
sensors

Article

A Saliency-Based Sparse Representation Method for Point
Cloud Simplification

Esmeide Leal 1, German Sanchez-Torres 2,*, John W. Branch-Bedoya 3, Francisco Abad 4 and Nallig Leal 1

����������
�������

Citation: Leal, E.; Sanchez-Torres, G.;

Branch-Bedoya, J.W.; Abad, F.; Leal,

N. A Saliency-Based Sparse

Representation Method for Point

Cloud Simplification. Sensors 2021, 21,

4279. https://doi.org/10.3390/

s21134279

Academic Editor: Pedram Ghamisi

Received: 17 May 2021

Accepted: 8 June 2021

Published: 23 June 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Facultad de Ingenierías, Universidad Autónoma del Caribe, Barranquilla 080001, Colombia;
esleal@uac.edu.co (E.L.); nleal@uac.edu.co (N.L.)

2 Facultad de Ingenierías, Universidad del Magdalena, Santa Marta 470004, Colombia
3 Facultad de Minas, Universidad Nacional de Colombia-Sede Medellín, Medellín 050041, Colombia;

jwbranch@unal.edu.co
4 Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València,

46022 Valencia, Spain; fjabad@dsic.upv.es
* Correspondence: gsanchez@unimagdalena.edu.co

Abstract: High-resolution 3D scanning devices produce high-density point clouds, which require
a large capacity of storage and time-consuming processing algorithms. In order to reduce both needs,
it is common to apply surface simplification algorithms as a preprocessing stage. The goal of point
cloud simplification algorithms is to reduce the volume of data while preserving the most relevant
features of the original point cloud. In this paper, we present a new point cloud feature-preserving
simplification algorithm. We use a global approach to detect saliencies on a given point cloud.
Our method estimates a feature vector for each point in the cloud. The components of the feature
vector are the normal vector coordinates, the point coordinates, and the surface curvature at each
point. Feature vectors are used as basis signals to carry out a dictionary learning process, producing
a trained dictionary. We perform the corresponding sparse coding process to produce a sparse matrix.
To detect the saliencies, the proposed method uses two measures, the first of which takes into account
the quantity of nonzero elements in each column vector of the sparse matrix and the second the
reconstruction error of each signal. These measures are then combined to produce the final saliency
value for each point in the cloud. Next, we proceed with the simplification of the point cloud, guided
by the detected saliency and using the saliency values of each point as a dynamic clusterization
radius. We validate the proposed method by comparing it with a set of state-of-the-art methods,
demonstrating the effectiveness of the simplification method.

Keywords: point cloud simplification; sparse representation; saliency features

1. Introduction

Point clouds have become a standard data input tool for many fields, including
scientific visualization, photogrammetry, and medical applications. For data acquisition
of 3D shapes, modern 3D scanning devices can produce a vast amount of data, reaching
millions of points [1]. This amount of data creates challenges on several fronts, like large
storage requirements and increased data transmission and rendering times. To reduce the
complexity of such point clouds and make the subsequent geometric processing algorithms
more efficient, it is common to simplify the point cloud.

The main requirement for point cloud simplification algorithms is that they should
maintain the global shape, the sharp features, and the curvatures of the original cloud.
For the last of these, transitions between planar and curved areas should be preserved [2].
It is important to preserve the representative points and the sampling density in order
to approximate faithfully the original point cloud both geometrically and topologically.
The simplified point cloud must be dense around the sharp features (corners, edges,

Sensors 2021, 21, 4279. https://doi.org/10.3390/s21134279 https://www.mdpi.com/journal/sensors

https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://doi.org/10.3390/s21134279
https://doi.org/10.3390/s21134279
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/s21134279
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s21134279?type=check_update&version=1

Sensors 2021, 21, 4279 2 of 19

and curvatures) to preserve the global topology and sparse in flattened regions (low or
zero curvature).

Some of the limitations of current simplification algorithms are nonuniformity in
the simplified point clouds [3,4], problems in keeping the balance between preserved
and lost features [5], reduced accuracy, and high computational cost [6]. Some of the
proposed algorithms solve those shortcomings using parameters for tuning the final metric
by means of weights of scales, but the burden is on the user to obtain satisfactory results [7].
Other methods present high computational cost because they use clustering algorithms
in their initial stages [5,8] and some use only one feature (e.g., normal or curvature) for
the simplification [9,10].

In this paper, we propose a reliable, robust, and simple solution for the above problems.
Our method uses the normal vector, the surface variation (curvature), and the point
coordinates, integrated into a unique feature vector, as input to train a dictionary. There
are two advantages of using this approach: on one hand, it is possible to unify different
descriptors in a unique feature vector, and on the other hand, it is possible to capture
the local and the global structure of the point cloud using dictionary learning and sparse
coding representation.

Since sharp features are often sparse, the use of sparsity-based modeling to describe
and preserve sharp features is an attractive tool for point cloud simplification.

The main contribution of our work is to use the sparse matrix to analyze the structure
of point sets, gathering evidence from local geometry to infer global properties about
the objects. When the point cloud sparse matrix representation is very sparse, it means
that it has found the intrinsic structure of the input point cloud. In the context of point
cloud simplification, this means that the model can properly represent the sampling points,
preserving the sharp features and at the same time maintaining the uniformity of the
point cloud.

The original point cloud data only contains the coordinates of the points with no
topological information. To extract the implicit geometric information (normal vectors,
surface variation, curvatures), the point-based simplification algorithms use the local
information around each point in the cloud.

Usually, the k-nearest neighbor algorithm is used to estimate such geometric infor-
mation. For each point in the cloud, the proposed method uses the coordinates of the
normal vector, the coordinates of the point, and the curvature as a feature vector to identify
potential saliency points. The feature vectors of each data point are the training signals
for a dictionary learning process. With the dictionary trained, a sparse coding process is
carried out to identify the most salient regions in the point cloud. Finally, the proposed
method simplifies the point cloud by using the sparse vectors as a clusterization radius.

Formally, the problem of point cloud simplification is defined as follows: Given
a surface S defined by a point cloud P and a target sampling rate N < |P|, the goal is to
find a point cloud P′ with |P′| = N such that the distance ε of the surface S′ to the original
surface S is minimal [6]. Symbolically we write the above as follows:

P→ P′,

where |P′| = N < |P| and ‖P− P′‖ < ε, where |·| is the point cloud cardinality and ‖.‖
is the Euclidean distance. The error limit ε is used to enforce that that no point in the
simplified cloud P′ is further than ε with respect to the original model.

As far as we know, we have not found in the state of the art any method that uses
dictionary learning and sparse coding as a basis for point cloud simplification. The pro-
posed method does not introduce a new technique or modification to the classic dictionary
learning and sparse coding algorithms.

The contributions of this paper are as follows:

1. The proposed point cloud simplification method based on dictionary learning and
sparse coding maintains a balance between sharp features and the density of
point distribution.

Sensors 2021, 21, 4279 3 of 19

2. The proposed method reduces the cardinality of the point cloud very efficiently due to
its inherent perceptual nature, which selects important points based on their saliency.

3. The saliency-based simplification provides an importance criterion to preserve the
most important geometric features.

4. The analysis of the dispersion matrix ‖α‖1 together with the fit or approximation error
‖x− Dα‖2

2 (Equation (3)) can be used to determine when a point is salient or not.

2. Related Work

In recent decades, a considerable amount of research has been conducted on point
cloud simplification. Point cloud simplification algorithms can be roughly divided into four
categories: particle simulation-based methods, iteration-based methods, formulation-based
methods, and clustering-based methods.

2.1. Particle Simulation-Based Methods

Pauly et al. [9] presented a particle simulation method. The proposed algorithm
distributes a set of points called particles evenly onto a surface, producing point clouds
with low approximation error to the original point cloud. Collections of particle simulation-
based methods are called local optimal projection (LOP)-based methods [3]. These methods
project a set of points over an underlying surface using a localized version of the L1 median
filter regularized by a repulsion potential. Huang et al. [5] proposed a correction over
the original LOP algorithm, distributing the points evenly over the underlying surface.
Huang et al. [6] and Liao et al. [11] aimed to integrate the vector normal to each projected
point in order to preserve sharp features in the point cloud. These methods produce good
results for surface simplification but are computationally expensive. Furthermore, the
original points are replaced by the particles, changing their location in the process.

