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Abstract

We present a practical algorithm to approximate the exponential of skew-Hermitian
matrices up to round-off error based on an efficient computation of Chebyshev poly-
nomials of matrices and the corresponding error analysis. It is based on Chebyshev
polynomials of degrees 2, 4, 8, 12 and 18 which are computed with only 1, 2, 3, 4 and
5 matrix-matrix products, respectively. For problems of the form exp(−iA), with A
a real and symmetric matrix, an improved version is presented that computes the
sine and cosine of A with a reduced computational cost. The theoretical analysis,
supported by numerical experiments, indicates that the new methods are more ef-
ficient than schemes based on rational Padé approximants and Taylor polynomials
for all tolerances and time interval lengths. The new procedure is particularly rec-
ommended to be used in conjunction with exponential integrators for the numerical
time integration of the Schrödinger equation.

Keywords: Matrix exponential, Matrix sine, Matrix cosine, Matrix polynomials,
Schrödinger equation.

1. Introduction

Given a skew-Hermitian matrix, X ∈ CN×N , XH = −X, we propose in this
paper an algorithm to evaluate eX up to round off accuracy that is more efficient
than standard procedures implemented in computing packages for dimensions N up
to few hundreds or thousands.

Computing exponentials of skew-Hermitian matrices is very often an intermedi-
ate step in the formulation of numerical schemes used for simulating the evolution
of different problems in Quantum Mechanics. Thus, suppose one needs to solve
numerically the time-dependent Schrödinger equation (~ = 1)

i
∂

∂t
ψ(x, t) = Ĥ(t)ψ(x, t), ψ(x, 0) = ψ0(x). (1)

Here Ĥ(t) is in general a time-dependent Hamiltonian operator, ψ : Rd × R −→ C
is the wave function representing the state of the system, and ψ0(x) is the initial
state.
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One possible approach consists in expressing the solution in terms of an or-
thonormal basis {φk(x)}∞k=1 that is truncated up to, say, the first N terms. Then,
one has

ψ0(x) =

N∑
k=1

ck φk(x), and ψ(t, x) =

N∑
k=1

ck(t)φk(x),

where the coefficients c(t) = (c1(t), . . . , cN (t))T satisfy

i
d

dt
c(t) = H(t) c(t), c(0) = c0 ∈ CN , (2)

andH(t) is a Hermitian matrix with elementsH`m = 〈φ`|Ĥ(t)|φm〉, `,m = 1, . . . , N .
One then subdivides the time integration interval in a number of subintervals
of length τ , and finally computes approximations ck ' c(tk) at times tk = kτ ,
k = 1, 2, 3, . . ..

Exponential integrators can be used to solve this problem (see [8, 19] and refer-
ences therein) and they require the computation at each time step of one or several
matrix exponentials e−i τ Hk , k = 1, 2, . . ., where Hk is a Hermitian matrix depend-
ing on H(t) at different times. Although efficient algorithms exist to carry out this
task by diagonalizing the constant matrix Hk, we will show that it is indeed pos-
sible to compute the exponential in a very efficient way with a different procedure
when ‖τ Hk‖ is not too large . This is typically the situation one encounters when
exponential integrators are applied to this class of problems [4].

The goal of this work is thus to present an efficient algorithm for computing eX ,
with X a skew-Hermitian matrix, up to round off accuracy with a minimum number
of matrix-matrix products. The algorithm is based on Chebyshev polynomials and
an efficient procedure to evaluate polynomials of matrices. If ‖X‖ is large enough,
this technique can be combined with scaling-and-squaring. Even then, diagonalizing
is only superior when a large number of squarings is necessary.

Since the algorithm can also be used to compute e−iA when A is a Hermitian
matrix, just by taking A = iX, in the sequel and without loss of generality we
address this problem.

Our approach for computing e−i A is based on approximations of the form

e−i A ≈ Pm(A), (3)

where Pm(y) is a polynomial in y that approximates the exponential e−i y. Different
choices for such Pm(y) are available, namely truncated Taylor or Chebyshev series
expansions in an appropriate real interval of y. Rational approximations, like Padé
approximants, are also a standard technique to compute the exponential in com-
bination with scaling and squaring [16, 18]. In the autonomous case, when H(t)
is constant, this is basically equivalent to solve (2) using a Gauss-Legendre-Runge-
Kutta method [12] or a Cayley transform [13].

Specifically, the scaling and squaring technique is based on the property

e−iA =
(

e−iA/2
s
)2s

, s ∈ N. (4)

The exponential e−iA/2
s

is then replaced by a polynomial (or rational) approxima-
tion Pm(A/2s). Both parameters, s and m, are determined in such a way that full
machine accuracy is achieved with the minimal computational cost.

An important ingredient in our procedure consists in designing an efficient way
to evaluate the approximation Pm. In this respect, the technique we propose can
be considered as a direct descent of the procedure presented in [9] for reducing the
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number of commutators appearing in different exponential integrators. It was later
generalized in [5] to reduce the number of products necessary to compute the Taylor
polynomials for approximating the exponential of a generic matrix (see also [6, 26]
for a more detailed treatment).

In fact, the theoretical analysis carried out here and supported by numerical
experiments performed for different Hermitian matrices A, indicates that our new
schemes are more efficient than those based on rational Padé approximants (as
used e.g. in Matlab) or on Taylor polynomials for all tolerances. The algorithm
computes the parameter

β = ‖A‖1
as an upper bound to the spectrum of A. As an optional choice, the user can provide
upper and lower bounds for the eigenvalues of the matrix A, Emin and Emax, and
this allows one to consider a shift for reducing the overall cost. Then, the algorithm
automatically selects the most efficient polynomial approximation for a prescribed
error tolerance.

Although the algorithms based on Taylor polynomial approximations and the
use of scaling-and-squaring constructed in [6, 26] can of course be applied also here,
it turns out that in the particular case of skew-Hermitian matrices (with purely
imaginary eigenvalues) it is more convenient instead to apply a similar procedure
based on Chebyshev polynomials. Here only polynomials of degree m = 2, 4, 8, 12
and 18 are considered, since the number of matrix-matrix products is minimized in
those particular cases. Although higher degrees could in principle be taken, it turns
out that applying the scaling-and-squaring technique to lower degree polynomials
renders a similar or higher performance.

