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Abstract: Deploying wireless sensor networks (WSN) in rural environments such as agricultural
fields may present some challenges that affect the communication between the nodes due to the
vegetation. These challenges must be addressed when implementing precision agriculture (PA)
systems that monitor the fields and estimate irrigation requirements with the gathered data. In this
paper, different WSN deployment configurations for a soil monitoring PA system are studied to
identify the effects of the rural environment on the signal and to identify the key aspects to consider
when designing a PA wireless network. The PA system is described, providing the architecture, the
node design, and the algorithm that determines the irrigation requirements. The testbed includes
different types of vegetation and on-ground, near-ground, and above-ground ESP32 Wi-Fi node
placements. The results of the testbed show high variability in densely vegetated areas. These results
are analyzed to determine the theoretical maximum coverage for acceptable signal quality for each of
the studied configurations. The best coverage was obtained for the near-ground deployment. Lastly,
the aspects of the rural environment and the deployment that affect the signal such as node height,
crop type, foliage density, or the form of irrigation are discussed.

Keywords: WSN deployment; orange orchards; WiFi; rural areas; ESP32; attenuation

1. Introduction

Agriculture is one of the fields in which the number of IoT solutions has increased
the most [1,2]. These solutions consider many parameters that are necessary to improve
and control the monitored crops so as to optimize irrigation and the use of additional
nutrients and fertilizers. Therefore, varied sensors are deployed to monitor the soil; some
aspects of the plants such as the amount of foliage, foliage color, plant height, or stem
width; the amount of available water and water flow through the pipes; and some environ-
mental parameters such as temperature and humidity. According to the type of crop to be
monitored, the design of the IoT system may differ. For citrus plots in the Mediterranean
coast of Spain, nodes may need to monitor soil, the quality, and the amount of water in
the irrigation canals and the environment [3]. Monitoring nodes may also be mounted on
vehicles such as drones or robots [4]. This monitoring process can be performed not only
on the field, but it may also follow the produce to monitor its manufacturing process [5].
Furthermore, instead of just using one communication technology, two different wireless
technologies may be used depending on the required communication distance, such as
utilizing a gateway that receives the data from the sensors using WiFi and forwards it
to the database using 3G. For precision agriculture systems that handle sensitive data,
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security solutions can be introduced to avoid the access of malicious third parties to the
gathered data [6]. Lastly, the decision-making process that uses the monitored information
to determine the actions that the actuators must execute has become easier. Artificial
intelligence (AI) is employed to process the data to provide recommendations and perform
predictions [7]. For the case of intelligent irrigation systems for smart agriculture, data on
temperature and humidity of the air and the soil can be analyzed to determine when to
start and stop irrigation to optimize water usage.

Automating the irrigation schedule is one of the main tasks of the PA systems. This is
often performed with the use of agrometeorological data from meteorological stations that
can be placed far from the fields. The introduction of soil monitoring nodes has led to the
use of soil variables to make scheduling more precise. The water balance formula has been
adjusted with data from soil moisture sensors to implement regulated deficit irrigation
(RDI) strategies [8]. A homogenization of the production was achieved after applying
the RDI strategies with the automatic irrigation system. The Van Genutchen model has
also been utilized by some irrigation scheduling systems to determine moisture usage and
obtain water savings between 56.4% and 90% [9]. Predictive irrigation scheduling systems
have been developed as well, utilizing AI and machine learning techniques. A data-driven
robust model predictive control (DDRMPC) for irrigation needs prediction utilized learning-
based techniques to create an uncertainty set obtained from existing data logs [10]. The
results of applying DDRMPC showed a reduction of 40% in water consumption. Machine
learning has also been employed to calculate the reference evapotranspiration (ETo) of
the crop based on the data from soil moisture sensors, obtaining the best results with
the randomizable filtered classifier technique followed by artificial neural networks [11].
Lastly, performing climate modelling [12] could also be utilized to predict the resource
requirements of a crop.

The lack of energy supplies is another one of the main challenges to consider when
implementing IoT systems for agriculture. Since power supplies are scarce in many
locations in rural areas, powering the IoT devices deployed on the field is generally done
using batteries and solar panels. Therefore, small-sized IoT devices with low energy
consumption are usually employed for both data acquisition and actuator management.
Moreover, low-power protocols can be utilized as well so as to reduce energy consumption
as much as possible [13,14].

Due to the aforementioned reasons, implementing feasible and appropriate solutions
for smart agriculture presents many challenges [15]. However, the amount of data may
not be one of them. The amount of transmitted data for smart agriculture WSN is usually
small, as the monitored parameters usually change at a slow pace. However, the consistent
transmission of the data is necessary. Furthermore, the number of IoT devices deployed
in the field must be minimized with the aim of reducing the cost while guaranteeing
the performance of the system. One of the ways of minimizing the number of nodes
is deploying the nodes at the maximum possible transmission distance for the selected
wireless technology. However, the maximum range between the nodes may vary depending
on the type of crop planted on the monitored field.

The coverage of the IoT devices deployed on the field may vary greatly based on the
selected wireless technology, the height at where the devices are located, and other factors
regarding signal quality such as possible interferences, distance attenuation, absorptions,
reflections, dispersion, or the multipath effect. Therefore, the effective range achieved by
IoT devices deployed at crops can be considerably reduced. It is, therefore, necessary to
know the limitations regarding the range of the devices when implementing a solution for
agriculture so as to design the network according to the characteristics of the environment.
The received signal strength indicator (RSSI) allows obtaining a measure of the quality of
the wireless signal and can be utilized for the localization of the devices [16,17]. Although
there are varied metrics utilized for estimating link quality, RSSI is a good measure when the
focus is on the coverage of a wireless connection and assessing the quality of the link that
can be obtained establishing ranges that indicate if the connection is good or bad. For grass
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fields, the threshold that was established to indicate poor quality links was −90 dBm [18].
Authors in [18] also determined that no conclusion has been reached on whether RSSI or
LQI (link quality indicator) is better than the other, as there are contradictory results and
remarks in the literature. They state that each metric is able to provide information on
some aspects regarding the quality of the link. However, there is no commonly used metric
that is able to provide information on all available aspects regarding link quality unless
it is a newly proposed metric, which has, in turn, a big overhead. Therefore, RSSI can be
considered a good enough metric for the purpose of performing coverage studies.

As there is not a study performed on every type of crop for every deployment ne-
cessity, an identification of the key aspects that influence PA WSN deployments for soil
monitoring purposes would provide useful insights. In this paper, different deployment
configurations for the presented PA system are studied with the focus on orange orchards,
and other types of vegetation with different height and foliage density such as grasslands
and scrub fields. The key aspects that affect a PA WSN design are identified by determining
the effects of the rural environment on the signal. The description of the soil monitoring
nodes, the architecture of the PA system, and the irrigation algorithm that utilizes the
gathered data to estimate irrigation requirements are provided as well. The testbed in-
cludes on-ground, near-ground, and above-ground deployment strategies. Furthermore,
the tests were performed with low-cost ESP32 Wi-Fi nodes placed inside protective cases.
The analysis of the testbed results has been done to determine the theoretical maximum
coverage distance with acceptable signal quality for each of the deployment configura-
tions. Lastly, the challenges presented by the type of vegetation, the foliage density, or the
form of irrigation, as well as factors such as node height, energy consumption, or node
density for PA WSN deployments are discussed. The main contributions of this paper are
summarized as:

• A soil monitoring proposal including an algorithm to determine the irrigation needs
based on FAO recommendations and the sensed data.

• Different deployment strategies for low-cost soil monitoring nodes have been tested
on real environments for three different vegetation types: orange orchards, scrublands,
and grasslands.

• Finally, the key aspects of deployments of soil monitoring nodes and the results
obtained from the performed tests have been discussed.

