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Abstract: In modern years, network edges have been explored by many applications to lower commu-
nication and management costs. They are also integrated with the internet of things (IoT) to achieve
network design, in terms of scalability and heterogeneous services for multimedia applications. Many
proposed solutions are performing a vital role in the development of robust protocols and reducing
the response time for critical networks. However, most of them are not able to support the forward-
ing processes of high multimedia traffic under dynamic characteristics with constraint bandwidth.
Moreover, they increase the rate of data loss in an uncertain environment and compromise network
performance by increasing delivery delay. Therefore, this paper presents an optimization model with
mobile edges for multimedia sensors using artificial intelligence of things, which aims to maintain
the process of real-time data collection with low consumption of resources. Moreover, it improves
the unpredictability of network communication with the integration of software-defined networks
(SDN) and mobile edges. Firstly, it utilizes the artificial intelligence of things (AIoT), forming the
multi-hop network and guaranteed the primary services for constraints network with stable resources
management. Secondly, the SDN performs direct association with mobile edges to support the load
balancing for multimedia sensors and centralized the management. Finally, multimedia traffic is
heading towards applications in an unchanged form and without negotiating using the sharing of
subkeys. The experimental results demonstrated its effectiveness for delivery rate by an average
of 35%, processing delay by an average of 29%, network overheads by an average of 41%, packet
drop ratio by an average of 39%, and packet retransmission by an average of 34% against existing
solutions.

Keywords: multimedia sensors; optimizing resources; software-defined networks; delay controlled;
artificial intelligence of things

1. Introduction

A novel paradigm known as the internet of things (IoT) [1–3] emerged in the past
decade due to the development of wireless technologies. This paradigm was introduced by
Kevin Ashton in 1998 as a way to connect things or objects to the internet. The IoT now
has many applications, such as smart homes, smart cities, transportation, healthcare, etc.,
supporting the community with real-time data collection and analysis [4–6]. Multimedia
internet of things (MIoT) is promising for multimedia communication, in bringing novelties
and providing an emerging model with the integration of constraint-oriented sensor
networks [7,8]. The multimedia industry is comprised of graphical data, smart machines,
embedded systems, and media servers that increase the efficiency of production in an
optimized manner [9–11]. IoT-based sensors are distributed and installed in various
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objects for observing environment conditions and sending the collected information to
the end-user over the internet. In recent decades, many applications, such as agriculture,
healthcare, military, vehicles, multimedia, etc., have offered smart services to remote
users as well as controllers for physical communication [12–14]. However, the limited
resources of IoT nodes offer various restrictions for real-time applications. Therefore, most
existing solutions cannot be directly applied to multimedia-based networks. Moreover,
with the increasing network scale, in terms of IoT-based cameras, vehicles, sensors, etc.,
these physical objects must forward a huge amount of data, depleting their battery power
and explicitly decreasing the network performance. Unlike a wired network, wireless
topologies are more adaptive toward sharing and managing data transmission among
available communication channels [15–18]. However, the wireless medium is shared, and
many security threats are open for IoT-based networks. In MIoT, a huge amount of video
and audio data are forwarded from sensors to the public cloud for further processing and
storage purposes. However, most solutions impose additional communication overheads to
maintain the multimedia routing phase. Recently, many researchers [19–21] have focused
on coping with the routing policies in MIoT networks while considering the resource
constraints of sensors. Moreover, data security cannot be avoided in the environment of
the MIoT network due to the presence of malicious machines on the internet; such devices
may leak data privacy and compromise the transmission system among IoT objects [22–24].
This work presents a multimedia internet of things model for quality assurance with
the collaboration of intelligent edges and security against potential threats. It improves
the development of the multimedia industry, in terms of data delivery, by incorporating
intelligent edges with minimal time delays. The proposed model decreases the chances of
data congestion over the wireless channels in transmitting multimedia data, with efficient
utilization of a load on MIoT nodes. Moreover, the proposed model copes with vulnerable
attacks from malicious entries and increases the performance of the multimedia industry
by maintaining privacy and integrity. Furthermore, the security phase in the proposed
model deals with unauthorized access among malicious machines and safely stores the
data on the media systems for end-users.