In many cases, when solving different quantum mechanical or quantum control
problems [4] one ends up with a real and symmetric matrix, AT = A ∈ RN×N , so
that

e−iA = cos(A)− i sin(A),

and we also provide an algorithm for computing cos(A) and sin(A) simultaneously
only involving products of real symmetric matrices. This new algorithm is more
efficient than the approach (3) since that scheme usually requires products of com-
plex matrices, and other existing algorithms for the simultaneous computation of
the matrix sine and cosine [2, 27]. The squaring (4) (also involving products of
complex matrices) is then replaced by the double angle formulae

cos(2A) = 2 cos2(A)− I = I − 2 sin2(A), sin(2A) = 2 sin(A) cos(A),

so that only two products of real symmetric matrices per squaring are required.
In [7] an algorithm for approximating e−iAv for any real symmetric matrix A

and any complex vector v was proposed. It is based on the idea of splitting and
only requires matrix-vector products Av in such a way that the real and imaginary
parts of e−iAv are approximated in a different way, with a considerable saving in
the computational cost with respect to the usual Chebyshev approximation. Here,
by contrast, we focus on problems where the actual computation of e−iA for any
Hermitian matrix is required.

The plan of the paper is the following. In section 2 we analyze the approx-
imation of the exponential by Taylor and Chebyshev polynomials and by Padé
approximants as well as their error bounds. In section 3 we obtain explicitly the
Chebyshev polynomials of the degree previously chosen and for the parameters that
ensure the error bound previously studied, and next we present the algorithms to
evaluate these polynomials with a reduced number of products. The algorithm for
the case of a real-symmetric matrix A is also considered. Section 4 contains numer-
ical experiments illustrating the performance of the new methods and some future
lines of research are enumerated in the final Section 5.
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2. Polynomial approximations

Assume that Pm(y) is a mth degree polynomial (or a rational function) ap-
proximating the function e−i y. Then, the error is bounded (in Euclidean norm)
as

‖Pm(A)− e−i A‖ ≤ max
j=0,1,...,N−1

|Pm(Ej)− e−i Ej |

in terms of the real eigenvalues E0, . . . , EN−1 of the Hermitian matrix A. If the spec-
trum σ(A) = {E0, . . . , EN−1} is contained in an interval of the form [Emin, Emax],
then

‖Pm(A)− e−i A‖ ≤ sup
Emin≤y≤Emax

|Pm(y)− e−i y|.

The quantities Emax and Emin can be estimated in different ways depending on the
particular problem (see e.g. [20]). Once they have been determined, by introducing
the quantities

α =
Emax + Emin

2
, β =

Emax − Emin

2
, and A = A− αI, (5)

it is clear that the spectrum of the shifted operator A is contained in an interval
centered at the origin, namely σ(A) = {E0 − α, . . . , EN−1 − α} ⊂ [−β, β], so that

e−i A = e−i α e−i β(A/β), (6)

with σ(A/β) ⊂ [−1, 1].
If the bounds Emin and Emax cannot be estimated in a convenient way, one can

always take β = ‖A‖1, so that σ(A) ≤ β, and no shift is considered.
In any event, and without loss of generality, our problem consists now in approx-

imating e−i A for a Hermitian matrix A with σ(A) ⊂ [−β, β] by means of Pm(A).
In that case,

‖Pm(A)− e−i A‖
‖e−i A‖

= ‖Pm(A)− e−i A‖ ≤ εm(β), (7)

where
εm(θ) := sup

−θ≤y≤θ
|Pm(y)− e−i y| (8)

and ‖e−i A‖ = 1.

2.1. Taylor polynomial approximation

An upper bound for the error estimate (8) of the mth degree Taylor polynomial

PTm(y) ≡
m∑
k=0

(−i)k

k!
yk (9)

approximating e−i y can be obtained by computing the Lagrange form of the re-
mainder in the Taylor series expansion:

|PTm(y)− e−i y| = 1

(m+ 1)!
|e−iξ(−iy)m+1| = 1

(m+ 1)!
|y|m+1

for ξ ∈ (0, y) so that, from eq. (8),

εTm(θ) :=
θm+1

(m+ 1)!
. (10)

Therefore, PTm(A) is guaranteed to approximate e−i A up to round-off error as long
as β ≤ θ with θ such that εTm(θ) ≤ u = 2−53. We collect in Table 1 the largest
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Table 1: θ values for Taylor and Chebyshev polynomials of degree m that can be com-
puted with π matrix-matrix products to approximate e−iA with A skew-Hermitian and
guaranteeing that εm(θ) ≤ u = 2−53. The θ value in the column m = 15+ corresponds
to the polynomial of degree 16 built in [26] that approximates the Taylor expansion up to
order 15 with 4 products (see section 5 for details).

m : 2 4 8 12 15+ 18
π : 1 2 3 4 4 5

Taylor pol. : 8.73e-6 1.67e-3 0.0699 0.336 0.709 1.147
Chebyshev pol. : 1.38e-5 2.92e-3 0.1295 0.636 2.212

θ verifying this restriction for the values of m considered in this work. As stated
before, only polynomials of degree m ≤ 18 will be employed in practice.

Remark: Notice that we can write the polynomial function in the exponential
form PTm(θ) = e−i (θ+∆θ) where ∆θ = O(θm+1), so condition |PTm(θ)− e−i θ| ≤ 2−53

for θ ∼ O(1) implies that |∆θ| ∼ 2−53. However, when backward error analysis
is considered one looks for the largest value of θ such that ∆θ

θ ≤ 2−53 so different
values for θ are obtained (smaller values when θ < 1 and greater values when θ > 1).