The rest of the paper is organized as follows. Section 2 presents the related work.
Section 3 describes the materials and methods utilized for this study. The results are
depicted in Section 4. The discussion and challenges are presented in Section 5. Finally,
the conclusion and future work are presented in Section 6.

2. Related Work

WiFi is a widely spread wireless communication technology. Many agricultural
monitoring systems use WiFi for their communication between the different agents of their
architectures, such as the one proposed in [19] by Gerard Rudolph Mendez et al. They
presented a WiFI wireless sensor network for agriculture monitoring where temperature,
humidity light, soil moisture, and water level data are collected by the nodes. Furthermore,
the data were forwarded to a server so they could be accessed later. Therefore, studying
the coverage of WiFi in different agricultural environments is of great interest. Moreover,
Muhammad A. et al. presented in [20] the location estimation of wireless nodes utilizing
signal strength. Urban areas, rural areas, forests, and plantations were the utilized locations,
and the IEEE 802.11 b/g standard was employed. The experiment was repeated five times
and the mean value was obtained. The error rate was obtained for each terrain, resulting in
the minimization of the error between 3 and 18.5 m according to the terrain.

The effects of vegetation on radio signals have been discussed by and analyzed by
other authors. Jose Antonio Gay-Fernández et al. performed in [21] wireless propagation
and path loss modeling for environments with vegetation for the 2.4, 3.5, and 5.5 GHz
frequencies in a peer-to-peer configuration. Tests were performed in different environments,
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where the results showed better propagation models for grasslands followed by forests
and scrublands. However, the authors remarked the importance of vegetation density.
The attenuation caused by the foliage of tropical vegetation for frequencies 2 to 18 GHz
and 26.5 to 40 GHz was assessed by Hairani Maisarah Rahim et al. in [22]. The results
showed that the obtained attenuation depended on the frequency with results varying
from 10.99 dB at 15 GHz to 24.23 dB at 9 GHz. J. Acuña et al. presented in [23] a study
on the interferences caused by vegetation barriers to wireless networks with the aim to
reduce the signal strength at the areas where coverage is not wanted. Several species of
shrubs with different dimensions were studied. Results showed attenuations reaching
10 dB for 2.4 GHz and 21 dB for 5.8 GHz. Leire Azpilicueta et al. performed in [24] a
studio on the propagation of radio waves at the 2.4 GHz band through inhomogeneous
vegetation environments. Measures were simulated in a park environment with grass,
trees, and concrete as the elements that introduce attenuation using ZigBee and Bluetooth
wireless technologies. The experimental measures were performed with Zigbee mote,
which was placed at the trunk of a tree. The results verified that their proposed 3D ray
launching algorithm was good enough for radioplanning in such environments. A model
for radiowave propagation through the foliage of different tree species and locations for
frequencies of 1 to 60 GHz was presented by Jürgen Richter et al. [25]. Results showed
that the estimated RMS error was 8.38 dB compared to the 11.51 dB of the ITU-R 833-3
model. A study of wideband signal propagation from 1 to 60 GHz through different types
of trees was performed by D. L. Ndzi et al. in [26]. The signal power is obtained with an
omnidirectional antenna. Results showed that the signal path depends on the width and
height of the vegetation. A simulation of the effects of vegetation on radiowave propagation
for WSN was performed by Naseer Sabri et al. in [27]. The authors utilized the free space
path loss model and added foliage models to simulate the attenuation. The simulations
were performed for frequencies from 1 to 3 GHz, distances up to 20 m, and heights between
0.5 and 2 m for the receiver and 3.5 m for the transmitter.

The factors that create signal attenuation in wireless transmissions through vegetation
at 1.3, 2, and 11.6 GHz were discussed by Nick Savage et al. [28]. The maximum attenuation
(MA), the nonzero gradient (NZG), and modified exponential decay (MED) were utilized to
model the attenuation caused by vegetation. A wideband channel sounder was utilized to
perform the measures at heights varying from 2.5 to 7.5 m. Results showed that vegetation
density, the measurement geometry, and the state of the leaf are the factors that most
contribute to the attenuation. The 11.6 GHz frequency was the one that presented a greater
attenuation due to the leaves. A study on the radio wave propagation of 433 MHz signals
at potato fields utilizing RSSI measures was performed by John Thelen et al. [29]. Results
showed a communication range of 78 m and advise to place nodes between a 23 m range
when the crop is on its return and a 10 m range when the crop is flowering. Furthermore,
a characterization of vegetation movements on radiowave propagation was performed
by M. H. Hashim et al. in [30]. The measures were taken in an anechoic chamber at 0.9, 2,
12, and 17 GHz with two types of trees and four different settings for wind. The results
showed that the behavior of the signal propagation varied with calm and windy conditions,
but it did not vary much among different windy conditions.

Lastly, other studies have performed different tests of smart sensing deployments on
outdoor environments to determine the effects of different types of obstacles and vegetation
on the received signal. A remote sensing WSN framework for smart city monitoring was
designed by Ala’ Khalifehet al. [31]. Tests were performed using ZigBee in outdoor
locations with varied obstacles. The results showed differences between the coverage
advertised by the manufacturer and the measured signal strength. A communication
protocol was proposed as well to enable the communication between ground nodes and a
UAV. The authors stress the importance of performing preliminary tests before designing
and deploying the network. A smart irrigation system for urban areas that utilized LoRa
was presented by Iván Froiz-Míguez et al. [32]. Air temperature and soil moisture and
temperature were monitored to determine water requirements. The authors modeled the
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campus area with varied obstacles for both 868 and 433 MHz transceivers performing
near-ground and underground communication. The results showed low propagation
losses for the 433 MHz band. Furthermore, sufficient coverage was obtained even for the
worst gateway location. RSSI measures of IEEE 802.15.4 low-cost radio transceivers were
performed by Jan Bauer et al. [33] to determine vegetation growth. Experiments were
performed on wheat fields. Moreover, the effects of different meteorological variables are
studied. The results showed that temperature and absolute humidity are the main factors
that affect the communication. However, other meteorological variables did not present
any influence. Furthermore, ground sensors were strongly affected by vegetation.

In this paper, a PA system that utilizes weather and soil data from low-cost sensors to
calculate irrigation requirements is proposed. Furthermore, we study the RSSI provided by
WiFi APs implemented with ESP32 microcontrollers, which are highly used for agricultural
IoT monitoring applications for different vegetation types and deployment configurations.
The novelty of this study relies on its focus on WSN deployment strategies specific for PA
applications, where different configurations of node placements are tested with vegetation
of varied characteristics, expanding the existing knowledge (see Table 1). Furthermore,
specific challenges to PA wireless networks are discussed.

Table 1. Comparative of testbeds of studies on the effects of vegetation on the wireless signal.

Ref Environments Heights Frequency Transmitter Receiver

Jose Antonio
Gay-Fernández et al. [21]

Forests, scrublands, and
grasslands 0.9, 1.2, and 1.6 m 2.4, 3.5, and 5.5 GHz

Rhode-Schwarz SMR-40
signal generator and an

Electronics EM 6865
wideband antenna

Robde-Schwarz FSH-6
spectrum analyzer

Muhammad A. et al. [20] Urban areas, rural areas,
forests, and plantations - 2.4 GHz - -

Hairani Maisarah
Rahim et al. [22]

Tropical vegetation
foliage 2 m 2–18 GHz and

26.5–40 GHz
Anritsu MG3694C
Signal Generator

Spectrum Master
MS2730T

J. Acuña et al. [23] Shrubs 1.25 m 2.4 and 5.8 GHz
Rohde & Schwarz radio

signal generator
SMR-40

Rhode & Schwarz
FSP-40 spectrum

analyzer

Leire Azpilicueta et al. [24] Park 1 m 2.4 GHz Zigbee mote
Agilent N9912 Field Fox

portable spectrum
analyzer

Jürgen Richter et al. [25] Trees 5–17 m 1–60 GHz - -
Nick Savage et al. [28] Trees 2.5–7.5 m 1.3, 2, and 11.6 GHz Channel sounder Channel sounder

John Thelen et al. [29] Potato crop 0 m 433 MHz Mica2Dot

Mica2 with MIB510
programming board

and an antenna with an
11.7 dB gain

B. Dhanavanthan et al. [34] Cornfields and coconut
gardens. 2 cm, 15 cm, and 1 m 2.4 GHz Agilent N5182A Vector

Signal Generator
Agilent N9010A Vector

Signal Analyzer

Andrew Szajna et al. [35]
Sports facility and a

forested area covered by
snow.

