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a b s t r a c t 

Background and Objective: Breast density assessed from digital mammograms is a biomarker for higher 

risk of developing breast cancer. Experienced radiologists assess breast density using the Breast Image 

and Data System (BI-RADS) categories. Supervised learning algorithms have been developed with this 

objective in mind, however, the performance of these algorithms depends on the quality of the ground- 

truth information which is usually labeled by expert readers. These labels are noisy approximations of the 

ground truth, as there is often intra- and inter-reader variability among labels. Thus, it is crucial to pro- 

vide a reliable method to obtain digital mammograms matching BI-RADS categories. This paper presents 

RegL (Labels Regularizer), a methodology that includes different image pre-processes to allow both a cor- 

rect breast segmentation and the enhancement of image quality through an intensity adjustment, thus 

allowing the use of deep learning to classify the mammograms into BI-RADS categories. The Confusion 

Matrix (CM) - CNN network used implements an architecture that models each radiologist’s noisy label. 

The final methodology pipeline was determined after comparing the performance of image pre-processes 

combined with different DL architectures. 

Methods: A multi-center study composed of 1395 women whose mammograms were classified into the 

four BI-RADS categories by three experienced radiologists is presented. A total of 892 mammograms were 

used as the training corpus, 224 formed the validation corpus, and 279 the test corpus. 

Results: The combination of five networks implementing the RegL methodology achieved the best results 

among all the models in the test set. The ensemble model obtained an accuracy of (0.85) and a kappa 

index of 0.71. 

Conclusions: The proposed methodology has a similar performance to the experienced radiologists in the 

classification of digital mammograms into BI-RADS categories. This suggests that the pre-processing steps 

and modelling of each radiologist’s label allows for a better estimation of the unknown ground truth 

labels. 

© 2022 The Author(s). Published by Elsevier B.V. 

This is an open access article under the CC BY-NC-ND license 

( http://creativecommons.org/licenses/by-nc-nd/4.0/ ) 
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. Background 

Mammogram screening is a highly standardized procedure for 

reast cancer early detection programs [1,2] . Breast density mea- 

ures the proportion of fibroglandular tissue over the entire breast. 

reast density is widely measured qualitatively using the Breast 
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Table 1 

BI-RADS 4th edition scale for breast den- 

sity classification. The 4th edition of BI- 

RADS is percentage-based, where each cat- 

egory comprises a range of percentages. 

BI-RADS category Density percentage 

I < 25% 

II 25 - 50% 

III 50 - 75% 

IV > 75% 

Table 2 

Inter-reader variability amongst radiologist labels. Each 

row shows a comparison considering the labels from the 

first radiologist as predictions and the labels from the sec- 

ond as ground truth. 

Ground Truth vs Predictions Accuracy (%) Kappa 

R1 vs R2 84.6 0.71 

R2 vs R3 75.7 0.57 

R1 vs R3 77.1 0.59 

t

a

u

d

s

v

m

t

a

f

r

1

R

R

i

2

t

f

t

t

s

c

s

t

w

t

1

l

b

i

d

T

s

s

2

i

(

mage and Data System (BI-RADS) [3] developed by the American 

ollege of Radiologists. The BI-RADS system includes four qualita- 

ive categories: I (almost fatty), II (scattered fibroglandular densi- 

ies), III (heterogeneously dense), and IV (extremely dense). Several 

tudies have shown that radiologists exhibit intra- and inter-reader 

ariability in the assessment of breast density into BI-RADS cate- 

ories [4–6] . 

Breast density is known to be a risk marker for the develop- 

ent of breast cancer [7–10] . Dense breasts are those given a clin- 

cal BI-RADS assessment of either heterogeneously or extremely 

ense categories (III and IV, respectively). The breast density as- 

essment is usually carried out using a semiautomatic tool such as 

M-Scan [11,12] . 

Before the appearance of deep learning, classical computer vi- 

ion techniques, such as Gabor filters, Histogram of Oriented Gra- 

ients (HOG), etc. [13,14] were used to carry out the breast density 

lassification of digital mammograms. The performance of convo- 

utional neural networks (CNN) compared to typical algorithms in 

omputer vision tasks led to the establishment of the former as 

he new standard in computer vision problems [15–17] . CNNs give 

reat performance on different areas such as waste classification, 

edestrian detection, etc [18–22] . As well as these areas, it has 

lso become the standard for X-Ray computer vision problems in 

ealthcare environments [23–26] . 