This article presents an optimization model with SDN architecture for multimedia
sensors using artificial intelligence of things to provide reliable services, in terms of QoS,
and offers efficient performance for constraint resources. Moreover, the proposed model
supports trustworthy data delivery to network applications without compromising the
identities of devices and content. It utilizes the artificial intelligence of things with mobile
edges to offer multi-hop routing services and to attain low-cost communication overhead.
The initial routes are constructed using the basic requirements of any network domain
with the consideration of quality factors. Moreover, mobile edges ‘perform’ as borders
and control the flow management with SDN controllers. Mobile edges interact with the
control plane to keep the latest information of the multimedia traffic and network status.
Accordingly, the controller fetches the information from the control plane to know the
exact situation of the network and helps to manage the network resources efficiently in
a centralized manner. Moreover, the controller and switches utilize a low-cost secret
sharing scheme to cope with information privacy and identify the uncertain multimedia
traffic, increasing the efficacy of the communication system. The proposed model not only
provides higher bandwidth for large size media data using mobile edges, it also protects the
network data against anonymous behaviors. The three main contributions of the proposed
model are as follows:

1. It offers a learning approach, with a node prediction-based multimedia algorithm
by exploring the mobile edges; it attains high delivery performance with efficient
management of network bandwidth.

2. It offers a low-cost computation algorithm for constraint resources, with the integra-
tion of SDN technology and boundary edges for reducing the response interval, and
delays constraint multimedia applications.
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3. The multimedia traffic protects against different interference attacks and centralizes
the detection mechanism by increasing the support of the network applications.

The rest of the paper is as follows: Section 2 presents the related work and limitations
of the existing solutions. Section 3 introduces and discusses the proposed model. In
Section 4, we present the numerical analysis and results. We conclude the research work in
Section 5.

