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Abstract: Sensorless speed estimation has been extensively studied for its use in control schemes.
Nevertheless, it is also a key step when applying Motor Current Signature Analysis to induction
motor diagnosis: accurate speed estimation is vital to locate fault harmonics, and prevent false
positives and false negatives, as shown at the beginning of the paper through a real industrial
case. Unfortunately, existing sensorless speed estimation techniques either do not provide enough
precision for this purpose or have limited applicability. Currently, this is preventing Industry 4.0
from having a precise and automatic system to monitor the motor condition. Despite its importance,
there is no research published reviewing this topic. To fill this gap, this paper investigates, from
both theoretical background and an industrial application perspective, the reasons behind these
problems. Therefore, the families of sensorless speed estimation techniques, mainly conceived for
sensorless control, are here reviewed and thoroughly analyzed from the perspective of their use
for diagnosis. Moreover, the algorithms implemented in the two leading commercial diagnostic
devices are analyzed using real examples from a database of industrial measurements belonging to
79 induction motors. The analysis and discussion through the paper are synthesized to summarize
the lacks and weaknesses of the industry application of these methods, which helps to highlight the
open problems, challenges and research prospects, showing the direction in which research efforts
have to be made to solve this important problem.

Keywords: fault diagnosis; induction motors; MCSA; sensorless speed estimation; Industry 4.0

1. Introduction

Over the last three decades, Sensorless Speed Estimation (SSE) for rotating machines
has undergone a great advance. From the very first moment, SSE techniques were mainly
applied in the field of electric motor control (e.g., Field Oriented Control) [1]. Therefore,
their development has always been linked to the improvement of control methods and fre-
quency converters. However, despite their natural link to sensorless control, SSE algorithms
also play a key role in fault detection methods for Induction Machines (IMs), specifically in
those that assess motor condition by localizing speed-dependent fault harmonics in the fre-
quency spectrum of the stator current [2–6]. First, because in order to extract and quantify
these harmonics, a good speed estimation is previously needed to accurately determine
their position [7,8]. Second, because most industrial motors are neither coupled to physical
speed sensors nor do they have the shaft accessible to perform manual measurements. Yet,
although the basis is the same, the requirements that SSE methods have to meet depend on
the field of application.
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On the one hand, in order to carry out a good control, it is imperative to obtain
a real-time response of the estimated parameters, specifically, that of the speed. This
necessary real-time response generally involves a trade-off with accuracy, as it requires the
SSE algorithm to use short voltage and current records. Furthermore, speed estimation
methods also have to meet the requirement of a stable performance over a wide range to
provide more versatility (e.g., low-speed operation). Regarding these two needs, in the
last decade, an effort has been made to increase accuracy and stability using modern
techniques such as neural networks, genetic algorithms, etc. [9–17]. Nevertheless, since
the possibility of working with large data records is restricted in the field of controlled AC
drives, the maximum degree of accuracy is yet to be fully exploited.

On the other hand, there are procedures in the field of IM diagnosis in which SSE
algorithms can be implemented, where time response and data record length are less
critical. As a consequence, accuracy can be increased. One of these procedures is Motor
Current Signature Analysis (MCSA). This method is mainly applied to detect speed-
dependent fault harmonics in the frequency spectrum of stator current [18], although other
magnitudes can also be used (e.g., instantaneous power, reactive power or apparent
power [19–21]). Many research papers, whose main purpose is not localizing the fault
harmonic, since they test lab motors with perfectly-known conditions, analyze the expected
fault harmonic frequency band assuming that the highest peak of the band will be the fault
harmonic [22–30]. Some other authors use filters as wavelet transform to extract sub-signals
related to frequency bands where the harmonic is supposed to be [31–33]. Nevertheless,
these are dangerous strategies in real non controlled industrial environments, since these
harmonics can show frequencies very close to those of healthy state caused by multiple
factors (winding harmonics, load oscillations, gear boxes, etc.), and be confused with them.
To avoid these false positives and negatives, some authors directly measure the speed
to localize the faulty harmonics perfectly [34,35]. Nevertheless, speed sensors are rarely
present in industrial environments. Therefore, a SSE algorithm with high accuracy is vital
to precisely track fault harmonics and reduce both false positives and negatives. In this
regard, SSE techniques based on extracting speed-dependent harmonics (fault or healthy)
using the Fast Fourier Transform (FFT) can increase the degree of precision without using
sophisticated signal processing methods. This might be done by recording long periods
of stator current (50 s, 100 s, even 200 s) in applications with little load oscillations and
connected to stable grids (as is the case for a large number of industrial applications), which
in turn would not be a problem for the diagnostic method, since rotor bar and eccentricity
faults, usually detected by MCSA evolve slowly. Moreover, as both the diagnostic method
and the SSE method would use the FFT to extract respectively fault and healthy/fault
harmonics of the same stator current, they could be put together in one single algorithm.
Finally, other authors have proposed to measure additional quantities as the external
flux [36] to estimate the speed; nevertheless, this leads to a less robust method, as the flux
sensor must be placed near the motor housing, which in some applications is not possible
(e.g., submersible motor-pumps).

SSE techniques, regardless of whether they are used for diagnostic or sensorless
control, can be classified into two large groups of methods: Fundamental Model-Based
(FMB) [1,9–17,37–58] and Magnetic Anisotropy-Based (MAB). The latter can be subdivided
into two more groups of methods: Signal Injection-Based (SIB) [59–64] and Slotting and
Eccentricity Harmonics Based (SaEHB) [4,65–79]:

- FMB methods require to estimate or to know in advance a wide range of parameters
(stator resistance, inductance, rotor time constant, number of slots, etc.). As many
of them are time-varying (e.g., stator resistance can have variations in a range of
1:2 [60]), there are two possible scenarios: if they are assumed to be constant, an error
is added to the speed estimation; on the other hand, if they are estimated over time,
the algorithm can get more complicated and unstable.

- SIB methods do no depend on any time-varying parameter. However, they require
a much more complicated implementation, and besides, not all drives are compat-



Sensors 2021, 21, 5037 3 of 35

ible with their requirements [61,80]. All this makes them hardly applicable on an
industrial scale.

- SaEHB techniques do not depend on any time-varying parameter either. Yet, when
based on Rotor Slot Harmonics, they depend on a machine characteristic that is rarely
known by the motor owner: the number of rotor slots. Conversely, if they are based
on Mixed Eccentricity Harmonics, which only depend on an easy to know parameter
(number of poles), precision and detectability problems may arise due to their narrow
bandwidth [72].

The previous knowledge of specific parameters or the need to estimate them is a classic
problem in SSE techniques no matter if they are used in diagnostic or control applications.
This means a big drawback when it comes to obtaining a general method that can be
applied to any motor in industry. That is because, in most cases, operators and technicians
do not know data beyond those indicated on the nameplate.

Therefore, online condition assessment methods based on frequency spectrum infor-
mation need a precise SSE algorithm that allows to automatically localize speed-dependent
fault harmonics and reduce both false positives and negatives. Moreover, the set formed by
the SSE algorithm and the diagnostic method should also be able to be easily integrated into
Industry 4.0 systems in order to provide a complete monitoring of motor condition over
time. Traditional SSE control-oriented methods are not a good option for these purposes
as they provide a real-time response at the expense of a lower accuracy. Yet, if integrated
into diagnostic procedures, and thus relieved of a need for real-time response, some of the
traditional SSE techniques might be able to provide a much more precise fault harmonic
positioning, which in turn would translate into a much more reliable diagnostic.

The paper analyses for the first time the SSE methods present in the technical literature
from the perspective of its application to induction motors diagnosis via MCSA. This work
aims to reveal which are the open problems, challenges and research prospects that the
scientific community has yet to work on to finally bring a precise, general and automatic
algorithm able to work in the context of a 4.0 industry. To that end, the limitations of each
technique are analyzed, from both theoretical and industry applications perspective. First,
taking as a starting point the work presented at [81], this paper shows, through an industrial
case (Section 2), how important an accurate and automatic SSE is for fault diagnostic
methods based on localizing, extracting and quantifying speed-dependent harmonics.
Then, the paper thoroughly reviews and analyzes the two main groups of SSE techniques,
pointing out their limitations when applied with diagnostic procedures (Sections 3 and 4).
Moreover, using again industrial cases thanks to a database of industrial measurements
belonging to 79 IM, it is shown how the two leading commercial devices for diagnosis work,
which are the principles of the algorithms they implement and what are their weakness
and sources of errors (Section 5). Concluding, SSE in diagnostic procedures is not a solved
issue; thus, the analysis and discussion performed in this paper, related to the industry
application of these techniques, enables to finally synthesize and highlight the lines of
research in which academia should focus its efforts in order to provide a truly effective SSE
industrial method that could help obtain automatic and reliable diagnostic results.

2. Importance of SSE in Diagnosis

Speed estimation is a key factor in steady-state fault diagnosis via MCSA. Certain
faults, such as rotor bars breakage and eccentricities, induce speed-dependent harmonics
in the stator current. For example, the frequencies of the main harmonics related to rotor
bars breakage in the spectrum of the stator current are given by:

fBBH = (1± 2ks) f0 (1)

When k is equal to one, those harmonics are commonly known as the Upper Sideband
Harmonic (USH), positive sign, and the Lower Sideband Harmonic (LSH), negative sign.
The fundamental frequency ( f0) can be easily identified as it is the highest peak in the
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spectrum. Then, if the speed is also known or estimated, the slip (s) can be determined
and with it the position of these harmonics. Finally, they can be quantified in order to issue
a diagnosis.

Regarding the diagnosis, from now on, the following criterion will be used to de-
termine the condition of the rotor bars in an IM: if the amplitude is below −48 dB the
IM is considered to be healthy, between −48 and −36 dB there might be one or several
broken/cracked bars, and above −36, there are multiple broken bars. This criterion is well
established in the field of diagnosis [7], proved valid for different sizes of motors [18,82]
and shared by commercial devices (with slight variations in the thresholds, as shown
in Section 5). It is also worth mentioning that, as these are empirically obtained limits, two
different motors with the same amplitude of broken bar harmonics may have different
numbers of broken or cracked bars. Yet, it should not be forgotten that the aim of the
examples that will be used in this paper is to show that: given a failure criterion, a small
error in speed estimation can lead to a wrong diagnosis. Therefore, the important point
here analyzed is if the speed estimation method allows to precisely determine the frequency
of the fault harmonic, while the exact value of the fault thresholds is secondary.