0–130.8 cm 2.45 GHz National Instruments
PXI-5670

National Instruments
PXI-5690 low noise
preamplifier paired

with National
Instruments PXI-5660

RF vector signal
analyzer.

Daihua Wang et al. [36] A plaza, a sidewalk,
and a grassland. 3 cm, 1 m 2.4 GHz RF transceiver working

at 2.4GHz
Agilent N9912A

spectrum analyzer

Weisheng Tang et al. [37] Concrete road, flat grass,
and undulating grass. 5 cm, 50 cm, and 1 m 470 MHz Silicon Labs Si4432

radio frequency chip

MSP430F5438 as the
Microprogramed

Control Unit (MCU)
chip

Seun Sangodoyin et al. [38] Rural flat and hilly
terrains.

10 cm, 20 cm, 50 cm,
and 2 m 3–10 GHz Tektronix AWG 7122c

waveform generator

Agilent DSA91304A
Digital Sampling

Oscilloscope

Amir Torabi et al. [39] Ground plain, yard, and
grass park. 13 cm 315 MHz, 915 MHz,

2.4 GHz - -

Daniel P. Luciani et al. [40] Concrete, grass field
and hallway. 15 cm, 30 cm, and 1 m 2.48 GHz STMicroelectronics

STM32W-RFCKIT Laptop

Hicham Klaina et al. [41] Soil, short and tall grass
fields 20 and 40 cm 868 MHz, 2.4 GHz,

and 5.8 GHz ZigBee nodes ZigBee nodes

Peio Lopez-Iturri et al. [42] Oak and pine tree fields. 1, 2, and 3 m 2.4 GHz - -

D. L. Ndzi et al. [43] Mango and palm
plantations. 1.3, 1.7, 2.2, and 2.6 m 0.4–7.2 GHz Agilent E8267D signal

generator
Agilent E4405B

spectrum analyzer

Jaime Lloret et al. [44] Rural and forest areas. 3 m 2.412–2.472 GHz wireless multisensors
and wireless IP cameras 802.11g access points

Our testbed Orange field, scrubland,
and grassland 0, 0.5, 1 m 2.4 GHz ESP 32 Doit devkit v1 ESP 32 Doit devkit v1
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3. Materials and Methods

This section presents a background on soil monitoring in precision agriculture, the
proposed architecture, the proposed irrigation scheduling algorithm, and the description
of the testbed.

3.1. Soil Monitoring Background

The state of the soil is critical in agriculture. Monitoring known parameters that char-
acterize the soil is key for precision agriculture systems, as they are needed to determine the
amount of water for the irrigation of the crops and to optimize the production. The available
sensors to monitor the characteristics of the soil can perform their measurements through
the physical characteristics of the soil or its chemical characteristics. However, chemical
sensors are not adequate for these systems, as they would require the assistance of a person
to clean, calibrate, and perform the measurement. Therefore, a precision agriculture system
will usually be comprised of sensors that need low maintenance.

Soil quality depends on several aspects, and its degradation is mostly caused by soil
compaction, acidification, and salinization. The salinity, acidity, and water holding capacity
of the soil are some of the most considered aspects when monitoring the state of the soil,
but other factors such as nutrient availability, labile and organic carbon, rooting depth, and
soil structure and texture affect the quality of the soil as well [45].

Most precision agriculture systems focus then on three factors to characterize the soil.
The PH of the soil is measured to determine its acidity or alkalinity. Very acid soils can
lead to deficiencies in nutrient availability despite the addition of fertilizer. Low PH levels
can result in aluminum toxicity leading to poor growth, smaller quantity, and produce size.
Moreover, the persistence of herbicides can be affected by the PH levels as well. Lastly,
microbial activity can be affected as well leading to unhealthy plant conditions.

Soil humidity is measured to determine if the crops are suffering from water stress
due to a lack of water in the soil. High humidity results in root diseases and the waste
of irrigation water. On the other hand, low humidity can cause yield loss and even the
death of the plant. Furthermore, the movement of the water in the soil determines how
the nutrients will reach the plants, whether they are added to the irrigation water or
through other means. The content of clay, sand, and silt of the soil determines its water
holding capacity.

Soil temperature experiments change within the day and throughout the year. Solar
radiation and air temperature are determinant factors on the temperature of the soil.
Soil temperature can affect the chemical and physical properties of the soil. The PH increases
with soil temperatures between 25 and 39 ◦C [46]. The moisture content, salinity, and the
structure and aeration of the soil are affected as well. The organisms and the organic
matter in the soil are influenced by soil temperature, resulting in more soil respiration
between temperatures of 10 and 28 ◦C, an increase in the activity of micro-organisms and
macro-organisms between temperatures from 10 to 24 ◦C, and the decomposition of the
organic matter with temperatures between 2 and 38 ◦C. Furthermore, the water uptake
of the plants gets reduced with high soil temperatures and the nutrient uptake decreases
with low soil temperatures. Lastly, high soil temperatures lead to an improvement in root
growth, whereas low soil temperatures result in a decrease in root growth.

3.2. Architecture Description

Our proposed soil monitoring system is presented in Figure 1. The data acquisition
and transmission are performed with the ESP 32 Devkit v1 node. Although this node
is not an industrial node, the low-cost nodes can also be utilized in realistic agricultural
environments, considering real-time data transmission is not necessary for the proposed
system. Furthermore, the node is placed inside a protective box to avoid damage from
the weather, animals, or machinery. Utilizing low-cost nodes and sensors in precision
agriculture solutions also allows farmers to improve the performance of their crops and
optimize resources without investing large amounts of money, which makes the proposed
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solution more accessible. Temperature is measured with a soil temperature monitoring sen-
sor probe such as the THERM200 [47]. The soil humidity multi-sensor array is comprised
of low-cost soil humidity sensors such as the FS200-SHT10 sensor [48] at depths of 20, 30,
40, and 50 cm in a manner similar to that presented in [49] for the scenario of a sensor buoy.
Lastly, a low-cost soil PH sensor is connected to the node to monitor the PH of the soil as
the MS02 [50]. The probes are inserted in the soil to gather the measurement. These probes
act as a fixing structure to ensure that the box does not move due to the meteorological
conditions, mainly wind and rain, or due to the passing of fauna. Moreover, due to the
general characteristics of citrus orchards, we do not expect high soil erosion, which might
alter the location of the sensor or the generation of disturbances in our measures.

Figure 1. Proposed soil monitoring node for scenarios 1 and 2.

As it is further described in Section 3.4, two scenarios are contemplated, one with the
node placed in an on-ground position and the other with the node located above-ground
at different heights. The tests have been performed considering a deployment strategy
that is focused on the field area, where the nodes are located among the crops both on the
surface of the soil and above the ground, contemplating that the sensors must be buried
into the ground. There are other areas in PA systems such as the canals where the irrigation
water is transported that can be monitored with sensors such as the conductivity sensor
presented in [51]. However, they are not the focus of this paper.