2.2. Chebyshev polynomial approximation

The mth degree truncation of the Chebyshev series expansion of e−i y in the
interval y ∈ [−θ, θ] reads

PCm,θ(y) := J0(θ) + 2

m∑
k=1

(−i)kJk(θ)Tk(y/θ), (11)

in terms of the Bessel function of the first kind Jk(t) [1, formula 9.1.21] and the kth
Chebyshev polynomial Tk(x) generated from the recursion [23, section 3.11]

Tk+1(x) = 2xTk(x)− Tk−1(x), k ≥ 1 (12)

with T0(x) = 1, T1(x) = x.
At least three estimates for εm(θ) may be considered when dealing with Cheby-

shev polynomial approximations. According with the analysis in [22, section III.2.1],
one can take

εC1
m (θ) := 4

(
e1−θ2/(2m+2)2 θ

2m+ 2

)m+1

. (13)

On the other hand, in [29, Theorem 8.2] it is shown that

max
|y|≤1

∣∣eθy − PCm,θ(y)
∣∣ ≤ 2M

ρn(ρ− 1)
= εC2

m (θ), (14)

where M = max
z∈Eρ

∣∣eθz∣∣ = e
θ
2 (ρ+1/ρ), and Eρ denotes the Bernstein ellipse in the

complex plane [29, chapter 8],

Eρ =

{
z ∈ C

∣∣∣ z =
1

2
(r + r−1), r = ρ eiφ, −π ≤ φ ≤ π

}
.

Here, ρ is any positive number with ρ > 1, and the optimal value that minimizes
the right hand side of (14) has to be computed numerically for each choice of θ.

Finally, one can also take the tail of the whole Chebyshev series expansion as
an upper bound of the error, i.e.,

‖PCm,θ(A)− e−i A‖ ≤

∥∥∥∥∥
∞∑

k=m+1

2(−i)kJk(θ)Tk(y/θ)

∥∥∥∥∥ ≤
∞∑

k=m+1

2 |Jk(θ)| ≡ εC3
m (θ).

(15)
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We have evaluated the three estimates (13)-(15) for the relevant degrees m and
compared with the observed behaviour of the corresponding polynomials. From
these computations we conclude that the bound (15) exhibits the sharpest result,
i.e., larger values of θ for all m considered. Thus, in particular, for m = 18 bound
(13) leads to θ = 1.8843, bound (14) gives θ = 1.939, whereas bound (15) provides
the largest value θ = 2.212. The corresponding values for θ obtained with (15) are
also collected in Table 1. Notice that these values are almost twice larger than those
associated to Taylor approximations.

In practice, we have constructed the Chebyshev polynomial approximations for
each pair (m, θ) specified in Table 1 as in [15] (which is in fact equivalent to Eq.
(11))

PCm,θ(y) =
1

2
c0 +

m∑
k=1

ckTk(y/θ), (16)

with

ck =
2

π

∫ 1

−1

e−iθy Tk(y)√
1− y2

dx (17)

and all the calculations have been carried out with 30 digits of accuracy. In Figure
1 we show both the absolute error |PCm,θ(y)− e−iy| for (m = 18, θ = 2.212) and the
value of u ≈ 1.11e-16. Notice how the error is always smaller than u for the whole
interval y ∈ [−θ, θ].

-2 -1 0 1 2

0

5.×10-17

1.×10-16

1.5×10-16

2.×10-16

y

E
rr
or

Figure 1: Absolute error |PCm,θ(y) − e−iy| for (m = 18, θ = 2.212) (blue) and the value of
u ≈ 1.11e-16 (black). The error is always smaller than u for y ∈ [−θ, θ].

2.3. Padé approximations

Most popular computing packages such as Matlab (expm) and Mathematica
(MatrixExp) use Padé approximants (in combination with scaling-and-squaring) to
compute numerically the exponential of a generic matrix [16, 18].

Diagonal [m/m] Padé approximants are of the form

rm(−i A) = pm(−iA)
[
pm(iA)

]−1
, (18)
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Table 2: Values of θ for diagonal Padé approximants of the highest order 2m that are
computed with π products (we take the computation of the inverse of a matris as 4/3
products).

m : 2 3 5 7 9 13
π : 2 + 1

3
3 + 1

3
4 + 1

3
5 + 1

3
6 + 1

3
7 + 1

3

Padé 2.4007e-3 2.715e-2 2.803e-1 0.8983 1.833 4.316

where

pm(x) =

m∑
j=0

(2m− j)!m!

(2m)!(m− j)!
xj

j!
, (19)

and they verify that rm(−i A) = e−i A +O(A2m+1). In practice, the evaluation of
pm(−i A) and pm(i A) is carried out so as to keep the number of matrix products at
a minimum. The previous notation O(An) is defined next, since it will be helpful
in the sequel.

Definition 1. We say that a given function f(A) of the matrix A satisfies f(A) =
O(An) if it can be written as a convergent Taylor expansion, f(A) =

∑∞
k=n ckA

k,
for ‖A‖ < α, with α a positive constant.

For skew-Hermitian matrices, we can use, instead of the generic backward error
bounds obtained e.g. in [17], an error estimate of the form (7) with εm(θ) in (8)
replaced by its upper bound:

‖rm(−i A)− e−i A‖ ≤

∣∣∣∣∣
∞∑

k=2m+1

dkθ
k

∣∣∣∣∣ ≤
∞∑

k=2m+1

|dk| θk ≡ εPm(θ). (20)

In practice, for a given m, we have computed s ≡
∑2000
k=2m+1 |dk|yk and determined

the largest y for which s ≤ u = 2−53. This value is taken then as the bound
θ. The values for θ are collected in Table 2 for those m for which the diagonal
Padé approximant can be computed with the minimum number of products. The
function expm in Matlab uses the corresponding bound θ obtained from relative
backward error with a cost of 2,3,4,5 and 6 products, respectively, in addition to
one matrix inverse (we take the cost of one inverse as 4/3 products1). In order to
compare with our methods under the same conditions, we have used the function
expm from Matlab but taking the θ values from Table 2. One should notice that
the corresponding backward error bounds are smaller up to m = 7.

3. Evaluating Chebyshev polynomial approximations with a reduced num-
ber of products

Our next goal is to reproduce the Chebyshev polynomial approximations consid-
ered in section 2.2 with a reduced number of matrix products in comparison with the
de facto standard Paterson–Stockmeyer method for polynomial evaluation. Since
the technique has been already explained in detail in the context of Taylor polyno-
mials approximating the exponential of a generic matrix in [6] (see also [25] for a
closely related procedure), here we only collect its most salient features and refer
to [6] for a comprehensive treatment.

