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Abstract

We analyze composition methods with complex coefficients exhibiting the
so-called “symmetry-conjugate” pattern in their distribution. In particular, we
study their behavior with respect to preservation of qualitative properties when
projected on the real axis and we compare them with the usual left-right palin-
dromic compositions. New schemes within this family up to order 8 are proposed
and their efficiency is tested on several examples. Our analysis shows that higher-
order schemes are more efficient even when time step sizes are relatively large.

AMS numbers: 65L05, 65P10, 37M15
Keywords: Composition methods, complex coefficients, time-symmetry, symplectic
integrators, complex coefficients, initial value problems

1 Introduction

We are concerned in this work with compositions of a time-symmetric 2nd-order inte-
grator, denoted by  [2]ℎ . To be more specific, given the initial value problem

x′ = f (x), x(t0) = x0 ∈ ℝd (1)
with solution x(t) = 't(x0), method  [2]ℎ verifies that  [2]ℎ (x0) = 'ℎ(x0) + (ℎ3) for a
time step ℎ and moreover  [2]ℎ ◦ [2]−ℎ = id, the identity map, for any ℎ. Then, the s-stage
composition methods we are considering here are of the form

 [r]ℎ =  [2]�sℎ◦
[2]
�s−1ℎ

◦⋯◦ [2]�2ℎ◦
[2]
�1ℎ
, (2)
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where the coefficients �j are certain numbers chosen in such a way that the order of
approximation of  [r]ℎ is r ≥ 2.

Methods (2) constitute a very efficient class of numerical integrators for (1), espe-
cially when f has some geometric properties that is advantageous to preserve under
discretization. In fact, composition methods preserve any group properties shared by
the basic scheme  [2]ℎ : symplecticity, phase space volume, first integrals, symmetries,
etc., and therefore they provide a general and flexible class of geometric numerical
integrators [13].

If in addition the sequence of coefficients in (2) is left-right palindromic, i.e., �s+1−j =
�j , j = 1, 2,…, then  [r]ℎ is also time-symmetric, i.e., it verifies for small ℎ

 [r]ℎ ◦ 
[r]
−ℎ = id, (3)

and are of even order, r = 2n [13]. Methods of this class are called symmetric composi-
tions of symmetric schemes [15] and constitute an efficient way to construct high-order
approximations, due to the reduction in the number of order conditions to be satisfied.

Nevertheless, the fact that composition methods of order greater than 2 require
some negative coefficients �j typically imposes severe stability restrictions on the time
step, especially when dealing with semidiscretized PDEs [4]. To try to remedy this
situation, complex coefficients with positive real part have been considered in the liter-
ature for this class of problems [6, 11, 14]. In fact, methods with complex coefficients
have also been used even for problems when the presence of negative fractional time
steps is not problematic [3, 12].

If composition methods with complex coefficients are applied to a real vector field
f in (1), then the approximation x1 at the end of the first time step t1 = t0 + ℎ will
be of course complex, whereas the exact solution is real. A relevant issue is then how
to proceed with the computation of the trajectory. Two possibilities exist: either one
pursues the determination of the solution for t > t1 with the previously computed
value of x1 ∈ ℂ and project on the real axis only when output is desired (after, say,
N integration steps) or one just discards the imaginary part of x1 and initiates the next
step only withℜ(x1). In both cases, however, the favourable properties the composition
inherits from the basic scheme [2]ℎ (such as symplecticity) aremost often lost. Previous
(heuristic) analyses show that, generally speaking, the later approach provides a better
description of the problem [6, 8, 12].

One purpose of this work is to provide a rigorous justification of this observation
and determine up to what degree symplecticity, say, is still preserved when using com-
plex coefficients. We show, in particular, that a 2n-th order left-right palindromic com-
position with complex coefficients, when projected on the real axis after each step, still
preserves the time-symmetry and other relevant geometric properties up to order 4n+1.
Moreover, we also show that it is possible to preserve the time-symmetry up to a higher
order by considering another family of compositions, namely methods of the form (2)
with the special symmetry

�s+1−j = �̄j , j = 1, 2,… , (4)
where �̄j denotes the complex conjugate of �j . For obvious reasons, we call the result-
ing scheme

 [r]ℎ =  [2]�̄1ℎ◦
[2]
�̄2ℎ
◦⋯◦ [2]�2ℎ◦

[2]
�1ℎ
, (5)
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a symmetric-conjugate composition. The simplest method within this family is of
course

 [3]ℎ =  [2]�ℎ◦
[2]
�̄ℎ . (6)

If
� = 1

2
± i

√

3
6
,

then  [3]ℎ is of order 3, but if one considers instead only its real part,

ℜ( [3]ℎ ) =
1
2

(

 [3]ℎ +  [3]ℎ
)

= R̂[4]ℎ , (7)

or equivalently, if one projects  [3]ℎ at each time step on the real axis, then the result-
ing scheme R̂[4]ℎ is an integration method of order 4. This fact has been previously
recognized by several authors [3, 12]. Although R̂[4]ℎ is no longer time-symmetric, it
nevertheless verifies

R̂[4]−ℎ◦R̂
[4]
ℎ = id + (ℎ8)

when the vector field f in (1) is real [10]. Moreover, if f is a (real) Hamiltonian vector
field and ℎ is a 2nd-order symplectic integrator, then R̂[4]ℎ is also symplectic with an
error (ℎ8).

Motivated by this feature of scheme R̂[4]ℎ and the excellent preservation properties
of methods (5) reported in particular in [8], we shall analyze in detail this class of inte-
grators. In doing so, we will pay special attention to their preservation properties, and
eventually we will propose new schemes requiring less number of stages for achieving
a given order than left-right palindromic compositions when projected on the real axis
after each integration step.

2 Compositions of a second-order symmetric scheme

2.1 Integrators and series of operators

If 'ℎ is the exact flow of the equation (1), then for each infinitely differentiable map g,
the function g('ℎ(x)) admits an expansion of the form [1, 19]

g('ℎ(x)) = exp(ℎF )[g](x) = g(x) +
∑

k≥1

ℎk

k!
F k[g](x),

where F is the Lie derivative associated with f ,

F =
∑

i≥1
fi(x)

)
)xi

. (8)

Analogously, for the class of integrators  ℎ we are considering, one can associate a
series of linear operators so that

g( ℎ(x)) = exp(Y (ℎ))[g](x), with Y (ℎ) =
∑

j≥1
ℎjYj

3



for all functions g [7]. Here Yj are operators depending on the particular method con-
sidered. The integrator  ℎ is of order r if

Y1 = F and Yj = 0 for 2 ≤ j ≤ r.