Next, to illustrate how important it is to know the speed accurately, the current of a two-
pole 90 kW IM driving a submerged pump has been analyzed by the FFT. Figure 1a shows
the spectrum of the stator current (blue line) with the fault thresholds (red lines), in which
a deviation of only 3 rpm means to identify two healthy state harmonics (marked with
green diamonds) as two broken bar harmonics (marked with red circles). The harmonics
marked with green diamonds belong to the healthy state since they do not satisfy any of
the formulas related to rotor electrical asymmetries, rotor-stator misalignments and stator
electrical asymmetries. They could be caused by the operating conditions of the load, since
after zooming out the spectrum (Figure 1b), it can be observed a smearing effect around the
fundamental frequency, as well as several sets of sideband harmonics not predicted by (1),
but separated from the fundamental a multiple of a certain bandwidth: as stated in [18],
these effects are usually related to the operation with gear boxes and/or load oscillations.
Therefore, the error leads to diagnose the motor as faulty (green diamonds within the red
lines) when, actually, the broken bars harmonics are in the healthy zone (red circles below
red lines).

(a) (b)

Figure 1. (a) Stator current spectrum of a two-pole 90 kW IM with healthy state harmonics (diamonds) close to the broken
bar harmonics (circles) and (b) zoomed out spectrum showing the smearing effect around the fundamental and other
harmonics caused by load oscillations.

From the above example, it is clear the need for accurate speed information in order to
make a reliable diagnosis given a certain fault threshold. This information can come from a
physical speed sensor or be estimated using an SSE technique. The cost of a physical sensor



Sensors 2021, 21, 5037 5 of 35

increases proportionally to the level of accuracy required, being sometimes a significant
amount of the total price of the IM, especially when a custom design is required for its
correct coupling. Moreover, they are very sensitive to the conditions of operation and
location. Variations in temperature or large lengths of data transmission cable can lead
to erroneous measurements. In addition, a precise and careful assembly on the shaft is
required. Conversely, sensorless techniques are able to overcome these drawbacks since
they are: lower-cost options for the same accuracy (easy integration in existing control
and measuring devices), more robust (measurements far from motor location implies
better isolation; it also prevents motor disassembling in case of problems in measurement
systems), and the only reliable option in certain industrial applications where physical
sensors are very difficult to install (e.g., pumps submerged at great depths).

Alternatively, some authors propose to avoid the speed estimation problem by diag-
nosing the IM based on the following principle: since the fault-related harmonics have
a certain operating bandwidth, determined for instance by (1) varying the slip from 0 to
its rated value, it is possible to locate the fault harmonics in the spectrum by calculating
the maximum in that bandwidth after a pre-treatment process [31,83]. This diagnostic
procedure relies on the fact that no other significant harmonic will be present in the search
band. Nevertheless, as seen through the example presented in this section, that does not
always hold true, and therefore, it can be a source of false positives. Thus, an algorithm
that can accurately estimate speed, and consequently, the position of fault harmonics, is
essential in the predictive maintenance of IM via MCSA.

Furthermore, in recent years, new requirements have started to emerge among those
industries that are adopting an Industry 4.0 philosophy: collect considerable amounts of
data related to different systems, process them with specific algorithms to obtain informa-
tion and act through this set of interconnected systems to achieve optimal autonomous
production. In terms of diagnosis, this means:

- Real-time condition monitoring: motors must be continuously diagnosed to achieve
perfect operation.

- Noninvasive methods: production must not be altered (just when maintenance
is needed).

- High reliability: avoid actions based on a false diagnosis.
- Automated process without human intervention: efficient and fast diagnosis of big

amounts of motors.
- Intelligent operation of the facility: take the proper actions based on a correct diagnosis.
- Interoperability via the Internet of Things: information related to the state of the

machines must be shared with the rest of the systems and take decisions collectively.

Then, there is not only the need for reliable and accurate diagnostic algorithms,
but also for them to operate continuously, fully autonomously without requiring an expert
intervention, and without altering the production process. Nevertheless, as it will be
demonstrated later, current SSE algorithms implemented in commercial diagnostic devices
do not meet these requirements, as they need human intervention to double-check the
diagnostic due to the lack of reliability. The reliability is further reduced when the motor
works in the presence of load oscillations and is fed by a frequency converter, the latter
condition becoming more and more common in certain industries (e.g., water supply
facilities). Moreover, it will also be shown that even those techniques that are able to
provide a very accurate speed estimation and to be compatible with MCSA, also need the
intervention of an expert to determine some of their initial parameters. Therefore, academia
has yet to provide the modern industry with high-precision and automatic SSE techniques
that can serve as the cornerstone for the development of more reliable continuous condition
monitoring systems based on MCSA.

3. Methods Based on the Fundamental Model

In this section, FMB methods are described, reviewing both the two most common
techniques (Sections 3.1 and 3.2), and their respective improvements through the use of
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Artificial Intelligence (AI) (Section 3.3). Nevertheless, the key point, once the methods are
reviewed, is to analyze their suitability for their use in IM diagnosis via MCSA (Section 3.4).

FMB methods describe the machine assuming a sinusoidal distribution of the air-gap
flux (spatial harmonics of a higher order than the fundamental are neglected) and mainly
using the d-q axes as the reference system. An open-loop scheme, depicted in Figure 2a, is
their simple way of implementation: the model outputs the speed (among other variables)
using as inputs voltages and currents. However, this open loop model does not take into
account the variations in parameters that occur during normal machine operation, such
as the change in stator resistance with temperature [84]. Hence, as the model parameters
remain constant but not the machine ones, there are deviations between the estimated speed
and the actual one. This problem can be mitigated using closed-loop schemes (Figure 2b)
where error signals between measured and estimated magnitudes are used to adapt the
response and/or the parameters of the model. Despite the variety of closed-loop schemes
that exist, they can be subdivided into: Model Reference Adaptive Systems (MRASs),
observer schemes and schemes that incorporate AI.

Within the second group, there are different types of observers such as Sliding Mode
Observer [48], Luenberger Observer [49], or observers based on the Extended Kalman Filter
(EKF) [50–57]. Although with different characteristics from the control point of view (SMO
and LO have better parameter robustness, dynamic performance and low-speed operation,
while EKF has the best noise immunity [58]), their advantages and disadvantages regarding
their implementation in online diagnosis via MCSA are very similar (pros and cons later
analyzed). Moreover, in high-speed steady-state operation, which is the range where
MCSA is applied, the three observers exhibit very similar accuracy (relative error of 0.2% at
1500 rpm: perform similarly in the MCSA operation zone). Therefore, since the aim of this
paper is not to review in detail each of the observer schemes, but to present their general
characteristics and then analyze their compatibility with MCSA, only the EKF will be used
as an example. The reasons behind this selection is that this type of scheme is one of the
most used in the problem of speed estimation in the induction motor, thanks to its ability
to deal with model uncertainties, measurement noise and its nonlinearity.

(a)

(b)

Figure 2. (a) Open-loop model and (b) a traditional scheme for a closed-loop MRAS.

3.1. Model Reference Adaptive Systems

MRASs are schemes that consist of a reference model, an adaptive model and an
adjustment mechanism (Figure 2b). Reference and adaptive models estimate the same
intermediate output but from different inputs. The desired magnitude to be estimated,
in this case speed, is an input of the adaptive model, but not of the reference model. Finally,
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speed is estimated by minimizing the error between the intermediate outputs through
a controller.

The first MRAS for SSE used the rotor flux as the error function and was presented by
Tamai et al. [37] in 1985. However, it was complex, highly sensitive to machine parameter
variations and unstable under certain conditions. On the one hand, complexity was mainly
addressed in [38] (1992, Schauder) through a simplified and modified version of Tamai’s
work that rapidly became popular for its ease of implementation. On the other hand,
sensitivity to parameter variations and instability were addressed through the use of
other error functions such as back-EMF [39], reactive power [40], stator current [41] or
fictional quantities [42]. Two excellent and wider reviews on these different MRAS schemes
were conducted in [1,43]. From these works, it can be concluded that classical reactive
power-error-based MRAS schemes are the best to provide insensitivity to stator resistance
variations, while classical fictional quantities-error-based MRAS schemes are a better option
to provide stability in all zones of operation. In this regard, providing MRAS schemes that
combine both qualities has been an aim of academia in recent years [44–46]. Finally, other
authors have focused their research in reducing the computational time by replacing the PI
controller with other structures [47].

3.2. Extended Kalman Filter Observer

An observer scheme is a dynamic structure that uses a model of the real system (e.g.,
IM) to estimate internal/no-measurable variables (e.g., flux, speed, position, etc.) from
measurable inputs/outputs (e.g., stator currents and voltages). In the case of the EKF,
the machine is modeled as a non-linear 5th-order system, where the mechanical speed is
regarded as an additional state variable. Using this system, the EKF applies a two-stage
recursive algorithm with a stochastic approach that accounts for the noise in the system,
regarded as a Gaussian white noise environment. Then, in the first stage of the algorithm,
the state variables are predicted, while in the second stage (filtering stage), the predicted
variables are corrected.

One of the first successful applications of the EKF observer for SSE in IM was presented
by Kim et al. in 1994 [50]. Since then, different approaches have been presented to
increase speed accuracy. In [51], the problem was addressed from the perspective of
improving the correct choice of noise covariance and weight matrices, while in [52] from
the perspective of simultaneous estimation of speed and rotor resistance variations. Finally,
in [53], the approach was based on using an observer that does not use any linearization:
the UKF. Using this observer, the authors stated that it was possible to obtain better results
than using the EKF, especially in low-cost applications. However, this claim has been
recently disputed in [54]. In this study, a comprehensive comparison of both methods is
done under challenging conditions. It is shown that while equal in terms of performance,
EKF is superior in terms of computational burdens and therefore a better choice for IM
estimation problems. Yet, it is still debated which may be the best observer for the IM
speed estimation problem. In this regard, works continue to be published where modified
versions of the EKF are proposed to deal with the classical problems of choosing the noise
covariance matrices and increasing the robustness against parameter variations [55–57].

3.3. Artificial Intelligence

In the early 2000s, AI techniques emerged as complementary tools for MRAS and EKF
closed-loop schemes aimed to overcome three of their major problems: complexity of non-
linear mathematical models, instability and parameter compensation [80]. Among them,
the most used for these purposes are: Artificial Neural Networks [9,10,12] (ANNs), Fuzzy
Logic [13,15] (FL) and Genetic Algorithms [16,17] (GAs).

Having the role of complementary tools, these techniques are used to replace parts
of closed loop schemes in order to obtain a better performance in the estimation process.
For example, in [9], an ANN system replaced the adjustment mechanism of a classic MRAS
scheme for a more robust behavior against machine parameter variations, while in [10],
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another ANN system replaced the adaptive mathematical model to improve stability in
the four quadrants of operation. In [11], the approach was to use two kinds of ANN
simultaneously: one for rotor speed estimation and the other for rotor resistance. In [12],
different training algorithms for an ANN that replaces the flux estimator of a MRAS
scheme were compared. In [13], a FL system replaced the adjustment mechanism of an
MRAS scheme in order to obtain a synchronous speed estimator unaffected by variations
in temperature. In [14], an adaptive supervisory sliding fuzzy cerebellar model is used as a
speed controller in order to maintain the speed error within predefined boundaries. In [15],
an FL control mechanism was used for stator resistance adaptation in order to improve
speed estimation. In [16,17], GAs were used to optimize the right choice of covariance
filters matrices so as to enhance dynamic performance of EKF speed estimators. However,
although these techniques have been proved to be a good tool to minimize the effects of
parameter variations, their larger computational time and their need for training (ANN)
can be a drawback in industrial applications.