The existing variability in the assessment means there is noise 

n the labels. Obtaining accurate labels is a challenging task. 

ome studies used employed a huge number of experts to obtain 

ore accurate labels [27,28] . Training deep learning models with 

atasets containing noisy labels leads to poor generalization ca- 

abilities. Some studies use different deep learning related tech- 

iques to improve generalization [29,30] , while other works pro- 

ose more complex frameworks to perform classification via deep 

earning in presence of noisy labels [31–33] . 

This current work presents a fully automated framework for 

ense tissue classification into BI-RADS categories. This framework 

as been denominated RegL (Labels Regularizer) and it has been 

pplied to regularize the specialists’ BI-RADS label variability. It 

ncludes breast detection, intensity adjustment, and dense tissue 

lassification. Among the contributions of this work, we want to 

ighlight: (1) a preprocessing algorithm capable of eliminating 

oise in the background of mammograms, (2) another preprocess- 

ng algorithm capable of correcting the range of intensities, (3) a 

nal pre-process to standardize the grey level variability, and (4) 

he implementation of a CNN architecture that models different ra- 

iologists opinions. 

. Methods 

.1. Dataset and participants 

A multi-center study covered women from 7 Spanish screen- 

ng centres which belong to the Spanish breast cancer screen- 

ng network. This study, called DDM-Spain, recruited 3584 women 

ged 45 − 68 years to investigate the influence of lifestyle and ge- 

etic factors on observed breast density. All participants agreed to 

heir left cranio-caudal mammograms (single view) being used for 

tudy purposes [34] . A subset of 1395 full-field digital mammo- 

rams from 3 screening centers was used to evaluate the intra- and 

nter-reader variability in dense tissue estimation. Three experi- 

nced radiologists (referred to here as R1, R2, and R3) assessed the 

reast density using the 4th edition of BI-RADS, which classifies 

he breast density into four categories based on the density per- 

entage, as shown in Table 1 . The BI-RADS scale is the most com-

on breast density assessment method [35–37] . Besides, think- 

ng about future projects, the radiologists subdivided the first BI- 

ADS category into three subcategories (I :0%; II :110%; III :1025%;) 
2 
o get the classification into the Boyd scale [38] , which also is 

 percentage-based scale. Nevertheless, the Boyd system was not 

sed in this paper. 

As previously mentioned, three radiologists made the breast 

ensity assessment, with the unavoidable inclusion of a degree of 

ubjectivity and variability, leading to inexact ground truths. Super- 

ised learning requires a unique ground-truth label. With this in 

ind, for each mammogram, we calculated the majority vote for 

hose images where at least two readers have matching opinions 

nd the median for those in which the three radiologists have dif- 

ering opinions. Once a single-labelled dataset was extracted, we 

ealized that there were imbalances in the dataset. The BI-RADS 

 category represents 61.4% of the total images (857 images), BI- 

ADS 2 25.2% (352 images), BI-RADS 3 11.7% (163 images) and BI- 

ADS 4 1.6% (23 images). To address this problem we used weight- 

ng techniques, as explained in Section 2.4 . 

.2. Intra and inter-reader variability 

We calculated the inter-reader variability using the labels of the 

hree radiologists. We defined a series of experiments in which, 

or each of them, a radiologist’s labels were selected as ground 

ruth and another radiologist’s labels as predictions, which served 

o obtain the accuracy and kappa index score as a way to mea- 

ure the radiologists’ concordance. The three most representative 

omparisons between radiologists are shown in Table 2 . These re- 

ults show that concordance between R1 and R2 is higher than 

hat achieved with R3. The accuracy ranges from 75.7% to 84.6%, 

hile the kappa index ranges from 0.57 to 0.71. 

It was also possible to calculate the intra-reader variability as 

he same radiologists made a second assessment on a subset of 

45 mammograms, which have thus been labelled twice. Simi- 

arly as with inter-reader variability, intra-reader variability has 

een measured in terms of accuracy and kappa index, as shown 

n Table 3 . These results show that even the same radiologist 

oes not fully agree with his/her own labels after a certain time. 

able 3 shows that both the R1 and R3 experiments obtained the 

ame results, this is pure coincidence considering that their confu- 

ion matrices are different, as shown in Fig. 1 (b). 

.3. Breast density classification with noisy labels framework 

The RegL framework consist of two steps, (1) a preprocess- 

ng pipeline called Digital Mammograms Preprocessing Pipeline 

DMPP) and (2) dense tissue classification by using the Confusion 
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Fig. 1. Confusion matrices from the intra-reader comparision of both R1 and R3. (a) R1 confusion matrix and (b) R3 confusion matrix. 

Fig. 2. RegL general diagram. First, the digital mammogram is fed into the DMPP, removing the background noise of the image, segmenting the breast, adjusting the intensity 

from the breast pixels, and, finally, normalizing its grey level, thus feeding the CM-CNN with the preprocessed mammogram. 