2.2. Clustering-Based Methods

These methods divide the point cloud into clusters, applying some criteria and then
replacing the cluster points with a centroid. Pauly et al. [9] presented two algorithms:
uniform incremental clustering and hierarchical clustering. These methods are memory-
and time-efficient but produce high average approximation errors with respect to the
original surface. Shi et al. [10] presented an adaptive method for simplifying point clouds.
They applied a recursive subdivision scheme in which the algorithm selects representative
points and removes redundant ones. They used k-means clustering to group similar
spatial points and applied the maximum normal vector deviation measure to subdivide
the clusters. The algorithm can handle boundaries and produce uniform density in flat
regions and high density in curved regions. Mahdaoui et al. [12] presented a comparison
between two simplification algorithms using k-means and fuzzy c-means algorithms. The
method proposes using a metric based on entropy estimation for clustering the point
cloud. Liu et al. [13] presented an edge-sensitive feature detail preserving algorithm;
they used two clustering schemas to split the point cloud into the geometric and spatial
domains. These methods can preserve global structures of the point clouds, and some
of them preserve sharp features; however, because of the clustering process, they are
computational time-consuming.

2.3. Formulation-Based Methods

These methods are based on mathematically modeled optimality. Leal et al. [8] pro-
posed a three-step method. In the first step, they apply a clusterization algorithm. The
second step involves the identification of points with high curvature to be preserved.
The last step uses a linear programming model to simplify the point cloud, maintaining
a density equivalent to the original point cloud. Chen et al. [14] employed a resampling
strategy based on a graph that selects representative points while preserving features. The
minimization of the point cloud is carried out by a proposed reconstruction error based on
a feature extraction operator. Qi et al. [15] proposed an optimization strategy for maintain-

Sensors 2021, 21, 4279 4 of 19

ing the balance between finding the sharp features and preserving the density in the point
cloud. The optimization is represented using a graph filter. The results of this method are
superior to some other state-of-the-art methods, but it is computationally expensive.

2.4. Iteration-Based Methods

Pauly et al. [9] proposed an iterative simplification method using quadric error metrics.
The algorithm produces point clouds with low approximation errors, but they are expensive
to compute. Alexa et al. [4] proposed a decimation process based on the moving least
square (MLS) method. The proposed method removes redundant information using
a surface error metric. The global result of the algorithm is good, but it can produce
uneven sampling because the subsampling unnecessarily restricts the potential sampling
position. Zang et al. [16] presented a method based on a multilevel strategy for point cloud
simplification, which adaptively determines the optimal level of each point. For each level,
the method extracts the points based on a measure of importance given by a 3D Gaussian
method. Zhu et al. [17] proposed a multiview method for point cloud simplification,
projecting the points onto the three orthographic planes, in order to identify the model
edges. The edges are merged to produce the 3D edges of the model, and the points with
less importance are separated from the point cloud. Shoaib et al. [18] proposed a method
called fractal bubble to simplify point clouds, selecting important data points through
the expansion of a recursive generation of self-similar 2D bubbles until contact is made
with a point. Ji et al. [7] presented a detailed feature points simplified algorithm (DFPSA).
They proposed estimating the importance of each point using a four characteristic operator,
which involves estimating normal curvature distance between the points and the projection
distance to each point in the point cloud. Finally, a threshold is used to decide whether
each point may be classified as a feature point or not. The nonfeature points are simplified
using an octree structure to avoid creating regions with holes. Zhang et al. [19] presented
a feature-preserved point cloud simplification (FPPS) method. For the simplification, an
entropy measure is defined, which quantifies the geometric features hidden in the point
cloud. Then, the key points are selected based on the entropy.

3. Dictionary Learning and Sparse Coding

Dictionary learning is a technique whose goal is to learn a set of overcomplete basis
(dictionary) in order to model data vectors as a sparse linear combination of basis elements
(atoms of the dictionary) [20].

Formally, the dictionary learning problem can be formulated as follows:
Given a set of training data vectors X =

{
xi ∈ RN}

i=1,2,...,N , the aim is to find a basis
vector D =

{
di ∈ RN}

i=1,2,...,N , which can sparsely represent the training data vectors in
the set X, with α being its sparsest representation. The goal is to minimize Equation (1).{

D̂, α̂
}
= argmin

D,α
‖X− Dα‖2

2s.t.‖α‖0 ≤ L (1)

L controls the sparsity of X in D. Equation (1) is minimized using the K-SVD algorithm
proposed by Aharon et al. [21].

The purpose of sparse coding [22,23] is to approximate a feature input vector as
a linear combination of basis vectors, which are selected from a dictionary that has been
learned from the data directly.

Formally, let x be a signal of dimension n; the sparse coding aims to find a dictionary
D = {d1, d2, . . . , dN}, such that x may be approximated by a linear combination of
atoms {di}N

i=1. This is x ≈ Dα = ∑N
j=1 αjdj, where most of the coefficients αj are zero

or close to zero [20]. Thus, the sparse coding problem can typically be formulated as
an optimization problem:

α̂ = argmin
α
‖x− Dα‖2

2s.t.‖α0 ≤ L (2)

Sensors 2021, 21, 4279 5 of 19

In this formulation, the dictionary D is given and L once again controls the sparsity of
x in D. The term ‖α‖0 measures the dispersion of the decomposition and can be understood
as the number of nonzero coefficients in α, or sparse coefficients, in order to approximate
the signal x as sparsely as possible. Or, alternatively,

α̂ = argmin
α
‖x− Dα‖2

2 + λ‖α‖1 (3)

Equation (3) is an optimization problem where the norm l0 (‖·‖0) is changed by the
norm l1 (‖·‖1) and λ is the regularization parameter. The solution to Equation (2) with
l0 norm is an NP-hard problem; fortunately, under certain conditions, it is possible to relax
the problem using l1 norm and find an approximated solution using Equation (3) with
l1 norm.

4. Proposed Method

Our proposed method is based on dictionary learning and sparse coding. The input
point set is analyzed using the covariance matrix to extract the local features; then, using
the dictionary and the sparse representation matrix, the point set is analyzed globally to
identify saliency features. Finally, we use the saliencies to sample the point cloud, keeping
the most representative points. Figure 1 shows the pipeline of the proposed method.

Sensors 2021, 21, x FOR PEER REVIEW 5 of 20

In this formulation, the dictionary 𝐷 is given and 𝐿 once again controls the sparsity
of x in 𝐷. The term ‖𝛼‖ measures the dispersion of the decomposition and can be un-
derstood as the number of nonzero coefficients in 𝛼, or sparse coefficients, in order to ap-
proximate the signal 𝑥 as sparsely as possible. Or, alternatively, 𝛼 = arg min‖𝑥 − 𝐷𝛼‖ + 𝜆‖𝛼‖ (3)

Equation (3) is an optimization problem where the norm 𝑙 (‖∙‖) is changed by the
norm 𝑙 (‖∙‖) and 𝜆 is the regularization parameter. The solution to Equation (2) with 𝑙 norm is an NP-hard problem; fortunately, under certain conditions, it is possible to
relax the problem using 𝑙 norm and find an approximated solution using Equation (3)
with 𝑙 norm.

4. Proposed Method
Our proposed method is based on dictionary learning and sparse coding. The input

point set is analyzed using the covariance matrix to extract the local features; then, using
the dictionary and the sparse representation matrix, the point set is analyzed globally to
identify saliency features. Finally, we use the saliencies to sample the point cloud, keeping
the most representative points. Figure 1 shows the pipeline of the proposed method.

Figure 1. Illustration of the steps involved in the proposed method to simplify a point cloud.

4.1. Selecting the Features
To characterize the point set, we define a descriptor for each point 𝑝 . The point de-

scriptor is composed of the normal vector, the total variation of surface (curvature), and
the point coordinate. With these features, we build a feature vector for each point to meas-
ure its importance with respect to the entire set.

The normal vector is used for two reasons. The first is because it can help to identify
feature points. A large difference between the normals around a point means that the sur-
face at the point is not planar; that is, it is likely to be a feature point. The second reason is
related to the problem of obtaining a simplified point cloud that, when rendered, looks
like or mimics the original point cloud from which it was derived. The normals are used
in the rendering process to estimate shading and lighting. Therefore, when a point is in a sharp
feature, it is considered an important point, and its normal vector must be retained in the sim-
plified point cloud. We use the normal coordinates as components of the feature vector.

The surface curvature captures the surface variation at a point. The curvature is used
in several algorithms of point cloud simplification because it is an intrinsic property that
intuitively reflects the sharpness of a point in a surface. High curvatures reflect large var-
iations of the surface at the point and hence pinpoint a sharp feature. Therefore, we use
the surface variation at the point as a curvature measure, and we include it as a component
of the feature vector.

Figure 1. Illustration of the steps involved in the proposed method to simplify a point cloud.

4.1. Selecting the Features

To characterize the point set, we define a descriptor for each point pi. The point
descriptor is composed of the normal vector, the total variation of surface (curvature),
and the point coordinate. With these features, we build a feature vector for each point to
measure its importance with respect to the entire set.

The normal vector is used for two reasons. The first is because it can help to identify
feature points. A large difference between the normals around a point means that the
surface at the point is not planar; that is, it is likely to be a feature point. The second
reason is related to the problem of obtaining a simplified point cloud that, when rendered,
looks like or mimics the original point cloud from which it was derived. The normals are
used in the rendering process to estimate shading and lighting. Therefore, when a point
is in a sharp feature, it is considered an important point, and its normal vector must be
retained in the simplified point cloud. We use the normal coordinates as components of
the feature vector.