1For a N × N matrix, it requires one LU factorization at the cost of 1/3 products plus N
solutions of upper and lower triangular systems by forward and backward substitution at the cost
of one product.
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Essentially, the idea is a modification of a procedure designed in [9] to reduce
the number of commutators appearing in exponential integrators, and consists in
taking a sequence of products of the form

A0 := I, A1 := A

A2 := z0A0 + z1A1 +
(
x1A0 + x2A1

)(
x3A0 + x4A1

)
(21)

A4 := z2A0 + z3A1 + z4A2 +
(
x5A0 + x6A1 + x7A2

)(
x8A0 + x9A1 + x10A2

)
A8 := z5A0 + · · ·+ z8A4 +

(
x11A0 + · · ·+ x14A4

)(
x15A0 + · · ·+ x18A4

)
,

...

to rewrite any polynomial Pm(A) as Pm(A) =
∑
k≥0 αkAk. Proceeding in this way

there might be both redundancies in the coefficients (for instance, it suffices to take
A2 = A1A1 since any polynomial of degree two can be writen in terms of A0, A1

and A2) and also not enough parameters to reproduce some powers in A (e.g. to
compute P7(A) = A7). For this reason, one includes new terms of the form, say,

(w0A0 + w1A1)(w3A0 + w4A1 + w5A2),

in the procedure for computing Ak, k > 2, so that one has additional parameters.
The price to be paid is of course that it is necessary to evaluate some extra products.

Concerning the particular class of polynomials and degrees we are interested
in, Pm(A) with m = 2, 4 can be obtained with just 1 and 2 matrix products, in a
similar way as the Paterson–Stockmeyer technique.

Degree m = 2. The quadratic Chebyshev polynomial with θ = 1.38e-5 can be
trivially computed with one product, and is given by

A2 = A2, PC2,θ(A) = α0I + α1A+ α2A2,

with

α0 = 0.9999999999999999999998, α1 = −0.9999999999761950000001 i

α2 = −0.4999999999920650000000.

Degree m = 4. The Chebyshev polynomial of degree four with θ = 2.92e-3 can be
computed with two products as follows:

A2 = A2, A4 = A2(x1A+ x2A2),

PC4,θ(A) = α0I + α1A+ α2A2 +A4,

with

α0 = 0.99999999999999999997, α1 = −0.99999999999981067844 i
α2 = −0.49999999999994320353, x1 = 0.16666657785001893215 i
x2 = 0.04166664890333648869.

Although we report here 20 digits for the coefficients, they can be in fact determined
with arbitrary accuracy.

The situation is more involved, however, for higher degrees. We next collect the
results for the Chebyshev polynomial approximations to the exponential of degrees
m = 8, 12 and 18. Although more values of m could be considered, it turns out that
these polynomials can be constructed with only 3, 4 and 5 products, respectively.
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Degree m = 8. As is the case with Taylor polynomials [6], the following sequence
allows one to evaluate P8(A) ≡ PC8,θ(A), with θ = 0.1295:

A2 = A2, A4 = A2(x1A+ x2A2),

A8 = (x3A2 +A4)(x4I + x5A+ x6A2 + x7A4),

PC8,0.1295(A) = α0I + α1A+ α2A2 +A8.

(22)

Notice that this is a particular example of the sequence (21) with some of the coef-
ficients fixed to zero to avoid redundancies. The parameters xi, αi are determined
such that PC8,0.1295(A) agrees with the corresponding expression (16). One has 10
parameters to solve 9 nonlinear equations and this results in two families of solutions
depending on a free parameter, x1. All solutions provide the same polynomial (if
exact arithmetic is considered), and we have chosen x1 to (approximately) minimize
the 1-norm of the vector of parameters. The corresponding coefficients in (22) for
the Chebyshev polynomial are given by

x1 = 431/4000, x2 = −0.02693906873598870733 i,
x3 = 0.66321004441662438593 i, x4 = 0.54960853911436015786 i,
x5 = 0.16200952846773660904, x6 = −0.01417981805211804396 i,
x7 = −0.03415953916892111403, α0 = 0.99999999999999999928,
α1 = −0.99999999999999233987 i, α2 = −0.13549409636220703066.

Degree m = 12. Here the situation is identical to what happens with Taylor poly-
nomials approximating eX for a generic matrix [6]: although polynomials up to
degree 16 could in principle be constructed with 4 products by applying the se-
quence (21), in practice the highest degree we are able to get is m = 12 with the
following sequence:

A2 = A2, A3 = A2A,
B1 = a0,1I + a1,1A+ a2,1A2 + a3,1A3, B2 = a0,2I + a1,2A+ a2,2A2 + a3,2A3,
B3 = a0,3I + a1,3A+ a2,3A2 + a3,3A3, B4 = a0,4I + a1,4A+ a2,4A2 + a3,4A3,
A6 = B3 +B2

4

PC12,0.636(A) = B1 + (B2 +A6)A6.
(23)

This ansatz has four families of solutions with three free parameters. A judicious
choice leading to a small value for

∑
i,j |ai,j | is:

a0,1 = −6.26756985350202252845, a1,1 = 2.52179694712098096140 i,
a2,1 = 0.05786296656487001838, a3,1 = −0.07766686408071870344 i,
a0,2 = 0, a1,2 = 1.41183797496250375498 i,
a2,2 = 0, a3,2 = −0.00866935318616372016 i,
a0,3 = 2.69584306915332564689, a1,3 = −1.35910926168869260391 i,
a2,3 = −0.09896214548845831754, a3,3 = 0.01596479463299466666 i,
a0,4 = 0, a1,4 = 0.13340427306445612526 i,
a2,4 = 0.02022602029818310774, a3,4 = −0.00674638241111650999 i.