For the adjoint integrator, defined as  ∗ℎ ∶=  −1−ℎ , one clearly has
g( ∗ℎ(x)) = exp

(

− Y (−ℎ)
)

[g](x).

Notice that  ℎ is time-symmetric, i.e., it verifies (3), if and only if  ∗ℎ =  ℎ, and
therefore Y (ℎ) only contains odd powers of ℎ. In particular, time-symmetric methods
are of even order.

According with these comments, the time-symmetric 2nd-order scheme  [2]ℎ can
be associated with the series

Φ[2](ℎ) = exp(ℎF + ℎ3Y3 + ℎ5Y5 +⋯ + ℎ2k+1Y2k+1 +⋯). (9)
Then, the series of operators associated with the integrator (2) can be determined by
applying the Baker–Campbell–Hausdorff formula, thus resulting in

Ψ[r](ℎ) = exp(V (ℎ)), (10)
where V (ℎ) is formally given by
V (ℎ) = ℎw1F + ℎ3w3,1Y3 + ℎ4w4,1[F , Y3] + ℎ5

(

w5,1Y5 +w5,2[F , [F , Y3]]
)

+ (ℎ6).

Here [F , Y3] stands for the Lie bracket of the operators F and Y3, etc. and

w1 =
s
∑

j=1
�j , w3,1 =

s
∑

j=1
�3j , w5,1 =

s
∑

j=1
�5j ,

w4,1 =
1
2

s−1
∑

j=1

(

�3j

( s
∑

k=j+1
�k

)

− �j

( s
∑

k=j+1
�3k

))

w5,2 =
1
12

s
∑

j=1
�3j

⎛

⎜

⎜

⎝

(j−1
∑

k=1
�k

)2

+

( s
∑

k=j+1
�k

)2

− 4
j−1
∑

k=1
�k

s
∑

l=j+1
�l
⎞

⎟

⎟

⎠

− 1
12

s
∑

j=1
�4j

(j−1
∑

k=1
�k +

s
∑

k=j+1
�k

)

.

(11)

(In the expression of w5,2 above the sum is zero when the upper index is smaller than
the lower index). In general, V (ℎ) is an element of the free Lie algebra  generated
by {F , Y3, Y5,…} [18], i.e., V (ℎ) is a linear combination of F , Y3, Y5,…, and all their
nested Lie brackets,

V (ℎ) = ℎw1F +
∑

n≥3
ℎn

c(n)
∑

k=1
wn,kEn,k. (12)

Here wn,k are polynomials in the coefficients of the method, E2n+1,1 = Y2n+1 and En,k,
k > 1, are independent nested Lie brackets of {F , Y3, Y5,…} forming a basis of the
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Order r 1 2 3 4 5 6 7 8
N [r] (General) 1 0 2 3 5 7 11 16

N [r=2n]
P (Palindromic) 1 2 4 8

N [r] − c(2n) (Sym-Conjugate) 1 2 5 11(9)

Table 1: Total number of order conditions to achieve order r for the method resulting from
projecting after each step (i) the general composition (2) of time-symmetric 2nd-order meth-
ods (second row), a left-right palindromic composition (third row) and a symmetric-conjugate
composition (fourth row). It turns out that by solving only 9 order conditions one can achieve
order 8 with symmetric-conjugate compositions.

homogeneous component n of , with dimension c(n) [17]. Thus, in particular, 5
has dimension c(5) = 2, and a basis is given by {E5,1 = Y5, E5,2 = [F , [F , Y3]]}.

Method (2) is of order r if w1 = 1 and the polynomials wn,k vanish whenever
1 < n ≤ r, and k = 1,… , c(n). The number of the resulting equations (the order
conditions)N [r] agrees of course with the sum of the dimensions c(n), i.e.,

N [r] =
r
∑

n=1
c(n)

and is collected in Table 1 (second row) for the first values of r. A composition without
any special symmetry would involve then at least s = N [r] stages so as to have enough
parameters to solve the equations.

2.2 Left-right palindromic compositions

Before establishing general results about preservation of properties of composition
methods with complex coefficients after projection on the real axis, it is worth to intro-
duce the following definitions, as in [10]:
Definition 1 Let  ℎ be a smooth and consistent integrator. Then

1.  ℎ is said to be pseudo-symmetric of pseudo-symmetry order q if for all suffi-
ciently small ℎ, it is true that

 ∗ℎ =  ℎ + (ℎq+1), (13)
where the constant in the -term depends on bounds of derivatives of  ℎ.

2.  ℎ is said to be pseudo-symplectic of pseudo-symplecticity order p if for all suf-
ficiently small ℎ, the following relation holds true when it is applied to a Hamil-
tonian system:

( ′ℎ)
T J  ′ℎ = J + (ℎp+1), (14)

where J denotes the canonical symplectic matrix and the constant in the -term
depends on bounds of derivatives of  ℎ.

5



Remark 1 A symmetric method is pseudo-symmetric of any order q ∈ ℕ, whereas a
method of order r is pseudo-symmetric of order q ≥ r. A similar statement holds for
symplectic methods.

We first proceed with left-right palindromic compositions. According to the con-
siderations in the previous section, the series of operators associatedwith such amethod
of order 2n is Ψ[2n](ℎ) = exp(V (ℎ)), with

V (ℎ) = ℎw1F +
∑

j≥n
ℎ2j+1

c(2j+1)
∑

k=1
w2j+1,kE2j+1,k (15)

and w2j+1,k have in general real and imaginary parts when �j ∈ ℂ. Then one has the
following
Proposition 1 Given  [2]ℎ a time-symmetric 2nd-order method, consider the left-right
palindromic composition

 [r]ℎ =  [2]�1ℎ◦
[2]
�2ℎ
◦⋯◦ [2]�2ℎ◦

[2]
�1ℎ

(16)
of order r = 2n, n = 2, 3,…, when the coefficients �j are complex numbers satisfying
2(�1 + �2 +⋯) = 1. Then the method obtained by taking its real part,

�[2n]ℎ ≡ 1
2
( [2n]ℎ + ̄ [2n]ℎ ),

is of the same order r = 2n and pseudo-symmetric of order q = 4n+1 when the vector
field f in (1) is real. If in addition f is a (real) Hamiltonian vector field and  [2]ℎ is a
symplectic integrator, then �[2n]ℎ is pseudo-symplectic of order p = 4n + 1.