The surface curvature captures the surface variation at a point. The curvature is used
in several algorithms of point cloud simplification because it is an intrinsic property that
intuitively reflects the sharpness of a point in a surface. High curvatures reflect large
variations of the surface at the point and hence pinpoint a sharp feature. Therefore, we use

Sensors 2021, 21, 4279 6 of 19

the surface variation at the point as a curvature measure, and we include it as a component
of the feature vector.

In addition to the normal vector and the surface variation or curvature, the position
of each point is also considered in order to guarantee a minimum sample density in
every region of the cloud. Without this information, low-saliency areas could be heavily
decimated, appearing holes in the point cloud and thus compromising the continuity of
the surface when the cloud is rendered. Hence, the coordinate of each point is also used as
a component in its feature vector.

4.2. Low-Level Feature Estimation

A common way to estimate low-level features in a point set is to apply the principal
component analysis (PCA) method locally to each neighborhood around each point pi [9].
Specifically, we use a weighted version of PCA [24,25] with a covariance matrix Cmi, as
defined in Equation (4).

Cmi =
1

ki − 1

ki

∑
j=1

wj
(

pj − p
)(

pj − p
)T (4)

p =
1
ki

ki

∑
j=1

pj (5)

where ki =
∣∣Ng(pi)

∣∣ is the cardinality of the neighborhood around pi, Ng(pi); wj is a weight

estimated by wj = exp
(
− d2

k2
i

)
; d = ||pi − p|| is the Euclidean distance. Next, we analyze

the eigenvalues λ0 ≤ λ1 ≤ λ2 and eigenvectors v0, v1, v2 of the covariance matrix Cmi.
The eigenvector v0 corresponding to the smallest eigenvalue λ0 is the normal vector ni

at point pi. Pauly et al. [9,26] proved that the surface variation is equivalent to the surface
curvature, as defined in Equation (6).

σ(pi) = λ0/(λ0 + λ1 + λ2) (6)

ni =
(
nx, ny, nz

)
(7)

pi =
(

px, py, pz
)

(8)

Once the low-level features are defined, we build a seven-dimensional feature vector
Fi for each point pi ∈ P, where

Fi =
(
nx, ny, nz, σ, px, py, pz

)
4.3. Dictionary Construction and Sparse Model

Using the feature vectors defined in the above section as data vectors Fi ∈ Rn×1,
with n = 7 (number of low-level features), we construct the data matrix
F = {F1, F2, . . . , FK} ∈ Rn×K , where K = |P| is the number of feature vectors. A sparse
coding matrix α ∈ RS×K and a dictionary D ∈ Rn×S are defined using sparse coding
theory. S is the number of atoms of the dictionary. Un our experiment, we set S = 200; for
all the models, the fixed value of the dictionary with S = 200 was selected using the mean
square error variation. We found that for values greater than 200 atoms, the MSE tends to
converge, as is verified in Section 5. The dictionary learning problem is solved using the
K-SVD algorithm, as per Aharon et al. [21], obtaining the estimation of α and D. Now F
can be reconstructed as F = Dα, obtaining the sparse representation of the data matrix F in
the dictionary D. The saliency points can be found by analyzing the sparse matrix α.

4.4. Detecting Saliency Points

Once the sparse coding matrix α has been obtained, we analyze what vectors corre-
spond to saliencies. Let αj and Fj be column vectors of the matrices α and F, respectively.

Sensors 2021, 21, 4279 7 of 19

A feature vector is considered salient if its sparse representation ‖αj‖1 has many nonzero
elements—implying that a linear combination of many atoms is required to represent the
point correctly—and if its sparse reconstruction error ‖Fj −Dαj‖2 produces a high residual.
On the other hand, a feature vector is not considered salient if its sparse representation
‖αj‖1 has few nonzero elements, i.e., if it can be represented by the linear combination of
only a few atoms and its sparse reconstruction error ‖Fj − Dαj‖2 produces a low residual.

On this basis, we sum the nonzero elements of each column of the matrix α. A score
vector with these sums is built as follows:

f
(
αj
)
=

S

∑
p=1

h(αp,j) ∀j = 1, 2, . . . , S (9)

h
(
αp,j

)
=

{
1, ∀αp,j 6= 0
0, otherwise

(10)

The sparse reconstruction error is computed by summing the residuals resulting
from the difference between each signal Fj and its respective reconstruction Dαj; i.e.,
rj = ‖Fj − Dαj‖2. The score vector is defined as follows:

g
(

Fj
)
= rj ∀j = 1, 2, . . . , S (11)

Now we normalize the score vectors f
(
αj
)

and g
(

Fj
)
, dividing each vector by its

highest component.
f ′
(
αj
)
= f

(
αj
)
/max(f) ∀j = 1, 2, . . . , S (12)

g′
(

Fj
)
= g

(
Fj
)
/max(g) ∀j = 1, 2, . . . , S (13)

Next, both score vectors are integrated into a unique score vector as follows:

S f (i) = f ′(αi)g′(Fi) ∀i = 1, 2, . . . , S (14)

We use the vector score S f as a metric for the simplification process. Figure 2 shows
the saliency levels found in the vector S f ; to visualize it, we use a threshold T with different
values. Equation (14), was proposed by [27] in a local context, and the present work is a
generalization to use it globally.

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20

nonzero elements—implying that a linear combination of many atoms is required to rep-
resent the point correctly—and if its sparse reconstruction error 𝐹 − 𝐷𝛼 produces a
high residual. On the other hand, a feature vector is not considered salient if its sparse
representation 𝛼 has few nonzero elements, i.e., if it can be represented by the linear
combination of only a few atoms and its sparse reconstruction error 𝐹 − 𝐷𝛼 produces
a low residual.

On this basis, we sum the nonzero elements of each column of the matrix 𝛼. A score
vector with these sums is built as follows: 𝑓 𝛼 = ℎ(𝛼 ,) ∀ = 1,2, … , 𝑆 (9)

ℎ 𝛼 , = 1, ∀𝛼 , 0 0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒 (10)

The sparse reconstruction error is computed by summing the residuals resulting
from the difference between each signal 𝐹 and its respective reconstruction 𝐷𝛼 ; i.e., 𝑟 = 𝐹 − 𝐷𝛼 . The score vector is defined as follows: 𝑔 𝐹 = 𝑟 ∀ = 1,2, … , 𝑆 (11)

Now we normalize the score vectors 𝑓 𝛼 and 𝑔 𝐹 , dividing each vector by its
highest component. 𝑓′ 𝛼 = 𝑓 𝛼 /𝑚𝑎𝑥 (𝑓) ∀ = 1,2, … , 𝑆 (12) 𝑔′ 𝐹 = 𝑔 𝐹 / 𝑚𝑎𝑥(𝑔) ∀ = 1,2, … , 𝑆 (13)

Next, both score vectors are integrated into a unique score vector as follows: 𝑆𝑓(𝑖) = 𝑓′(𝛼𝒊)𝑔′(𝐹) ∀ = 1,2, … , 𝑆 (14)
We use the vector score 𝑆𝑓 as a metric for the simplification process. Figure 2 shows

the saliency levels found in the vector 𝑆𝑓; to visualize it, we use a threshold 𝑇 with dif-
ferent values. Equation (14), was proposed by [27] in a local context, and the present work
is a generalization to use it globally.

(a) (b)

(c) (d)

Figure 2. Different levels of saliency produced by the thresholding of the vector 𝑆𝑓 with different
values: (a) 𝑇 = 0.9, (b) 𝑇 = 0.8, (c) 𝑇 = 0.7 and (d) 𝑇 = 0.6.

Figure 2. Different levels of saliency produced by the thresholding of the vector S f with different
values: (a) T = 0.9, (b) T = 0.8, (c) T = 0.7 and (d) T = 0.6.

Sensors 2021, 21, 4279 8 of 19

4.5. Simplification-Based Saliency

The saliency points characterize the most relevant features in the point cloud. These
points must be retained in the simplification process. On the other hand, points with low
saliency are redundant and have less importance for representing the original surface.
Using the vector score defined by (14), we establish a dynamic ratio of influence that
depends on the importance of the saliency of each point in the entire cloud. If point pi is
salient, the ratio of influence will be small, and few points will be removed. If, however,
it is not salient, the ratio of influence will be large, and more points will be removed
(see Figure 3).

Sensors 2021, 21, x FOR PEER REVIEW 8 of 20

4.5. Simplification-Based Saliency
The saliency points characterize the most relevant features in the point cloud. These

points must be retained in the simplification process. On the other hand, points with low
saliency are redundant and have less importance for representing the original surface.
Using the vector score defined by (14), we establish a dynamic ratio of influence that de-
pends on the importance of the saliency of each point in the entire cloud. If point 𝑝 is
salient, the ratio of influence will be small, and few points will be removed. If, however,
it is not salient, the ratio of influence will be large, and more points will be removed (see
Figure 3).