Table 3 

Intra-reader variability for each radiologist. 

Each row shows the results from comparing the 

first radiologist labels with the labels made af- 

ter a certain time interval. 

Radiologist Accuracy (%) Kappa 

R1 77.3 0.54 

R2 80.6 0.63 

R3 77.3 0.54 
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atrix Convolutional Neural Network (CM-CNN). Fig. 2 shows a 

eneral diagram of the classification framework. 

.3.1. Digital mammograms preprocessing pipeline 

The DMPP is made up of four pre-processing steps: (1) noise 

emoval from the mammograms background pixels, (2) breast seg- 

entation, (3) intensity adjustment from the breast pixels and (4) 

ormalization of the grey level variability. 

Background noise removal . It has been found that in a significant 

umber of mammograms, the background pixels are not actually 

lack but have a greyish hue, whose value is close to the pixels 

t the edge of the breast. Due to this problem, the breast segmen- 

ation algorithm performs poorly in these images, segmenting the 

reast edge pixels as if they belonged to the background. We have 

eveloped a process that gets the maximum intensity from a sub- 

egion of the image. Given that the mammograms are CC views 
3

rom the left breast, the subregion is near the lower right corner 

f the image since the image labels and marks, such as the one 

n Fig. 3 (a), only appear in the upper right corner. Then, it obtains 

he maximum intensity of that subregion and performs an inten- 

ity windowed adjustment transformation on the lower intensity 

alues of the image. Therefore, intensities lower than the maxi- 

um intensity found are set to 0. Fig. 3 shows the improvement 

n segmentation by removing the noise in the background. 

Breast segmentation . The segmentation algorithm consists of an 

terative algorithm based on connected components. This algorithm 

btains the grey level threshold that distinguishes the breast from 

he background. Even though there are some issues concerning 

he use of connected-components based labelling on binary images 

39] , homogeneous breast shape makes this kind of algorithm suit- 

ble to be used for breast segmentation and exhibits perfect breast 

etection. 

The first step of the breast detection procedure is to assess 

he histogram of the image. Based on the premise that the most 

requent pixel values belong to the background, we defined a 

ange of possible thresholds that separate the breast and the back- 

round. Following this, the segmentation algorithm assures that 

he breast is left-oriented and binarizes the image using the first 

ossible threshold, thus applying the connected component la- 

elling method. We chose the Scan plus Array-based Union-Find 

SAUF) algorithm, [40] a two-scan algorithm: the first scan assigns 

rovisional labels to pixels and records labels equivalences. Thus, 

he second scan replaces the equivalent labels with their represen- 
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Fig. 3. Comparison between breast segmentation applied to an image with (a) noise in the background and (b) after removing the noise from the background. 
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ative label [41] . Finally, if only two components are obtained, the 

hreshold is set. If not, the same procedure is applied to the re- 

aining ones. 

Intensity Adjustment . A visual inspection of the images showed 

nusual brightness problems in the breast pixels of some mammo- 

rams, such as excess or lack of brightness. To solve this problem, 

e developed a process to find the optimal intensity window of 

n image and, then, to make a windowed intensity adjustment on 

hat optimal window. 

To find the optimal window values, firstly we applied a median 

lter to remove noise while preserving the edges. Following this, 

e obtained the cumulative distribution function (CDF) from the 

reast pixel values and searched the lower and upper elbows of the 

unction in an iterative way. These elbows correspond to the values 

hat define the optimal window. Finally, we applied a windowed 

ntensity adjustment using the calculated window. Fig. 4 shows the 

esults of adjusting the intensity on a bright mammogram. 

Normalizing grey level variability . The pixel size, grey-scale bit 

esolution, signal-to-noise ratio, or detective quantum efficiency 

re crucial concepts related to image quality [42] . Factors such as 

he acquisition devices or the process used to capture the image 

reate a high degree of variability in the quality of the mammo- 

rams. 

We analysed the grey levels of a random sample of 100 mam- 

ograms. Before this analysis, the images were processed applying 

he transformations detailed in previous sections. The assessment 

onsists of the visualization of the mean density function for each 

ategory. Fig. 5 shows the comparison between density functions, 

onfirming that there is a difference in the grey level amongst cat- 

gories, not only in the brighter pixels, but also in the darker ones. 

Mammogram features such as resolution or signal-to-noise ratio 

epend on the electronic components of acquisition devices and 

roduce a specific signature visible on the image histogram. In this 

ork, we propose a pre-process to normalize the grey-level vari- 

bility composed of the following preprocessing steps: 

1. Shift histogram to set the minimum breast tissue pixel to 0. 
4 
2. Normalize the pixel values of the image between [0 , 1] . 