3.4. Methods Based on the Fundamental Model in Online Diagnosis

Since the early nineties, all efforts have been put into developing FMB speed estimation
techniques for sensorless control. No specific research has been done on developing these
methods for diagnostic procedures. This may be due to the fact that the requirements
of MCSA and FMB techniques do not fit together easily in an industrial environment,
especially when implemented in portable devices, as explained below.

On the one hand, an MCSA-based commercial portable device needs to be as less
invasive as possible: the diagnostic must be performed online and without interfering
with the production process. MCSA only needs to sense stator currents (sometimes just
one), whereas FMB methods need to sense both stator currents and voltages (inputs of
the reference or adaptive models). In this regard, although current sensing can be done
in a non-invasive way using current clamps, voltage sensing requires the motor to be
stopped in order to couple the probes without electrical hazard. Furthermore, another
inconvenient from an industrial point of view is that in order to carry out the first stage
of parameter identification that these methods require (parameters of the model), it is
necessary to purposely stop the motor or wait for a scheduled stop.

On the other hand, a MCSA diagnostic procedure also needs to be as reliable as
possible. Reliability is greatly improved if an accurate speed estimation algorithm is used.
In FMB methods, the degree of accuracy depends on the degree of robustness against
parameter variations. Over the last few years, there has been a considerably improvement
in this regard. Current methods, such as [46,57], can now obtain maximum errors of only a
few rpm when there are changes in the parameters. However, while this degree of accuracy
may be enough for sensorless control, this might not hold true for MCSA, especially at
low slips and in an industrial environment. As shown in Section 2, only an error of 3 rpm
is enough to issue a false positive. Moreover, if the motor is also working with load
oscillations, the error needed to commit a mistake is even lower. Therefore, it is always
preferable to use an SSE technique that does not depend on any changing parameter.

All the aforementioned drawbacks make FMB methods seemingly unsuitable for
providing the speed information required by MCSA-based portable devices. However,
MCSA-based continuous monitoring systems can open the door to use FMB techniques.
If implemented in the driver, the set formed by the MCSA diagnostic procedure and the
FMB method could use the same voltage and current measurements as the control sys-
tem. Moreover, the system could also take advantage of the natural stops to perform
the parameter identification. If designed as a separate device, it could be installed in the
distribution board, and the same would apply. Yet, it is still necessary to study whether the
accuracy provided by a method like this is enough for its use in high-reliability diagnostic
procedures via MCSA in comparison with other SSE techniques. Furthermore, if comple-
mented with AI, it would also be necessary to address in future comparative research,
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their feasibility in diagnostic devices, as these techniques require previous training and are
computationally intensive.

4. Methods Based on Magnetic Anisotropy

These techniques exploit the effects of magnetic saturation and rotor slotting in IM.
Their main advantage is their total independence to machine parameter variations (stator
resistance, rotor time constant, etc.). This makes them really robust and often preferable
to FMB methods. However, the existence or lack of certain anisotropies, as well as the
intensity with which the effects due to slotting are manifested, depend on the machine
design, which may reduce the applicability. Therefore, in many cases, a preliminary study
of the motor (number of bars, rotor type, depth of slots, etc.) is required.

MAB methods can be classified into two groups: Signal Injection Based methods
and Slotting and Eccentricity Harmonics Based methods. In Section 4.1, only a general
description of SIB methods is given (without going into reviewing its evolution through
time), since these techniques were developed to meet a specific need for control systems
that is not found in diagnosis via MCSA. For this purpose, three excellent papers published
by Holtz [59–61] are used. Conversely, in Section 4.2, the description and review of SaEHB
methods are more in-depth and extensive, given that these techniques are more suitable to
be used in diagnostic procedures in an Industry 4.0 environment, as analyzed in Section 4.3.

4.1. Methods Based on Signal Injection

SIB methods were born in the late 1990s as a response to the unstable performance of
FMB at low or zero stator frequency. At these frequencies, the voltage induced in stator by
rotor currents is practically zero, which makes the model unobservable: it is not possible
to obtain information on rotor dynamics from stator terminals. However, it is possible to
obtain accurate information about rotor positon and rotor speed if the machine magnetic
anisotropies are exploited [59].

Magnetic anisotropies can be caused in an IM mainly by: magnetic saturation of the
fundamental field and the discrete structure of the squirrel cage. However, as Holtz states
in [60], “a rotor may be custom designed so as to exhibit periodic variations within a
fundamental pole pitch of local magnetic or electrical characteristics”. An example of this
could be the periodic variation of the widths of rotor slot openings, the resistance of the
outer conductors or the depths of the rotors bars [60].

The technique consists of adding a high frequency and low amplitude voltage to the
fundamental excitation in order to exploit these anisotropies. As explained by Holtz in [61]:
“The resulting high-frequency currents generate flux linkages that close through the leakage
paths in the stator and the rotor, leaving the mutual flux linkage with the fundamental
wave almost unaffected”. This signal, called carrier, is modulated periodically by the
spatial orientation of the magnetic anisotropies present in the IM. Finally, by extracting and
processing the modulated carrier it is possible to obtain information about the rotor angle
and the rotor speed [61].

The injected signal can be of two types: a revolving signal [62] or an alternating
signal [63]. On the one hand, revolving carriers provide a general view of all machine
positions in order to locate the spatial orientation of a particular machine anisotropy. On the
other hand, alternating carriers provide a high-sensitive view in a specific spatial direction,
which is chosen based on previous knowledge [61]. As an alternative to revolving or
alternating carriers, transient signals injected by PWM switches can be exploited. In words
of Holtz in [61]: “the transient flux components, owing to their high-frequency content,
do not penetrate sufficiently fast through rotor surface to establish mutual flux linkages.
These fluxes, instead, create only separate linkages with the respective stator and rotor
windings, thus contributing to the total leakage flux”. Therefore, as the mutual flux also
remains unaffected, the same principles apply as when external signals are used. Finally,
it is also possible to use AI methods in order to improve some of the drawbacks of the
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technique, such as the need of having to determine, with the help of an expert, the magnetic
fingerprint of each machine [64].

4.2. Methods Based on Slotting and Eccentricity Harmonics

Unlike SIB methods, SaEHB algorithms exploit magnetic anisotropies using the ma-
chine response to the fundamental excitation signal and its low-order harmonics (3rd, 5th,
7th . . . ). Particularly, these techniques track those anisotropies that are due to slotting and
constructional/coupling imbalances such as static or dynamic eccentricity. In a simplified
and brief way, the discrete nature of the squirrel cage bars causes the rotor system to
generate MMF spatial harmonics as well as a periodic variation of the air-gap permeance.
By interacting, they produce air-gap flux components that are responsible for inducing a
set of harmonics in the stator windings called Rotor Slot Harmonics (RSH). When there
are also misalignments between the rotor and the stator, the air-gap permeance is further
modified, giving rise to additional air-gap flux components that can induce, depending
on the characteristic of the misalignment, Static Eccentricity Harmonics (SEH), Dynamic
Eccentricity Harmonics (DEH) or Mixed Eccentricity Harmonics (MEH). The relationship
between the frequencies of these harmonics in the current stator spectrum and the ma-
chine characteristics has been extensively studied in [85,86] and can be given in a compact
form by:

fh =

[
(kR± nd)

p
(1− s)± ν

]
f0 (2)

fMEH =

[
1± k

(1− s)
p

]
f0 (3)

where k is a natural number 1, 2, 3 . . . , p the number of fundamental pole pairs, s the
slip, ν the order of the stator time harmonic present in the power supply 1, 3, 5 . . . , f0 the
fundamental excitation frequency, R the number of rotor bars, nd = 0 for both SEH and
RSH and nd = 1, 2, 3 . . . for DEH. Finally, when k is equal to one in (3), those harmonics are
known as the Upper Mixed Eccentricity Harmonic (UMEH), positive sign, and the Lower
Mixed Eccentricity Harmonic (LMEH), negative sign.

As can be seen, both equations contain information on motor speed through the slip.
Therefore, what these techniques do is to process the line current in order to determine the
frequency of one or more of these harmonics and then, using (2) or (3), calculate the slip
and with it, the mechanical speed. Finally, among the four sets of harmonics, RSH and
MEH are usually the targets of these algorithms, since they are present in most IM.

The first works where RSH and MEH were used can be traced back to the middle of
the 1980s and the beginning of the 1990s. In 1984, Ishida et al. [65] presented a work where,
knowing the number of rotor bars and using analogue filters and zero cross detection, they
were able to extract the RSH. This method achieved an accuracy of 0.1 Hz and a minimum
operating frequency of 10 Hz. In a later work (Williams et al., 1990, [66]), MEH together
with switched-capacitor filters and phase lock loops were used to estimate the rotor speed.
In this case, no information about precision was provided. These methods laid down the
foundations for the use of RSH and MEH in SSE.

During the 1990s, the accuracy and operating range of these SSE techniques was
improved thanks to the use of digital methods such as FFT. Regarding this, RSH were
first extracted using FFT in steady-state operation and over a wide range of load levels by
A. Ferrah et al., in 1992 [67]. Results showed errors between −10 and 10 rpm when com-
pared to an opto-electrical speed transducer. Furthermore, the speed detector performed
satisfactorily down to 2 Hz and had a time response of 3 s. On the other hand, since the
harmonics being tracked were RSH, the number of rotor slots needed to be known. Trying
to address the problem, they presented a method to determine this parameter from a set of
stator current records at rated frequency and under decreasing load levels. In 1996, a new
improved method with a maximum error of 5 rpm, a time response of 1 s and an operating
range down to 1 Hz was introduced by Hurst and Habetler [68]. In order to locate and
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extract the RSH, MEH and a recursive algorithm were used to ascertain the parameters
R/p and ν.

In FFT techniques, the frequency resolution has a direct relation to signal capture
time: the longer the capture time is, the better the resolution. Nevertheless, in the field of
electric motor control, the length of data records is limited in order to obtain an appropriate
time response. So, since the bases of SSE using FFT were set in [67], the effort was put
in both reducing time response without losing accuracy and extending the method to
transient conditions.