Figure 3. Dynamic ratio.

To proceed with the simplification, as a first step, the vector score 𝑆𝑓(𝑖) is sorted by
the absolute value of its components. In the second step, we calculate the ratio of influence
as follows: 𝜌 = 𝛿 ∙ 1𝑆𝑓(𝑖)

(15)

According to (15), the dynamic ratio 𝜌 is determined by 1/𝑆𝑓(𝑖) . Therefore, in
points with high saliency, the ratio is small, while in points with low saliency, the ratio is
large, as shown in Figure 3, where 𝛿 is a user-defined scale parameter that controls the
number of points to be simplified.

5. Results and Discussion
We evaluated the proposed method using a set of models, namely the Max Planck

data set (50,112 points, few detail features), the Fandisk data set (6475 points; high, sharp
features), the Asian dragon data set (3,609,600 points, many detail features), the Bunny data
set (35,947 points, few detail features), the Elephant data set (24,955 points, many detail fea-
tures), the Horse data set (48,485 points, few detail features), the Gargoyle data set (25,038
points, many detail features), and the Nicolo data set (50,419 points, few detail features).

We also compared the results of our method to other approaches. For quantitative
comparison, our method, which we named saliency dictionary-based simplification
(SDBS), is compared to three point-based methods, namely the curvature-based method
(CV), implemented using Geomagic Studio; simplification on graph (FPUC) [15]; and fast
resampling via graphs (FRGR) [14], and one mesh-based method, namely poisson sam-
pled disk (PSD), implemented using MeshLab. For visual comparison, we replicated the
same experiment carried out in [7], and we used the results to compare the proposed al-
gorithm with our method and six state-of-the-art simplification methods: grid simplifica-
tion (GRID) from CGAL library, hierarchical clustering simplification (HCS) [9], weighted
LOP (WLOP) [5], simplification on graph (FPUC) [15], fast resampling via graphs (FRGR)
[14] and detailed feature points simplified algorithm (DFPSA) [7].

Figure 3. Dynamic ratio.

To proceed with the simplification, as a first step, the vector score S f (i) is sorted by
the absolute value of its components. In the second step, we calculate the ratio of influence
as follows:

ρi = δ· 1
S f (i)

(15)

According to (15), the dynamic ratio ρi is determined by 1/S f (i). Therefore, in points
with high saliency, the ratio is small, while in points with low saliency, the ratio is large, as
shown in Figure 3, where δ is a user-defined scale parameter that controls the number of
points to be simplified.

5. Results and Discussion

We evaluated the proposed method using a set of models, namely the Max Planck
data set (50,112 points, few detail features), the Fandisk data set (6475 points; high, sharp
features), the Asian dragon data set (3,609,600 points, many detail features), the Bunny
data set (35,947 points, few detail features), the Elephant data set (24,955 points, many
detail features), the Horse data set (48,485 points, few detail features), the Gargoyle
data set (25,038 points, many detail features), and the Nicolo data set (50,419 points, few
detail features).

We also compared the results of our method to other approaches. For quantitative com-
parison, our method, which we named saliency dictionary-based simplification (SDBS), is
compared to three point-based methods, namely the curvature-based method (CV), imple-
mented using Geomagic Studio; simplification on graph (FPUC) [15]; and fast resampling
via graphs (FRGR) [14], and one mesh-based method, namely poisson sampled disk (PSD),
implemented using MeshLab. For visual comparison, we replicated the same experiment
carried out in [7], and we used the results to compare the proposed algorithm with our
method and six state-of-the-art simplification methods: grid simplification (GRID) from
CGAL library, hierarchical clustering simplification (HCS) [9], weighted LOP (WLOP) [5],
simplification on graph (FPUC) [15], fast resampling via graphs (FRGR) [14] and detailed
feature points simplified algorithm (DFPSA) [7].

All the experiments were run on a PC with Intel Core i7-2670QM CPU 2.20 GHz
and 8 GB RAM. For implementing the proposed method, we used the MATLAB R2016b
programming environment.

Sensors 2021, 21, 4279 9 of 19

Figures 4–7 are examples of the effectiveness of the proposed simplification method
in different types of point clouds (free-form surfaces and surfaces with sharp edges and
corners). It is clear that the proposed method is capable of preserving the global structure
of the clouds as the simplification rate increases in all cloud types, since the needed
information is integrated into the dictionary training.

Figure 4 shows the Fandisk model. The edges and corners are preserved as the simpli-
fication rate increases, and in flat regions, the method tries to distribute the points evenly.

Figure 5 shows how the Asian dragon model is simplified from millions of points
(3,609,600) to thousands (1502). The proposed method preserves the global structure and
the most relevant details of the original point cloud.

In Figure 6, it can be appreciated how the Max Plank model is simplified from 50,112
to 1502 points. The proposed method preserves the global structure and some of the details
of the original point set. The Max Plank model is a free-form surface, showing that our
method operates efficiently over these types of models.

Figure 7 shows the Elephant model simplified from 24,955 to 167 points. The ren-
derings of the simplified and original models are shown from different points of view,
showing how the global structure is preserved even with a low sampling rate.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 20

All the experiments were run on a PC with Intel Core i7-2670QM CPU 2.20 GHz and
8 GB RAM. For implementing the proposed method, we used the MATLAB R2016b pro-
gramming environment.

Figures 4–7 are examples of the effectiveness of the proposed simplification method
in different types of point clouds (free-form surfaces and surfaces with sharp edges and
corners). It is clear that the proposed method is capable of preserving the global structure
of the clouds as the simplification rate increases in all cloud types, since the needed infor-
mation is integrated into the dictionary training.

Figure 4. The Fandisk model: (a) original 6475 points; (b) simplified to 1465 points; (c) simplified
to 738 points.

Figure 5. The Asian dragon model: (a) original 3,609,600 points; simplified to (b) 410,208 points, (c)
78,268 points, (d) 30,487 points (e) 12,621 points (f) 8196 points, (g) 5758 points, (h) 3307 points, and
(i) 1502 points.

Figure 4. The Fandisk model: (a) original 6475 points; (b) simplified to 1465 points; (c) simplified to
738 points.

Sensors 2021, 21, x FOR PEER REVIEW 9 of 20

All the experiments were run on a PC with Intel Core i7-2670QM CPU 2.20 GHz and
8 GB RAM. For implementing the proposed method, we used the MATLAB R2016b pro-
gramming environment.

Figures 4–7 are examples of the effectiveness of the proposed simplification method
in different types of point clouds (free-form surfaces and surfaces with sharp edges and
corners). It is clear that the proposed method is capable of preserving the global structure
of the clouds as the simplification rate increases in all cloud types, since the needed infor-
mation is integrated into the dictionary training.

Figure 4. The Fandisk model: (a) original 6475 points; (b) simplified to 1465 points; (c) simplified
to 738 points.

Figure 5. The Asian dragon model: (a) original 3,609,600 points; simplified to (b) 410,208 points, (c)
78,268 points, (d) 30,487 points (e) 12,621 points (f) 8196 points, (g) 5758 points, (h) 3307 points, and
(i) 1502 points.

Figure 5. The Asian dragon model: (a) original 3,609,600 points; simplified to (b) 410,208 points,
(c) 78,268 points, (d) 30,487 points (e) 12,621 points (f) 8196 points, (g) 5758 points, (h) 3307 points,
and (i) 1502 points.

Sensors 2021, 21, 4279 10 of 19Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

Figure 6. The Max Plank model: (a) original 50,112 points; simplified to (b) 40,108 points, (c) 26,387
points, (d) 20,105 points (e) 12,761 points (f) 8898 points, (g) 6588 points, (h) 5108 points, and (i) 4100
points.

(a)

(b)

Figure 7. The Elephant model: (a) original, reconstructed with 24,955 points; (b) simplified, recon-
structed with 167 points.

Figure 6. The Max Plank model: (a) original 50,112 points; simplified to (b) 40,108 points,
(c) 26,387 points, (d) 20,105 points (e) 12,761 points (f) 8898 points, (g) 6588 points, (h) 5108 points,
and (i) 4100 points.

Sensors 2021, 21, x FOR PEER REVIEW 10 of 20

Figure 6. The Max Plank model: (a) original 50,112 points; simplified to (b) 40,108 points, (c) 26,387
points, (d) 20,105 points (e) 12,761 points (f) 8898 points, (g) 6588 points, (h) 5108 points, and (i) 4100
points.

(a)

(b)

Figure 7. The Elephant model: (a) original, reconstructed with 24,955 points; (b) simplified, recon-
structed with 167 points.
Figure 7. The Elephant model: (a) original, reconstructed with 24,955 points; (b) simplified, recon-
structed with 167 points.