2. Related Work

In the smart industry [25–27], MIoT nodes perform a vital role in collecting and dis-
tributing data to end-users. The MIoT nodes are sensors that are used to observe the
reading of various physical objects in the industry and contribute to productivity. The
MIoT network is connected using wireless technology, and most of the proposed solutions
are prone to failure in the case of dynamic topologies. Optimizing the data routing in the
multimedia-based network (without disrupting the connected users or decreasing delay
time) presents significant research challenges. Moreover, security is necessary toward pro-
tecting the privacy of multimedia data, maintaining integrity against malicious attacks. The
authors proposed a lightweight blockchain architecture to decentralize the authentication
mechanism and claimed the effectiveness of the proposed framework for smart industrial
environments. The authors of [28] proposed a novel security-by-design method for the
security of the industrial internet of things (IIoT) and demonstrated its applicability by
applying it to a real case study of an IIoT scenario from the maritime sector. Their security
method involves analyzing the IIoT environment at two different levels—the modeling
level and the simulation level. At the modeling level, the method ensures modeling and
analysis of connections between IIoT components, and at the simulation levels, it provides
a set of algorithms for the automatic identification of potential attack paths and catego-
rization of the importance of such paths. The authors claimed that the proposed method
helped in the identification of security mechanisms to cope with attacks on critical assets.
Due to the emergence of IIoT [29], process industries have adopted wireless sensor-actuator
networks (WSANs) for the accomplishment of control applications. An end-to-end commu-
nication delay in such networks can be minimized by using efficient real-time routing. The
authors proposed a conflict-aware real-time routing scheme for industrial WSANs. The
proposed routing scheme is evaluated on a physical WSAN test bed based on simulations
and experiments that show a three-fold improvement in the real-time capacity of WSANs.
Reliability and high requirements for real-time communications are very important in
IIoT. The authors of [30] proposed a many-objective optimization algorithm based on the
dynamic reward and penalty mechanism (MaOEA-DRP). It optimizes the shared validation
validity model. Moreover, it achieves an optimized blockchain sharding method. The
simulation-based experimental results are proven to have significant improvements over
other solutions. The authors in [31] proposed a novel clustering method based on power
demand, which assures the security of data information in IIoT-based applications using
machine learning. In a first step, from mutual information of the primary channel and
eavesdropping channel, the security capacity of the system is calculated. After security
capacity calculation, and then keeping the constraint of the maximum transmit power, an
optimal transmit power is found using the deep learning technique, which maximizes the
security capacity of the system. In the final stage, the network is clustered according to the
calculated power demand. In [32], the authors proposed a routing algorithm that integrates
various phases, such as dynamic cluster formation and cluster head selection with multi-
path routing formation. It reduces the energy consumption and routing overheads among
the nodes. The proposed algorithm utilizes a genetic algorithm (GA)-based meta-heuristic
optimization and dynamically chooses the best path by using the cost function. The set of
experiments were conducted and analyzed, showing improved performances compared
to other solutions. The authors in [33] proposed a scheme and the wireless multimedia
sensor network in collecting data. Firstly, mobile sensor nodes were grouped in the cluster
and a single cluster head was selected for each cluster. Secondly, the selected CHs verified
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the identities of the mobile sink nodes and then forwarded the multimedia data. The
results showed significant performance when compared to other work. The authors in [34]
proposed a resource scheduling and secure data transmission of IIoT data using SoftMax-
DNN and improved RSA techniques. The authors validated and evaluated the proposed
techniques and existing techniques, using simulation in JAVA and NS3 platforms, by eval-
uating various performance metrics in terms of latency and throughput. The proposed
scheduling algorithm uses the NDRF-SSA clustering and SHA-512 algorithm; compared
with existing techniques, it attains the lowest latency, the lowest energy consumption,
and the highest network lifetime. In [35], a smart collaborative routing protocol with low
delay and high reliability was proposed, contributing to the mixed link scenarios. The
researchers constructed a one-hop delay model and analyzed the possible effects of the
media access control (MAC) layer. Moreover, data forwarding, maintenance, and efficient
policies were made to improve the performance of the routing protocol. Based on the
experimental results, it was observed that the ratio of latency decreased compared to the
existing solution. In [36], the authors proposed a mobile cloud-based scheduling strategy
for the IIoT. Different computing solutions, i.e., fog, mobile, and edge computing could
be combined in IIoT, allowing offloading of the execution of any task on the cloud system.
The proposed solution models the problem of task scheduling to optimize the energy
consumption issue. It uses genetic algorithms while taking into account task dependency,
data transmission, and resource constraints. The experiments were conducted; the results
showed significant improvement of the proposed solution when compared to the existing
work.

The technology of the IoT and mobile edges are broadly utilized for data sensing and
support efficient network structure. Such systems facilitate many network applications,
i.e., healthcare, military, farming, multimedia, agriculture, etc. However, the devices and
network sensors are restricted in various operations and resources. Such limitations impose
many difficulties in managing the network stability and are not able to fulfill the users’
demands. Nowadays, traditional solutions are not able to support real-time data collection
with a high amount of risky threats. Although some solutions are proposed in the literature,
they are not fully accurate in terms of delay tolerance and delivery performance, especially
when the network grows rapidly. Moreover, it was also observed that many proposals
have failed to provide light cost authentication.

3. Proposed Optimization Model

This section presents a detailed discussion of the proposed optimization model with
the integration of SDN architecture and mobile edges. It improves the efficacy of the delay
constraint multimedia applications and supports the system in reacting trustworthy in
case of unknown objects. Figure 1 depicts the workflow of the proposed model. It is
comprised of three main blocks: (i) network sensing; (ii) network edges; and (iii) software-
defined network architecture. In the first block, the sensors sense the multimedia data and
achieve a QoS-aware algorithm to lower the overheads on constraint resources. The second
block offers mobile edges that can collaborate with the sensing layer and SDN controller.
It decreases the delay factor while routing the multimedia traffic and offers the delay-
tolerant solution. In the last, SDN architecture is utilized to centralize the overall control
on the network infrastructure. It not only provides better resources management, but
also supports data security with the secret sharing scheme. This block increases the trust
among network applications and facilitates the boundary nodes to perform lightweight
data encryption with mutual authentication.