3. Adjust the pixel values so that the mode is 0. 

Fig. 6 shows the comparison of the mean density functions per 

ategory after normalizing the grey level variability. This way, the 

igher the category, the fewer pixels there will be on the left of 

he mode, while there will be a greater number on the right. This 

akes sense considering that the higher the category, the greater 

he amount of dense tissue, whose tonal-intensities are close to 

hite. 

Fig. 7 shows adjusting the intensity and then normalizing the 

rey level variability for each BI-RADS category. There are no visual 

ifferences between the intensity adjusted and grey level normal- 

zed images, which is expected since the grey level normalization 

oes not intend to improve the image’s visual quality. Instead, it 

ries to make the classification task a little bit easier by eliminat- 

ng the variability produced by external factors. 

.3.2. Confusion matrix convolutional neural network architecture 

Although there are four BI-RADS categories, the works detailed 

n this paragraph turned the problem into a binary classification 

roblem due to the subjectivity that exists in the evaluation. Au- 

hors of [43] decided to classify mammograms in the BI-RADS 2 

nd BI-RADS 3 categories because these are the most critical cate- 

ories for radiologists to distinguish. Other works grouped BI-RADS 

 and BI-RADS 2 into a new category called non-dense, and BI- 

ADS 3 and BI-RADS 4 into another called dense, and then per- 

ormed a binary classification of these categories [44,45] . 

Other approaches use convolutional neural networks to classify 

ammograms into the four BI-RADS categories. Some works use 

ransfer learning with well-known pre-trained networks on Ima- 

eNet [46] , such as the ResNet-50 [47] , to classify the mammo- 

rams [48] . In another work, firstly, the dense tissue segmentation 

s carried out to perform the classification only on the segmented 

issue [49] . Other work approaches the problem by estimating the 

ercentage density and translating it into the BI-RADS categories 

50] . 
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Fig. 4. Example of adjusting the intensity range from an image. (a) Original image with excess of brightness and (b) image with the intensity adjusted. 

Fig. 5. Mean density functions per category from the random sample of 100 images of the analysis. 

Fig. 6. Mean densities functions per category from the random sample of 100 images after normalizing their gray level. 

5 
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Fig. 7. Example of applying the DMPP to each BI-RADS category. Each row repre- 

sents a BI-RADS category, while each column represents the output image after a 

certain preprocess. The first column represents the original images, while the sec- 

ond and third columns represent the images after adjusting the intensity and nor- 

malizing the grey-level variability. 
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Table 4 

Set of architectures and hyperparameters used in the experimentation. 

Model Optimizer Learning Rate L2 Regularization 

VGG-19 [54] Adam 0.000005 0.001 

ResNext4D [55] Adam 0.000005 0.001 

DenseNet121 [56] Adam 0.00001 0.005 

WideResNet50 [57] Adam 0.00001 0.01 

EfficientNet-B1 [58] Adam 0.00003 0.005 

Table 5 

Distribution of each BI-RADS category in training, validation and test 

set. 

BI-RADS 1 BI-RADS 2 BI-RADS 3 BI-RADS 4 

Training 548 226 104 14 

Validation 138 56 26 4 

Test 171 70 33 5 

Table 6 

Class weights for each BI-RADS category on the training set calculated 

using the Eq. (2) . 

BI-RADS 1 BI-RADS 2 BI-RADS 3 BI-RADS 4 

N ° Images 548 226 104 14 

Weight 0.4069 0.9867 2.1442 15.9285 
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Since a correct ground truth does not exist due to the exist- 

ng intra- and inter-reader variabilities as shown in Section 2.2 , 

e propose a convolutional neural network architecture, named 

onfusion Matrix Convolutional Neural Network (CM-CNN), capa- 

le of modelling multiple labelling opinions individually [51] . An 

xample of the architecture is shown in Fig. 8 . This architecture si- 

ultaneously learns the criteria of each radiologist together with 

he ground truth distribution obtained through the majority vote 

mong labels. Each radiologist’s opinion is represented by a con- 

usion matrix where each element [ i, j] represents the probabil- 

ty that the radiologist classifies an image in category j, under 

he premise that the ground truth label is the category i . This 

ay, during training, both model weights and confusion matrices 

re learned. Also, the architecture uses a base classifier to make 

he predictions, which in this case it is a pre-trained model using 

ransfer learning. 