Sensors 2021, 21, 4279 11 of 19

5.1. Parameter Selection

There are three parameters in our method: the regularization parameter λ in Equation (3),
the dictionary size S, and the fraction of points to be simplified δ. The parameter λ is the
balance between the data fidelity and the regularization term. Small values can produce
a simplification with few details, points, and features, while large values can result in more
details, points, and features (see Figure 8). In all our tests, we set λ = 0.5, which obtains
the best results since this value maintains the balance between the number of points and
the features.

Sensors 2021, 21, x FOR PEER REVIEW 11 of 20

Figure 4 shows the Fandisk model. The edges and corners are preserved as the sim-
plification rate increases, and in flat regions, the method tries to distribute the points
evenly.

Figure 5 shows how the Asian dragon model is simplified from millions of points
(3,609,600) to thousands (1502). The proposed method preserves the global structure and
the most relevant details of the original point cloud.

In Figure 6, it can be appreciated how the Max Plank model is simplified from 50,112
to 1502 points. The proposed method preserves the global structure and some of the de-
tails of the original point set. The Max Plank model is a free-form surface, showing that
our method operates efficiently over these types of models.

Figure 7 shows the Elephant model simplified from 24,955 to 167 points. The render-
ings of the simplified and original models are shown from different points of view, show-
ing how the global structure is preserved even with a low sampling rate.

5.1. Parameter Selection
There are three parameters in our method: the regularization parameter 𝜆 in Equa-

tion (3), the dictionary size S, and the fraction of points to be simplified 𝛿. The parameter 𝜆
is the balance between the data fidelity and the regularization term. Small values can pro-
duce a simplification with few details, points, and features, while large values can result
in more details, points, and features (see Figure 8). In all our tests, we set 𝜆 = 0.5, which
obtains the best results since this value maintains the balance between the number of
points and the features.

Figure 8. Variation of the parameter 𝜆 with the parameter 𝛿 = 0.36 fixed.

We established the size of the dictionary, 𝑆, based on Figure 8. It shows the mean
square error (MSE) variation as the dictionary size increases. As the size of the dictionary
increases, the MSE decreases, but processing time increases. On the other hand, when the
dictionary size is reduced, the MSE increases, but the processing time decreases. Our goal
was to find a balance between a suitable dictionary size and low processing time.

Figure 9 shows that in the range of values between 200 and 400, the MSEs are low,
and the size of the dictionary is not significant. In all the experiments, we set the dictionary
size 𝑆 = 200, producing good results.

Figure 8. Variation of the parameter λ with the parameter δ = 0.36 fixed.

We established the size of the dictionary, S, based on Figure 8. It shows the mean
square error (MSE) variation as the dictionary size increases. As the size of the dictionary
increases, the MSE decreases, but processing time increases. On the other hand, when the
dictionary size is reduced, the MSE increases, but the processing time decreases. Our goal
was to find a balance between a suitable dictionary size and low processing time.

Figure 9 shows that in the range of values between 200 and 400, the MSEs are low, and
the size of the dictionary is not significant. In all the experiments, we set the dictionary size
S = 200, producing good results.

The scale parameter δ is the only free user-defined parameter, and it is used for tuning
the number of points to be removed.

5.2. Quantitative Analysis Parameter Selection

We chose the geometric error between the original and the simplified point cloud
as a metric to evaluate the quality of the proposed simplification method, following
Pauly et al. [9]. Similarly, we measured the maximum error distance and the average error
distance between the original point cloud, P, and the simplified point cloud, P′. We denote
the surface of P as S and the surface of P′ as S′. The simplified error is estimated using the
maximum error (16) and the average error (17) as follows:

∆max
(
S, S′

)
= max

pi∈S

∣∣d(pi, S′
)∣∣ (16)

∆avg
(
S, S′

)
=

1
‖S‖ ∑

pi∈S

∣∣d(pi, S′
)∣∣ (17)

Sensors 2021, 21, 4279 12 of 19
Sensors 2021, 21, x FOR PEER REVIEW 12 of 20

Figure 9. MSE variation vs. dictionary size.

The scale parameter 𝛿 is the only free user-defined parameter, and it is used for tun-
ing the number of points to be removed.

5.2. Quantitative Analysis Parameter Selection
We chose the geometric error between the original and the simplified point cloud as

a metric to evaluate the quality of the proposed simplification method, following Pauly et
al. [9]. Similarly, we measured the maximum error distance and the average error distance
between the original point cloud, 𝑃, and the simplified point cloud, 𝑃’. We denote the
surface of 𝑃 as 𝑆 and the surface of 𝑃’ as 𝑆’. The simplified error is estimated using the
maximum error (16) and the average error (17) as follows: ∆ (𝑆, 𝑆) = max∈ |𝑑(𝑝 , 𝑆′)| (16)

∆ (𝑆, 𝑆) = 1‖𝑆‖ |𝑑(𝑝 , 𝑆)|∈ (17)

For each point 𝑝 ∈ 𝑆, the geometric error 𝑑(𝑝 , 𝑆′), is defined as the Euclidean dis-
tance between the sampled point 𝑝 and its projection point 𝑝 on the simplified surface
approximation 𝑆’. Since our method is mesh-free, we approximate the simplified surface 𝑆′ using a least squares plane (LSP). To estimate the LSP, we select a set of neighboring
points 𝑁𝐻 in 𝑃’ closest to 𝑝 , using a Kd-tree data structure, and perform a PCA to ob-
tain a regression plane (𝐿), which represents the local approximation 𝑆′ , i.e., 𝑑(𝑝 , 𝑆′) ≅ 𝑑(𝑝 , 𝐿) (Figure 10).

Figure 10. Local surface approximation and error computation as the distance from 𝑝 to 𝐿 .

Figure 9. MSE variation vs. dictionary size.

For each point pi ∈ S, the geometric error d(pi, S′), is defined as the Euclidean
distance between the sampled point pi and its projection point pi on the simplified sur-
face approximation S′. Since our method is mesh-free, we approximate the simplified
surface S′ using a least squares plane (LSP). To estimate the LSP, we select a set of neigh-
boring points NHi in P′ closest to pi, using a Kd-tree data structure, and perform a PCA
to obtain a regression plane (LNHi), which represents the local approximation S′, i.e.,
d(pi, S′) ∼= d(pi, LNHi) (Figure 10).

Sensors 2021, 21, x FOR PEER REVIEW 12 of 20

Figure 9. MSE variation vs. dictionary size.

The scale parameter 𝛿 is the only free user-defined parameter, and it is used for tun-
ing the number of points to be removed.

5.2. Quantitative Analysis Parameter Selection
We chose the geometric error between the original and the simplified point cloud as

a metric to evaluate the quality of the proposed simplification method, following Pauly et
al. [9]. Similarly, we measured the maximum error distance and the average error distance
between the original point cloud, 𝑃, and the simplified point cloud, 𝑃’. We denote the
surface of 𝑃 as 𝑆 and the surface of 𝑃’ as 𝑆’. The simplified error is estimated using the
maximum error (16) and the average error (17) as follows: ∆ (𝑆, 𝑆) = max∈ |𝑑(𝑝 , 𝑆′)| (16)

∆ (𝑆, 𝑆) = 1‖𝑆‖ |𝑑(𝑝 , 𝑆)|∈ (17)

For each point 𝑝 ∈ 𝑆, the geometric error 𝑑(𝑝 , 𝑆′), is defined as the Euclidean dis-
tance between the sampled point 𝑝 and its projection point 𝑝 on the simplified surface
approximation 𝑆’. Since our method is mesh-free, we approximate the simplified surface 𝑆′ using a least squares plane (LSP). To estimate the LSP, we select a set of neighboring
points 𝑁𝐻 in 𝑃’ closest to 𝑝 , using a Kd-tree data structure, and perform a PCA to ob-
tain a regression plane (𝐿), which represents the local approximation 𝑆′ , i.e., 𝑑(𝑝 , 𝑆′) ≅ 𝑑(𝑝 , 𝐿) (Figure 10).

Figure 10. Local surface approximation and error computation as the distance from 𝑝 to 𝐿 . Figure 10. Local surface approximation and error computation as the distance from pi to LNHi .

Table 1 shows the test models with the original sizes and the sampled points with
different sampling rates (the value shown is the arithmetic average of the number of points
resulting from the different methods for each simplification rate).

Table 1. Test models with the original number of points and the sampling results at different simplification rates.

Models Original Points Sampled Points 5% Sampled Points 10% Sampled Points 20% Sampled Points 50%

Bunny 35,947 1797 3610 7186 17,976
Elephant 24,955 1246 2489 4991 12,478
Gargoyle 25,038 1253 2496 5008 12,522
Horse 48,485 2428 4872 9693 24,247
Max Plank 50,112 2459 4892 9826 24,569
Nicolo 50,419 2519 5053 10,082 25,213
Fandisk 25,894 1249 2480 4974 12,437

Sensors 2021, 21, 4279 13 of 19

Figure 11 shows the Gargoyle, Horse, and Nicolo models, as examples of Table 1; the
originals are shown in the left column, the models simplified at 5% are shown in the middle
column, and the models simplified at 50% are shown in the right column.