Considering this, in 1996, a study addressing these problems was presented by
Blasco et al [69]. It was stated that even with small data records, it is possible to achieve
good accuracy through interpolation, windowing methods and choosing the appropriate
RSH from the spectrum. The accuracy was less than 0.1 rpm, and the time response less
than 1 s and in occasions much less than 1 s. A transient-state study was also presented.
The results showed that the speed predictor followed the real speed after a delay which
could be determined. Furthermore, two algorithms to detect RSH, where the number of ro-
tor slots per pole and the parameter ν had to be known in advance, were described. In both
methods, the problem about RSH crossing PWM harmonics was addressed. The first one,
based on the detection of one RSH, showed reliability from 50 Hz to 5 Hz. The second one,
based on the detection of two RSH, improved reliability until 2 Hz. Finally, a discussion
about how to generalize the RSH detection for any squirrel cage IM was also presented. It
was stated that the main problem was to know R and ν as they were parameters that were
neither available in the nameplate nor in the motor data-sheet. To work around this issue,
they proposed that the motor/drive manufacturer, who can ascertain these parameters,
sold each particular motor with its particular RSH detector embedded in the drive or,
alternatively, that human operator derived their values through visual inspection of the
frequency spectrum.

Since then, many studies have been published aimed at studying and improving
different aspects of the technique such as: accuracy, real-time response, applicability, new
signal processing methods, computational time and its use in unconventional machines.
For example, in 1998 [70], a speed identifier was proposed with an error of less than 0.6 rpm
and a real-time speed update of less than a sample period. This was achieved by extracting
the RSH via adaptive digital filtering. Years later, in [71,72], the relationship between the
number of rotor slots, the number of pole pairs, the stator winding characteristics and the
presence of RSH and other harmonics under healthy and eccentricity machine conditions
was studied. This led the authors to establish a norm in selecting motors for SSE. In 2006 [4],
an optimal slip estimation algorithm embedded in a diagnostic system using MCSA was
proposed. This algorithm, assuming that the number of rotor slots was known, used broken
bar harmonics, RSH and the Bayesian method of estimation to compute mechanical speed.
The accuracy, in terms of slip frequency average error, was 2.97%. In 2013 [73], in order
to reduce computation time, a novel approach that did not require spectral analysis was
presented. It was based on extracting high order RSH (with previous knowledge of the
number of rotor slots) through demodulating the information captured by an external
search coil. By this method, a maximum speed error of 0.4% was achieved (≈11 rpm).
In 2015 [74], a new RSH-based method to estimate speed in non-stationary conditions was
introduced. The proposed algorithm, assuming that the number of rotor slots was known,
used short time Chirp-Z transform to search the supply frequency and the RSH. In this
case, the maximum deviation found between the estimated and the measured speed using
an optical tachometer was: 0.044% (≈0.7 rpm) for the lab test and 0.163% (≈2.4 rpm) for the
industrial test. In 2016 [75], in order to improve the dynamics of speed estimation, a new
algorithm that combines RSH detection, phase lock loop and AI was presented. In this
work, the number of rotor slots was determined by comparing two current sequences at
different load conditions with a fixed supply frequency. The maximum speed error in
steady-state was found to be 0.083% (≈0.7 rpm). In 2017 [76], MEH was used to estimate the
slip in an online and real-time system for detecting partial broken rotor bars. The harmonics
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were found using a spectral estimator based on Rayleigh quotient theory, achieving a mean
square error of 1.91 × 10−7 when compared to a physical sensor. Finally, in recent years,
an effort has been made to extend SaEHB techniques to multi-phase IMs [77,78].

4.3. Methods Based on Magnetic Anisotropy in Online Diagnosis

SIB methods were born to meet a very specific need for sensorless control: good per-
formance at zero or very low speed. Nevertheless, the most common diagnostic procedures
such as MCSA require the motor to be operating with relatively high speed and load.
Therefore, these SSE techniques are not suitable to be integrated into this type of automatic
fault diagnosis devices, since, outside the low-speed range, the robustness gained does not
compensate for their excessive complexity of implementation.

Conversely, SaEHB methods are a great option for diagnostic algorithms via MCSA,
since they are:

- Accurate: when based on RSH, errors can be less than 0.1 rpm.
- Robust: they do not depend on any time-varying parameter.
- Easy to implement: no need to subject the motor to a signal other than the one

provided by its normal power supply.
- Compatible with MCSA: similar signal processing techniques and speed range.

Despite this, there are some drawbacks that have not been solved yet. On the one
hand, in MEH-based methods, only the number of poles need to be known, which is
a parameter available on the nameplate. This makes them the preferred methods for
commercial diagnostic devices. However, they have a very narrow bandwidth. This means
that they only vary a few fractions of hertz over its normal operating range. Therefore,
a small error in the estimation of their frequencies implies a large error in the estimation
of the speed (see Section 5). On the other hand, RSH-based methods can achieve very
accurate estimates due to their wider operating bandwidth. That is the reason why they are
so popular in academia, as shown in the literature review of previous subsection. However,
these methods need to know the number of rotor slots to work, which is a problem for
industry applications, as motor owners are rarely aware of this parameter. Therefore,
the applicability of the method is dramatically reduced outside the laboratory.

The estimation of the [R/p, ν] is the main limitation to bring this type of algorithms
to industrial scale. However, there is very little research addressing the problem. In fact,
most of the papers about RSH-based algorithms either do not provide any information
on how to obtain those parameters [4,65,66,73,74,78], or propose non-automatic/invasive
methods requiring human visual inspection, which limits their applicability in industrial
environments [67,69,70,75]. Only a few papers have proposed self-commission methods
to ascertain this set [68,79]. For example, in [68], the method relies on a preliminary
speed estimation using the MEH, which, as already stated, is an unreliable source since
small errors in frequency estimation mean big errors in speed. Moreover, there is also the
disadvantage that MEH often do not manifest themselves with sufficient intensity to be
distinguished from the noise level (see Section 5.1.1), being necessary in this case, as the
authors comment, a no-load test to determine the number of rotor slots and the index ν
associated with each RSH (increasing invasiveness). Something similar happens with the
method proposed in [79], where in this case the unreliable source is the preliminary speed
estimation based on nameplate data (see Section 5.2.1).

The unreliability of R/p and ν estimation can lead to misdiagnosing the IM due to the
reasons exposed in Section 2. For example, Table 1 shows the speed and LSH frequency
errors caused by assigning ν = 1 and R/p = 26 to the actual RSH (−1) for different motors
with R/p = 28 working at two different slips. As can be seen, the speed error decreases as
the number of pole pairs increases or the slip decreases. Yet, looking at the error committed
in LSH frequency due to the wrong speed estimation, we find that it is independent of the
number of pole pairs and that the error committed. Moreover, this error is of the same
magnitude that the one necessary to issue a false positive in Figure 1. Therefore, it is not
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only necessary for the method to be non-invasive, but also absolutely accurate to avoid
false negatives and positives during diagnosis in any type of IM.

Table 1. Speed and LSH frequency errors caused by assigning ν = 1 and R/p = 26 to the actual RSH(−1) for different
motors with R/p = 28 working at two different slips.

p = 1, s = 0.01 p = 1, s = 0.03 p = 2, s = 0.01 p = 2, s = 0.03 p = 3, s = 0.01 p = 3, s = 0.03

Speed error (rpm) 2.31 6.92 1.15 3.46 0.76 2.30
LSH error (Hz) 0.08 0.23 0.08 0.23 0.08 0.23

Finally, Table 2 summarizes the compatibility analysis between MCSA and the major
families of SSE methods. From this analysis, it can be concluded that RSH-based methods
are the best option for accurate diagnosis. Nevertheless, there is not yet a method to obtain
R/p and v in a reliable, automatic and non-invasive way. That is precisely what makes RSH
methods currently unsuitable for its use in high-reliability and high-applicability automatic
diagnostic procedures via MCSA, and therefore, an aspect where academia should put
its efforts.

Table 2. Compatibility analysis between MCSA and the major families of SSE methods.

Characteristics
Methods MRAS EKF AI SIB RSH-Based MEH-Based

Only one current sensing x x x x X X
No need for voltage sensing x x x x X X
No need for an additional power supply X X X x X X
Highly accurate estimations (<1 rpm) x x x x X x
High speed as one of the target zones of operation X X X x X X
Insensitive to parameter variations x x X X X X
No need for previous training X X x X X X
No need for parameter estimation x x X x x X
Simple implementation X X X x X X

Compatibility with MCSA Medium Medium Medium Low High High

5. Commercial Devices

In this section, the two industry-leading commercial devices for IM diagnosis are
analyzed. The analysis focuses on the speed-dependent online tests performed by these
devices to detect motor faults. In this regard, Sections 5.1 and 5.2 first describe both
the principles of the SSE algorithm and the diagnostic method (MCSA-based) of each
device, and then analyze their weaknesses relying on the use of theoretical examples
and real industrial cases from a database of measurements belonging to 79 different IM
(Appendix A: industrial motors data), which were taken using a high-resolution DAQ
system (Appendix B: DAQ system) in order to reduce the measurement errors as much
as possible, and thus to be able to focus only on the characteristics of each SSE algorithm.
Finally, in Section 5.3 the results are discussed to highlight possible lines of improvement.

As explained in the following subsections, both commercial devices estimate the speed
to approximately calculate the position in the spectrum of the faulty harmonic frequency, set
a search frequency band around it, and finally calculate the maximum amplitude harmonic
inside. Therefore, one of the key factors for a correct diagnosis is the search window.
Window quality depends directly on the accuracy of the speed estimation. If the estimation
is very accurate, the center of any search window will be very close to the fault harmonic
frequency, which in turn will allow narrowing the band enough to prevent other significant
healthy harmonics from entering it (reducing false positives), while still ensuring that it
will contain the fault harmonic frequency (reducing false negatives). Therefore, as analyzed
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below, since both devices may suffer from wrong speed estimations, their capability to
accurately assess the motor condition is affected.

5.1. EXPLORER 4000

EXP4000 from Megger is a device whose main purpose is to estimate power quality
and efficiency in electrical machines. Yet, as it also allows to evaluate the rotor bars
condition through MCSA, it has become a very popular tool when it comes to diagnosing
this particular fault in induction motors.

The EXP4000 estimates the rotor speed using an algorithm based on detecting the
LMEH in a series of instantaneous signals such as: phase current, current vector, sum of
imaginary powers, angle of impedance, etc. [87,88]. It should be noted that Equation (3)
predicts the frequency of the LMEH (k = 1 − sign) only for the spectrum of the stator cur-
rent. According to [88], for the rest of the magnitudes analyzed by EXP4000, the frequency
of the LMEH is given by f ∗LMEH = f0(1− s)/p. Taking this into account, the bases of the
algorithm are:

In the stator current spectrum, the LMEH is located in a position slightly higher
than (1− 1/p) f0 Hz, which is known if p is also known. Therefore, the algorithm sets a
window whose lower limit is (1− 1/p) f0 Hz, which is the result of making s = 0 in (3),
and whose upper limit is (1− (1− smax)/p) f0 Hz, being smax the slip correspondent to the
maximum expected load (in [88] it is assumed to be smax = 180/nsync). Then, the maximum
peak in the band is recorded assuming it is the LMEH. A similar process is repeated for
each signal considered, but taking into account that, in their spectra, the formula that
predicts the LMEH frequency is f ∗LMEH = f0(1− s)/p. Finally, the low amplitude peaks
are discarded and the speed is estimated as the average of the largest group of estimations
whose predictions coincide within a margin of 2 rpm.