Figure 2 shows the four layers that form the proposed architecture where the ESP32
nodes are located. The ESP32 nodes are located in the lower layer, which have the nec-
essary sensors connected to them to obtain the information from the environment. The
characteristics of the utilized nodes and their antenna are depicted in the specifications of
the nodes in [52,53]. These nodes perform the transmission using the IEEE 802.11 standard,
with a maximum data rate of 150 Mbps in the 2.4 GHz band. Their low cost makes their
use in agricultural systems affordable to farmers. Furthermore, power consumption can
be optimized by programming the nodes to go to sleep mode when measures are not
being taken. Moreover, these applications do not usually record video or transmit data in
real-time, as variations in the state of the crops are slow, resulting in a reduced amount of
data for transmission [3]. In the immediate upper layer, a network of wireless access points
(APs) is available, through which the data are sent to an AP that acts as a gateway to the
Internet. That gateway receives the data from the node and uses 3G to forward the data to
the database. The Internet is in the next layer. Finally, the upper layer is where the data is
stored, and its consultation and treatment of the obtained data is performed. The farmers
can access the data through a web or a mobile interface.
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Figure 2. Architecture.

3.3. Proposed Algorithm

In this subsection, we depict the performance algorithm of the irrigation system.
The presented system determines the irrigation requirements of the fields according to

the weather and the state of the soil. For the field area, an irrigation software was created
to analyze the data from the fields at the Data Center so as to determine the amount of
water required by the fields. The flow chart of the performance of the Data Center is
presented in Figure 3. After the network establishment, all the variables, fixed and obtained
from both the user and the sensors, are initialized. All the required variables are listed
in Table 2. Then, the Data Center receives all the data from the sensors and stores them
for later analysis. The system generates an alert if some variables such as the salinity of
the soil or the water surpass a threshold. Therefore, if the data center receives any Alert
Notification, the notification is processed, and then an Action is decided and forwarded to
the relevant actuator. If there is no alert notification, the system checks if the calculation
timer is reached. The calculations for the irrigation requirements need to be performed
once a day as the irrigation is done each morning. Therefore, when that time is reached,
all the data are processed to create reports for the user. Then, the intermediate variables
are calculated. Lastly, the calculated irrigation requirements are forwarded to the Field
Actuator for it to irrigate the fields the following morning. The PA system may include
irrigation water monitoring and an agrometeorological monitoring node to obtain more
precise irrigation schedules for the intended fields. However, this paper is focused on the
field area.
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Figure 3. Flow chart of the Data Center.

Table 2. Variables required by the system.

Fixed Variables Variables Set by the User

Elevation above sea level Height of the tree
Date Selection of soil type
Latitude Time period for irrigation calculation

Height of wind speed measurement Selection of Single Coefficient Approach or
Dual Coefficient Approach for ETc calculation

Variables Obtained from the Monitored Data

Maximum air temperature of the day Water salinity
Minimum air temperature of the day Soil conductivity
Maximum relative humidity of the day Soil humidity
Minimum relative humidity of the day Soil temperature
Hours of sunlight of the day Mean temperature of the actual month
Wind speed Mean temperature of the previous month
Precipitation amount Estimated mean temperature of the following

monthHour of the precipitation

Algorithm 1 presents the algorithm that determines the irrigation needs of the crops.
The basis of the calculations of the irrigation requirement of a crop is presented on the
FAO Irrigation and Drainage Paper No. 56 on Crop Evapotranspiration [54]. For our
system, we introduced the monitored parameters as variables of the equations for irrigation
calculation presented by the FAO. Although the FAO does not contemplate the use of
sensors deployed on the field to acquire the necessary data for the calculations of the
evapotranspiration of the crop (ETc), many papers have implemented varied forms of ETo
(reference evapotranspiration) and ETc calculations using the data from sensors deployed
on the fields [9,10,55]. Algorithm 1 is executed once a day after the data center receives
the data gathered throughout the day. This is done because some variables require the
minimum and maximum value of a day to perform the calculations, such as temperature
and relative humidity, and other variables require a total of the day, such as sunlight hours
and precipitation amount. Therefore, the monitoring process and the reception of the data
at the specified intervals are contemplated in the flow chart in Figure 3, whereas Algorithm
1 receives the processed data of the day with the variable initialization process, as well
as the fixed variables. Then, the variables set by the user are initialized. Using all the
gathered data, the ETo is calculated. Then, the crop stage is determined. The crop stage
differs among crop types and the time of the year. Then, the presence of water stress and
salinity stress is determined according to the readings from the soil sensors so as to adjust
the irrigation requirements as stated in the recommendations of the FAO. Water stress and
salinity stress can result in higher water requirements in an effort to counteract the caused
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damage. Furthermore, if precipitation is detected, the amount of irrigation water may be
reduced or the irrigation day may be postponed according to the amount of precipitation.
This is calculated utilizing the irrigation adjustment due to precipitation as recommended
by the FAO. Lastly, the ETC is calculated and the irrigation requirements are determined.

Algorithm 1. Irrigation Algorithm.

1 Variable initialization
2 User parameter initialization
3 ETo calculation
4 Determination of the Crop Stage
5 If Water stress then

6
Calculate irrigation adjustment due to water
stress

7 end if
8 If High salinity levels then
9 Calculate irrigation adjustment due to salinity
10 end if
11 If Precipitation then
12 Determine the precipitation amount
13 Determine the hour of the precipitation

14
Calculate irrigation adjustment due to
precipitation

15 end if
16 Calculate ETc
17 Calculate Irrigation requirements of the crop
18 End.

Figure 4 presents the case of an irrigation schedule for an orange orchard in a Mediter-
ranean climate for one month. The climate data were obtained from the agrometeorological
station MO12 in Región de Murcia, Spain [56], for the month of October 2020. During
the period of one month, there were four precipitation events and one water stress event.
As it can be seen, the irrigation scheduling begins with one initial irrigation event. Then,
the root zone depletion is calculated to determine the irrigation needs of the orange trees.
Water stress is detected on day 15 and another irrigation event is scheduled for day 16. It is
noticed that the root zone depletion is reduced by both irrigation and precipitation events.

Figure 4. Simulation of an irrigation schedule for an orange field in Murcia.

The case of the irrigation of an orange field in the area of the station of Gandía
Marxuquera, Comunidad Valenciana, Spain [57], for the month of October 2020 is presented
in Figure 5 as well. In this case, in the area of Gandía, situated in a region further north,
there were seven precipitation events. However, four of them were 0.1 mm and thus are
not visible on the graph. Considering a first irrigation of 45 mm as in Figure 4, as it can be
seen, the next irrigation event is scheduled for day 19 instead, three days after the irrigation
event of the MO12 station. In that manner, the algorithm takes into consideration the
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different weather conditions of each area to provide the necessary amount of irrigation
water for each field.

Figure 5. Simulation of an irrigation schedule for an orange field in Gandía.

3.4. Testbed Description

In this subsection, the testbed for the different deployment strategies is described.
The tests were performed at three different types of environments as seen in Figure 6.

The first one is a grass field with low vegetation and a regular terrain. The second one is
the field with thicket. The terrain of this field presents irregularities in height and a large
amount of thicket that obstructs the direct vision between the transmitter and the receiver.
The third field is a citrus plot. Orange trees are organized in rows that cover the expanse of
the area in an ordered manner. Depending on the position of the emitter and the receiver,
trees may or may not obstruct the direct vision between them.

Figure 6. (a) Grass field. (b) Thicker field. (c) Orange field.

The signal strength was measured utilizing the ESP 32 Devkit v1 programmed utilizing
the RSSI function of the Arduino WiFi library and transmitting using the in-built antenna
with a time span of 5 s between each transmission. The placement of the nodes inside
the protective box can be seen in Figure 7. Five radio transmissions were performed per
measurement and spot, and results were averaged to avoid instability in the results as in
reference [20].