Sensors 2021, 21, x FOR PEER REVIEW 13 of 20

Table 1 shows the test models with the original sizes and the sampled points with
different sampling rates (the value shown is the arithmetic average of the number of
points resulting from the different methods for each simplification rate).

Table 1. Test models with the original number of points and the sampling results at different sim-
plification rates.

Models Original
Points

Sampled
Points 5%

Sampled
Points 10%

Sampled Points
20%

Sampled Points
50%

Bunny 35,947 1797 3610 7186 17,976
Elephant 24,955 1246 2489 4991 12,478
Gargoyle 25,038 1253 2496 5008 12,522
Horse 48,485 2428 4872 9693 24,247
Max Plank 50,112 2459 4892 9826 24,569
Nicolo 50,419 2519 5053 10,082 25,213
Fandisk 25,894 1249 2480 4974 12,437

Figure 11 shows the Gargoyle, Horse, and Nicolo models, as examples of Table 1; the
originals are shown in the left column, the models simplified at 5% are shown in the mid-
dle column, and the models simplified at 50% are shown in the right column.

 (a) (b) (c)

Figure 11. The Gargoyle, Horse, and Nicolo models: (a) original models; (b) models simplified at
50%; (c) models simplified at 10%.

Table 2 shows the different values of the parameter 𝛿 for different simplification
rates; we can appreciate how the variation of 𝛿 does not clarify the relationship between
the number of points to be simplified and its values in the table. This indicates that the
algorithm is sensitive when its values change between different simplification rates, show-
ing a weakness of the algorithm, which can be improved if the parameter 𝛿 can be related
to the density and distance between the points of the cloud to be simplified.

Figure 11. The Gargoyle, Horse, and Nicolo models: (a) original models; (b) models simplified
at 50%; (c) models simplified at 10%.

Table 2 shows the different values of the parameter δ for different simplification
rates; we can appreciate how the variation of δ does not clarify the relationship between
the number of points to be simplified and its values in the table. This indicates that
the algorithm is sensitive when its values change between different simplification rates,
showing a weakness of the algorithm, which can be improved if the parameter δ can be
related to the density and distance between the points of the cloud to be simplified.

Table 2. Values of δ used for different models, when they were simplified at 5%, 10%, 20% and 50%.

Models δ Value Sampled 5% δ Value Sampled 10% δ Value Sampled 20% δ Value Sampled 50%

Bunny 0.00140 0.000968 0.000627 0.000348
Elephant 0.01233 0.008330 0.005700 0.003460
Gargoyle 0.08000 0.046700 0.030200 0.015000
Horse 0.00133 0.000900 0.000600 0.000333
Max Plank 0.15330 0.076700 0.040000 0.015670
Nicolo 0.02533 0.018000 0.001180 0.006533
Fandisk 0.00053 0.000365 0.000266 0.000176

Table 3 shows the quantitative comparison between our method and the state-of-the-
art methods. Table 3 shows four simplification rates, i.e., 5%, 10%, 20%, and 50%. All five
methods reduce the original number of points to a similar number of simplified points.
Our method provides the most accurate simplification result of the five algorithms with
respect to the average error metric ∆avg. However, considering the maximum error metric
∆max, the Poisson disk mesh-based method is the best, closely followed by our method.

Sensors 2021, 21, 4279 14 of 19

Table 3. Simplification results, comparison at different sampling rates (SRs) (5%, 10%, 20% and 50%) using the ∆max and
∆avg metrics between the proposed method and the state-of-the-art methods.

Mesh-Based Point-Based

PSD CV FRGR FPUC SDBS

SR 5% ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg
Bunny 0.005065 0.000535 0.012529 0.000786 0.010989 0.000781 0.023727 0.001267 0.006019 0.000517
Elephant 0.029524 0.004453 0.071016 0.006473 0.079300 0.007481 0.076502 0.006723 0.032534 0.004307
Gargoyle 0.520473 0.096518 1.920498 0.129355 2.191607 0.130839 1.334782 0.222911 0.653588 0.090725
Horse 0.003544 0.000343 0.008435 0.000487 0.009263 0.000490 0.017894 0.001056 0.004340 0.000322
Max Plank 1.301519 0.099681 3.702109 0.145190 2.802459 0.165132 4.725397 0.283958 1.618001 0.087707
Nicolo 0.134143 0.011021 0.370415 0.015898 0.331987 0.016816 0.292358 0.015014 0.149977 0.010250
Fandisk 0.206912 0.017887 1.251090 0.079158 0.441557 0.032766 0.627595 0.044314 0.215029 0.016890

SR 10% ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg
Bunny 0.004430 0.000308 0.008944 0.000426 0.007164 0.000416 0.012347 0.000496 0.005212 0.000287
Elephant 0.022318 0.002414 0.048641 0.003695 0.057984 0.003880 0.051137 0.003412 0.029524 0.002312
Gargoyle 0.038192 0.006216 1.283042 0.082879 2.162895 0.084856 0.968352 0.012522 0.054968 0.005627
Horse 0.002506 0.000190 0.006470 0.000261 0.005413 0.000245 0.008680 0.000369 0.003544 0.000171
Max Plank 0.961236 0.059349 2.856882 0.084547 1.798308 0.085617 4.404936 0.135728 1.240950 0.049349
Nicolo 0.106050 0.006580 0.246437 0.009023 0.280581 0.009329 0.177455 0.008315 0.116171 0.005710
Fandisk 0.149206 0.009414 1.240782 0.050776 0.319061 0.020614 0.432045 0.016975 0.154839 0.009010

SR 20% ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg
Bunny 0.003009 0.000183 0.008241 0.000223 0.005630 0.000226 0.006616 0.000227 0.003475 0.000151
Elephant 0.017644 0.001367 0.039453 0.001812 0.046601 0.002064 0.035288 0.001663 0.019328 0.001171
Gargoyle 0.306220 0.040987 0.924313 0.047888 2.148394 0.050902 0.603874 0.069340 0.467759 0.033819
Horse 0.002046 0.000109 0.004798 0.000134 0.004340 0.000132 0.005011 0.000139 0.002506 0.000087
Max Plank 0.679693 0.033580 2.000972 0.042923 1.301519 0.044349 1.359393 0.048901 0.961236 0.024317
Nicolo 0.094854 0.003902 0.217337 0.004568 0.189707 0.004759 0.157297 0.004514 0.094854 0.003155
Fandisk 0.101366 0.005030 1.240782 0.035560 0.242986 0.014598 0.411750 0.009057 0.130863 0.004398

SR 50% ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg ∆max ∆avg
Bunny 0.002128 0.000094 0.006143 0.000072 0.003885 0.000077 0.002747 0.000067 0.002747 0.000060
Elephant 0.006863 0.000717 0.028450 0.000592 0.024952 0.000624 0.017644 0.000516 0.017644 0.000526
Gargoyle 0.228243 0.024144 0.653588 0.017368 1.436299 0.017210 0.368031 0.020228 0.250028 0.012773
Horse 0.002046 0.000054 0.003544 0.000043 0.002506 0.000041 0.004340 0.000038 0.002046 0.000033
Max Plank 0.554970 0.016812 1.359393 0.015499 0.877484 0.013778 0.784846 0.012912 0.554970 0.009639
Nicolo 0.067072 0.001986 0.142280 0.001626 0.106050 0.001638 0.067072 0.001366 0.067072 0.001191
Fandisk 0.071676 0.002220 1.237327 0.030615 0.155924 0.009728 0.383764 0.005845 0.092534 0.001499

As shown in Table 3, the CV and PSD methods produce similar results in terms
of average surface error. The PSD method achieved relatively better results in terms of
maximum surface error; however, a mesh structure must be used in the simplification.
There are some practical applications where only the 3D coordinate information is available,
which limits the applicability of the PSD sampling method. The SGR method and our
SDBS method achieved the best results in terms of average surface error, but the SDBS
outperforms all other methods.

We compared the SDBS method with the other methods in accuracy and running
time. Table 4 shows the running time and the number of preserved points of the proposed
approach compared to six state-of-the-art methods. We simplified all the point clouds
at a similar simplification rate with all the algorithms. We ran each method 10 times on
each point cloud, and the average execution time is shown in Table 4. The programming
language is also shown. It is worth noting that the simplification rate of our method is the
lowest in the study (the Bunny model was simplified from 35,945 points to 4517 points,
and the Elephant model was simplified from 24,955 points to 2154). The SDBS keeps the
balance between the sharp features and the point density in the data set.