Degree m = 18. We have been able to write the Chebyshev polynomial approxi-
mation of degree m = 18 with 5 products. This is done by expressing PC18,2.212(A)
as the product of two polynomials of degree 9, that are further decomposed into
polynomials of lower degree. The polynomial is evaluated through the following
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sequence:
A2 = A2, A3 = A2A, A6 = A2

3,

B1 = a0,1I + a1,1A+ a2,1A2 + a3,1A3,

B2 = b0,1I + b1,1A+ b2,1A2 + b3,1A3 + b6,1A6,

B3 = b0,2I + b1,2A+ b2,2A2 + b3,2A3 + b6,2A6,

B4 = b0,3I + b1,3A+ b2,3A2 + b3,3A3 + b6,3A6,

B5 = b0,4I + b1,4A+ b2,4A2 + b3,4A3 + b6,4A6,

A9 = B1B5 +B4,

PC18,2.212(A) = B2 + (B3 +A9)A9,

(24)

with coefficients

a0,1 = 0, a1,1 = 3/25,
a2,1 = −0.00877476096879703859 i, a3,1 = −0.00097848453523780954,
b0,1 = 0, b1,1 = −0.66040840760771318751 i,
b2,1 = −1.09302278471564897987, b3,1 = 0.25377155817710873323 i,
b6,1 = 0.00054374267434731225, b0,2 = −2.58175430371188142440,
b1,2 = −1.73033278310812419209 i, b2,2 = −0.07673476833423340755,
b3,2 = −0.00261502969893897079 i, b6,2 = −0.00003400011993049304,
b0,3 = 2.92377758396553673559, b1,3 = 1.44513300347488268510 i,
b2,3 = 0.12408183566550450221, b3,3 = −0.01957157093642723948 i,
b6,3 = 0.00002425253007433925, b0,4 = 0,
b1,4 = 0, b2,4 = −0.123953695858283131480 i,
b3,4 = −0.011202694841085592373, b6,4 = −0.000012367240538259896 i.

3.1. The case of real symmetric matrices

In the particular case when A is a real symmetric matrix, we can write

e−iA = cos(A)− i sin(A) (25)

and it is possible to construct algorithms for approximating the real symmetric ma-
trices cos(A) and sin(A) simultaneously by means of a reduced number of products
of real symmetric matrices, as shown in [2, 27].

The polynomial (16) can be decomposed into real and imaginary parts,

PCm,θ(A) = cCm,θ(A)− isCm,θ(A),

with
cCm,θ(A) = Re(PCm,θ(A)), sCm,θ(A) = −Im(PCm,θ(A))

and the goal is to compute exactly cCm,θ(A) with a reduced number of products.
Then, by using all computations carried out in this process, one also obtain approx-
imations SCm,θ(A) to the imaginary part in such a way that it is a polynomial of

degree k > m such that SCm,θ(A) = sCm,θ(A) +O(Am+1). Taking into account that

‖
(
cCm,θ(A) + iSCm,θ(A)

)
− e−i A‖ ≤ ‖PCm,θ(A)− e−i A‖+ ‖sCm,θ(A)− SCm,θ(A)‖

≤ εC3
m (θ) + ‖sCm,θ(A)− SCm,θ(A)‖ (26)

we need to check if ‖sCm,θ(A)−SCm,θ(A)‖ ≤
∑k
`=m+1 |c`| |θ|` ≤ 2−53 for these values

of m and θ. If this is not the case, one has to find the maximum value of ϑ such
that ‖sCm,θ(ϑ) − SCm,θ(ϑ)‖ ≤ 2−53 and to take this value as the value for θ, i.e. the
largest value of ‖A‖ that guarantees an error smaller that roundoff. If the value
obtained for ϑ is considerably smaller than the value of θ obtained for the cosine

10



function, we will look for a new and more accurate approximation to sCm,θ(A) by
taking e.g. one extra product in the numerical scheme.

For example, we can compute simultaneously cC4,θ(A) and sC4,θ(A), i.e. PC4,θ(A),
with three products of real symmetric matrices. However, with the same number of
products we can also compute cC5,θ(A), sC5,θ(A), i.e. PC5,θ(A) that has a larger value
of θ, so that we only consider this last case which is evaluated as follows (in this
case SCm,θ(A) = sCm,θ(A)).

Degree m = 5. The polynomial cC5,θ(A), θ = 1.17E-2, is computed with 2 products

by taking B = A2 as
cC5,θ(A) = α0I + α1B + α2B

2,

with

α0 = 0.99999999999999988866, α1 = −0.49999999998536031183
α2 = 0.04166638147997997916,

whereas for evaluating sC5,θ(A) only one additional product is required:

sC5,θ(A) = A(z0I + z1B + z2B
2)

with

z0 = 0.99999999999999994433, z1 = −0.16666666666341340086
z2 = 0.00833328580219952161.

Degree m = 8. The polynomial cC8,θ(A), θ = 0.1295, is computed with 3 products
as:

B = A2, B2 = B2, B4 = B2(x1B + x2B2),

cC8,θ(A) = α0I + α1B + α2B2 +B4,

with

α0 = 0.99999999999999999928, α1 = −0.49999999999999787210,
α2 = 0.04166666666565156615, x1 = −0.00138888871939942118,
x2 = 0.00002479003614491668,

and sC8,θ(A) is approximated with error O(A9) with one additional product by

SC8,θ(A) = A(z0I + z1B + z2B2 + z3c
C
8,θ(A))

with

z0 = 0.85721768947064012466, z1 = −0.09527551139590047256,
z2 = 0.00238406908730568850, z3 = 0.14278231052935221530.

Notice that the condition

|sC8,θ(ϑ)− SC8,θ(ϑ)| = x2 z3 ϑ
9 ≤ 2−53

is satisfied only for ϑ ≤ 0.06807. This is a significant reduction with respect to θ
and for this reason we look for an approximation which involves one extra product.
With five products, however, it is possible to exactly compute the polynomials for
m = 9, with θ = 0.2143.

11



Degree m = 9. The polynomial cC9,θ(A), θ = 0.2143, is computed with 4 products
in the same way:

B = A2, B2 = B2, B3 = B2B, B4 = B3B,

cC9,θ(A) = α0I + α1B + α2B2 + α3B3 + α4B4,

with

α0 = 0.99999999999999989168, α1 = −0.49999999999988173685,
α2 = 0.04166666664600636231, α3 = −0.00138888762558264513,
α4 = 0.00002477005498155486,

and sC9,θ(A) can be computed with one additional product:

sC9,θ(A) = A(z0I + z1B + z2B2 + z3B3 + z4B4),

with

z0 = −0.999999999999999945837, z1 = 0.166666666666643012068,
z2 = −0.008333333330440664914, z3 = 0.000198412554024823435,
z4 = −2.75257852630876250884 · 10−6.