The proposed model contains three main phases. All of them operate independently
and interact with each other to support the network application with an affordable load
on the IoT network. The communication of the proposed model is divided into IoT
sensing, network edges, and SDN levels. In the beginning, we consider various MIoT
sensors to sense and transmit the multimedia traffic using mobile edges. The mobile edges
are movable in a fixed radius and have high resources for processing and data storage.
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MIoT nodes are not able to directly interact with SDN sink node. They can transfer the
multimedia data towards the sink node using the nearest mobile edges. In the proposed
model, the mobile edges perform a very crucial role in decreasing the excessive response
time and improving the delivery performance for delay-tolerant applications. MIoT nodes,
before initiating data forwarding, share their statistics, establish forwarding tables to retain
up-to-date information in their proximity, and train themselves for optimum outcomes.
The information comprises of identities ID, residual energy, distance, and link disturbing.
Afterward, they perform an authentication phase to verify with each other, using the
certificate tokens. All of the nodes exchange the certified tokens that are signed by the
master key km of each node. Upon successful reception of the token, each node marks the
entities to their forwarding tables. Moreover, each node forwards its tokens to the nearest
edge nodes, so their association can be created in the upper layer. Mobiles edges advertise
their identities IDs and positioning coordinates on a regular interval, so the nearest nodes
could detect their latest positions and update the forwarding tables. Moreover, the mobile
edges transmit their local tables to SDN controllers using deployed switches and routers. In
this way, the control plane gets the updated information of the network layer and manages
the resources efficiently for the constraint-oriented devices.
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Afterward, the proposed model adjusts the data flow among MIoT nodes using
intelligent decisions. The source advertises the route request RREQ packet to identify the
initiate route for data routing. Upon receiving, the neighbor nodes respond with status
information ns along with their identities IDi. The status information is determined by
utilizing the distance Dt, received signal strength indicator RSSI, and re-transmission
interval Rtint factors, as given in Equation (1).

ns= min(Dt + Rtint) + max(RSSI), (1)

In Equation (2), Dt is the integration of a two-level distance dist, i.e., the Euclidean
distance, from the source node to neighbor α and from neighbor α to mobile edge β, as
given below.

Dt = dist(α, β), (2)
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Using the computed value of ns, the source node updates its forwarding table and
sends the data toward the mobile edge based on the hop-to-hop paradigm. However, it
might be a case where the mobile edge is directly accessible by the source node. In such
a situation, the source node sends the data directly without evaluation ns values. In the
proposed model, the network edges are mobile and adjust the coordinates frequently; thus,
its latest position eps can be determined using Equation (3).

eps= (P0 − Pi)/S (3)

In Equation (3), Pi and P0 are initial and current 2D coordinates, whereas S is the speed
of the mobile edges. The positioning coordinates are obtained using the installed global
positioning system (GPS) on mobile edges. Later, the network edges on different levels
initiate their work collaboratively, to deliver the MIoT data toward the SDN controller
using employed switches and routers.

In the proposed model, SDN deploys on the top level and it supervises all of the
network operations in a centralized manner. To support the data protection on each level,
SDN generates a secret key S, which is to be divided between the set of n network edges
based on Shamir’s secret sharing scheme [37]. It is also called (t, n) threshold based secret
sharing, such that, any t subset of network edges are sufficient to recreate the secret key
S. However, less than t or a fewer number of subkeys cannot reconstruct the secret key S.
Afterwards, the SDN controller transmits the share of the key Si to the network edges, which
is also digitally signed by the SDN master key mkSDN . On receiving the secret share, each
network edge node is first verified by decrypting the secret share, and afterward, it further
floods towards an individual node that is associated with the network edge. Let us consider
that mi denotes message pieces that must be sent from the nodes toward the network edges.
Then, nodes perform a mapping function using a set of subkeys (S0, S1, . . . , St−1), and are
digitally signed by their master keys mkn, as given in Equation (4).

