CFS EVRaman spectroscopic
fingerprint is also provided, pioneering the potential use of
this method for the diagnosis of ME/CFS and for detecting
potential RBC defects in severe ME/CFS. Finally, we show
that although the diagnostic potential of Raman is limited its
simplicity and low amount of sample requirement highlights
its potential utility as an early screening tool prior to more
comprehensive testing with miRNA’s from PBMC’s. Moreover,
the inclusion of Raman data for the refinement of our
previous model, although incapable of increasing the already
perfect separation of cases from HCs (AUC=1) (Figures 1, 6),
allowed for a significant reduction in the number of PBMC
miRNAs from 21 in our initial PLS-DA model (Figures 1, 2)
to only 7 in the PLS-DA Raman refined model (Figure 6)
(Supplementary Table 1).

The findings obtained in this study are expected to pave
the way for unraveling the subjacent disease mechanisms
in which EVs and PBMC miRNAs participate with clear
implications for the future diagnosis and treatment of
ME/CFS, perhaps embracing other patient groups suffering
with chronic fatigue.
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