Proof: In this and the remaining proofs we apply a similar approach as in [9] for
determining the pseudo-symplectic character of methods obtained by polynomial ex-
trapolation. An important ingredient is the symmetric BCH formula [5]: given X and
Y two non-commuting operators, then

exp(1
2
X) exp(Y ) exp(1

2
X) = exp(Z),

where Z =
∑

n≥0Z2n+1 and Z2n+1, n ≥ 1, is a linear combination of nested brackets
involving 2n + 1 operators X and Y . The first terms read

Z1 = X + Y , Z3 = −
1
24
[X, [X, Y ]] − 1

12
[Y , [X, Y ]].

To begin with, we write the expression (15) associated with (16) as
V (ℎ) = ℎF + ℎ2n+1V2n+1 + ℎ2n+3V2n+3 +⋯

where V2n+j , j = 1, 3,… are complex operators in the free Lie algebra generated by
{F , Y3, Y5,…}. In consequence, the series corresponding to �[2n]ℎ is

Φ[2n](ℎ) = 1
2
exp((V (ℎ)) + 1

2
exp(V (ℎ)),

6



which can be written in fact as
Φ[2n](ℎ) = exp

(ℎ
2
F
)(1

2
exp((W (ℎ)) + 1

2
exp(W (ℎ))

)

exp
(ℎ
2
F
)

, (17)

whereW (ℎ) is determined by applying the symmetric BCH formula to exp(W (ℎ)) =
exp(−ℎF∕2) exp(V (ℎ)) exp(−ℎF∕2), thus leading to

W (ℎ) = ℎ2n+1V2n+1 + ℎ2n+3
(

V2n+3 +
1
24
[F , [F , V2n+1]]

)

+ (ℎ2n+5).

Now the idea is to write Φ[2n](ℎ) in (17) as eℎF∕2 e(W +W )∕2 eℎF∕2 +(ℎq), for some q.
Therefore, we have to analyze 1

2 (e
W + eW ) − e(W +W )∕2. To this end, first we note that

W (ℎ)+W (ℎ) = 2ℎ2n+1ℜ(V2n+1)+2ℎ2n+3
(

ℜ(V2n+3) +
1
24
[F , [F ,ℜ(V2n+1)]]

)

+(ℎ2n+5),

i.e., only contains odd powers of ℎ and
1
8
(

W (ℎ) +W (ℎ)
)2 = 1

2
ℎ4n+2ℜ(V2n+1)2 + (ℎ4n+4),

whereas
1
4
(

W (ℎ)2 +W (ℎ)2
)

= 1
2
ℎ4n+2

(

ℜ(V2n+1)2 −ℑ(V2n+1)2
)

+ (ℎ4n+4).

In consequence,
1
2

(

eW (ℎ) + eW (ℎ)
)

− e
1
2

(

W (ℎ)+W (ℎ)
)

= 1
4
(

W (ℎ)2 +W (ℎ)2
)

− 1
8
(

W (ℎ) +W (ℎ)
)2 + (ℎ4n+4)

= −1
2
ℎ4n+2ℑ(V2n+1)2 + (ℎ4n+4)

so that
Φ[2n](ℎ) = exp

(ℎ
2
F
)

exp
(1
2
(

W (ℎ) +W (ℎ)
)

)

exp
(ℎ
2
F
)

+ (ℎ4n+2)

whence the following statements follow at once:
• Method (16) is of order 2n, since Φ[2n](ℎ) = exp(ℎF ) + (ℎ2n+1).
• SinceZ = (W (ℎ) +W (ℎ))∕2 only contains odd powers of ℎ, then e ℎ2F eZe ℎ2F is

a time-symmetric composition and �[2n]ℎ is pseudo-symmetric of order 4n + 1.
• Let us suppose that scheme (16) is applied to a Hamiltonian system and that

 [2]ℎ is symplectic. Since Z is an operator in the free Lie algebra generated by
{F , Y3, Y5,…}, clearly the composition e ℎ2F eZe ℎ2F is symplectic. As a matter of
fact, this can be extended to any geometric property the differential equation (1)
has: volume-preserving, unitary, etc., as long as the basic scheme  [2]ℎ preserves
this property.
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□

As an example, let us consider the well known 4th-order palindromic scheme used
in the triple jump procedure [20],

 [4]ℎ =  [2]�1ℎ◦
[2]
�2ℎ
◦ [2]�1ℎ, (18)

with
�1 =

1
2 − 21∕3e2ik�∕3

, �2 = 1 − 2�1, k = 1, 2.

(Note that with k = 0 one gets the usual real solution). Then �[4]ℎ = ℜ( [4]ℎ ) is still amethod of order 4, but pseudo-symmetric and pseudo-symplectic of order 9.
As is well known, the number of order conditions required by left-right palindromic

compositions to achieve order r = 2n is [17]

N [2n]
P =

n
∑

j=1
c(2j − 1).

In consequence, a palindromic composition requires at least 2N [2n]
P − 1 stages so as

to have the same number of (complex) coefficients as order conditions. The values of
N [2n]
P to achieve orders 2n = 2, 4, 6, 8 are collected in the third row of Table 1.

2.3 Symmetric-conjugate compositions

In contrast with left-right palindromic compositions, even and odd order methods of
the form (5) exist, but their behavior with respect to structure preservation is different
when they are projected on the real axis at each step. The reason lies in the special
structure of the associated series of differential operators. More specifically, we have
the following
Lemma 1 Let  [2]ℎ be a time-symmetric 2nd-order method for (1), with f real, and
consider the composition method

 [r]ℎ =  [2]�sℎ◦
[2]
�s−1ℎ

◦⋯◦ [2]�2ℎ◦
[2]
�1ℎ
,

verifying
�s+1−j = �̄j , j = 1, 2,… .

Then  [r]ℎ has an associated series of operators Ψ[r](ℎ) = exp(V (ℎ)), with

V (ℎ) = ℎw1F +
∑

j≥1
ℎ2j+1

c(2j+1)
∑

k=1
�2j+1,kE2j+1,k + i

∑

j≥2
ℎ2j

c(2j)
∑

k=1
�2j,kE2j,k. (19)

Herew1, �2j+1,k, �2j,k are real polynomials depending on the real and imaginary parts
of the parameters �i. In other words, the terms of even powers in ℎ in V (ℎ) are pure
imaginary, whereas terms of odd powers in ℎ are real.