5.3. Visual Comparison

To validate our method with respect to the visual quality of its results, we per-
formed two experiments. The first experiment shows how the point cloud is affected
in two scenarios: (1) when the normal coordinates are excluded from the feature vector
and (2) when the coordinates of the point are excluded (Figure 12). The second experi-

Sensors 2021, 21, 4279 15 of 19

ment compares our results with different state-of-the-art methods (Figures 13 and 14). For
rendering purposes, our point clouds were meshed using the Geomagic Studio software.

Table 4. Comparison of simplification time and preserved number of points.

Method Preserved Number of
Points (Bunny)

Preserved Number of
Points (Elephant)

Bunny Running Time
(s)

Elephant Running
Time (s) Language

SDBS 4517 2154 21.223 15.186 MATLAB
DFPSA 4566 2872 56.156 26.220 —
FPUC 4644 2165 38.094 29.503 MATLAB
FRGR 4638 2164 9.5740 1.0030 MATLAB
WLOP 4572 2438 16.678 10.879 C/C++
GRID 4562 2154 0.6920 0.5170 C/C++
HCS 4644 2184 4.4590 3.1470 C/C++
Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

(a) (b) (c) (d)

Figure 12. Effect on the lighting and density in (a) the original Elephant model when (b) the point
coordinates are not included, (c) the normal coordinates are not included, and (d) all three features
are included. The arrows show some of the lighting zones.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Point cloud simplification of the Bunny model. (a) The original data set, number of points = 35,947; (b) HCS
method, number of points = 4644; (c) GRID method, number of points = 4562; (d) WLOP method, number of points = 4572;
(e) FRGR method, number of points = 4638; (f) FPUC method, number of points = 4644; (g) DFPSA method, number of
points = 4566; (h) proposed SDBS method, number of points = 4517. The image (g) is taken from [7].

Figure 12. Effect on the lighting and density in (a) the original Elephant model when (b) the point
coordinates are not included, (c) the normal coordinates are not included, and (d) all three features
are included. The arrows show some of the lighting zones.

Figure 12b shows the result of simplifying the elephant using only the normal and
curvature, excluding the point coordinates from the feature vector of each point. Compared
with the original model (Figure 12a), the simplification has overdecimated some areas
(ears, tusk, and tube), producing holes in the reconstructed model. On the other hand, the
lighting in the simplified model mimics the original one (red arrows). Figure 12c shows the
simplification results for the Elephant model using the point coordinates and curvature,
excluding the normal from the feature vector of each point. Compared with the original,
the point density is maintained, producing a better reconstruction of the model surface, but
the lighting of the simplification does not improve, as shown in Figure 12b (see highlighted
details). Finally, Figure 12d shows the simplification results for the elephant using the
normal, the point coordinates, and the surface variation (curvature). The combination of
features improves the results, as shown in the details in the lighting and the preservation
of details such as the elephant eye.

To compare visually the results of the studied algorithms, we simplified the models to
approximately the same number of points with all methods. Figure 13 shows the simplified
results of the application of different algorithms to the Bunny data set. Figure 13b,c,e–g
shows how more points are retained in curved parts, while fewer points are kept in smooth
parts. The simplification result of Figure 13d is uniform. All the methods present good
reconstruction results but cannot reconstruct narrow features such as ears, except for the

Sensors 2021, 21, 4279 16 of 19

DFPSA method, which shows only a small hole. The proposed method (Figure 13h) retains
the most relevant features and details of the model, and the reconstruction does not present
the problems observed with the other algorithms. The zoomed regions (nose commissure
and paw) highlight how our approach better preserves geometric details of the original
point cloud compared to previous methods, even when the simplification rate of our
method is lower than the others.

Sensors 2021, 21, x FOR PEER REVIEW 16 of 20

(a) (b) (c) (d)

Figure 12. Effect on the lighting and density in (a) the original Elephant model when (b) the point
coordinates are not included, (c) the normal coordinates are not included, and (d) all three features
are included. The arrows show some of the lighting zones.

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 13. Point cloud simplification of the Bunny model. (a) The original data set, number of points = 35,947; (b) HCS
method, number of points = 4644; (c) GRID method, number of points = 4562; (d) WLOP method, number of points = 4572;
(e) FRGR method, number of points = 4638; (f) FPUC method, number of points = 4644; (g) DFPSA method, number of
points = 4566; (h) proposed SDBS method, number of points = 4517. The image (g) is taken from [7].

Figure 13. Point cloud simplification of the Bunny model. (a) The original data set, number of
points = 35,947; (b) HCS method, number of points = 4644; (c) GRID method, number of points = 4562;
(d) WLOP method, number of points = 4572; (e) FRGR method, number of points = 4638; (f) FPUC
method, number of points = 4644; (g) DFPSA method, number of points = 4566; (h) proposed SDBS
method, number of points = 4517. The image (g) is taken from [7].

Figure 14 shows the simplification result for the Elephant data set with a high sim-
plification rate. Figure 14c,d,g shows how the GRID, WLOP, and DFPSA simplification
methods preserve few points in smooth regions and more points in feature regions such
as legs, ears, trunk, and tusks. The HCS, FRGR, and FPUC simplification methods, as
shown in Figure 14b,e,f, present problems in retaining the global structure of the respective
point clouds. Our method also preserves more points in feature areas, but it distributes the
points evenly in smooth regions. Due to the high simplification rate, all algorithms present
failures, but our method is the best in preserving the overall structure of the data set, as
shown in the zoomed regions (mouth and chest), even when the simplification rate of our
method is lower than the others.

Sensors 2021, 21, 4279 17 of 19Sensors 2021, 21, x FOR PEER REVIEW 17 of 20

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 14. Point cloud simplification by different algorithms for the Elephant model. (a) The original
data set, number of points = 24,955; (b) HCS method, number of points = 2184; (c) GRID method,
number of points = 2684; (d) WLOP method, number of points = 2438; (e) FRGR method, number of
points = 2164; (f) FPUC method, number of points = 2165; (g) DFPSA method, number of points =
2872; (h) proposed SDBS method, number of points = 2154. The image (g) is taken from [7].

Figure 12b shows the result of simplifying the elephant using only the normal and
curvature, excluding the point coordinates from the feature vector of each point. Com-
pared with the original model (Figure 12a), the simplification has overdecimated some
areas (ears, tusk, and tube), producing holes in the reconstructed model. On the other
hand, the lighting in the simplified model mimics the original one (red arrows). Figure
12c shows the simplification results for the Elephant model using the point coordinates
and curvature, excluding the normal from the feature vector of each point. Compared
with the original, the point density is maintained, producing a better reconstruction of the
model surface, but the lighting of the simplification does not improve, as shown in Figure
12b (see highlighted details). Finally, Figure 12d shows the simplification results for the
elephant using the normal, the point coordinates, and the surface variation (curvature).

Figure 14. Point cloud simplification by different algorithms for the Elephant model. (a) The
original data set, number of points = 24,955; (b) HCS method, number of points = 2184; (c) GRID
method, number of points = 2684; (d) WLOP method, number of points = 2438; (e) FRGR method,
number of points = 2164; (f) FPUC method, number of points = 2165; (g) DFPSA method, number of
points = 2872; (h) proposed SDBS method, number of points = 2154. The image (g) is taken from [7].

6. Conclusions and Future Work

In this paper, we have presented a new method for point cloud simplification based
on dictionary learning and sparse coding. The proposed method preserves the sharp
features and produces evenly distributed points. Our method uses the normal vector,
curvature, and the position of the points as a component of a feature vector. The feature
vectors of all points of the cloud are the input for a dictionary learning and sparse coding
process for saliency detection. We use the sparse representation of a signal to establish
when a point is salient or not for the entire point cloud; i.e., points are considered salient if
their feature vectors are reconstructed with many atoms from the dictionary, while points
are not considered salient if the feature vectors are reconstructed with few atoms. The
simplification is guided by global saliency using the sparse vectors resulting from the
sparse coding process; we use its sparsity as an adaptive simplification ratio in different

Sensors 2021, 21, 4279 18 of 19

regions. The proposed method produces low simplification rates in salient regions (borders,
corners, high curvatures, valleys) and high simplification rates in relatively planar regions
while maintaining an appropriate density through an even distribution of points.

The robustness and efficiency of our approach are demonstrated by some experimental
results that show that our method reduces the size of point clouds and retains the shape
features without creating surface holes. Finally, the proposed method is compared with
different state-of-the-art approaches, producing good simplification results and outper-
forming competing methods. As future work, we propose examining ways to automatically
determine the choice of the regularization parameter λ and the size of the dictionary, S.
Another future work is the mathematical demonstration of the interpretation when a point
is considered salient or not salient and how to relate the δ directly with the number of
points to be simplified.

Author Contributions: Conceptualization, E.L.; methodology, E.L., G.S.-T., J.W.B.-B., F.A. and N.L.
software, E.L.; validation, E.L., G.S.-T., J.W.B.-B., F.A. and N.L.; formal analysis, E.L.; investigation,
E.L.; writing—original draft preparation, E.L.; writing—review and editing, F.A., G.S.-T. and N.L.;
supervision, G.S.-T. and J.W.B.-B. All authors have read and agreed to the published version of
the manuscript.