Figure 7. Placement of the node inside the box.
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Two different scenarios were considered, as previously shown in Figure 1. In the
first scenario, both transmitter and receiver were placed on the ground to consider the
possible disturbance that the nodes may cause if they are positioned at higher heights
with some agricultural applications, the machinery, and the usual activities that can be
performed by farmers. Furthermore, it is a deployment position that has been considered
in soil monitoring scenarios such as [31] that employ drones to collect the data from the
on-ground nodes. The aim of testing on-ground deployment strategies with different
vegetation types is to determine the feasibility of the communication with nodes placed
using this configuration. The measures performed on this scenario were taken with
an angle of 0 and 15 degrees to obtain data on how results may change with varied
degrees and a variation in vegetation density. Due to the arrangement of the trees in the
orange field, it was not possible to make 360-degree measurements, so it was decided to
replicate the measurements at 0 and 15 degrees for all vegetated environments in scenario
1. Furthermore, the measures were taken separating the emitter from the receiver, creating
more distance between them with each measurement.

In scenario 2, on-ground, near-ground, and above-ground placements of the receiver
with varied emitter heights were tested on the citrus plot. The aim of the second scenario
is to assess different deployment strategies for crops comprised of trees as opposed to
vegetation that presents the bulk of its foliage closer to the ground such as wheat fields [33].
The layout of how the measures were taken is presented in Figure 8a. Due to the differences
in the amount of foliage and the structure and layout of the vegetation, the signal strength
for each type of vegetation will differ. The satellite image of the fields with vegetation is
presented in Figure 8b. It is a Mediterranean area with great extensions of citrus plots and
surrounded by mountains. This climate has warm to hot temperatures in summer and
cool to warm temperatures in winter, where no below-freezing temperatures are normally
reached. Furthermore, the precipitation is low and irregularly distributed. All the measures
of each scenario were done on the same day; the temperature remained almost constant at
20 degrees Celsius, as the data were gathered during the central hours of the day. Moreover,
there was no presence of precipitations.

Figure 8. (a) Layout of the measures. (b) Satellite image of the fields.

4. Results

In this section, we show the results of analyzing the received signal strength with
different deployment strategies positioning the nodes at several distances in different
environments. First, the data gathered in each of the environments (grassland, scrub, and
orange field) at two different orientations are evaluated. This way, we study the signal
attenuation in the aforementioned environments to show the possible positive and negative
effects of having different types of vegetation. Second, we evaluate the signal at different
heights of the emitter and receiver at the orange orchard.

4.1. Scenario 1: On-Ground Deployment with Different Types of Vegetation

In this subsection, the results of the on-ground deployment strategy with different
vegetation environments are presented.

Firstly, the results from the on-ground nodes deployed on grasslands are presented.
The RSSI of the measures performed at 0◦ and 15◦ are shown in Figure 9. As the height of
the grass is mostly uniform, the results at both degrees are quite similar. The differences are
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mainly explained by the irregularities of the terrain and the different irradiation pattern of
the antenna. Initially, no objects in the studied area can cause any rebound or reflection of
the emitted signal. Thus, we can consider this signal attenuation as the attenuation when
both nodes are placed on the soil with no interferences. When the signal is transmitted
over grasslands with very low grass, less than 1.5 cm, the RSSI at the maximum measured
distance, 20 m, is −81 and −82 dBm at 0◦ and 15◦, respectively. The attenuation is higher
in the first 6 to 7 m, decreasing by 30 dBm approximately. Then, the attenuation occurs at
a slower pace, and the RSSI values are similar, −80 dBm, until 13 m. The last measured
points present lower RSSI, less than −80 dBm.

Figure 9. RSSI in grasslands.

The results of the RSSI measures performed in the scrub environment are shown
in Figure 10. Initially, as it can be seen, the results from the different orientations show
different RSSI values due to the different foliage patterns. As the scrub is not distributed
uniformly along the terrain, the RSSI in both orientations is not the same. Furthermore, the
data do not present a regular attenuation as in the grassland case. At some points, farther
distances present higher RSSI values than those obtained at measurement points situated
closer to the emitter. Both observations are mainly explained by the effects of scattering and
absorption of this vegetation, which causes shadow areas, and the reflection and refraction
might lead to the multipath effect. A clear shadow area can be seen between 4 and 6 m in
the case of scrub 15◦, where suddenly two points have lower values (−73 and −72.5 dBm).
At the maximum distance, the observed RSSI are −83 and −85 dBm. They are notably
lower than in the case of grasslands.

Figure 10. RSSI in scrubs.
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Therefore, it is possible to conclude that the shrubs present in the scrub field cause
alterations in the attenuation. Furthermore, the multipath effect can be affecting the RSSI
received in each measurement greatly, causing the fluctuations in RSSI values. In some
cases, for the same measurement point, a variation of more than 10 dBm was found between
the maximum and minimum gathered values. Thus, with the data obtained in this study,
changes in the vegetation or even some events as blooming, shedding, and growing, or just
the wind moving the shrubs, might be affecting the RSSI. Consequently, when the WSN is
installed in scrub areas, it is important to note that the RSSI mean values might not be a
good indicator, and the minimum values should be considered when making the network
planning. Further studies will focus on this aspect.

The attenuation of the WiFi signal in the orange fields is now analyzed. As it is
explained in the previous section, the data gathered at 0◦ were taken, having direct vision
between the node configured as AP and the node configured as the receiver. On the other
hand, the data gathered at 15◦ were taken without having a direct vision in all the cases,
as the trunks of the orange trees obstruct the path between the emitter and the receiver.
Figure 11 presents the mean of the RSSI data gathered both at 0◦ and 15◦. We can note that
in the first meters, the RSSI is higher in the data gathered at 15◦ than at 0◦. Nonetheless,
from 7 m, the RSSI is higher at 0◦ than at 15◦. It is important to note that at 0◦, from 16 m,
the RSSI starts to decrease very abruptly, losing the connection between 17 and 20 m. In the
case of data gathered at 15◦, in the last two measured points, there was no connection.
In order to represent the data in the graphics, the points where the connection was lost are
represented as −100 dBm.

Figure 11. RSSI in Orange fields.

Thus, in the orange fields, we can conclude that the RSSI of on-ground deployments
decreases faster than in grasslands or scrubs. Furthermore, from the obtained data, it is
appreciable that, in the first meters, the orange trees may cause constructive interferences
at 15◦. Nevertheless, at higher distances, the interferences cause negative effects, and the
connection is lost earlier than in other environments, and it is lost earlier when there is not
direct vision between both devices. This effect will be the object of study for our future
works, as this type of crop is abundant in the Mediterranean area, and agriculture systems
will be deployed in similar fields.

Finally, a comparison of the data from the grassland, scrub, and orange fields in the
same graphics is shown in Figure 12 to determine the differences in the signal attenuation
for each type of vegetation. The multipath effect can cause constructive and destructive
interferences. As it has been commented on the previous figures, the multipath effect can
be considered as the cause of the fluctuations in the measured RSSI values, as there is not
only attenuation, but also signal recoveries after obstacles and dense vegetation. From
the obtained results, it can be seen that, in the first meters, there is a positive effect on
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RSSI, with possible constructive interferences that would increment the RSSI. However,
after 10 m, there are interferences that cause negative effects. As a result, the RSSI is lower
than in environments without vegetation. This can be due to the characteristics of the
vegetation. As it can be seen in Figure 6, although the scrubs on the field do present thicker
vegetation, there are areas where it is sparser. This type of scrubs and the layout of them
is typical of Mediterranean areas. Therefore, there may be areas where the vegetation is
not as thick and presents less attenuation. Furthermore, both 0◦ and 15◦ measures were
similar at many points, so at the position of the sender and receiver, the signal at the scrub
field may present elements that introduce less attenuation than that of the grass field.
Considering the position of the emitter and receiver at the grass field, the structure of the
grass creates a rough surface where the signal is less likely to be reflected, similar to the
walls of a small anechoic chamber, whereas the areas with dirt on the scrub field present
less vegetation, and as the dirt is compacted, the signal may be reflected. Other studies
that perform measures at grasslands and scrublands such as [24] perform their measures
in fields with other characteristics. In their case, the scrubland is an area with thick tropical
vegetation, and the grass field does not present common grass like that of parks and golf
fields. Therefore, as stated before, the characteristics of the vegetation, a thicker, uneven
surface in the case of grass and a sparser heterogeneous amount of vegetation in the case
of the scrubs, may lead to the obtained results.