8



Proof: We start by noticing that, since [2]ℎ is a time-symmetric integrator, the adjoint
( [r]ℎ )

∗ is precisely the complex conjugate of  [r]ℎ , i.e., ( [r]ℎ )∗ =  [r]ℎ . In consequence,
the corresponding series of operators are also identical,

Ψ
[r]
(ℎ) = (Ψ[r])∗(ℎ)

and therefore V (ℎ) = −V (−ℎ). From (12), these series are respectively
V (ℎ) = ℎw1F +

∑

j≥1
ℎ2j+1

∑

k≥1
w2j+1,kE2j+1,k +

∑

j≥1
ℎ2j

∑

k≥1
w2j,kE2j,k

−V (−ℎ) = ℎw1F +
∑

j≥1
ℎ2j+1

∑

k≥1
w2j+1,kE2j+1,k −

∑

j≥1
ℎ2j

∑

k≥1
w2j,kE2j,k,

so that
w1 = w1, w2j+1,k = w2j+1,k, w2j,k = −w2j,k,

and (19) is obtained with �2j+1,k = w2j+1,k ∈ ℝ, �2j,k = ℑ(w2j,k) ∈ ℝ. □

From this lemma one has the following general result concerning the preservation of
properties of symmetric-conjugate compositions.
Proposition 2 Given [2]ℎ a time-symmetric 2nd-order method, let us consider the sym-
metric-conjugate composition

 [r]ℎ =  [2]�̄1ℎ◦
[2]
�̄2ℎ
◦⋯◦ [2]�2ℎ◦

[2]
�1ℎ

of order r ≥ 3 and its real part, i.e.,

R̂[2n]ℎ = 1
2

(

 [r]ℎ +  [r]ℎ
)

, (20)
applied to the differential equation (1) with a real vector field f . Then the following
statements concerning the pseudo-symmetry and pseudo-symplecticity of R̂[2n]ℎ hold:

(a) If  [r]ℎ is of odd order, r = 2n − 1, n = 2, 3,…, then R̂[2n]ℎ is a method of or-
der 2n and pseudo-symmetric of order q = 4n − 1. If in addition f is a (real)
Hamiltonian vector field and  [2]ℎ is a symplectic integrator, then R̂[2n]ℎ is pseudo-
symplectic of order p = 4n − 1.

(b) If [r]ℎ is of even order, r = 2n, n = 2, 3,…, then R̂[2n]ℎ is a method of order 2n and
pseudo-symmetric of order q = 4n + 3. If in addition f is a (real) Hamiltonian
vector field and  [2]ℎ is a symplectic integrator, then R̂[2n]ℎ is pseudo-symplectic
of order p = 4n + 3.

Proof: We apply the same strategy as in the proof of Proposition 1.
(a) Since r = 2n − 1, then the series of operators associated with  [r]ℎ is Ψ[r](ℎ) =
exp(V (ℎ)), with

V (ℎ) = ℎF + iℎ2nV2n + ℎ2n+1V2n+1 + iℎ2n+2V2n+2 +⋯ (21)

9



where V2n+j , j = 0, 1, 2,… are, according to Lemma 1, real operators in the free Lie
algebra generated by {F , Y3, Y5,…}. From here the series corresponding to R̂[2n]ℎ ,

[2n](ℎ) = 1
2

(

exp((V (ℎ)) + exp(V (ℎ))
)

,

can be written as
[2n](ℎ) = exp

(ℎ
2
F
)(1

2
exp((W (ℎ)) + 1

2
exp(W (ℎ))

)

exp
(ℎ
2
F
)

,

whereW (ℎ) is obtained from exp(W (ℎ)) = exp(−ℎF∕2) exp(V (ℎ)) exp(−ℎF∕2) as
W (ℎ) = iℎ2nW2n+ℎ2n+1W2n+1+iℎ2n+2W2n+2+ℎ2n+3W2n+3+iℎ2n+4W2n+4+(ℎ2n+5)

with
W2n = V2n, W2n+1 = V2n+1, W2n+2 = V2n+2 +

1
24
[F , [F , V2n]]

W2n+3 = V2n+3 +
1
24
[F , [F , V2n+1]],

W2n+4 = V2n+4 +
1
24
[F , [F , V2n+2]] +

1
1920

[F , [F , [F , [F , V2n]]]].

In general, terms in W (ℎ) of odd powers in ℎ are real and terms of even powers of ℎ
are pure imaginary. Then, it is clear that

W (ℎ) +W (ℎ) = 2ℎ2n+1V2n+1 + 2ℎ2n+3
(

V2n+3 +
1
24
[F , [F , V2n+1]]

)

+ (ℎ2n+5)

and only contains odd powers of ℎ. Furthermore,
(

W (ℎ) +W (ℎ)
)2 = 4ℎ4n+2V 2

2n+1 + 4ℎ
4n+4

(

V2n+1(V2n+3 +
1
24
[F , [F , V2n+1]]) +

+(V2n+3 +
1
24
[F , [F , V2n+1]])V2n+1

)

+ (ℎ4n+6)

and
W (ℎ)2 +W (ℎ)2 = −2ℎ4nV 2

2n + (ℎ4n+2).

Proceeding as before,
1
2

(

eW (ℎ) + eW (ℎ)
)

− e
1
2

(

W (ℎ)+W (ℎ)
)

= −1
2
ℎ4nV 2

2n + (ℎ4n+2),

so that
[2n](ℎ) = exp

(ℎ
2
F
)

exp
(1
2
(

W (ℎ) +W (ℎ)
)

)

exp
(ℎ
2
F
)

+ (ℎ4n),

whence the conclusions follow readily.
(b) We proceed along the same lines as in the preceding case for even order, r = 2n.
Now

V (ℎ) = ℎF + ℎ2n+1V2n+1 + iℎ2n+2V2n+2 + ℎ2n+3V2n+3 +⋯
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and
W (ℎ) = ℎ2n+1W2n+1+iℎ2n+2W2n+2+ℎ2n+3W2n+3+iℎ2n+4W2n+4+ℎ2n+5W2n+5+(ℎ2n+6)

with
W2n+1 = V2n+1, W2n+2 = V2n+2, W2n+3 = V2n+3 +

1
24
[F , [F , V2n+1]]

W2n+4 = V2n+4 +
1
24
[F , [F , V2n+2]],

W2n+5 = V2n+5 +
1
24
[F , [F , V2n+3]] +

1
1920

[F , [F , [F , [F , V2n+1]]]],

whence, as before,
W (ℎ) +W (ℎ) = 2ℎ2n+1W2n+1 + 2ℎ2n+3W2n+3 + 2ℎ2n+5W2n+5 + (ℎ2n+7).