As for the evaluation of rotor bars condition, the EXP4000 relies on localizing and
quantifying the LSH. To do so, using the estimated speed and applying (1), the device
calculates an estimated position for the LSH. Then, it sets a frequency window around this
position and quantifies the maximum peak assuming it is the LSH. Finally, the EXP4000
applies the following default criterion to output a diagnosis: no damage to rotor bars if its
amplitude is below −45 dB, possible damage to one or several bars if it is between −45 dB
and −36 dB, and several broken bars if it is above −36 dB.

5.1.1. Mixed Eccentricity Harmonics: Detectability Problems in Two-Pole Machines

Mixed eccentricity is a problem inherent to any IM. It is caused by inaccuracies in
the manufacturing process and misalignments during the motor-load coupling. Therefore,
MEH are found in almost any IM, which does not mean that they always have a high
amplitude. For example, in new and carefully coupled motors, they are normally only a
few dB (if any) above the noise level. Moreover, the presence of nearby harmonics (not
associated with motor faults) can complicate the detection process, especially, in two-pole
motors (as analyzed below). This particular problem has been studied through the spectral
analysis of 79 industrial motors (motor data can be found in Table A1 of Appendix A).
The results of the analysis are summarized in Figure 3a (UMEH) and Figure 3b (LMEH),
where blue bars represent their amplitudes, and red bars the amplitude of the highest
harmonic found in the band determined by (3) when s is varied from zero to its rated
value. A blue bar completely overlapping the red bar means that the highest harmonic
corresponds to the MEH.
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(a) (b)

(c) (d)

Figure 3. (a) UMEH and (b) LMEH detectability analysis for 79 IM covering a search band from zero to rated slip in the
spectrum of the line current. Example of a two-pole 45 kW IM where: (c) the SIH is the highest harmonic in the search band
defined for the UMEH and LMEH in the line current spectrum and (d) in the search band defined for the LMEH in the
instantaneous power signal.

The analysis shows that in 48.10% of the cases, there is a higher harmonic than the
UMEH in the search band, which for all these cases is the harmonic at f0 + f0/p Hz (speed
independent and placed at the upper limit of the search band). In two-pole machines,
this frequency is 2 f0 Hz (an even multiple of the fundamental), while in four and six-
pole machines it coincides with a non-integer multiple of f0. Theoretically, there should
not be even multiples in the stator line current; however, as no real motor is perfectly
symmetric, the existence of this harmonic is very common. Therefore, this explains why
MEH detection can be especially difficult in two-pole machines. Figure 3c (right) shows
one of these speed-independent harmonics (SIH) belonging to a two-pole 45 kW IM.

Regarding the LMEH, the same detectability problem has been observed with the same
proportion of cases (48.10%) where the LMEH is not the highest harmonic in the search
band. As with the UMEH, the majority of these motors corresponds to two-pole machines.
In this case, the SIH harmonic that is causing problems is placed at 0 Hz (which is the lower
limit of the search band), that is, the DC harmonic. Moreover, it has also been observed that,
even when this component is filtered, for example, subtracting the mean value of the signal,
it is still not possible to locate the LMEH in the line current spectrum, since it is submerged
by the noise floor (see Figure 3c (left)). Yet, if other electrical quantities are analyzed, as the
EXP4000 does, the LMEH may become visible. For instance, Figure 3d shows the spectrum
of the instantaneous power signal of the same two-pole 45 kW IM. In this signal, the LMEH
is expected to be at f ∗LMEH = f0(1− s)/p Hz. As can be seen, the LMEH is now visible.
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Nevertheless, the detectability problem does not disappear since there is still an SIH in the
upper limit of the band.

5.1.2. Mixed Eccentricity Harmonics: Narrow Bandwidth Implications in Rotor Diagnosis

As mentioned in Section 4.3, MEH cover a narrow frequency bandwidth (from no to
full load), which means that small errors in estimating their frequencies (given by (3)), lead
to significant errors in the estimated slip. Therefore, as this slip is used to set the search
window where to find the fault harmonics, the diagnosis reliability is also affected by errors
made in MEH frequency estimation. Next, in order to show more in depth the implications
of harmonic bandwidth, we proceed to analyze the error committed in calculating the LSH
frequency when slip is estimated from a narrow bandwidth harmonic (MEH) and a wide
bandwidth harmonic (RSH).

Combining (1) and (3) with k = 1, LSH frequency can be expressed as a function of
the MEH and fundamental harmonic frequencies:

fLSH = −(1± 2p) f0 ± 2p fMEH (4)

An error in the LSH frequency calculation can come either from a wrong frequency
estimation of the fundamental harmonic or the MEH. Therefore, if the previous equation is
differentiated with respect to these two components and then discretized, we can express
the error committed in the LSH frequency as a function of the errors committed in the
MEH and fundamental harmonic frequencies:{ d fLSH

d f0
= −(1± 2p)

d fLSH
d fMEH

= ±2p
→ ∆ fLSH = −[1± 2p]∆ f0 ± [2p]∆ fMEH (5)

Finally, following the same reasoning, but in this case combining (1) and (2) with k = 1
and nd = 0, we obtain the error committed in LSH frequency as a function of the RSH and
fundamental harmonic frequency errors:

d fLSH
d f0

= −
(

1± 2ν
R/p

)
d fLSH
d fRSH

= 2
R/p

→ ∆ fLSH = −
[

1± 2ν

R/p

]
∆ f0 +

[
2

R/p

]
∆ fRSH (6)

As the number of rotor bars per poles pairs is normally higher than R/p = 14 for
the majority of IM, the maximum coefficient multiplying ∆ fRSH is 2/14 = 0.14, while
the coefficient multiplying ∆ fMEH is much higher and increases with the pole pairs:
2p = 2, 4, 6 . . . Assuming ν = +1, which is the most common case, the maximum ab-
solute value of the coefficient multiplying ∆ f0 for the RSH is: 1 + 2/14 = 1.14, while for
the MEH increases as 1 + 2p = 3, 5, 7 . . . or 1− 2p = 1, 3, 5 . . . Therefore, for the same
frequency error ∆ f0, and the same error estimating the RSH and MEH ∆ fRSH = ∆ fMEH ,
the RSH provides a much more accurate estimation of the LSH frequency. The errors ∆ f0,
∆ fRSH and ∆ fMEH can mainly come from three sources:

1. Harmonic misidentification: the harmonic is confused with another close to it.
2. Harmonic in movement during capture time: the harmonic energy spreads over a

range of frequencies instead of being concentrated in a single peak.
3. Frequency resolution error: the real harmonic frequency is between two FFT consecu-

tive bins.

Sources 1 and 2 can be neglected for the fundamental harmonic, given that it is the
highest harmonic in the spectrum and that its frequency is unlikely to significantly change
in a short time capture (5 to 20 s). As for the MEH, source 1 has already been addressed in
the previous subsection, while source 2 can be neglected if it is also assumed that speed
will not change in a short time period. Therefore, if there is no harmonic misidentification
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and the regime is stable, the frequency resolution can be considered as the only source
of error.

The FFT is a discrete transform calculated at a set of frequencies starting at 0 Hz,
increasing by 1/Tcap Hz (being Tcap the capture time), and ending at half the sampling
frequency. Each of these frequencies analyzed is called a bin. Thus, a harmonic whose real
frequency is between two consecutive bins is assigned to the closest bin, while spreading
part of its energy in the other. This generates the so-called frequency resolution error.
In this regard, the maximum frequency resolution error occurs when the actual harmonic
frequency is found just in the middle of two bins, which corresponds to 1/(2Tcap) Hz.
Figure 4 represents the deviation in LSH frequency (calculated using the absolute value
of each term of (5) and (6), so that both errors add up) when the fundamental harmonic,
the UMEH, the LMEH and the RSH(±1) frequencies are estimated with an error equal
to the maximum frequency resolution error: ∆ f0 = ∆ fRSH = ∆ fMEH = 1/(2Tcap). This
LSH error is quantified for 2p = 2, 2p = 4, 2p = 6 and R/p = 28 (typical number for
IM). For instance, for an industry-standard capture time of 25 s, which corresponds to a
maximum frequency resolution error of 0.02 Hz, the error committed in LSH frequency is,
with respect to 0.02 Hz: of the same order for the RSH(±1); 3, 7, or 11 times bigger for the
LMEH and 5, 9 or 13 times bigger for the UMEH. It should be noted how inaccurate the
estimation of the LSH frequency through MEH could be when compared to a RSH method.

Figure 4. LSH absolute deviation due to the maximum frequency resolution error in RSH, MEH
and f0 .

To show how this error might lead to an erroneous diagnosis, two industrial motors
were analyzed using the EXP4000 (based on the LMEH) and a RSH-based algorithm.
The first is a four-pole 1500 kW IM, while the second a six-pole 800 kW IM. Table 3
summarizes the results for each machine, while Figures 5 and 6 show the RSH-based
algorithm result on the left (applied to the original current captured by the EXP 4000) and
the figure generated by the EXP 4000 on the right (in both cases horizontal lines show
the default limits for healthy and faulty state used by the EXP4000, while the vertical line
shows the frequency at which each algorithm placed the LSH). The differences between
the spectra were due to very small differences in signal processing: the way EXP4000
applied the FFT was not perfectly reproduced when analyzing the current extracted from
the device, since this information ws not provided by the manufacturer. Nevertheless,
since both were practically identical in frequency and amplitude (see the first two rows of
Table 3), the differences in diagnosis could be considered to be caused exclusively by the
differences between the SSE algorithms.



Sensors 2021, 21, 5037 18 of 35

Table 3. Results of the rotor condition analysis for a four-pole 1500 kW IM and for a six-pole 800 kW IM. Frequencies are in
Hz, speeds in rpm and amplitudes in dB.

fres f0,est nest sest fLSH,est fLSH,real fLSH,dev Amp. Diag.

EXP4000 0.039 59.98 1792.2 0.0040 59.501 59.462 0.039 −31.84 Damaged
RSH-based algorithm 0.039 59.98 1791.6 0.0042 59.467 59.462 0.005 −31.99 Damaged

EXP4000 0.036 60.01 1184.7 0.0129 58.463 59.029 0.566 −56.04 Healthy
RSH-based algorithm 0.036 60.01 1190.4 0.0081 59.032 59.029 0.003 −43.46 Damaged

(a) (b)

Figure 5. Rotor condition analysis of a four-pole 1500 kW IM using (a) a RSH-based algorithm and (b) the EXP4000.