Degree m = 16. We can compute cC16,θ(A), θ = 1.5867, with only four products as

follows. We first take B = A2, so that cC16,θ is indeed a polynomial of degree eight in

B, that can be computed with only three products in a similar way to PC8,0.1295(A)
with the sequence

B = A2, B2 = B2, B4 = B2(x1B + x2B2),

B8 = (x3B2 +B4)(x4I + x5B + x6B2 + x7B4),

cC16,θ(A) = α0I + α1B + α2B2 +B8,

(27)

where

x1 = 1/100, x2 = −0.00008035854055477845,
x3 = −0.10743065643419630630, x4 = −0.12491372919298427513,
x5 = 0.00130085397953037838, x6 = −0.00001633763177694857,
x7 = 7.13215089463286614820 · 10−6, α0 = 0.99999999999999999530,
α1 = −0.49999999999999969795, α2 = 0.028247102741817734721.

With two extra products we can approximate the matrix sC16,θ(A):

C24 = (z5I + z5B + z6B2 + z7B4 + z8 c16,θ(A))B4,

SC16,θ(A) = A
(
z0I + z1B + z2B2 + z3B4 + z4 c16,θ(A) + C24

)
,

(28)

with

z0 = 33/50, z1 = 0.00333333333335438849,
z2 = −0.00583333333345309522, z3 = 0.02773310749258735833,
z4 = 0.33999999999999886261, z5 = −0.00034915267907803119,
z6 = 4.19573036995827807213 · 10−6, z7 = −2.63931697420854364428 · 10−6,
z8 = −3.00240279002259730782 · 10−6.

In this way SC16,θ(A) is a polynomial of degree 25 in A where the condition

‖sC16,θ(ϑ)− SC16,θ(ϑ)‖ ≤ 2−53

is satisfied for ϑ ≤ 0.7563. One extra product (7 products in total) suffices to exactly
compute sC16,θ(A) (and then to keep the value of θ). We do not show this scheme
because, as we will see, with 7 products one can find an improved approximation.
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Degree m = 24. The same strategy can be applied to the polynomials cC24,θ(A)

and sC24,θ(A), with θ = 4.5743. Thus, cC24,θ(A) is computed by taking B = A2

and computing the corresponding polynomial of degree 12 with only four additional
products as previously:

D = A2, D2 = D2 D3 = D2D,
B1 = a0,1I + a1,1D + a2,1D2 + a3,1D3, B2 = a0,2I + a1,2D + a2,2D2 + a3,2D3,
B3 = a0,3I + a1,3D + a2,3D2 + a3,3D3, B4 = a0,4I + a1,4D + a2,4D2 + a3,4D3,
D6 = B3 +B2

4

cC24,θ(A) = B1 + (B2 +D6)D6,

(29)
with

a0,1 = 0.39272620931352327385, a1,1 = −0.08760637124112618048,
a2,1 = 0.01962064507143601071, a3,1 = −0.00013421604022829771,
a0,2 = 1/5, a1,2 = −0.54235659842328961975,
a2,2 = 679/100000, a3,2 = −0.00002902999756981724,
a0,3 = 0.68566773555140770915, a1,3 = −0.02578520551577453856,
a2,3 = 0.00019815665089300452, a3,3 = −1.10083330495602029332 · 10−6,
a0,4 = 0, a1,4 = −0.03931944346958836562,
a2,4 = 0.00017839382197658767, a3,4 = −1.06908694221941432625 · 10−6,

(30)
whereas with two extra products the following approximation to sC24,θ(A) is obtained

C48 = (z6I + z7D + z8D2 + z9D3 + z10D6 + z11 c24,θ(A))c24,θ(A),

SC24,θ(A) = A
(
z0I + z1D + z2D2 + z3D3 + z4D6 + z5 c24,θ(A) + C48

) (31)

with

z0 = −0.01238438326981811663, z1 = −0.06180067679127220638,
z2 = 0.00046275599640408615, z3 = −9.92990416300441584763 · 10−6,
z4 = 1.26307934615308708610, z5 = 9.10439014880980346565 · 10−15,
z6 = 0.14610549096048524519, z7 = 0.00087697762149660844,
z8 = 4.12092186281469998191 · 10−6, z9 = 2.23743615053828476204 · 10−8,
z10 = 0.00033015662857238333, z11 = −2.405371071766852323329 · 10−7.

The approximation SC24,θ(A) given by (31) is a polynomial of degree 48 in A verifying
the condition

‖sC24,θ(ϑ)− SC24,θ(ϑ)‖ ≤ 2−53

for ϑ ≤ 2.1556, which is smaller than the value of θ for this case but larger than
the value of θ for m = 16 that requires the same number of products, and for this
reason the previous scheme is not considered in practice.

One extra product suffices to exactly compute sC24,θ(A) (and then to keep the
value of θ) as follows

D5 = D2(z11D2 + z12D3),

C24 = (z6I + z7D + z8D2 + z9D3 +D5 + z13D6)(D6 + z10D),

sC24,θ(A) = A
(
z0I + z1D + z2D2 + z3D3 + z4D5 + z5 c24,θ(A) + C24

) (32)

In this case we can solve all the equations (including the corresponding to A25). We
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Table 3: θ values for Chebyshev polynomials of degree m that can be computed with
π products of symmetric real matrices to simultaneously compute the sine and cosine
matrix functions to approximate e−iA with A a real symmetric matrix (in parenthesis it
is indicated the cost and maximum value of ‖A‖ when the Chebyshev polynomial for the
sine function is approximated with a higher degree polynomial).

m : 5 8 9 16 24
π : 3 4 5 (6)7 (7)8

Chebyshev pol. : 1.17e-2 0.068 0.214 (0.7563)1.587 (2.1556)4.574

have now one free parameter and one solution is:

z0 = 2.85247650396873609664, z1 = −0.23838922984354509797,
z2 = 0.01254735251131974478, z3 = −0.00003184984233834954,
z4 = −7.91411934357932811110, z5 = −0.45584956828766694538,
z6 = −2.34944723110594310069, z7 = −0.34315650534099675485,
z8 = 0.00379529409295014610, z9 = −0.00001509312002244718,
z10 = −17/1000, z11 = 7.68145795118100472945 · 10−9,
z12 = −2.71896175810263278764 · 10−11 z13 = 0.45584956828766694538

Table 3 collects the values of θ for the selected approximations to the sine and
consine functions and their cost in terms of products of real symmetric matrices.