Ei = mkn((Si, mi), xor) (4)

After receiving the encrypted data Ei, the network edges verify it, and upon successful
verification, the data are transmitted toward the controller using deployed switches, as
given in Equation (5).

Xi = f (IV+ (mi, Si) xor) + D (5)

where IV is a nonce, and is used to make the encryption process more randomized, and
D denotes the digital signature of the network edge. When the SDN controller receives
the encrypted data Xi, it performs a decryption function Yi, as given in Equation (6), and
forwards to the application devices for connected nodes that can retrieve it for the needed
purpose.

Yi = ((mi, Xi) xor) (6)

Figure 2 illustrates the flow chart of the proposed model. It initiates a network-sensing
component using IoT devices and multimedia sensors. The sensors are very restricted
for resources, and cannot transmit a huge amount of media traffic; thus, the proposed
model offers a QoS-aware routing algorithm, while considering the node statistics and user
demands. In addition, mobile edges are utilized in the proposed model to overcome the
delay factor, reducing the size of forwarding tables for sensors nodes. The mobile edges
perform an interaction with both IoT nodes and the SDN controller by deployed switches
and routers. The SDN controller decouples the control plane and data plane and fetches
the store information from the control plane to manage the multimedia traffic with efficient
data distribution and resource supervision. Moreover, the controller utilizes a threshold-
based secret sharing scheme to increase the secrecy level among low level and boundary
nodes. Such components support trustworthy communication from sensing nodes to
network applications. The boundary nodes that perform a vital role while maintaining the
node records are also securing from malicious threats, based on the SDN architecture.
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4. Performance Evaluation

In this section, we present the simulation environment and experiments discussion.
The experiments were conducted in OMNET++ [38,39], which is widely used by the re-
search community to simulate network technologies and standards. We ran the simulations
on a laptop with a 16 M cache, 256 GB RAM, and a 4.40 GHz Intel processor. The perfor-
mance was evaluated against existing schemes over a 1000 × 1000 m area. We considered
the transmission range of each node to be 10 m. To evaluate the security significance, we
deployed 10 malicious nodes randomly. Moreover, switches and routers were deployed
with the POX controller. Initially, the energy resource of each sensor node was set to 2 j. We
executed the simulation for 2000 s. The size of the data block was fixed to 32 bits. The ex-
periments were conducted based on the delivery rate, network overhead, processing delay,
and packet loss rate under varying network nodes and data receiving rates. The proposed
model was compared with existing solutions, i.e., MaOEA-DRP and smart collaborative
routing protocol, as explained in [30,35]. The default parameters are listed in Table 1.

Table 1. Default parameters.