Figure 12. RSSI in all fields.

After discussing the results obtained from the RSSI measures of the on-ground de-
ployment strategy in different vegetation environments, a model of the signal quality for
each vegetation will be obtained to determine the theoretical maximum coverage for the
on-ground deployment.

Equation (1) describes the power balance formula that determines the received signal
power (Prx) according to the transmitted power, the gain of both the transmitter and
receiver antennas, and the losses from air transmission, humidity, and vegetation as in [44].
However, unlike in [44], the signal loss produced by the vegetation, in this case, is not that
of [58], but will be obtained from the real measures performed in different environments.

Prx(dB) = Ptx-1m(dB) − 10n log d (m) − Lhumidity(dB) − Lvegetation(dB) (1)

Most of the values are known, such as the transmitted power (Ptx-1m) that for the
ESP32 is −45.75 dBm, which can be theoretically calculated through Equation (2), where
the frequency is expressed in Hz and c is 3 × 108 m/s. The characteristics of the ESP32 chip
are depicted in [52]. When the medium is air, the value n equals 2. The distance between
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transmitter and receiver is d. Lastly, Lhumidity is 0.026 dB for the hydrometric H and K areas
of Spain [59].

Ptx-1m = 20 log10 d + 20 log10(f) + 20 log10(4π/c) (2)

In order to determine the signal loss caused by each type of vegetation, the mathemat-
ical model for the Prx for each type of vegetation needs to be obtained.

The data from Figure 9 can be adjusted to a mathematical model, which will be our
signal attenuation model with no interferences. As the observed differences at the same
distance but with different orientations are minimum, we are going to consider that the RSSI
does not change with the orientation of the antenna. We have observed that this happens
with low vegetation environments in contrast to high vegetation environments where the
results may vary with different angles. Thus, for the case of the grasslands, both sets of
data are to be used for the mathematical model, see Figure 13a. The mathematical model
is a logarithmic model, and its expression can be seen in Equation (3). In Figure 13, the
gathered data are represented in squares and the lines represent the model, its confidence
intervals, and its prediction intervals. The correlation coefficient of this model is 0.98, the
R2 is 96.68%, and the mean absolute error is 1.44.

Prx-grass (dBm) = −52.25 − 12.24 ln d(m) (3)

Figure 13. Model of RSSI in (a) grasslands, (b) scrubs, (c) orange fields at 0◦, and (d) orange fields
at 15◦.

As in the grassland, we can obtain a mathematical equation that models the gathered
data. As in the previous case, the mean of both sets of data is used. The obtained model
follows the same pattern as the previous one and is shown in Equation (4). The mathemati-
cal model, with the intervals of confidence and prediction, can be seen in Figure 13b. The
correlation coefficient of this model is 0.93, the R2 is 87.86%, and the mean absolute error
is 3.40.

Prx-scrub (dBm) = −47.95 − 12.25 ln d(m) (4)

Regarding the orange fields, as we consider that the interferences are different at 0◦

and 15◦, the gathered data are going to be utilized separately to build two mathematical
models. The first one would be for a deployment strategy where the nodes are located
at the line of sight, placed on the streets between the rows of trees. The mean of the data
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gathered at 0◦ is utilized to create a model, see Equation (5) and Figure 13c. The correlation
coefficient of this model is 0.94, the R2 is 88.84%, and the mean absolute error is 3.10.

Prx-orange 0◦ (dBm) = −48.15 − 13.89 ln d(m) (5)

Secondly, the model for the deployment where the trajectory between the emitter and
receiver is obstructed by the tree trunks is obtained. The model from the data gathered at
15◦ is presented in Equation (6) and Figure 13d. The correlation coefficient of this model is
0.95, the R2 is 91.08%, and the mean absolute error is 4.29. We can compare both models
and see that they are similar, but the slope is more pronounced in the second case.

Prx-orange 15◦ (dBm) = −39.12 − 18.74 ln d(m) (6)

From the obtained models, the signal loss caused by each type of vegetation can be
obtained. Therefore, the theoretical equation and the model are equivalent, as shown in
Equation (7), which is obtained for the grass mathematical model.

Ptx − 10n log d − Lrain − Lgrass = −52.25 − 12.24 ln d (7)

Therefore, the signal loss caused by grass can be expressed as Equation (8).

Lgrass = Ptx − 10n log d − Lrain + 52.25 +12.24 ln d (8)

When the known values are replaced in Equation (8), the resulting equation for the
signal loss caused by grass is Equation (9).

Lgrass = 6.474 − 20 log d + 12.21 ln d (9)

Equation (9) can be then simplified to Equation (10).

Lgrass = 3.554 ln d + 6.474 (10)

Following the same process, the resulting equations for the rest of the vegetation types
are Equation (11) for scrub, Equation (12) for the orange trees at 0 degrees, and Equation
(13) for the orange trees at 15 degrees.

Lscrub = 3.5641 ln d + 2.174 (11)

Lorange_tree_0 = 5.2041 ln d + 2.374 (12)

Lorange_tree_15 = 10.0541 ln d − 6.656 (13)

In other to determine the maximum distance between nodes for each type of vegeta-
tion, the aforementioned expressions for signal loss for each type of vegetation should be
applied to Equation (14).

d = 10(Ptx − Lrain − Lvegetation − Prx)/20 (14)

where Lvegetation is replaced by Lgrass, Lscrub, Lorange0, and Lorange15 accordingly. The results
for the maximum distance for each type of vegetation can be seen in Figure 14. Although
results show distances greater than those of the empirical data, the real data for RSSI values
between −90 and −100 are harder to obtain due to the nodes not connecting to each other.
However, the model does not regard that. However, as it can be seen, for the orange field,
values above −90 stay within the 20 m limit. Considering a signal strength between −90
and −100 is of bad quality and would not be considered when designing the network,
values are reflecting the empirical case.



Sensors 2021, 21, 1693 18 of 27

Figure 14. Maximum distance for desired Prx.

4.2. Scenario 2: On-Ground, Near-Ground, and Above-Ground Deployments for Orange
Tree Monitoring

In this subsection, the results for the scenario with on-ground, near-ground, and
above-ground deployment strategies with different emitter heights at an orange orchard
are presented.

In this scenario, the results have been classified according to the height of the receiver,
as there was more variability with changes in the height of the receiver than with changes in
the height of the emitter. The different receiver heights that were measured were on-ground
(0 m), near-ground (0.5 m), and above-ground (1 m). While the different heights of the
emitter were 0.5, 1, 1.5, and 2 m.