3.2. The algorithm

In previous sections we have computed a number of Chebyshev polynomials
of different degrees for some values of θ that provide errors below roundoff when
approximating e−iy for y ∈ [−θ, θ]. These polynomials are computed by applying
a particular sequence in order to reduce the number of products. To approximate
e−i A one has to select the most appropriate polynomial that leads to an error below
the prescribed tolerance at the smallest computational cost.

The user has to provide the matrix A and, as an optional input, the values for
Emin and Emax. The algorithm then computes β and determines the normalized
matrix A. If Emin and Emax are not given, the algorithm takes β = ‖A‖1 as an
upper bound to |Emin| and |Emax| and no shift is considered.

Next, the algorithm determines the most efficient method (among the list of
available schemes) leading to the desired result: it chooses the cheapest method
with error bounds below round off error.

If none of the methods provides an error below tolerance, then the scaling and
squaring technique is used. In that case, the value of θ for the polynomial of the
highest degree 18 (or 24 for the trigonometric matrix functions) is taken to obtain
the number of squarings that will be necessary.

As an illustration, suppose one is interested in computing e−iA, where A is a
complex Hermitian matrix such that Emin, Emax are not known and, in addition

1. ‖A‖1 = 8. (i) With Padé one checks that ‖A/2‖1 = 4 < 4.316 and the
exponential is computed with one scaling and the approximant with m = 13
that involves 6 products and one inverse (8+1/3 products in total). (ii) With
Taylor we have ‖A/23‖1 = 1 < 1.1468, the exponential is computed with three
scalings and the polynomial with m = 18, requiring 5 products (for a total
of 8 products). Finally, (iii) with Chebyshev, since ‖A/22‖1 = 2 < 2.212, the
exponential is computed with two scalings and 5 products (for a total of 7
products).

2. ‖A‖1 = 0.1. (i) With Padé, the exponential is computed with 3 products and
one inverse; (ii) Taylor requires 4 products, and (iii) Chebyshev needs only 3
products.
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3. ‖A‖1 = 0.0025. (i) With Padé, the exponential is computed with 2 products
and one inverse; (ii) Taylor requires 3 products, and (iii) Chebyshev needs 2
products.

Notice that, whereas the reduction in computation is roughly the same in all cases,
the relative saving increases as the norm of the matrix is smaller.

This strategy has been implemented as a Matlab code which is freely available
for download at the website [14], together with some notes and examples illustrating
the whole procedure.

4. Numerical examples

In this section we report on two numerical experiments carried out by applying
the previous algorithm based on Chebyshev polynomials. We also compare their
main features with Taylor polynomials and Padé approximants.

Example 1: A high dimensional Rosen–Zener model.. This is a generalization of
the well known Rosen–Zener model for a quantum system of two levels [24] which
is closely related to the problem analyzed in [21]. The corresponding Schrödinger
equation (2) for the evolution operator (in the interaction picture) is{

U ′(t) = − iH(t)U(t) , t ∈ (t0, tf ) ,

U(t0) = I,
(33a)

where the time-dependent Hamiltonian reads, after normalization,

H(t) = f1(t)σ1 ⊗ I + f2(t)σ2 ⊗R ∈ Cd×d , d = 2 k , (33b)

with the identity matrix I ∈ Rk×k, Pauli matrices

σ1 =

(
0 1
1 0

)
, σ2 =

(
0 − i
i 0

)
, (33c)

and
R = tridiag

(
1, 0, 1

)
∈ Rk×k . (33d)

We take in particular

f1(t) = V0 cos(ω t)
(

cosh
(
t
T0

))−1
, f2(t) = −V0 sin(ω t)

(
cosh

(
t
T0

))−1
, (33e)

with ω = 5, d = 20, V0 = 2. We then integrate from t0 = −4T0 until the final time
tf = 4T0 for T0 = 1 and determine numerical approximations, Uapp(tf , t0) at t = tf
for different time step sizes τ =

tf−t0
M ; (a reference solution Uref(tf , t0) is computed

numerically to high accuracy).
In this example we illustrate the performance of the new algorithm as applied

to two different exponential integrators: (i) the well-known 2nd-order exponential
midpoint rule

Un+1 = exp
(
−iτH(tn +

τ

2
)
)
, n = 0, 1, 2, . . . ,M − 1

and (ii) the 4th-order commutator-free Magnus integrator given by

Un+1 = exp
(
− iτ(βH1 + αH2)

)
exp

(
− iτ(αH1 + βH2)

)
,

where Hi = H(tn + ciτ), i = 1, 2, and

c1 =
1

2
−
√

3

6
, c2 =

1

2
+

√
3

6
, α =

1

4
+

√
3

6
, β =

1

4
−
√

3

6
.
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(See [3, 10, 11] for more details of this scheme as for other higher order methods
of the same class). The exponential matrix is computed in all cases with Padé
approximants and the new algorithm based on Chebyshev polynomials. Since the
results obtained with Taylor polynomials lie in between both of them, they are not
shown in the figures for clarity). We compute

Ũh = UM UM−1 · · ·U2U1,

and measure the 2-norm of the error, ‖Ũh − Uref(tf , t0))‖ for different values of τ .
The total cost is taken as the sum of the number of the matrix-matrix products
that are required for the calculation of U1, · · · , UM , and we depict the error as a
function of this total number of matrix-matrix product evaluated by each proce-
dure. Figure 2 shows the corresponding results obtained by new procedure based
on Chebyshev (expmC) and Padé approximants (expmP) for the exponential mid-
point rule (top) and the 4th-order commutator-free Magnus integrator (bottom).
We see that the relative saving in the computational cost is similar in both cases
but the improvement in the accuracy increases with the order of the method.

Notice that the accuracy improves when the time step τ decreases so, the number
of exponentials increases, but the cost to compute each exponential can decrease
because ‖τHk‖ takes smaller values. The slope of the curves is then higher than
expected from the order of the numerical integrator used.