.4. Categories imbalance problem 

As mentioned in Section 2.1 , the dataset is quite imbalanced. 

his problem leads to the generation of suboptimal classification 

odels that have a good coverage of the majority classes, whereas 

he minority classes are missclassified [52,53] . In our specific case, 

t leads to a misclassification of the BI-RADS 3 and 4 categories. 

o solve this, the cross entropy loss was replaced by the weighted 

ross entropy loss function as shown in Equation 1 . Thus, the cost 

f misclassifying a minority class is much higher than that of mis- 
6 
lassifying a majority class, causing the model to focus on correctly 

lassifying minority examples. 

E = −
∑ 

i ∈ C 
w i · y i · log ( ̂  y i ) (1) 

Class weights are calculated using the information from the 

raining set, as shown in Equation 2 . 

 c = 

n 

n c | C| (2) 

here n is the total number of samples, n c the total number of 

amples in category C and | C| the number of categories. 

.5. Experimental design 

In this section, we design some experiments aimed at analyzing 

he importance of the RegL framework. The experimentation con- 

tists of a series of experiments that compare the results of five 

eural networks with and without the RegL framework. The Stu- 

ent’s t -test was used to provide statistical analysis for each ex- 

eriment. The p-values were considered statistically significant at 

he 0.05 cutoff. All the neural networks were pretrained on the Im- 

geNet dataset. The results comparisions are made considering the 

ajority vote as the ground truth. For the experiments to be reli- 

ble, we fixed the hyperparameters of each neural network for all 

he experiments, as shown in Table 4 . 

A stratified split of the data based on the majority vote defined 

he training, validation, and test set. The split ratio is 80% for the 

raining set and 20% for the test set. Also, 20% from the training 

et were used as the validation set. Finally, from the total of 1395 

mages, 892 mammograms make up the training set, 224 the vali- 

ation set and 279 the test set. 

Training, validation, and test sets are quite imbalanced, as 

hown in Table 5 . Therefore, as introduced in Section 2.4 , the 

eighted cross entropy was used as the cost function. Table 6 

hows the weights for each category on the training set, calculated 

ith Eq. (2) . The cost of misclassifying a sample from the BI-RADS 

 category is 39 times greater than that of a sample from the BI- 

ADS 1 category. 

Images were resized to 256 × 256 px and the pixel values were 

ormalized between [0 , 1] . Moreover, as the neural networks used 

n this study ( Table 4 ) were pretrained on the ImageNet dataset 
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Fig. 8. CM-CNN general diagram. Given an input mammogram, the classifier generates an estimate of the ground truth class probabilities, p θ (x ) . Then the class probabilities 

for each annotator are computed, p (r) 
θ

(x ) = R (r) p θ (x ) for r ∈ { 1 , 2 , 3 } . Then, the model parameters and annotators confusion matrices are optimized to minimize the mean of 

three cross-entropy losses between each estimated annotator distribution p (r) 
θ

(x ) and their respective noisy labels ˆ y (r) [51] . 
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Table 7 

Comparison experiments to analyze the DMPP influence. The first two 

columns compare the accuracy obtained when the DMPP was applied or 

not. On the other hand, the last two columns compare the kappa index 

when the DMPP was applied or not. 

Models Accuracy (%) Accuracy (%) Kappa Kappa 

no DMPP DMPP no DMPP DMPP 

VGG-19 77.41 ±2 . 5 80.64 ±2 . 36 0.61 0.65 

ResNext4D 75.98 ±2 . 55 79.21 ±2 . 42 0.55 0.60 

DenseNet121 67.74 ±2 . 79 74.55 ±2 . 6 0.37 0.54 

WideResNet50 76.70 ±2 . 53 78.85 ±2 . 44 0.59 0.62 

EfficientNet-B1 75.26 ±2 . 58 77.06 ±2 . 51 0.54 0.57 

Table 8 

Comparison experiments to analyze the influence of implementing the CM-CNN 

architecture. The first two columns compare the accuracy obtained when apply- 

ing or not the CM-CNN architecture. On the other hand, the last two columns 

compare the kappa index when applying or not the CM-CNN architecture. 

Models Accuracy (%) Accuracy (%) Kappa Kappa 

no CM-CNN CM-CNN no CM-CNN CM-CNN 

VGG-19 77.41 ±2 . 5 79.21 ±2 . 42 0.61 0.64 

ResNext4D 75.98 ±2 . 55 79.56 ±2 . 41 0.55 0.63 

DenseNet121 67.74 ±2 . 79 75.62 ±2 . 57 0.37 0.58 

WideResNet50 76.70 ±2 . 53 79.21 ±2 . 42 0.59 0.64 

EfficientNet-B1 75.26 ±2 . 58 77.77 ±2 . 48 0.54 0.61 
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nd, therefore, their input must be 3-channel colour images, the 

reyscale mammograms were transformed into RGB images by 

opying the same image on each of the three channels. The max- 

mum number of training epochs was fixed to 30, although no 

odel reached this number of iterations because of early stopping 

riteria. 