On the other hand,
W (ℎ)2 = ℎ4n+2W 2

2n+1 + iℎ
4n+3(W2n+1W2n+2 +W2n+2W2n+1

)

+ ℎ4n+4
(

W2n+1W2n+3 +W2n+3W2n+1 −W 2
2n+2

)

+ iℎ2n+5
(

W2n+1W2n+4 +W2n+4W2n+1 +W2n+2W2n+3 +W2n+3W2n+2
)

+ (ℎ4n+6),

whereas
W (ℎ)2 = ℎ4n+2W 2

2n+1 − iℎ
4n+3(W2n+1W2n+2 +W2n+2W2n+1

)

+ ℎ4n+4
(

W2n+1W2n+3 +W2n+3W2n+1 −W 2
2n+2

)

− iℎ2n+5
(

W2n+1W2n+4 +W2n+4W2n+1 +W2n+2W2n+3 +W2n+3W2n+2
)

+ (ℎ4n+6).

An straightforward calculation shows that
1
2

(

eW (ℎ) + eW (ℎ)
)

− e
1
2

(

W (ℎ)+W (ℎ)
)

= 1
4
(

W (ℎ)2 +W (ℎ)2
)

− 1
8
(

W (ℎ) +W (ℎ)
)2 +⋯

= −1
2
ℎ4n+4W 2

2n+2 + (ℎ4n+6)

and finally

[2n](ℎ) = exp
(ℎ
2
F
)

exp
(1
2
(

W (ℎ) +W (ℎ)
)

)

exp
(ℎ
2
F
)

+ (ℎ4n+4). (22)

Now R̂[2n]ℎ is of orden 2n, but the time-symmetry (and symplecticity) holds up to order
4n + 3. □

Although apparently a symmetric-conjugate composition requires solvingN [r] equa-
tions to achieve order r, just as general compositions, this is not the case, however, when
one is interested in projecting on the real axis, since the symmetry in the coefficients
introduces additional reductions. As Lemma 1 and Proposition 2 show, for a scheme of
order r = 2n, the c(2n) order conditions at order ℎ2n are pure imaginary and so it is not
necessary to solve them. Therefore, the number of conditions is actuallyN [2n]− c(2n).
This number is collected in the last row of Table 1. This saving in the cost comes of
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course at the price of reducing the preservation of time-symmetry (or symplecticity,
etc.) from order 4n + 3 to 4n − 1.

We can proceed in the same vein, since the c(2n−2) order conditions at order ℎ2n−2
are also pure imaginary. Now, however, the resulting schemes after projection are only
pseudo-symmetric of pseudo-symmetry order 4n − 5. If 4n − 5 > 2n, or equivalently
if 2n > 5, then we still have a method of order r = 2n obtained from a symmetric-
conjugate composition withN [2n]− c(2n)− c(2n−2) stages if the corresponding order
conditions have solutions.

This can be generalized as follows:
Proposition 3 Let

 [r]ℎ =  [2]�̄1ℎ◦
[2]
�̄2ℎ
◦⋯◦ [2]�2ℎ◦

[2]
�1ℎ

be a symmetric-conjugate composition of order r = 2n after projection on the real
axis. If 4n − (4q + 1) > 2n for some q ≥ 0 (or equivalently if 2n > 4q + 1), then the
number of order conditions to be satisfied by  [r]ℎ to get a pseudo-symmetric scheme of
pseudo-symmetry order 4n − (4q + 1) after projection on the real axis is

N [2n] −
q
∑

j=0
c(2n − 2j).

The simplest example corresponds to scheme (6): Part (a) of Proposition 2 with
r = 3 reproduces the result obtained in [10] and summarized in section 1: its real part
renders a method of order 4 and pseudo-symmetric of order 7.

If we consider instead a composition (5) of order r = 4, then by taking the real part
at each step we do not increase the order, but the pseudo-symmetry order is q = 11
(instead of 7). In view of Table 1, it is worth remarking that, although the symmetric-
conjugate compositions require more order conditions to be satisfied than palindromic
compositions for orders higher than four, the methods resulting from projecting on
the real axis require less stages: thus, in particular, it is possible to achieve a 6th-order
scheme with only 5 stages, whereas schemes based on palindromic composition require
at least 7 stages.

As an additional illustration, let us take the composition
 [4]ℎ =  [2]�̄1ℎ◦

[2]
�2ℎ
◦ [2]�1ℎ, (23)

with s = 3. It is of order r = 2n = 4 if

�1 =
1
4
± i1
4

√

5
3
, �2 =

1
2
.

Taking its real part,ℜ( [4]ℎ ), results in a method also of order 4, but pseudo-symmetric
and pseudo-symplectic of order 11. Both schemes ℜ( [3]ℎ ), (eq. (7)), and ℜ( [4]ℎ ) are
of order 4, but whereas the former requires two evaluations of  [2]ℎ (instead of three),
the latter preserves qualitative properties up to a higher order.

12



2.4 Example: harmonic oscillator

At this point it may be illustrative to apply all the previous 4th-order methods obtained
by projecting on the real axis to a simple example and check how different behaviors
with respect to structure preservation manifest in practice. To this end we choose the
one-dimensional harmonic oscillator,

q′ = p, p′ = −q

with Hamiltonian
H(q, p) = T (p) + V (q) = 1

2
p2 + 1

2
q2. (24)

Denoting byMX(ℎ) the exact matrix evolution associated with the Hamiltonians X =
H , T and V , i.e., x(ℎ) = (q(ℎ), p(ℎ))T =MX(ℎ)(q(0), p(0))T , then

MH (ℎ) =
(

cos(ℎ) sin(ℎ)
− sin(ℎ) cos(ℎ)

)

, MT (ℎ) =
(

1 ℎ
0 1

)

, MV (ℎ) =
(

1 0
−ℎ 1

)

.

As our basic time-symmetric 2nd-order scheme  [2]ℎ we take the leapfrog/Strang inte-
grator

 [2]ℎ =MT (ℎ∕2)MV (ℎ)MT (ℎ∕2) (25)
and form the 4th-order schemes ℜ( [3]ℎ ) (eq. (7)), ℜ( [4]ℎ ) (eq. (23)), and ℜ( [4]ℎ )(eq. (18)). In this case, it is straightforward to verify the order of the methods (by
computing explicitly the difference  ℎ − MH (ℎ) for each method  ℎ), the pseudo-
symmetry order (by evaluating  ℎ◦ −ℎ − I) and the pseudo-symplecticity order (for
instance, by computing the determinant of the corresponding approximation matrix).
In all cases the result agrees with Propositions 1 and 2.