Funding: This research was supported by the Administrative Department of Science and Technology
of Colombia (COLCIENCIAS) under the doctoral scholarship program COLCIENCIAS 2015-727 and
by The Universidad Nacional de Colombia campus Medellín.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Levoy, M.; Ginsberg, J.; Shade, J.; Fulk, D.; Pulli, K.; Curless, B.; Rusinkiewicz, S.; Koller, D.; Pereira, L.; Ginzton, M.; et al. The

digital Michelangelo project. In Proceedings of the 27th Annual Conference on Computer Graphics and Interactive Techniques,
New Orleans, LA, USA, 23–28 July 2000; pp. 131–144.

2. Chen, Y.; Yue, L. A method for dynamic simplification of massive point cloud. In Proceedings of the 2016 IEEE International
Conference on Industrial Technology (ICIT), Taipei, Taiwan, 14–17 March 2016; pp. 1690–1693.

3. Lipman, Y.; Cohen-Or, D.; Levin, D.; Tal-Ezer, H. Parameterization-free projection for geometry reconstruction. ACM Trans.
Graphics 2007, 26, 22. [CrossRef]

4. Alexa, M.; Behr, J.; Cohen-Or, D.; Fleishman, S.; Levin, D.; Silva, C. Computing and rendering point set surfaces. IEEE Trans. Vis.
Comput. Graph. 2003, 9, 3–15. [CrossRef]

5. Huang, H.; Li, D.; Zhang, H.; Ascher, U.; Cohen-Or, D. Consolidation of unorganized point clouds for surface reconstruction.
ACM Trans. Graph. 2009, 28, 1–7. [CrossRef]

6. Huang, H.; Wu, S.; Gong, M.; Cohen-Or, D.; Ascher, U.; Zhang, H. Edge-aware point set resampling. ACM Trans. Graph. 2013,
32, 1–12. [CrossRef]

7. Ji, C.; Li, Y.; Fan, J.; Lan, S. A Novel Simplification Method for 3D Geometric Point Cloud Based on the Importance of Point. IEEE
Access 2019, 7, 129029–129042. [CrossRef]

8. Leal, N.; Leal, E.; German, S.-T. A Linear Programming Approach for 3D Point Cloud Simplification. IAENG Int. J. Comput. Sci.
2017, 44, 60–67.

9. Pauly, M.; Gross, M.; Kobbelt, L.P. Efficient simplification of point-sampled surfaces. In IEEE Visualization; Institute of Electrical
and Electronics Engineers (IEEE): Piscataway, NJ, USA, 2003; pp. 163–170.

10. Shi, B.-Q.; Liang, J.; Liu, Q. Adaptive simplification of point cloud using means clustering. Comput. Des. 2011,
43, 910–922. [CrossRef]

11. Liao, B.; Xiao, C.; Jin, L.; Fu, H. Efficient feature-preserving local projection operator for geometry reconstruction. Comput. Des.
2013, 45, 861–874. [CrossRef]

12. Mahdaoui, A.; Bouazi, A.; Hsaini, A.M.; Sbai, E.H. Comparison of K-Means and Fuzzy C-Means Algorithms on Simplification of
3D Point Cloud Based on Entropy Estimation. Adv. Sci. Technol. Eng. Syst. J. 2017, 2, 38–44. [CrossRef]

13. Liu, S.; Liang, J.; Ren, M.; He, J.; Gong, C.; Lu, W.; Miao, Z. An edge-sensitive simplification method for scanned point clouds.
Meas. Sci. Technol. 2019, 31, 045203. [CrossRef]

http://doi.org/10.1145/1276377.1276405
http://doi.org/10.1109/TVCG.2003.1175093
http://doi.org/10.1145/1618452.1618522
http://doi.org/10.1145/2421636.2421645
http://doi.org/10.1109/ACCESS.2019.2939684
http://doi.org/10.1016/j.cad.2011.04.001
http://doi.org/10.1016/j.cad.2013.02.003
http://doi.org/10.25046/aj020508
http://doi.org/10.1088/1361-6501/ab5e00

Sensors 2021, 21, 4279 19 of 19

14. Chen, S.; Tian, D.; Feng, C.; Vetro, A.; Kovacevic, J. Fast Resampling of Three-Dimensional Point Clouds via Graphs. IEEE Trans.
Signal Process. 2018, 66, 666–681. [CrossRef]

15. Qi, J.; Hu, W.; Guo, Z. Feature Preserving and Uniformity-Controllable Point Cloud Simplification on Graph. In Proceedings of
the 2019 IEEE International Conference on Multimedia and Expo (ICME), Shanghai, China, 8–12 July 2019; pp. 284–289.

16. Zang, Y.; Yang, B.; Liang, F.; Xiao, X. Novel Adaptive Laser Scanning Method for Point Clouds of Free-Form Objects. Sensors 2018,
18, 2239. [CrossRef] [PubMed]

17. Zhu, L.; Kukko, A.; Virtanen, J.-P.; Hyyppä, J.; Kaartinen, H.; Turppa, T. Multisource Point Clouds, Point Simplification and
Surface Reconstruction. Remote Sens. 2019, 11, 2659. [CrossRef]

18. Shoaib, M.; Cheong, J.; Kim, Y.; Cho, H. Fractal bubble algorithm for simplification of 3D point cloud data. J. Intell. Fuzzy Syst.
2019, 37, 7815–7830. [CrossRef]

19. Zhang, K.; Qiao, S.; Wang, X.; Yang, Y.; Zhang, Y. Feature-Preserved Point Cloud Simplification Based on Natural Quadric Shape
Models. Appl. Sci. 2019, 9, 2130. [CrossRef]

20. Bao, C.; Ji, H.; Quan, Y.; Shen, Z. Dictionary Learning for Sparse Coding: Algorithms and Convergence Analysis. IEEE Trans.
Pattern Anal. Mach. Intell. 2016, 38, 1356–1369. [CrossRef] [PubMed]

21. Aharon, M.; Elad, M.; Bruckstein, A.M. K-SVD: An Algorithm for Designing Overcomplete Dictionaries for Sparse Representation.
IEEE Trans. Signal Process. 2006, 54, 4311–4322. [CrossRef]

22. Olshausen, B.A.; Field, D.J. Sparse coding with an overcomplete basis set: A strategy employed by V1? Vis. Res. 1997,
37, 3311–3325. [CrossRef]

23. Lee, H.; Battle, A.; Raina, R.; Ng, A.Y. Efficient sparse coding algorithms. In Proceedings of the 19th International Conference on
Neural Information Processing Systems, Doha, Qatar, 12–15 November 2012; pp. 801–808.

24. Fan, Z.; Liu, E.; Xu, B. Weighted Principal Component Analysis. In Transactions on Petri Nets and Other Models of Concurrency XV;
Springer: Berlin/Heidelberg, Germany, 2011; Volume 7004, pp. 569–574.

25. Narváez, E.A.L.; Narvaez, N.E.L. Point cloud denoising using robust principal component analysis. In Proceedings of the
13th International Joint Conference on Computer Vision, Imaging and Computer Graphics Theory and Applications, Madeira,
Portugal, 27–29 January 2018.

26. Pauly, M.; Keiser, R.; Gross, M.H. Multi-scale Feature Extraction on Point-Sampled Surfaces. Comput. Graph. Forum 2003,
22, 281–289. [CrossRef]

27. Narvaez, E.A.L.; Torres, G.S.; Bedoya, J.W.B. Point cloud saliency detection via local sparse coding. Dyna 2019, 86, 238–247. [CrossRef]

http://doi.org/10.1109/TSP.2017.2771730
http://doi.org/10.3390/s18072239
http://www.ncbi.nlm.nih.gov/pubmed/29997374
http://doi.org/10.3390/rs11222659
http://doi.org/10.3233/JIFS-182742
http://doi.org/10.3390/app9102130
http://doi.org/10.1109/TPAMI.2015.2487966
http://www.ncbi.nlm.nih.gov/pubmed/26452248
http://doi.org/10.1109/TSP.2006.881199
http://doi.org/10.1016/S0042-6989(97)00169-7
http://doi.org/10.1111/1467-8659.00675
http://doi.org/10.15446/dyna.v86n209.75958

	Introduction
	Related Work
	Particle Simulation-Based Methods
	Clustering-Based Methods
	Formulation-Based Methods
	Iteration-Based Methods

	Dictionary Learning and Sparse Coding
	Proposed Method
	Selecting the Features
	Low-Level Feature Estimation
	Dictionary Construction and Sparse Model
	Detecting Saliency Points
	Simplification-Based Saliency

	Results and Discussion
	Parameter Selection
	Quantitative Analysis Parameter Selection
	Visual Comparison

	Conclusions and Future Work
	References