The results for the receiver on the on-ground position and different positions of the
emitter are presented in Figure 15. As it can be seen, the higher signal qualities were
obtained for the emitter height of 50 cm for most distances. Good results were obtained
as well for the height of 1 m. The lower RSSI values obtained at a height of 1.5 and 2 m
are due to a high density of the foliage of the trees. The average height of the orange trees
was 2.5 m. Therefore, the bulk of the foliage was between 1 and 2.5 m. That led to great
interferences for those heights when a tree was reached. It can be seen as well how the RSSI
fluctuates at different distances alternating between lower and higher RSSI values. This
effect can be due to the multipath effect as a result of the reflection on leaves and fruits as
well as the attenuation caused by the foliage. One of these fluctuations is the peak reached
at the 0.5-m height for a distance of 9 m at an area with abundant foliage. For the 0.5-m
case, the signal is boosted; however, for the rest of the emitter heights, the quality of the
signal was reduced as the emitter was placed among the foliage. It is noticeable as well
how the quality of the signal is recovered after an area with abundant foliage.
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Figure 15. RSSI for on-ground receiver and different configurations for the emitter.

For the near-ground configuration of the height of the receiver (0.5 m), the results
showed in Figure 16 were obtained. In this case, the best RSSI values were obtained for
the emitter at a height of 1 m. The overall signal quality is better than that of the on-
ground position of the receiver. However, the signal quality is less stable, resulting in high
fluctuations along the different measurement spots as the distance between emitter and
receiver increases. Particularly, the fluctuations of the RSSI at different heights, compared
to those of the on-ground receiver position shown in Figure 15, are more evident with
acute fluctuations of 27.4 dBm at the 1.5 m emitter height and 23.24 dBm at the 1 m emitter
height. The lowest RSSI values were in the range between −80 and −70 dBm for the
1.5 m height. These values were due to a highly dense mass of foliage from the top of the
orange trees. However, when the highly dense foliage is surpassed, the signal is recovered.
Particularly, after the low values reached at meter 17 for the emitter height of 2 m, the signal
was recovered in 11.5 dBm.

Figure 16. RSSI for near-ground receiver and different configurations for the emitter.

Lastly, Figure 17 presents the RSSI values for the receiver at the above-ground position
(1 m) and the emitter at different heights and distances. This configuration presents worse
signal quality than that of Figures 15 and 16, as the line of sight between the emitter and
receiver nodes is at the same height as the bulk of the foliage. In the case of the above-
ground position of the receiver, the emitter heights of 1 and 0.5 m are the best options,
as the RSSI values indicate better signal quality than those of the emitter heights of 1.5 and
2 m. This is due to the attenuation caused by the highly dense foliage of the treetops that
obstructed the line of sight between emitter and receiver. As the signal was attenuated
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by a more constant density of foliage, the fluctuations in signal quality are in most cases
less prominent than those of the on-ground and near-ground deployments. However, for
the emitter height of 0.5 m, as it was not obstructed with dense foliage, there are great
variations with several peaks. The first peak presents a degradation of the signal, which
reaches a low value of −71 dBm at a distance of 4 m to the receiver. Then, the signal
recovers and reaches a peak with a high value of −55.16 dBm at a distance of 8 m from
the receiver. Then, another high peak is reached with a value of −41.66 dBm at a distance
of 12 m from the receiver, which is a fluctuation of 20.34 dBm. Lastly, another low peak
happens at a distance of 16 m from the receiver with a value of −73.16 dBm.

Figure 17. RSSI for above-ground receiver and different configurations for the emitter.

Considering all the receiver deployment strategies, it can be seen that for emitter
heights of 0.5 and 1 m, with no obstruction of the line of sight between emitter and receiver,
the signal presents high fluctuations that may be caused by the multipath effect. For the
case of the 1 m emitter heights, the fluctuations are less prominent than for the case of
0.5 m with similar RSSI values at the points with no peaks. Therefore, due to the stability
of the signal and the good RSSI values, the emitter height of 1 m is the best option for all
on-ground, near-ground, and above-ground receiver positions. While emitter heights of
1.5 and 2 m are more stable, they are also more affected by the attenuation of the highly
dense foliage, as it is to be expected. Thus, the obtained RSSI values are generally lower
than those of the 0.5 and 1 m emitter heights.

From the obtained signal quality results, a heuristic signal attenuation model was
obtained for the on-ground, near-ground, and above-ground deployments after discarding
the outlier values. As in the first scenario, the aim to obtain a theoretical maximum coverage
to aid in the design of a soil sensing network deployment. The model presented in Equation
(15) was obtained for the on-ground deployment. In Figure 18a, the data gathered from
the tests performed in real environments are presented as dots. The model, confidence
intervals, and prediction intervals are provided as well. For the near-ground deployment,
the model presented in Figure 18b is expressed as Equation (16). As it can be seen, this
is the configuration with better signal quality. Lastly, the model for the above-ground
deployment is presented in Equation (17). The graphic representation of the model, the
confidence, and prediction intervals are shown in Figure 18c.

Prx-on-ground (dBm) = −42.05 − 11.53 ln d(m) (15)

Prx-near-ground (dBm) = −41.55 − 8.10 ln d(m) (16)

Prx-above-ground (dBm) = −49.80 − 6.68 ln d(m) (17)
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Figure 18. Model of RSSI in the orange field with emitter (a) on the ground (b) at 50 cm of height (c) at 1 m of height.

Utilizing Equation (1) and the models presented in Equations (15)–(17), the vegetation
losses caused by the foliage of the trees at the on-ground, near-ground, and above-ground
deployments are presented in Equations (18)–(20), respectively.

Lveg_on_gorund = 20.22 ln d + 12.03 (18)

Lveg_near_ground = 16.79 ln d − 2.68 (19)

Lveg_above_ground = 15.37 ln d + 17.18 (20)

Lastly, applying Equation (14), the maximum theoretical distance for a determined Prx
is obtained (See Figure 19), where Lvegetation is replaced by Lveg_on_gorund, Lveg_near_ground,
and Lveg_above_ground. Acceptable signal quality would be obtained up to 26 m for the
on-ground deployments, 115 m for the near-ground deployments, and 91 m for the above-
ground deployments. Considering these results, it can be concluded that near-ground
deployment strategies are the best option for soil monitoring network deployments in
crops comprised of trees, such as orange orchards. The 0.5 and 1 m height were found to
be the better option for emitter positioning, which could be expected, as it is a height with
a low presence of foliage. However, even with no or few obstructions of the line of sight
between emitter and receiver, the signal quality presented high fluctuations, which were
less acute for the case of the emitter placed at a height of 1 m.
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Figure 19. Maximum distance for desired Prx at on-ground, near-ground, and above-ground
deployments.

5. Discussion and Challenges

In this section, a discussion on transmitting at different heights in environments with
vegetations is provided. Furthermore, the challenges of deploying wireless sensor networks
for precision agriculture are presented.

Node height is one of the key factors of sensor network deployments in rural and
vegetated areas due to multiple reasons. Coverage and signal quality are one of these
reasons, as the main objective of the sensor network deployment is to gather and forward
the data so they can be accessed by the user. However, other aspects such as the amount of
foliage [22,26,27], the plant height [26], the machinery utilized at the fields, the presence
of animals, or the irrigation system may present some challenges. Thus, the aim when
designing the sensor network deployment for a determined rural environment is to consider
the specific challenges and needs of the area while opting for the best signal quality and
coverage configuration. The need of performing preliminary tests to determine the real
performance of the nodes in contrast to the advertised by the manufacturer was also
stressed in other studies [33], with an emphasis on low-cost nodes such as the ones utilized
in our testbed. As there are many variables to consider, other testbeds have focused on
specific environments, node height, and frequencies to study how the signal is affected
(see Table 1).