We can also check the relative efficiency of the three schemes by computing the
error in the energy along a time interval with different time steps. Thus, Figure 1 (top
panel) shows this relative error inH as a function of the number of evaluations of the
basic second order method  [2]ℎ when q0 = 2.5, p0 = 0 and the final time is tf = 650.
We see that the efficiency of schemesℜ( [4]ℎ ) andℜ( [3]ℎ ) is quite similar for relatively
small values of ℎ.

It is also illustrative to test the behavior of these schemes for very long time inter-
vals. This is done in Figure 1 (bottom) for t ∈ [0, 107] and constant step size ℎ = 1∕4
for ℜ( [4]ℎ ) and ℜ( [4]ℎ ), and ℎ = 1∕6 for ℜ( [3]ℎ ), so that all schemes require the
same computational effort. We see that even for large values of time ℜ( [4]ℎ ) does notexhibit a secular component in the error in energy (one might need still larger final
times), as is the case for compositions (2) involving real coefficients (see [2], where
this phenomenon is explained). In any case the results are consistent with Proposition
2 and in particular with expression (22).

3 Symmetric-conjugate composition methods obtained from
a 2nd-order symmetric basic scheme

In this section we propose new methods constructed from a basic time-symmetric 2nd-
order basic scheme by symmetric-conjugate composition. Since the case of order 4 has
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Figure 1: Top: Relative error in energy vs. the number of evaluations of the basic  [2]ℎ scheme
for the harmonic oscillator for t ∈ [0, 650]. Bottom: Evolution of this error along the integra-
tion; here the same step size ℎ = 1∕4 is used byℜ( [4]ℎ ) andℜ( [4]ℎ ), and ℎ = 1∕6 byℜ( [3]ℎ ).

been already analyzed in section 2, here we study compositions with s ≥ 4 stages. From
Proposition 2 it is clearly advantageous to consider conjugate-symmetric compositions
of odd order r = 2n − 1, since taking the real part leads automatically to a method of
order r = 2n (but requiring only the computational cost of a method of order 2n − 1).

For simplicity, we denote in the sequel the general composition (2) by its sequence
of coefficients:

(�s, �s−1,… , �2, �1).

As a general rule for selecting a particular method, we follow the same criterion as in
[6], namely we first choose a subset of solutions with small 1-norm of the coefficient
vector (�s,… , �1) and, among them, choose the one that minimizes the norm of the
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main term in the corresponding truncation error.

Order 6. According to the previous treatment, one could consider in principle a
symmetric-conjugate composition verifying the order conditions

w1 = 1, w3,1 = 0, w5,1 = w5,2 = 0

in (11), since w4,1 is pure imaginary, so that when taking the real part of the com-
position, it does not contribute to the error. Four stages would then be necessary to
construct a 6th-order method. It turns out, however, that these equations do not admit
solutions with the required symmetry �4 = �̄1, �3 = �̄2, and thus at least s = 5 stages
are necessary. The additional parameter can be used to solve the condition w4,1 = 0
so as to achieve order 5. These equations admit 5 solutions (plus the corresponding
complex conjugate) for the sequence (5), i.e., for

 [5]ℎ =  [2]�̄1ℎ◦
[2]
�̄2ℎ
◦ [2]�3ℎ◦

[2]
�2ℎ
◦ [2]�1ℎ. (26)

Among them, we select
�1 = 0.1752684090720741140583563 + 0.05761474413053870201304364 i
�2 = 0.1848736801929841604288898 − 0.1941219227572495885067758 i
�3 = 0.2797158214698834510255077

so that the real part
R̂[6]ℎ = 1

2

(

 [5]ℎ +  [5]ℎ
)

leads to a method of order 6 which, according with Part (a) of Proposition 2, is pseudo-
symmetric and pseudo-symplectic of order 11, although it only has 5 stages (one of
them being real). Notice that, according to Table 1, s = 7 stages are required to con-
struct a conjugate-symmetric composition of order 6. Such a method was indeed pro-
posed and tested on several numerical examples in [8], exhibiting a good long time
behavior. This behavior can be explained by Proposition 2, since the correspond-
ing method R̂[6]ℎ constructed by taking its real part is pseudo-symmetric and pseudo-
symplectic of order 15.

The same number of stages (s = 7) is also required by a palindromic composition
to solve the 4 order conditions necessary to achieve order 6. As shown in [6], the best
solution within this class is the composition S76 previously found in [12]. By taking the
real part, the corresponding scheme �[6]ℎ is pseudo-symmetric of order 13 and involves
2 more stages than R̂[6]ℎ .

Order 8. In view of the structure of the series of operators exp(V (ℎ)) associated with
a symmetric-conjugate composition, eq. (19), it is clear that if the order conditions

w1 = 1, w3,1 = 0, w4,1 = 0, w5,1 = w5,2 = 0,
w7,1 = w7,2 = w7,3 = w7,4 = 0

(27)

are satisfied by  [r]ℎ , then we get a 5th-order composition whose projection on the real
axis is an 8th-order approximation. Here the condition w4,1 = 0 has to be included,
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since otherwise there appears a contribution in ℎ8. In consequence, at least s = 9 stages
are necessary to solve equations (27). We have in fact found 7 solutions (+ c.c.) with
the required symmetry and positive real part. Among them, we propose, according
with the previous criteria,
�1 = �̄9 = 0.08848457824129988495666830 − 0.07427185309152124718276000 i
�2 = �̄8 = 0.15956870501880174198291033 + 0.02322565281009720913454462 i
�3 = �̄7 = 0.09359461460849451904251162 + 0.13796356924496549819619086 i
�4 = �̄6 = 0.15769224955121857774144315 − 0.07166960107892295549940996 i
�5 = 0.00131970516037055255293318 (28)
We thus have an 8th-order scheme obtained from a symmetric-conjugate composition
of a basic 2nd-order time symmetric scheme requiring only 9 stages. This is the reason
for the last entry in Table 1. Since the composition is of order 5, the final scheme will
be pseudo-symmetric of order 11. In case one is interested in preserving properties up
to a higher order, then two more stages are necessary to solve the order conditions at
order 6. In that case, we have a symmetric-conjugate composition of order 7 involving
s = 11 stages which is pseudo-symmetric of order 15.