The absence of precise ground truth, along with the intra- and 

nter-reader variability, motivated the use of neural network archi- 

ectures that modelled each radiologist’s opinion, as explained be- 

ore. We did not expect a model to behave like a specific radiolo- 

ist, so it is worth noting that the model performance will depend 

n the expert opinion we choose to compare with. 

All the experimentation was done in a remote server with the 

ollowing specifications: Ubuntu 20.04 as operating system, 16Gb 

f RAM, and a Nvidia Tesla V100 32Gb GPU. The training was done 

sing Python 3.7 and Pytorch 1.8. 

. Results 

This section presents the results of the experimentation defined 

n Section 2.5 . It is organized as follows: first, we show the impor-

ance of applying the DMPP and the CM-CNN, then we show the 

ffect of using the entire RegL framework, thus lastly, showing the 

esults of an ensemble of five neural networks applying the RegL 

ramework. 

.1. DMPP importance 

In this experiment, we have compared the performance on the 

est set by two groups of models made up of the neural networks 

pecified in Table 4 . The first group of models has been trained 

nd evaluated on images without applying the DMPP, while the 

econd one has been trained and assessed on the same images but 

pplying the DMPP. 

The experiment results showed in Table 7 reveal that the DMPP 

ncreases the classification capability of the models (statistically 

ignificant, p-values < 0 . 05 ). Specifically, they achieve an accu- 

acy and kappa index mean improvement of 3.4% and 0.05 points, 

espectively. The accuracy with DMPP is statistically significant 

igher (p-value = 0.017) than accuracy without DMPP. 
7 
.2. CM-CNN importance 

In this section, we analyze the influence of applying the CM- 

NN architecture. The first group of models does not implement 

M-CNN architecture, while the second one implements the CM- 

NN architecture using the corresponding base classifiers. Both 

roups of models have been trained and evaluated on images with- 

ut applying the DMPP. 

The experiment results showed in Table 8 indicate that mod- 

ling each radiologist opinion using the CM-CNN architecture in- 

reases the classification capability of the models (statistically sig- 

ificant, p-values < 0 . 05 ). Specifically, they achieve an accuracy 

nd kappa index mean improvement of 3.65% and 0.088 points, 

espectively. The accuracy with CM-CNN is statistically significant 

igher (p-value = 0.028) than accuracy without CM-CNN. 
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Table 9 

Comparison experiments to analyze the influence of applying the RegL frame- 

work. The first two columns compare the accuracy obtained when applying 

or not the RegL. On the other hand, the last two columns compare the kappa 

index when applying or not the RegL. 

Models Accuracy (%) Accuracy (%) Kappa Kappa 

no RegL with RegL no RegL with RegL 

VGG-19 77.41 ±2 . 5 81.0 ±2 . 34 0.61 0.67 

ResNext4D 75.98 ±2 . 55 81.0 ±2 . 34 0.55 0.66 

DenseNet121 67.74 ±2 . 79 79.21 ±2 . 42 0.37 0.64 

WideResNet50 76.70 ±2 . 53 81.0 ±2 . 34 0.59 0.65 

EfficientNet-B1 75.26 ±2 . 58 78.13 ±2 . 47 0.54 0.62 
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Fig. 9. Confusion matrix obtained from the comparison between the ensemble pre- 

dictions and the majority vote. 
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.3. Regl importance 

Finally, this experiment analyses the influence of applying 

he entire RegL framework. The first group of models imple- 

ent the RegL framework, while the second group of models 

o not. 

The experiment results from Table 9 show that applying the 

egL framework significantly increases the classification capabil- 

ty of the models (statistically significant, p-values < 0 . 05 ). Specif- 

cally, they achieve an accuracy and kappa index mean improve- 

ent of 5.45% and 0.116 points, respectively. In particular, the in- 

rease of the kappa index represents a large increase in perfor- 

ance. The accuracy with RegL is statistically significant higher (p- 

alue = 0.024) than accuracy without RegL. 

.4. Convolutional neural network ensemble 

Looking for results optimization, we have created an ensemble 

hat averages the output of the five neural networks mentioned. 

ach network implements the RegL framework. 

As aforementioned, we have included class weights into the 

ross-entropy loss function to solve the categories imbalanced 

roblem. The experimentation demonstrated that networks trained 

sing the “weighted” cross-entropy function perform better on the 

inority example, to the detriment of the majority ones. We de- 

igned the ensemble using three models trained with the weighted 

ross entropy loss and the other two with the normal one, with 

ptimization purposes. 