Parameters Values

Simulation area 1000 × 1000 m

Sensor nodes 100–500

Malicious nodes 10

Data block, k 32 bits

Initial energy 2 j

Transmission power 5 m

Simulation interval 2000 s

Transmission radius 5 m

Data flow Periodic
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In Figure 3, the experimental results illustrate that the proposed model improves the
packet delivery rate by 30% and 40%, as compared to other solutions. Thus, the proposed
model utilizes a multi-hop transmission system for routing the MIoT data and optimizes
the forwarding decision. The intelligent decision determines the packet variability factor
for the neighbor nodes and increases the packet delivery performance. Furthermore, the
communication medium is protected in the existence of malicious packets and efficiently
utilizes resource management. Accordingly, the proposed model minimizes the ratio of
congestion on the wireless channels and achieves robust transmission. The proposed
model makes use of mobile edge, computing high-performance nodes for collecting the
MIoT data from sensors, and increases the efficacy of data management. Unlike other
solutions, the proposed model decreases the exchange of control messages among the
nodes and ultimately improves the throughput of the MIoT network. Figure 4 illustrates
the performance of the proposed model for routing overheads in the comparison of existing
solutions. It is noticed that the proposed model reduces the routing overheads by 38%
and 44%, respectively, under a varying number of nodes. Unlike the existing solution
that frequently exchanges control and route request messages among nodes in case of a
larger network size, the proposed model explicitly avoids such practice. It only selects the
MIoT node as a data forwarder when the selection criteria are less than a certain threshold.
Moreover, the proposed model efficiently utilizes the energy resource of the MIoT nodes
and decreases the rapidly routing messages. Moreover, due to the mobile edge computing
nodes, the MIoT nodes enforce the least communication costs in forwarding and choosing
the optimal route. Accordingly, the proposed model imposes fewer overheads on the part
of MIoT nodes and improves the network performance by selecting the more reliable routes.
Figure 5 demonstrates the performance results, in terms of processing time for the proposed
model against other solutions. Based on the experiments, it is seen that the proposed model
improves the time delay by 24% and 33% than the exiting work. The improvement is due
to balancing the energy and data-forwarding load among the MIoT nodes using the packet
variability factor. Moreover, using secret sharing with mobile edges, the proposed model
prevents the malicious nodes from being part of the MIoT network, and avoids frequent
transmission of false or bogus data packets. The proposed model efficiently utilizes the
transmission power of mobile edge computing nodes and improves routing management.
Using a multi-hop communication system, the proposed model decreases the chance for
the selection of the longer route. Moreover, based on the packet variability factor among
MIoT neighbors, the proposed model forwards the observing data timely, and with more
consistency in the chosen route. Therefore, it prolongs the lifetime of the active routes
and, accordingly, improves the performance of end-to-end delay remarkably. In Figure 6,
the experimental results illustrate the performance of the proposed model, in terms of
packet drop ratio, compared to the existing solution. It is observed that the proposed
model decreases the packet drop ratio by 37% and 41%, respectively; this is due to the
determination of packet variability by utilizing the distance and RSSI factor. It optimizes
the MIoT route among constraint resources and provides strengthened peer nodes for
accomplishment to data storage on the public cloud. Moreover, the proposed model
offers a more secure and authenticated routing mechanism, using a secured approach that
increases the confidence ratio among nodes, and incurs minor data lost in the occurrence of
malicious entities. In Figure 7, the proposed model evaluates the reliability of the proposed
model in the comparison with an existing solution. It is seen from the simulation-based
results under a varying number of nodes that the proposed model improves the packet
drop ratio against other work by 29% and 39%. It is due to the incorporation of the reliable
routing and secure cryptosystem for the MIoT network, improving productivity for the
industry. The use of mobile edge nodes also decreases the energy consumption among
MIoT nodes and, ultimately, the lifetime of the network increases with the efficient practice
of data aggregation/fusion. Moreover, the MIoT data are securely transmitted to the cloud
for further processing and storage based on the lightweight cryptography asymmetric
algorithm, which increases the reliability among nodes against network threats.
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5. Conclusions

In this paper, the optimization model with mobile edges for multimedia sensors using
artificial intelligence of things is presented, which aims to increase the management of
network resources in multimedia traffic with securing transmission. It provides the real-
time paradigm for critical MIoT-based applications and facilitates production with high
reliability. Moreover, communication is secured under the occurrence of malicious nodes
with the lightweight nodes’ power of the MIoT network using intelligent SDN technology.
It gives intelligent decisions among mobile edges by evaluating the QoS features and
strengthens the network performance. Moreover, nodes are authenticated with each other
and secret shares by using the Shamir secret sharing scheme. The set of experiments were
performed in the OMNET++ simulator, and based on the results analysis, it is proven
that the proposed model remarkably increases the performance for the delivery rate, time
delay, routing overheads, packet drop ratio, and reliability, than benchmark solutions. The
proposed model gives some intelligence using edge computing; however, it faces some
communication expenses in determining the optimal forwarders. Thus, in the future, we
aim to utilize the transfer learning technique and train the IoT network with a real-time
data set.
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