(a) (b)

Figure 6. Rotor condition analysis of a six-pole 800 kW IM using (a) a RSH-based algorithm and (b) the EXP4000.

Regarding the difference in diagnosis, the RSH-based algorithm was able to estimate
the LSH frequency very accurately in both motors (Figures 5a and 6a), being the error
committed ( fLSH,dev = 0.005 Hz and fLSH,dev = 0.003 Hz), 7 and 11 times smaller than
the frequency resolution ( fres = 0.039 Hz and fres = 0.036 Hz), thereby issuing a correct
diagnosis. Conversely, the EXP4000 was able to diagnose satisfactorily only the first motor
(Figure 5b): the error fLSH,dev = 0.039 Hz was of the same magnitude as the frequency
resolution fres = 0.039 Hz. As for the second motor, it delivered a false negative (Figure 6b):
in this case, the deviation with respect to the LSH frequency was fLSH,dev = 0.566 Hz
(16 times bigger than the frequency resolution fres = 0.036 Hz). This error was larger
than the one predicted in (5), which meant that there might be an additional source of
error. In this case, it could be a harmonic misidentification, given that the LMEH had an
amplitude above the noise level of less than 6 dB in the line current spectrum. Moreover, it
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should be noted that the 0.566 Hz deviation only corresponded to an error of 0.09 Hz in the
MEH frequency estimation, which showed how unreliable a MEH method could be.

Finally, in the signals where the LMEH had a frequency of f ∗LMEH = f0(1− s)/p (as
the instantaneous power signal), the error in LSH frequency was expressed as:

∆ fLSH = −[1]∆ f0 + [2p]∆ f ∗LMEH (7)

As seen, when compared to (5) and for the same frequency resolution error, the devia-
tion caused by the fundamental frequency was always equal or inferior, while the deviation
caused by the LMEH frequency was the same. This improved LSH frequency estimation a
bit, since, according to [88], EXP4000 uses several signals where LMEH has a frequency of
f0(1− s)/p Hz. However, the coefficients of (7) were still further from those given by (6).

5.2. MCEMAX

MCEMAX is a device from PdMA that conducts three online speed-dependent tests
to diagnose rotor asymmetries and eccentricities in an IM: Demodulation Test (DT), Rotor
Evaluation Test (RET), and Eccentricity Test (ET). The first is used to estimate the speed,
while the others are used to identify, respectively, rotor electrical asymmetries (such as bars
breakage) and rotor-stator misalignments.

During the DT, the rotor speed information is extracted from two slip dependent har-
monics related to bars breakage and mixed eccentricity [89]. In the spectrum of the demod-
ulated current, they appear respectively, at f Demod

BBH = 2s f0 Hz and f Demod
MEH = f0(1− s)/p Hz.

In order to extract their frequencies, a track and find algorithm is performed. Finally,
slips and speeds are calculated using the above formulas. The bases of the track and find
algorithm are:

A preliminary speed estimation is carried out using nameplate data and current level.
Then, with this estimation, f Demod

BBH and f Demod
MEH are calculated in order to set around each

one a frequency band of ±0.3 and ±0.12 Hz, respectively (the rationale for using these
fixed limits and not others is not disclosed by the company). Finally, the highest peak
within each frequency band is identified. If one peak is below the noise level or speeds do
not match, MCEMAX asks the user to estimate speed manually. If both peaks are above
noise level and both speeds match, the MCEMAX considers this speed as valid.

Once the speed is estimated, either by the DT or the preliminary estimation, the MCE-
MAX can assess motor condition via MCSA. Using the RET, it tries to find the LSH in
the line current spectrum to assess rotor health. Once this harmonic is identified, if its
amplitude exceeds the limit bands set by the manufacturer (first alarm band from −48 dB
to −42 dB, second from −42 dB to −36 dB), the device warns the user about a possible
damage to rotor bars. Finally, through the ET, the MCEMAX tries to track and find the
SEH. In particular, it focuses on the amplitude of those associated with ν = ±1 and ν = ±3
in (2). In this case, the criterion used is to consider that an eccentricity problem exists if
their amplitudes are 20 dB above the noise level.

5.2.1. Implications of Nameplate-Based Approximations

In nameplate-based methods, speed is estimated through linearization of the current-
speed curve using two sets of points: [IN , nN ]− [I0, nsync]. As the no-load current cannot
be neglected in IM (0.9IN > I0 > 0.20IN), it has to be estimated, thus being the first source
of error. Moreover, for motors with rated power >1 kW, a maximum tolerance of ±20% is
allowed on the nameplate rated slip [90,91]. If this is added to the effects of degradation
due to use, we have that the rated operation point can be quite far from the one stated on
the nameplate. Therefore, making a speed estimation from nameplate values may lead to
set frequency bands not containing the harmonics sought, which for the MCEMAX are:
the Broken Bars Harmonic (BBH) and the MEH. To study this problem in the 79 industrial
motors, the MCEMAX algorithm has been replicated.
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Preliminary slip estimation is carried out using the following formula:

spre =
IL
IN
· sN · kexp (8)

where IL and IN are, respectively, the operating and rated current, sN the rated slip and kexp
an experimental factor that allows to obtain very similar results to those of the MCEMAX.
Then, using this slip, f Demod

BBH and f Demod
MEH are calculated according to Section 5.2. Finally,

a frequency band of ±0.3 Hz for the BBH and ±0.12 Hz for the MEH is set, just as
MCEMAX does.

Using this algorithm, the actual frequency of the BBH remained outside the search
window in 36.71 % of the cases, while the actual frequency of the MEH did so in 32.91% of
the cases. Figure 7a shows one of the cases where the BBH remained outside the search
band in a four-pole 37 kW IM, with 0.02 rated slip and operating at 87% of the rated current,
while Figure 7b shows one of the cases where the MEH is the one that remained outside the
search band in a two-pole 45 kW IM, with 0.01 rated slip and operating at 75% of the rated
current. Therefore, for the motors analyzed, the device would ask the user for a manual
estimation in a considerable number of times, thereby losing its automatic characteristic
and leaving the speed estimation quality up to the user’s ability. Finally, if the user tries to
visually identify the MEH and BBH, they might not appear as prominent peaks like the
ones depicted in Figure 7, and besides, a prominent peak in that area might be caused by
another harmonic (as discussed below).

(a) (b)

Figure 7. Spectrum of the demodulated current of: (a) a four-pole 37 kW IM and (b) a two-pole 45 kW IM, with the search
windows established by the MCEMAX for the broken bars harmonic (left) and mixed-eccentricity harmonic (right).

5.2.2. Broken Bars Harmonic: Detectability Problems

The amplitude of the BBH that appears in the spectrum of the demodulated current
(used by MCEMAX, together with MEH, to estimate the speed) is related to the amplitude
of the harmonics predicted by Equation (1) (with k = 1) in the line current spectrum
(sideband harmonics). However, this relationship is complex, as it depends on both the
constructional parameters of the machine and the characteristics of the load [92].

In motors that operate with relative high slips, it should be possible to see (if exist) the
sideband harmonics in the line current spectrum with a high enough capture time (10 to
40 s). Yet, in motors that operate with very low slip indexes, it may become impossible to
detect these harmonics for the same capture time, since they can be masked by the spectral
leakage of the fundamental component. Therefore, it is precisely in these cases where the
spectrum of the demodulated current offers a great advantage in comparison to the line
current spectrum thanks to the removal of this component [93]. In this regard, Figure 8a
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shows the line current spectrum of a two-pole 90 kW IM operating at 34% of its rated slip,
where the sideband harmonics are masked by the spectral leakage of the fundamental
component, while Figure 8b shows the spectrum of the demodulated current where the
BBH is clearly visible.

(a)

(b)

Figure 8. Broken bars harmonics in the spectrum of a two-pole 90 kW induction motor operating at
33.6% of its rated slip: (a) stator current and (b) demodulated stator current.

Despite the advantage of removing the fundamental component, the detectability of
the BBH in the spectrum of the demodulated current can still be problematic, for instance,
due to the presence of other nearby harmonics related to load variations or because its
amplitude is below the noise floor. In this regard, the effectiveness of estimating speed
through this harmonic was tested by analyzing the spectrum of the demodulated current
of the 79 industrial motors using two methods. Both of them computed the FFT of the
demodulated current, which was calculated as the absolute value of the analytic signal
~ih(t) = i(t) + j · H(i(t)), where i(t) is the stator current and H the Hilbert transform.
Method 1 employed a track and find algorithm consisting of detecting the maximum peak
in a frequency band that was calculated as described in the previous subsection, while
Method 2 used the same technique but establishing the frequency band around the exact
frequency of the harmonic. The aim of Method 2 was to check if, under the most favorable
conditions (perfect preliminary speed estimation), there were still problems in detecting
the broken bars harmonic.

Table 4 shows the number of motors (as a percentage of the total analyzed) whose
errors with respect to the actual speed were greater than 0.5, 1.5, 2.5, 3.5 and 4.5 rpm. As can
be seen, Method 1 (the one similar to MCEMAX) presented more detectability problems
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than Method 2. These problems were mostly due to the nameplate-based approximations,
as discussed previously. Yet, in the most favorable case (Method 2), where the frequency
band covered the broken bars harmonic position, there was also a considerable amount of
motors (18.99%) with a speed error greater than 0.5 rpm. In this regard, Figure 9 shows
examples of real industrial measures, along with the search bands and absolute speed error,
where both Method 1 and 2 failed to provide a correct speed estimation, either for the
presence of a higher harmonic in the search band (Figure 9a,b) or an insufficient amplitude
of the BBH (Figure 9c,d).

Table 4. Number of motors, as a percentage of the total analyzed, whose errors with respect to the
actual speed are greater than 0.5, 1.5, 2.5, 3.5 and 4.5 rpm, when BBH is used to estimate speed.

>0.5 rpm >1.5 rpm >2.5 rpm >3.5 rpm >4.5 rpm

Method 1 45.57% 43.04% 37.97% 35.44% 27.85%
Method 2 18.99% 12.66% 7.59% 6.33% 2.53%

(a) (b)

(c) (d)

Figure 9. Examples where Method 1 and 2 failed to provide a correct speed estimation in the spectrum of the demodulated
current of a: (a) two-pole 248 kW IM at 67.7% of its rated slip, (b) four-pole 90 kW IM at 60.5% of its rated slip, (c) four-pole
55 kW at 61.2% of its rated slip, and (d) a two-pole 139 kW IM at 96.1% of its rated slip.