Table 10 shows that the ensemble reaches an accuracy and 

appa index of 84.58% and 0.71 points respectively. Moreover, it is 

mportant to highlight the fact that the CM-DenseNet121 achieves 

imilar results but with the drawback that it is unable to classify 

ny examples from the BI-RADS 4 category, therefore, this model 

ould be useless individually. 

Fig. 9 shows the confusion matrix for the ensemble predictions 

nd the majority vote. It can be clearly seen that it achieves excel- 

ent overall performance in all categories. 

We have also contrasted the predictions obtained by the en- 

emble method and each radiologist’s labels. Tables 11 , 12 and 

3 show a comparison between the ensemble predictions and a 

adiologist labels using another radiologist’s labels as the ground 

ruth. 

Table 11 shows that both the ensemble and R2 have similar be- 

aviour in all the categories except on BI-RADS 4. The criteria of 

2 in this category is more similar to that of R1 than that of the

nsemble. 

Table 12 shows that the ensemble method and R3 have similar 

erformance when R2 labels are used as ground truth. Besides, the 

nsemble method outperforms in some categories. 

Table 13 shows that the ensemble method and R3 have similar 

ehaviour when R1 labels are used as ground truth. 
8

. Discussion 

The experimentation has shown that the implementation of the 

egL framework leads to better results. The DMPP leads to an 

verage increase in accuracy and kappa index of 3.4% and 0.05 

oints. Moreover, the CM-CNN architecture leads to an average in- 

rease in accuracy and kappa index of 3.65% and 0.088 points re- 

pectively. Both the DMPP and the CM-CNN architecture lead to 

imilar average increases. The kappa index increase from the CM- 

NN architecture was slightly better. Finally, the entire RegL frame- 

ork leads to an average increase in accuracy and kappa index 

f 5.45% and 0.116 points respectively. The obtained results show 

hat applying the RegL framework significantly improves the den- 

ity classification task. Besides, the ensemble improves the results 

btained by individual models (statistically significant, p-values < 

 . 05 ). The ensemble accuracy is statistically significant higher (p- 

alue = 0.032) than the accuracy of individual models using RegL. 

The comparison of the results of the neural network en- 

emble against the intra- and inter-reader variabilities shown in 

ables 3 and 2 allow us to assure that the ensemble behaves like 

 radiologist in the task of classifying mammograms according to 

heir breast density. Furthermore, applying the RegL framework re- 

uces the impact of the existing variability in the assessment. 

The proposed framework was compared against state-of-the- 

rt breast density classification. All of these studies have in com- 

on that they use the entire CC-view mammography to make the 

lassification into the four BI-RADS categories. A summary can be 

ound in Table 14 . As shown, the performance of the proposed 

ramework outperformed the state of the arts with an overall accu- 

acy of 84.58%. However, it must be said that each of these studies 

ses a different data set, which is a limitation of the comparative 

nalysis. 

The main contributions of the present paper can be summa- 

ized as: 

1. A preprocess that allows a correct breast segmentation in mam- 

mographies with noisy background. 

2. A preprocess that adjust the intensities to eliminate problems 

such as unusual brightness. 

3. An intuitive preprocess protocol that normalizes the gray level 

variability caused by different acquisition devices or different 

capture processes. 
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Table 10 

Results comparision of the five neural networks that make up the ensemble, along with the results of the ensemble. Each column shows the accuracy of 

all the networks in a certain BI-RADS category, thus, showing the general accuracy and kappa index in the two last columns. 

Model Class Accuracy (%) Accuracy (%) Accuracy (%) Accuracy (%) General Accuracy Kappa 

Weights BI-RADS 1 (N = 171) BI-RADS 2 (N = 70) BI-RADS 3 (N = 33) BI-RADS 4 (N = 5) (%) (N = 279) 

CM-VGG-19 Yes 91.22 ±2 . 16 68.57 ±5 . 54 57.57 ±8 . 73 100 ±0 . 0 81.72 ±2 . 34 0.68 

CM-ResNext4D Yes 89.47 ±2 . 34 72.85 ±5 . 31 72.72 ±7 . 87 60 ±21 . 9 82.79 ±2 . 3 0.69 

CM-WideResNet50 Yes 94.73 ±1 . 7 44.28 ±5 . 93 78.78 ±7 . 22 60 ±21 . 9 79.56 ±2 . 43 0.62 

CM-DenseNet121 No 94.73 ±1 . 7 67.14 ±5 . 61 78.78 ±7 . 22 0 ±0 . 0 84.22 ±2 . 19 0.70 

CM-EfficientNet-B1 No 91.81 ±2 . 09 75.71 ±5 . 12 42.42 ±8 . 73 0 ±0 . 0 80.28 ±2 . 39 0.62 

CM-Ensemble 92.98 ±1 . 95 72.85 ±5 . 31 72.72 ±7 . 87 40 ±21 . 9 84.58 ±2 . 19 0.71 

Table 11 

Comparison between the predictions from the ensemble and R2 labels, considering the 

R1 labels as the ground truth. 