By contrast, s = 15 stages are required to solve the 8 order conditions of an 8-th or-
der left-right palindromic composition. In [6], an optimized method of this class is pro-
posed. Notice that, when one takes its real part, the final method is pseudo-symmetric
of order 17. In any case, this different behavior with respect to time-symmetry will be
hardly visible in most practical situations.

We have carried out a numerical search of solutions such an 11-stage symmetric-
conjugate composition, finding 29 sets of coefficients with positive real part. Among
them, we recommend the following:
�1 = �̄11 = 0.07683292597738736205503 − 0.05965805084613860757735 i
�2 = �̄10 = 0.12844482070368650612973 + 0.02479812697572531668668 i
�3 = �̄9 = 0.06855723904168450389158 + 0.11276129325339482617990 i
�4 = �̄8 = 0.11879414810128891257046 − 0.04055765731534572031090 i
�5 = �̄7 = 0.10279469076169306832515 + 0.06735917341353737963638 i
�6 = 0.009152350828519294056116

(29)

A method of order 10 within this family would require at least 17 stages, since one
has to construct a symmetric-conjugate composition of order 5 (5 order conditions)
also verifying the 4 conditions at order 7 and the 8 conditions corresponding to order
9. This method would be pseudo-symmetric of order 11. The pseudo-symmetry can
be raised up to order 15 by adding the 2 conditions at order 6 for a total of 19 stages.
By contrast, a palindromic composition requires a minimum of 31 stages.
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4 Numerical examples

4.1 Kepler problem

As a first example we take the two-dimensional Kepler problem with Hamiltonian

H(q, p) = T (p) + V (q) = 1
2
pT p − �1

r
.

Here q = (q1, q2), p = (p1, p2), � = GM , G is the gravitational constant andM is the
sum of the masses of the two bodies. We take � = 1 and initial conditions

q1(0) = 1 − e, q2(0) = 0, p1(0) = 0, p2(0) =
√

1 + e
1 − e

,

so that the trajectory corresponds to an ellipse of eccentricity e = 0.6, and integrate with
the 6th- and 8th-order methods resulting from symmetric-conjugate and palindromic
compositions after projecting on the real axis at each step. We denote them by r(∗)p
and rp, respectively, where r is the order of the method and p is the number of stages
(basic 2n-order integrators) involved in the composition. Thus,

• 6(∗)5 refers to scheme (26);
• 6(∗)7 is method S∗67 of [8];
• 67 corresponds to composition S76 found in [12];
• 8(∗)9 refers to method (28);
• 8(∗)11 denotes method (29);
• 815 corresponds to composition S158 obtained in [6].

In our fist experiment we fix the final time tf = 650 and compute the maximum of the
relative error in the energy along the trajectory for different step sizes. Thus, we end up
with Figure 2 (top), which shows this relative error in energy vs. the number of basic
2nd-order methods necessary for each scheme.

Notice that the new 8th-order schemes obtained from symmetric-conjugate com-
positions are almost one order of magnitude more efficient than 158 coming from a
palindromic composition, due to the reduced number of basic 2nd-order integrators
they require. In addition, it is also worth remarking that these 8th-order methods work
better than 6th-order methods even for large time steps, in contrast with what usually
happens with compositions with real coefficients.

In Figure 2 (bottom) we illustrate the long-time behavior of the previous 6th-order
schemes. To this end, for the same initial conditions, we integrate until the final time
tf = 106 with a constant step size in such a way that all methods involve the same
number of evaluations of the basic integrator. Specifically, ℎ = 2∕5 for both 6(∗)7 and
67 , whereas ℎ = 2∕7 for 6(∗)5 . We see that the latter behaves as a symplectic integrator
for the whole integration interval.
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Figure 2: Top: Relative error in energy vs. the number of evaluations of the basic  [2]ℎ scheme
for the Kepler problem. Bottom: Evolution of this error along the integration of 6th-order
methods.

4.2 The pendulum

We consider next the one-dimensional pendulum with Hamiltonian

H(q, p) = T (p) + V (q) = 1
2
p2 + (1 − cos(q)).

We take as initial conditions q0 = 0, p0 = �, such that for small values of � this is
close to a harmonic oscillator, whereas for � > 2 the pendulum gives full turns. We
take � = 1

2
(small oscillations) and � = 5 (full turns), integrate until tf = 200� and

measure the average error in energy as well as the average two-norm error in q, p at
times t = k ⋅ 2�, k = 1, 2,… , 100 versus the number of stages. The results are shown
in Figure 3. We also observe the superiority of the higher order methods for nearly all
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accuracies and, among the eighth-order schemes, 8(∗)11 shows the best performance in
all cases we have considered.
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Figure 3: Average relative error in energy (left figures) and average error in positions
(right) vs. the number of evaluations of the basic  [2]ℎ scheme for the pendulum.

5 Stability

Efficiency diagrams of Figures 2 and 3 show a distinctive pattern: methods of order 8
are more efficient than schemes of order 6 not only for small values of ℎ, but in fact for
the whole region of ℎwhere errors are of practical interest. This comes in contrast with
what happens for methods with real coefficients: in that case the error (in a log-log plot)
of a given integrator typically exhibits a corner where higher error terms contribute by
the same amount as the main error term. In this way, the errors of the different schemes
form an envelope and one is interested in selecting those particular methods lying close
to this envelope.

In reference [16] McLachlan presents a simple model to determine in first approx-
imation this corner by defining the elbow of a given method as a crude estimate for the
envelope and for the nonlinear stability of the method. The idea is as follows: if one
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assumes that all vector fields Yj in (9) have the same order of magnitude, and considers
only a single error term ej at each order for a given palindromic composition (16) of
order r, then this effective error scales as

 ∶= ℎrer+1 + ℎr+2er+3 +⋯ .

Here ej includes a factor sr multiplying the error coefficient of the s-stage composition,
so that it can be compared to the reference value 1 for the basic method  [2]ℎ . Then the
elbow is defined as

ℎ∗ ∶=
√er+1
er+3

thus indicating the value of ℎ below which the asymptotic error (ℎr) is observed,
so that no method should be used with time steps larger than ℎ∗. What is remarkable
about this model is that both  and ℎ∗ provide a good qualitative picture of palindromic
compositions of different orders [16].