5.2.3. Mixed Eccentricity Harmonic: Detectability and Accuracy Problems

MCEMAX uses both the BBH and the MEH in the demodulated current spectrum to
estimate the speed (Section 5.2). As with the BBH, the MEH of the demodulated current
spectrum is related to the analogous harmonics in the line current given by Equation (3)
with k = 1. Unlike what happens with the BBH, the spectrum of the demodulated current
does not provide such a relevant advantage at low slips. That is because, in the normal
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spectrum, the MEH is sufficiently separated from the fundamental component so as not to
be masked by its spectral leakage. Thus, the removal of this component does not make a
big difference in MEH detection. Yet, it seems logical that the MCEMAX algorithm uses
the same spectrum for both MEH and BBH in order to save computational effort.

Since the fundamental component does not influence MEH detectability, the problems
may be due to: a search window not covering the actual MEH frequency, the presence
of other nearby harmonic with higher amplitude or an MEH amplitude below the noise
level. The first problem has already been addressed in Section 5.2.1. As for the second, it
was found in Section 5.1.1 that the most problematic harmonics that can cause a misiden-
tification are the ones placed at f0(1± 1/p) Hz in the line current spectrum, particularly,
in two-pole machines. In the spectrum of the demodulated current, these harmonics are
shifted to f0/p, thereby being also close to f Demod

MEH = f0(1− s)/p Hz. However, unlike
the EXP4000 algorithm, the MCEMAX uses a frequency band of ±0.12 Hz centered in
a preliminary frequency estimation, instead of a search band covering the range from
zero to the expected full-load slip. Then, it is less likely that the band will cover the har-
monic at f0/p. In fact, using the replicated algorithm, it was found that the search band
covered this SIH in only 8.86% of the cases and that all belonged to four- and six-pole
machines, where the SIH has a very low amplitude. Therefore, detectability problems
will be mostly related to an insufficient amplitude of MEH and/or the presence of load
oscillations/imbalances harmonics.

Table 5 shows the number of motors (as a percentage of the total analyzed) whose
errors with respect to the actual speed were greater than 0.5, 1.5, 2.5, 3.5 and 4.5 rpm.
As can be seen, the number of wrong speed estimations increased when compared to BBH
(Table 4). The increase was due to both a higher number of motors with an insufficient
amplitude of MEH and the fact that this harmonic had a narrower bandwidth. Following a
similar reasoning as in Section 5.1.2, the speed errors as a function of the errors committed
in estimating MEH or BBH frequencies in the spectrum of the demodulated current were:{

∆n =
[

60
p

]
∆ f0 −

[
30
p

]
∆ f Demod

BBH

∆n = [0]∆ f0 − [60]∆ f Demod
MEH

(9)

Unlike what happens with MEH, the speed estimation through BBH was not inde-
pendent of f0 error. Yet, as the fundamental frequency tended to be very stable and it was
easy to detect, the error committed in estimating it is normally very low when compared to
the ones committed with the BBH and the MEH. Therefore, neglecting ∆ f0, assuming the
same frequency error and for a six-pole machine, the error committed in speed could be
six times larger when using the MEH, thereby leading to a mismatch in speed estimations,
and therefore, to user intervention, even when both peaks were detected.

Table 5. Number of motors, as a percentage of the total analyzed, whose errors with respect to the
actual speed are greater than 0.5, 1.5, 2.5, 3.5 and 4.5 rpm, when MEH is used to estimate speed.

>0.5 rpm >1.5 rpm >2.5 rpm >3.5 rpm >4.5 rpm

Method 1 50.63% 44.30% 41.77% 40.51% 39.24%
Method 2 29.11% 25.32% 24.05% 22.78% 17.72%

5.2.4. Diagnosing with Static Eccentricity Harmonics

Regarding motor eccentricity, the problem relies on using SEH to diagnose (frequencies
given by (2) making nd = 0). These harmonics depend on the number of rotor bars (R).
Therefore, three scenarios are possible. If R and speed are known, which is not usual,
MCEMAX automatically locates the SEH and performs the diagnosis as explained in
Section 5.2. If R is known but not speed, MCEMAX asks the user to manually choose
the highest peak in the spectrum to the left of (R/p− 1) f0 Hz as the SEH(−1). Then,
MCEMAX automatically locates the rest of SEH and estimates the speed from this set.
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Finally, if R is not known, the MCEMAX has a feature to estimate this parameter as long as
the speed has been previously estimated either by DT or other means. This feature consists
of a manual assistant where the user has to choose a candidate to be the SEH(−1). Next,
alleged peaks SEH(+1) and SEH(±3) are automatically detected. Then, the user has to check
if the amplitudes and layout of the set is similar to the typical adopted by SEH to finally
estimate the number of rotor bars.

This approach has several problems: it is not automatic, requires an advanced knowl-
edge of SEH distribution, and it may easily lead to wrong estimations of R. To illustrate
the latter, Figure 10 shows the spectrum of a six-pole 132 kW IM. In it, instead of a set of ±1
and ±3 harmonics where the −1 is the one of highest amplitude (which is a common but
not always true assumption when identifying RSH or SEH), what we have is a set of −1,
+3 and +5 where +3 is the one of highest amplitude. Hence, the user could identify the +3
as the −1, and therefore, estimate the number of bars as 54 instead of the actual 42 bars.
That is the reason why the manufacturer asks the owner to verify this number through the
motor provider or motor workshop. Yet, as this is not always possible, the applicability of
the test is reduced.

Figure 10. RSH layout in the stator current spectrum of a six-pole 132 kW IM.

5.3. Discussion and Lines of Improvement

Regarding MCEMAX, two main drawbacks has been identified in their SSE algorithm.
The first, found in the initial stage of its SSE algorithm, is the error made in estimating the
center of the band in which the MEH and BBH are sought. This error is mainly due to
the no-load current and the fact of assuming as valid the nameplate rated speed (where
the norm allows a tolerance in slip up to 20%). This, along with the bands used for each
harmonic, causes that, for the 79 industrial motors analyzed, the BBH is outside the search
window in 36.71% of the cases, while the MEH in 32.91%. The second drawback, related to
detectability and accuracy, is found in the last stage of the algorithm. On the one hand, it
has been proved that, even in the case of the band covering the BBH or MEH frequency,
their detection can still be problematic, since they can be submerged by the noise floor or
be confused with other healthy state harmonics caused, for example, by load oscillations.
In particular, the speed error has been higher than 0.5 rpm in 18.99% of the cases for the
BBH, and in 29.11% of the cases for the MEH. On the other hand, it has also been analyzed
theoretically the disparity between the errors in speed estimation when using the BBH and
the MEH of the demodulated current. The analysis has shown that the MEH speed error
can be from two times (two-pole machine) to eight times (eight-pole machine) larger than
the BBH for the same resolution error, which means that, even if both peaks are detected,
the MCEMAX could ask for user intervention.

The first problem can be mitigated without changing the basis of the algorithm by
making the search bands of each harmonic proportional to their bandwidths. MEH and
BBH bandwidth are, respectively, s f0/p and 2s f0, that is, the BBH bandwidth is 2p times
bigger than the MEH one. Then, if we assumed a fixed search band for the MEH of
±0.12 Hz, the BBH window should have an amplitude of ±0.12 · p Hz. Applying this
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change to the replicated MCEMAX algorithm, the percentage of cases where the BBH
remains outside the search window is reduced from 36.71% to 32.91%, therefore, being
equal to that of the MEH.

As for the EXP4000, two main drawbacks has also been identified. The first is related
to LMEH detectability in the search band covering from zero to the full-load expected slip.
It has been shown in Section 5.1.1 that there is a high-amplitude SIH in two-pole machine
placed at 0 Hz (line current) or f0 Hz (current vector, instantaneous power. . . ) that reduces
LMEH detection. Two possible solutions can be applied to avoid this harmonic: to displace
the band or to filter the SIH. The first solution requires a good enough frequency resolution
so as not to lose too much detectability range. For example, a two-pole high-power IM,
where rated slip can be as low as 0.5%, fed at 40 Hz gives us a MEH frequency bandwidth
of 0.2 Hz. This means that a search band displacement of only 0.1 Hz (the frequency
resolution of a 10 s record) would translate into losing 50% of the detectability range. The
second solution, requires the filter to be as sharp as possible for the same reasons, thereby
complicating the algorithm. Yet, even in the case of this SIH being filtered or not included in
the search band, there might still be detection problems caused by an insufficient amplitude
of the LMEH or the presence of nearby harmonics as in the case of MCEMAX. The second
drawback is related to LMEH accuracy. As discussed in Section 5.1.2, small errors in
estimating LMEH lead to large errors in LSH frequency, and therefore, to the possibility of
issuing wrong diagnosis.

As discussed along the section, both devices suffer from detectability and accuracy
issues due to the harmonics they use. This might be improved if RSH were used instead,
since they appear at higher frequencies (far from other high-amplitude harmonics) and
since they have a wider bandwidth (better accuracy). In this regard, three RSH-based
algorithms has been tested with the data of the 79 industrial motors so as to compare their
performance with the MCEMAX and EXP4000 alike algorithms. These algorithms are:

1- RSH-based algorithm using a search band covering from s = 0 to s = sN .
2- RSH-based algorithm equal to 1 but displacing the band 0.5 Hz so as not to cover the

harmonic at (n · f0).
3- RSH-based algorithm using a search band centered in a preliminary frequency es-

timation using nameplate data. The band amplitude is proportional to that of the
MCEMAX for the MEH (±0.12 Hz).

4- The replicated MCEMAX algorithm. A speed match is considered if the difference
between BBH and MEH speeds are less than 0.5 rpm.

5- LMEH-based algorithm using a search band covering from s = 0 to s = sN . Speed is
obtained as the weighted average of the ones extracted from the spectrum of the line
current and the absolute value of the current vector (similar to EXP4000).

Table 6 summarizes the results of this analysis. As can be seen, the RSH-based
algorithms (Alg. 1, Alg. 2 and Alg.3), where the number of rotor bars is already known,
outperforms the MCEMAX-like (Alg. 4) and EXP4000-like (Alg. 5). Despite the clear
advantage of using RSH algorithms for SSE, the current lack of a method to obtain the
number of rotor bars in an automatic, online, and reliable way prevents its use in industrial
devices such as MCEMAX or EXP4000.

Finally, it is fair to mention that, despite the weaknesses highlighted in this section,
MCEMAX and EXP4000 are still powerful and user-friendly tools that can be useful in
certain conditions to assess rotor bars or eccentricity, as demonstrated by their wide use
in industry.

Table 6. Number of motors, as a percentage of the total analyzed, whose errors with respect to the
actual speed are greater than 0.5 rpm for 5 different algorithms.