The crop type is always described on the testbeds presented in Table 1, as it is an
indicator of the plant height and possible foliage density. Particularly, the effects of the
attenuation caused by high foliage density were remarked upon in [21]. Though many
studies have been performed regarding the effects of vegetation on signal quality, each
study provides new insights on a specific type of crop, wireless technology, the response
of a specific node, or the performance of the deployment strategy, among other variables.
Furthermore, a useful and interesting use of monitoring signal quality in vegetated envi-
ronments is to use RSSI to identify vegetation growth [33]. Nonetheless, the deployment
strategy is to be considered, as the height of the node that is measuring the signal quality
should be known to establish the reference height value of the crop. Crops such as lettuce
or potatoes [29] have a low height, present a uniform foliage density for the height of the
plant, and are planted with a small distance between plants. Thus, on-ground deployments
would not be suitable for the characteristics of this type of crop. Asparagus, like some
types of shrubs [23], present a medium height, the foliage density is uniform as well,
and the separation between plants can be greater between rows. In this case, on-ground
deployments would be possible if the nodes are deployed between rows. However, as the
distance between rows is small, it could be an inconvenience for the farmers to access the
plants. Therefore, above-ground deployments with posts placed on the plant row would
be the best solution. Lastly, plants with high heights such as orange trees are planted with
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a separation between 3 and 5 m and can reach heights above 7 m. The bulk of the foliage is
at the treetop, with space without foliage at the tree trunk level. Therefore, above-ground
deployments would be susceptible to more signal interferences and would interfere with
farming activities such as pruning. Furthermore, considering the results of the presented
testbed, a near-ground deployment strategy would be the best option. However, the results
show a high fluctuation of the signal quality at emitter heights of 0.5 and 1 m, with no
obstructions in the line of sight between emitter and receiver that can be caused by the
multipath effect.

The node density is another aspect to consider. Deploying one node per plant is
neither necessary nor affordable. The data that are necessary to calculate irrigation needs
or other aspects such as fertilizer needs do not vary significantly from plant to plant.
Therefore, the field can be divided into different zones with a node or a cluster of nodes
per zone. Moreover, the cost of deploying nodes all over the field can be too elevated for
most of the farmers. As such, the nodes can be deployed as clusters that monitor one area
and communicate with an AP or gateway that forwards the data to the user or the data
center. Furthermore, if the nodes in the cluster are utilized to detect false positives and false
negatives or to evaluate the area reached by the water in the case of drip irrigation, the
distance between the nodes will not be very high as well. Lastly, as meteorology data are
also necessary for the calculation of the irrigation needs, and the data cannot be measured
near the ground, if a node for meteorology monitoring is utilized, the node should be
deployed above-ground and in an exposed area as it is recommended by the FAO [54].

The type of irrigation may also influence the decision-making process when designing
a WSN deployment for a field. Flood irrigation would make on-ground deployments
impossible, as the nodes could get damaged or could move even when placed in protective
boxes. For pivot irrigation, the node cannot be placed at a height higher than the shortest
point of the structure of the irrigation system. Furthermore, for drip irrigation, wet areas
can be avoided, which facilitates the deployment of the nodes.

Energy consumption is a recurrent topic regarding WSN. Although the amount of
daily data necessary for irrigation calculations can be as few as one value for each variable,
most systems will gather data in real-time or at frequencies of 10 min, 30 min, or 1 h.
Therefore, energy harvesting solutions such as the use of solar panels have been widely
implemented [60]. Furthermore, the performance of the energy harvesting solutions can be
monitored by the nodes to ensure there is enough energy [61]. However, the foliage of the
plants could create a shade on the panel resulting in a reduction or the absence of harvested
energy. Therefore, this aspect should also be considered when selecting the height of the
node. There are however new solutions that allow charging the batteries of the nodes in
a fast manner without the need of connecting the nodes to any device or removing the
insulation, such as utilizing wireless power transfer (WPT) [62].

Finally, the selection of the wireless technology to be used on the precision monitoring
system is also to be considered. Aspects such as coverage distance, data rate, energy
consumption, equipment cost, and the simplicity of implementation are often evaluated
when taking this decision. Regarding coverage, there are low range technologies such as
Bluetooth, mid-range technologies such as Zigbee or Wi-Fi, and long-range technologies
such as LoRa. High data rates are not often necessary for PA monitoring systems; therefore,
most technologies could be utilized. Regarding the cost of the devices, WiFi has been the
technology with the most options regarding price ranges. However, ZigBee and LoRa
devices have had a cost reduction in recent years, making them more affordable. Lastly,
Wi-Fi is the easiest technology to use regarding implementation simplicity due to both
the available options in the market and the extensive documentation, removing in many
cases the need for an expert to deploy the network. This accessibility results in this
technology being significantly the most utilized in IoT systems for PA [60], followed by
GSM and ZigBee. In terms of energy consumption, Bluetooth Low Energy (BLE), ZigBee,
or LoRa are presented as low-power technologies. Among these technologies, ZigBee is
the most used low-power technology in agriculture networks [60], and its performance
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in vegetated environments has been studied in detail [33]. WiFi presents higher energy
consumption. However, for Ad Hoc networks, WiFi was found to have more energy
efficiency than LoRa in shorter distances [63], as LoRa is more efficient for distances greater
than 300 m. Furthermore, as it was commented previously, energy harvesting solutions
help in alleviating the higher energy consumption of non-low-power technologies. It could
be argued that ZigBee would be the best technology for PA systems, and it is the best
option regarding energy consumption, but the convenience of Wi-Fi often wins in deciding
the wireless technology if the requirements for coverage and energy consumption are
met, which it does for many architectures and the few data that need to be forwarded.
Furthermore, Wi-Fi is convenient for the user as well if there is a need to connect directly
with a device utilizing a smartphone, tablet, or laptop, which is the case for remote areas,
and countries without a well-developed communication infrastructure.

Limitations of This Study

Precision agriculture systems have specific needs that require the consideration of
specific aspects of the agricultural environment to be monitored. This paper provides a
first approach to identify the aspects that affect the deployment of wireless networks for
precision agriculture systems. It is thus limited to the specific types of vegetation that
were considered in the testbed and to a specific low-cost ESP32 WiFi node. Furthermore,
this study is limited to sunny weather conditions with medium temperatures, which is
the predominant weather on the Mediterranean coast of Spain. Although similar results
are to be expected with a replication of this testbed utilizing low-cost WiFi nodes, more
tests and replications are needed to determine the exact influence of certain aspects such
as weather conditions, different stages of the crops where there is presence of flowers
and fruits, and the use other types of low-cost nodes to determine if there are significant
differences among them. However, although this study provides a first approach to perform
soil monitoring wireless node deployments, we consider that our study provides some
insights to wireless sensor deployments in orange fields that could be of interest to those
interested in deploying a precision agriculture system to monitor citrus crops or other
types of tree crops.

6. Conclusions

The implementation of IoT systems in rural areas may present some challenges due to
the vegetation. Particularly, soil monitoring agriculture applications may suffer from the
interferences caused by the density of the foliage or some characteristics of the plants such
as height or width. In this paper, we have proposed a soil monitoring system comprised of
a soil humidity multi-sensor array, a soil temperature sensor, and a pH sensor, and we have
performed a study on fields with different deployment configurations with varied types of
vegetation. Furthermore, on-ground, near-ground, and above-ground node placements
were tested as well. Results have shown that vegetation creates a high variability in
areas with high foliage density. The maximum theoretical coverage was obtained for each
configuration. On-ground deployments had the least coverage even with vegetation where
the bulk of the foliage is at higher heights. On the other hand, near-ground deployments
provide the best coverage with orange trees. However, on-ground and near-ground
deployment strategies in orange fields presented high variability of signal quality even
with no obstacles in the line of sight between emitter and receiver, as opposed to higher
emitter heights that presented a more attenuated but stable signal quality. Nonetheless,
the aspects of the rural environment and the deployment that affect the signal such as
node height, crop type, foliage density, or the form of irrigation must be considered when
designing a WSN deployment for PA systems as it has been discussed.

For future work, we will perform a deployment study for other areas monitored in
PA systems such as the canals where the irrigation water is transported to determine the
factors that affect the communication in those environments.
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