Category R2 Recall Ensemble Recall R2 Precision Ensemble Precision 

(%) (%) (%) (%) 

BI-RADS 1 96.0 94.0 93.0 92.0 

BI-RADS 2 65.0 62.0 79.0 72.0 

BI-RADS 3 60.0 57.0 60.0 57.0 

BI-RADS 4 100.0 67.0 61.0 22.0 

Table 12 

Comparison between the predictions from the ensemble and R3 labels, considering the 

R2 labels as the ground truth. 

Category R3 Recall Ensemble Recall R3 Precision Ensemble Precision 

(%) (%) (%) (%) 

BI-RADS 1 91.0 91.0 87.0 91.0 

BI-RADS 2 59.0 65.0 58.0 62.0 

BI-RADS 3 52.0 66.0 49.0 66.0 

BI-RADS 4 9.0 33.0 100.0 100.0 

Table 13 

Comparison between the predictions from the ensemble and R3 labels, considering the 

R1 labels as the ground truth. 

Category R3 Recall Ensemble Recall R3 Precision Ensemble Precision 

(%) (%) (%) (%) 

BI-RADS 1 94.0 94.0 87.0 92.0 

BI-RADS 2 56.0 62.0 67.0 72.0 

BI-RADS 3 58.0 57.0 54.0 57.0 

BI-RADS 4 45.0 67.0 56.0 22.0 

Table 14 

Accuracy of different breast density classification studies. 

Study Year No. of Images Accuracy (%) 

Lee and Nishikawa [50] 2018 455 81.0 

LIBRA [59] 2012 324 81.0 

Lehman et al. [48] 2018 41479 77.0 

Our proposed method 2021 892 84.58 
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4. The implementation of a convolution-based architecture capa- 

ble of modeling multiple radiologists’ opinions, thus reducing 

the existing variability caused by the noisy labels. 

5. A breast density classification framework with similar behavior 

to that achieved by expert radiologists at classifying the breast 

density into the BI-RADS categories. The framework could even 

be useful to standarize the way of evaluating breast density. 

.1. Limitations and future research 

The main limitation of this work is that the mammograms used 

ere labeled according BI-RADS 4th edition, which uses percent- 

ge ranges to define each category. Currently, BI-RADS 5th edi- 

ion is de facto standard for mammography density classification, 

hich takes into account not only the percentage of dense tissue, 
9 
ut also its distribution throughout the breast. It is expected that 

he trained models would get poorer results when tested with test 

mages labelled with BI-RADS 5th edition. It would be interesting, 

herefore, to train and test the proposed models with images la- 

elled according to the latest edition of BI-RADS. 

Also, it would be interesting to include mediolateral oblique 

MLO) mammograms into the corpus of images, together with im- 

ges from other caption devices and labelled by other radiologists. 

Finally, it would also be interesting to carry out a multicenter 

tudy in which several radiologists participate. Once the methodol- 

gy is validated, it would be interesting to develop a model capa- 

le of estimating the breast cancer risk from a set of dense tissue 

eatures and other variables. This tools could help in the radiolo- 

ists decision making. 

. Conclusion 

Nowadays, the amount of mammograms that must be analyzed 

n the screening centers is constantly growing due to the breast 

ancer early detection programs. This increase in the number of 

mages means more work for the radiologists who analyze the 

ammograms. In this sense, the availability of a tool that pro- 

ides automatic classification of dense tissue on digital mammo- 

rams becomes crucial. 
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The work presented in this paper provides an automatic frame- 

ork aimed at breast density classification and based on deep 

earning. The proposed methodology: (1) removes the noise in the 

ammogram background allowing a better breast segmentation, 

2) removes unusual brightness problems that influence the image 

uality, (3) standarizes the grey-level variability of the breast pix- 

ls, and finally (4) performs a dense tissue classification into the 

I-RADS categories. 

Fixing a radiologist’s labels as the ground truth, both the preci- 

ion and the recall of the proposed framework are close to those 

btained by other radiologists. These results mean that by apply- 

ng the framework, the results are similar to those of an experi- 

nced radiologist. The validation of the methodology would allow 

ot only to automate, but also to reliably standardize the density 

eading. 
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