Alg. 1 Alg. 2 Alg. 3 Alg. 4 Alg. 5

Error > 0.5 rpm 21.52% 5.06% 36.71% 65.82% 51.90%



Sensors 2021, 21, 5037 26 of 35

6. Conclusions

In the field of induction motor diagnosis via MCSA, even if some papers have men-
tioned the necessity of accurate SSE, this is the first to highlight and analyze its importance,
especially for the modern industry. The analysis presented in this paper is meant to achieve
a large consensus on how important it is to have accurate speed information in order to
reduce both false positives and negatives. Moreover, to date, there is no research that
has gone into an in-depth assessment of the problems and challenges behind obtaining
a method to achieve an accurate and automatic speed estimation that is valid for any
motor. This is a key step towards Industry 4.0. In this regard, the paper fills this gap for
the first time by investigating the major families of SSE techniques, which were mainly
conceived for sensorless control, from the perspective of its application in the diagnosis of
the induction motor, showing the lacks that yet remain unsolved. In addition, the investi-
gation is enhanced with the analysis, supported by a database of measurements belonging
to 79 different induction motors, of the SSE algorithms of the two leading commercial
devices highlighting their weaknesses and lines of improvements. From those analyses, it
is concluded that:

- FMB methods are apparently not the most suitable for portable devices, since they are
invasive due to the need of voltage sensing and a first stage of parameter identification.
However, they can be a good option for a continuous monitoring system, since,
if implemented in the driver, the set formed by the MCSA diagnostic procedure and
FMB method could use the same voltages and current measurements than the control
system, as well as take advantage of the natural stops for the parameter identification.
Nevertheless, further research is still necessary in order to study whether the accuracy
provided by a method like this is enough for its use in high-reliability diagnostic
procedures via MCSA.

- SIB methods introduce excessive complexity either for a portable device or for a con-
tinuous monitoring system. The complexity is only compensated by their performance
at low or zero speed, which is not the range where MCSA is used. Thus, it can be
discarded as a promising candidate for SSE in online diagnosis via MCSA.

- SaEHB are the best option for continuous or occasional monitoring due to its com-
patibility with MCSA in terms of accuracy, robustness, ease of implementation and
independence to parameter variations. Among them, MEH-based methods are pre-
ferred in industry since they only depend on the number of pole pairs, which is a
parameter available on the nameplate. As a counterpart, they provide low accuracy
due to the narrow bandwidth of these harmonics. Conversely, RSH-based methods
are preferred in academy since they provide higher accuracy, being the drawback in
this case its reduced applicability due to the need of knowing the number of rotor
slots, which is a parameter rarely known by motor owners.

- Current SaEHB techniques used in commercial devices do not provide reliability in
a considerable amount of cases. On the one hand, EXP4000 has the main problem
of using MEH, which do not provide enough accuracy due to its narrow bandwidth
and the difficulty of being detected, particularly in two-pole machines. On the other
hand, MCEMAX uses the BBH and MEH of the demodulated current. In this case,
the major drawback is that to locate these harmonics, it uses an algorithm that depends
on a preliminary speed estimation whose accuracy is subjected to the magnitude of
the no-load current and the consistency between nameplate data and actual values.
Nevertheless, detection difficulties also arise in these two harmonics, and besides, their
different speed estimation errors may generate inconsistencies, leading the device to
ask for a human check.

Thus, commercial diagnostic systems still need a reliable SSE algorithm. According to
scientific literature, RSH-based methods are the ones that can provide the highest accuracy
and reliability due to its wider bandwidth and ease of detection. Nevertheless, they lack of
a general and non-invasive method to automatically determine the number of rotor slots
(R) and the order of the time harmonic associated to each RSH (ν). This prevents them
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from being efficiently integrated into Industry 4.0 smart diagnostic systems. Therefore,
the authors conclude that, despite SSE techniques have been investigated for a long time
in the field of controlled AC drives, the scientific community has yet to provide a precise,
automatic and general method that helps to achieve a highly reliable MCSA-based online
condition monitoring system for the modern industry.
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Abbreviations and Formula Nomenclature
The following abbreviations and formula nomenclature are used in this manuscript:

SSE Sensorless Speed Estimation
MCSA Motor Current Signature Analysis
IM Induction Motor/s
FFT Fast Fourier Transform
FMB Fundamental Model-Based
MRAS Model Reference Adaptive System/s
EKF Extended Kalman Filter
AI Artificial Intelligence
ANN Artificial Neural Network/s
FL Fuzzy Logic
GA Genetic Algorithm/s
MAB Magnetic Anisotropy-Based
SIB Signal Injection-Based
SaEHB Slotting and Eccentricity Harmonics-Based
USH Upper Sideband Harmonic
LSH Lower Sideband Harmonic
RSH Rotor Slot Harmonic/s
SEH Static Eccentricity Harmonic/s
DEH Dynamic Eccentricity Harmonic/s
MEH Mixed Eccentricity Harmonic/s
LMEH Lower Mixed Eccentricity Harmonic
UMEH Upper Mixed Eccentricity Harmonic
BBH Broken Bars Harmonic
SIH Speed Independent Harmonic
DT Demodulation Test
RET Rotor Evaluation Test
ET Eccentricity Test
n Speed
nsync Synchronous speed
nN Nominal speed
fMEH Mixed Eccentricity Harmonic/s frequency in the spectrum of the stator current
f ∗LMEH Lower Mixed Eccentricity Harmonic frequency in the spectrum of quantities other than

stator current (EXP4000)
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f Demod
MEH Mixed Eccentricity Harmonic frequency in the spectrum of the demodulated stator

current (MCEMAX)
fBBH Broken Bar Harmonics frequency in the spectrum of the stator current
f Demod
BBH Broken Bar Harmonic frequency in the spectrum of the demodulated stator current

(MCEMAX)
fLSH Lower Sideband Harmonic frequency in the spectrum of the stator current
fRSH Rotor Slot Harmonic/s frequency in the spectrum of the stator current
fres Frequency resolution
IN Nominal current
I0 No-load current
IL Operating current
kexp Experimental factor to correct slip estimation in MCEMAX alike algorithm
fh Generic harmonic frequency
f0 Fundamental component frequency
p Number of pole pairs
s Slip
R Number of rotor bars
k Positive integer number (1, 2, 3 . . . )
nd Positive integer number (0, 1, 2 . . . )
ν Order of the stator time harmonic present in the power supply (1, 3, 5 . . . )

Appendix A. Industrial Motors Data

This database is the result of several years of consulting work with different types of
industry. As a consequence, there are signals of motors driving vertical/horizontal pumps,
conveyors, compressors, worm gears, shredders, etc. This fact, together with the wide
range of powers and slips, makes the database a robust statistical sample to evaluate the
bases of the algorithms described in this paper.
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Table A1. Industrial motors data.

2-Poles 4-Poles 6-Poles

PN (kW) sN s/sN(%) Fig. PN (kW) sN s/sN(%) Fig. PN (kW) sN s/sN(%) Fig.

1.50 0.047 32.27% 0.75 0.070 3.23% 132.00 0.011 52.45% Figure 10
30.00 0.017 71.34% 0.75 0.070 9.39% 132.00 0.011 49.51%
30.00 0.017 69.81% 0.80 0.040 74.05% 132.00 0.011 52.95%
30.00 0.033 141.56% 0.80 0.040 96.82% 200.00 0.010 47.23%
45.00 0.010 43.23% Figures 3 and 7b 1.10 0.057 100.44% 250.00 0.030 16.41%
55.00 0.013 62.78% 1.10 0.057 10.21% 250.00 0.010 39.05%
63.00 0.033 50.22% 2.20 0.053 79.05% 253.00 0.010 65.79%
90.00 0.010 33.63% Figures 1 and 8 2.98 0.070 24.83% 253.00 0.010 93.75%
90.00 0.033 66.56% 37.00 0.020 53.90% Figure 7a 253.00 0.010 65.96%

110.00 0.007 56.17% 37.00 0.020 44.62% 253.00 0.010 59.46%
112.00 0.033 75.18% 45.00 0.014 36.01% 375.00 0.014 65.72%
112.00 0.033 69.43% 55.00 0.012 61.22% Figure 9c 375.00 0.014 37.98%
112.00 0.033 88.00% 75.00 0.010 62.68% 375.00 0.014 33.60%
112.00 0.033 98.72% 90.00 0.013 24.93% 800.00 0.017 48.82% Figure 6
112.00 0.033 81.50% 90.00 0.015 60.51% Figure 9b
117.00 0.033 69.97% 110.00 0.013 30.25%
132.00 0.007 76.98% 110.00 0.008 73.78%
132.00 0.007 99.54% 110.00 0.008 83.85%
134.00 0.033 62.57% 110.00 0.008 72.16%
134.00 0.033 81.81% 110.00 0.008 100.47%
139.00 0.040 96.08% Figure 9d 160.00 0.013 36.90%
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Table A1. Cont.

2-Poles 4-Poles 6-Poles

PN (kW) sN s/sN(%) Fig. PN (kW) sN s/sN(%) Fig. PN (kW) sN s/sN(%) Fig.

150.00 0.033 79.94% 160.00 0.007 84.36%
171.00 0.017 90.23% 160.00 0.007 91.88%
223.00 0.033 74.69% 160.00 0.007 61.25%
230.00 0.040 86.26% 160.00 0.007 68.10%
231.00 0.033 68.59% 160.00 0.007 39.65%
232.00 0.033 74.96% 300.00 0.010 58.53%
234.00 0.033 88.36% 580.00 0.008 71.90%
239.00 0.028 81.77% 1500.00 0.007 58.57% Figure 5
248.00 0.033 67.73% Figure 9a
248.00 0.033 61.55%
248.00 0.033 65.63%
270.00 0.033 96.27%
270.00 0.033 61.85%
372.00 0.033 44.23%
2200.00 0.012 36.01%
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Appendix B. DAQ System

The measurements of the 79 industrial motors were performed with the following
DAQ system:

• High-resolution oscilloscopes:

– PicoScope 4262:

* Channels: 2.
* Vertical resolution: 16-bit.
* Sampling frequency: 10 MS/s.

– PicoScope 4824:

* Channels: 8.
* Vertical resolution: 12-bit.
* Sampling frequency: 80 MS/s.

• High-precision current probes:

– TA189:

* Measuring range: 30 A.
* Accuracy: 1% of reading ±2 mA.
* Frequency range: DC to 100 kHz.

– TA167:

* Measuring range: 200/2000 A.
* Accuracy (0–200/1500 A): 1% of reading ±100/± 500 mA.
* Accuracy (1500–2000 A): ±5 % of reading.
* Frequency range: DC to 20 kHz.

Regarding the characteristics of the signals, they were always recorded with a mini-
mum capture time of 100 s, at 10 kHz and adjusted scale. Finally, for the analyses performed
on the 79 induction motors in this paper, the signal duration was shorten to 81.9 s, as this is
the maximum recording time allowed by MCEMAX.
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