We have carried out a similar treatment for the compositions (both palindromic and
symmetric-conjugate) with complex coefficients of this work and the corresponding
results are collected in Table 2. Symmetric-conjugate compositions are denoted by
SC, whereas PR and PC stand for palindromic compositions with real and complex
coefficients, respectively. We also collect in the last column the effective stability limit,
i.e the supremum of the step sizes ℎ for which the approximate solution matrix for the
harmonic oscillator furnished by each scheme may be bounded independently of the
iteration n so that the error does not grow exponentially as n increases. The reference
values of ℎ∗ and ℎt∕s for the basic integrator  [2]ℎ are respectively 1 and 2.

We also depict in Figure 4 the effective error  vs. 1∕ℎ for the basic scheme  [2]ℎand several compositions with complex coefficients of order 4 (dash-dotted lines), 6
(dashed) and 8 (solid lines) whose errors terms are collected in Table 2. For compar-
ison we also include the curve corresponding to the triple-jump of order 4 with real
coefficients (dotted line).

In view of Table 2 and Figure 4 some comments are in order. First, the size of the
scaled error terms are much smaller for compositions with complex coefficients than for
schemes with real coefficients. Second, these error terms grow only moderately with
the order for a given method, in contrast with compositions involving real coefficients.
In some cases (e.g., for symmetric-conjugate compositions of order 8) they even de-
crease in size. Third, as a result, the elbow ℎ∗ is typically much larger for schemes with
complex coefficients, attaining values for which the error is quite considerable. As a
consequence, the asymptotic behavior of the error for this class of methods is already
visible for all practical values of the step size in a given integration. This can be clearly
seen in Figure 4, which qualitatively reproduces quite well the behavior observed for
the Kepler and pendulum problems (Figures 2, 3): we notice that the curves corre-
sponding to the 8th-order symmetric-conjugate compositions are placed below the one
given by the basic scheme  [2]ℎ for all relevant errors.

6 Concluding remarks

Although compositions of basic second-order time-symmetric integrators  [2]ℎ involv-
ing complex coefficients have been proposed in the past for overcoming the difficulties

20



Order 4
Method s e5 e7 ℎ∗ ℎt∕s
SC 2 1.7778 2.3704 0.8660 1.7320
SC 3 2.2500 8.4375 0.5164 0.8622
PR 3 428.60 18222 0.1534 0.5245
PC 3 1.9562 3.0189 0.8050 1.3771

Order 6
Method s e7 e9 ℎ∗ ℎt∕s
SC 5 4.4951 44.651 0.3173 0.6172
SC 7 4.5667 147.577 0.1759 0.4457
PR 7 104518 9.7 × 106 0.1038 0.3242
PC 7 4.3876 92.115 0.2182 0.4482

Order 8
Method s e9 e11 ℎ∗ ℎt∕s
SC 9 14.060 5.996 1.5312 0.8638
SC 11 7.4082 2.4572 1.7363 0.9353
PC 15 2.0506 10.429 0.4434 0.7896

Table 2: Scaled error coefficients for different compositions of order 4, 6 and 8 with complex
and real coefficients. s is the number of stages, ℎ∗ is the elbow of the method and ℎt∕s corre-sponds to the effective linear stability limit. SC refers to symmetric-conjugate compositions,
whereas PR and PC stand for palindromic compositions with real and complex coefficients,
respectively.

associated with the presence of negative real coefficients when the order r ≥ 3, this is,
we believe, the first systematic analysis of such composition methods.

When the vector field defining the differential equation is real, the goal is of course
to get accurate real approximations to the exact solution, whereas the direct applica-
tion of a composition method with complex coefficients leads in general to a complex
approximation at each step. Two approaches present themselves in a natural way: ei-
ther one projects the solution on the real axis at the end of each integration step or
the numerical solution is only projected at the end of the integration interval (or more
generally only when output is required). In either case, however, the favorable preserva-
tion properties the composition inherits from the basic scheme (such as time-symmetry,
symplecticity, volume preservation, etc.) are generally lost and the question is charac-
terizing this loss in a precise way.

We have seen that, in general, projecting at each time step preserves these qualita-
tive properties up to an order much higher than the order of accuracy of the composition
itself, and provides a good description of the system. In addition to the usual palin-
dromic sequence of coefficients in a composition, we have also explored symmetric-
conjugate sequences, showing that it is indeed possible to construct numerical integra-
tors of high order requiring a smaller number of basic schemes. Thus, in particular, we
have present a 6th-order method requiring 5  [2]ℎ evaluations, and an 8th-order scheme
involving only 9  [2]ℎ evaluations. These numbers have to be compared with 7 and
15, respectively, for palindromic compositions. The numerical tests carried out clearly
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Figure 4: Nominal effective error  vs. 1∕ℎ for different compositions with complex
coefficients of order 4, 6 and 8. Triple-jump of order 4 with real coefficients (dash-
dotted line with stars) is included for comparison. The order of the methods is clearly
visible.

illustrate how this reduction in the computational complexity translates into a better
performance whereas still sharing with the exact solution its main qualitative proper-
ties up to a higher order. Moreover, the efficiency diagrams show that higher order
methods involving complex coefficients are more efficient than lower order schemes,
not only for small values of the step size ℎ as occurs typically with real coefficients, but
in the whole region of ℎ where errors are reasonably small. This remarkable property
has been traced back to the structure and size of the successive terms in the asymptotic
expansion of the error of these compositions.

Since high order methods obtained from compositions with complex coefficients
provide good accuracy and behave in practice as geometric numerical integrators, one
might consider comparing them with composition methods with real coefficients on
practical applications. Take, for instance, the 8th-order method 8(∗)9 , involving 9 ba-
sic schemes  [2]ℎ . The minimum number for a composition method of the same order
with real coefficients is 15, and more are required to have efficient schemes. It might be
the case that for certain problems this reduction in the number of evaluations compen-
sates the extra cost due to using complex arithmetic, although this of course is highly
dependent of the particular structure of the processor and the implementation. In any
case, this will be the subject of future research.

When dealing with this class of schemes, one might contemplate the possibility
of projecting at the end of the whole integration interval or alternatively after N time
steps, with t = Nℎ, instead of projecting after each step. In that case, however, the
approximate numerical solution explores along the evolution regions in the complex
plane not necessarily in the proximity of the real axis, so that a rigorous analysis is
more involved. Preliminary results show that even in such a situation one might still
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have preservation of structures depending on the particular system, the step size and
the initial conditions one is considering. This issue deserves further analysis and will
be explored in a forthcoming paper.
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