Example 2: The Walker–Preston model.. This constitutes a standard model for
a diatomic molecule in a strong laser field [30]. The system is described by the
one-dimensional Schrödinger equation (in units such that ~ = 1)

i
∂

∂t
ψ(x, t) =

(
− 1

2µ

∂2

∂x2
+ V (x) + f(t)x

)
ψ(x, t), (34)

with ψ(x, 0) = ψ0(x). Here V (x) = D (1− e−αx)
2

is the Morse potential and
f(t)x = A cos(ω(t))x accounts for the laser field. As an initial condition, we take
the ground state of the Morse potential

ψ0(x) = σ exp

(
−(γ − 1

2
)αx

)
exp(−γ e−αx), (35)

where γ = 2D/ω0, ω0 = α
√

2D/µ, and σ is a normalizing constant.
We define the wave function ψ in a certain domain x ∈ [x0, xN ] that is subdivided

into N parts of length ∆x = (xN − x0)/N with xi = x0 + i∆x, and then the vector
u(t) ∈ CN with components ui = (∆x)1/2ψ(xi−1, t), i = 1, . . . , N , is formed.

If second-order central differences are applied to discretize the equation in space
and periodic boundary conditions are considered, one ends up with the differential
equation

i
du

dt
= H(t)u = (T +B(t))u, u(0) = u0

with

T =
N2

2µ(xN − x0)2


2 −1 1
−1 2 −1

. . .

−1 2 −1
1 −1 2


and B(t) = diag

(
V (x1) + f(t)x1, . . . , V (xN ) + f(t)xN

)
. Notice that H is a real

symmetric matrix, HT = H ∈ RN×N , so that

exp (−iτH(tn + τ/2)) = cos (τH(tn + τ/2))− i sin (τH(tn + τ/2)) . (36)
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Figure 2: 2-norm error in the unitary matrix evolution at the final time versus the cost
(measured as the number of matrix-matrix products required to compute the exponentials
at each step) for Example 1: (top) results for the second order exponential midpoint rule
and (bottom) results for the fourth order commutator-free exponential Magnus integrator.

Moreover, we can take

Emin = min
1≤j≤N

B(t)jj , Emax =
2N2

µ(xN − x0)2
+ max

1≤j≤N
B(t)jj

and so we shift the original matrix according with Eq. (6). For our experiments
we take x ∈ [−0.8, 4.32], the interval is subdivided into N = 64 parts of length
∆x = 0.08, and the parameters are chosen as follows (in atomic units): µ = 1745,
D = 0.2251 and α = 1.1741 (corresponding to the HF molecule). Concerning
the interaction with the laser field, we take A = 0.011025 and the laser frequency
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ω = 0.01787.
As before, to check the performance of the different procedures, we compute

the 2-norm error in the evolution matrix solution at the final time tf = 2π
ω . To

do that, we compare with a reference solution computed with high accuracy. The
total cost of each procedure is measured as the total number of matrix-matrix
products required to approximate the matrix cosine and sine for the total integration
interval. In this way we get Figure 3, where the results achieved by Chebyshev
approximations (denoted by ‘cosmsinmC’) and Padé approximants (‘cosmsinmP’,
obtained with the algorithm of [2]) are collected. The top diagram corresponds to
the 2nd-order exponential mid-point rule and the bottom graph is obtained with
the 4th-order commutator-free Magnus integrator. Here again, the new algorithm
based on Chebyshev polynomials leads to more accurate results with a reduced
computational cost.

5. Conclusions and future work

We have presented an algorithm to approximate the exponential of skew-Her-
mitian matrices based on an improved computation of Chebyshev polynomials of
matrices and the corresponding error analysis. For problems of the form exp(−iA),
when A is a real and symmetric matrix, an improved version is presented that
computes the sine and cosine of A with a reduced number of products of real and
symmetric matrices. In both cases, the new procedures turn out to be more efficient
than schemes based on rational Padé approximants or Taylor polynomials for all
tolerances and time interval lengths.

The Chebyshev methods presented in this paper can be further improved along
different lines that will be explored in our future work:

• As we have seen, with only three products it is possible to evaluate most
polynomials to order eight (this is, in fact, the highest degree one can reach
with three products). With four products one can build polynomials of degree
sixteen, but there are not enough free parameters to obtain the Taylor and
Chebyshev polynomials approximating the exponential. For this reason, we
have limited ourselves here to polynomials of order twelve, which can be ob-
tained with four products. On the other hand, in [26] a polynomial of degree
16 is presented in terms of only 4 products that coincides with the Taylor
expansion up to order 15 (this method is denoted in Table 1 as m = 15+).
In this way, with the computational cost as the method of degree m = 12, it
provides a larger value for θ that is even slightly larger that the value of the
Chebyshev polynomial of degree 12. The same procedure can of course be
carried out with Chebyshev polynomials: one could construct a polynomial of
degree 16 that coincides with the Chebyshev polynomial up to degree 15 and
analyze whether this new polynomial has a larger value of θ. Notice that the
procedure is largely similar to the search of polynomials SCm,θ that coincide

with sCm,θ. With five products it is also possible to build a polynomial of
degree 24 that approximates the Chebyshev polynomial up to order 21, and
we expect an improvement with respect to the result obtained for m = 18, in
the same way as in [26] for the Taylor polynomial.

• One could also build a new set of methods aimed to be used with different ac-
curacies, and in particular in single precision. From the error bound formulas
for the chosen values of m, the new values for θ have to be obtained and then
the corresponding Chebyshev polynomials of degree m have to be obtained
that will be then computed with a reduced number of products.
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Figure 3: 2-norm error in the unitary matrix evolution at the final time versus the cost
(measured as the number of matrix-matrix products required to compute the exponentials
at each step) for the real symmetric matrix H of Example 2: (top) results for the second
order exponential mid-point rule and (bottom) results for the fourth order commutator-free
exponential Magnus integrator.

• When lower accuracies are desired then the preservation of unitarity is also
lost to such accuracy. It is well known that diagonal Padé methods preserve
unitarity unconditionally and one can look for similar rational Chebyshev
approximations to analyze the preservation of unitarity as well as to reduce
the cost of these schemes. Rational Chebyshev approximations have been
successfully used in [28] to compute the action of the exponential of skew-
Hermitian matrices on vectors.
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• Finally, there are of course a number of efficient procedures for the diagonal-
ization of Hermitian or skew-Hermitian matrices that might be also employed
for evaluating the matrix exponentials required for the application to expo-
nential integrators to certain classes of differential equations. In that case the
norm of the matrices involved is usually quite small (since they involve the
step size of the integrator) and thus our algorithms are particularly well suited
for this purpose. In any case, a future line of research consists in determining
precisely under which circumstances related with the size and norm of the
matrix the algorithms presented here are competitive with other procedures
based on direct diagonalization.
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