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Abstract: The high quality of Port wine is the result of a sequence of winemaking operations, such as
harvesting, maceration, fermentation, extraction and aging. These stages require proper monitoring
and control, in order to consistently achieve the desired wine properties. The present work focuses
on the harvesting stage, where the sugar content of grapes plays a key role as one of the critical
maturity parameters. Our approach makes use of hyperspectral imaging technology to rapidly
extract information from wine grape berries; the collected spectra are fed to machine learning
algorithms that produce estimates of the sugar level. A consistent predictive capability is important
for establishing the harvest date, as well as to select the best grapes to produce specific high-quality
wines. We compared four different machine learning methods (including deep learning), assessing
their generalization capacity for different vintages and varieties not included in the training process.
Ridge regression, partial least squares, neural networks and convolutional neural networks were
the methods considered to conduct this comparison. The results show that the estimated models
can successfully predict the sugar content from hyperspectral data, with the convolutional neural
network outperforming the other methods.

Keywords: wine quality; machine learning; one-dimensional convolutional neural network; hyper-
spectral imaging; predictive analytics; grape ripeness

1. Introduction

Produced from grapes of excellent quality that grow in the Douro region, Port wine is
known for its renowned quality, being one of the most famous Portuguese fortified wines
worldwide. In this work, we consider one well-known representative of Port wines, the
Dow’s Port wine (from Symington Family Estates, the industrial partner collaborating with
the present research project). This wine is mainly produced from grape varieties harvested
in the vineyard of Quinta do Bomfim, often consisting of Tawny Ports, twenty, thirty and
forty-year-old wine, aged in oak cask. It is important to keep in mind, however, that the high
quality of these wines starts at the vineyards, where it is crucial to monitor the components
and properties of the grapes that will be used as raw material for the winemaking process.
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Such careful control is instrumental to determine the harvesting date and to select the
grapes at the optimal maturity stage according to the desired traits. This work is devoted to
the development and test of a rapid and informative approach that supports wine makers
in this decisive phase of the process. However, all the remaining stages, namely maceration,
fermentation, extraction and aging, also need to be properly controlled to accomplish the
desired wine properties. Given the importance of the harvesting stage, considerable efforts
have been traditionally made by producers and researchers for controlling and monitoring
the quality of the grapes, through the evaluation of relevant enological parameters over
time with the aid of conventional physical and chemical methods performed off-line.
Nevertheless, these standard evaluation protocols present the following disadvantages:
they are time-consuming, expensive, invasive, generate chemical waste and are limited to
a few samples [1].

With the advancement of technology and the need for rapid, less expensive and non-
destructive assessment of wine grape ripeness, optical sensing technologies, including
visible and near infrared spectroscopy [2,3], fluorescence-based sensors [4,5], hyperspectral
imaging [1,6], have been demonstrated to be useful in assessing grape maturity. Among
them, hyperspectral imaging has emerged as an attractive and viable technology [7–10]
to estimate relevant enological parameters in grape berries, showing high potential to
support critical decision-making during harvesting, since it combines spectroscopy with
digital imaging techniques [11] that allows the collection of process information from
across the electromagnetic spectrum in few seconds. In reflectance mode, hyperspectral
imaging collects information about how grapes reflect and absorb light as a function of
their wavelength [12,13], allowing the analysis of large number of samples and opens the
possibility to analyze the grape maturation locally in the vineyards, a highly regarded
feature for the wine industry. Besides the reflectance mode, transmittance has also been
used in spectroscopy to determine the enological parameters in grapes, although less
frequently [14–16]. These two spectroscopic modes (reflectance and transmittance) mainly
differ in the position of the sample with respect to the light source and detector. In the
reflectance mode, the light source and the detector (hyperspectral camera) are placed
above the sample while in the transmittance mode, the light source and the detector are
positioned on opposite sides of the sample and the light must pass through the sample.
The transmittance mode has the disadvantage of requiring a closer proximity to the sample
because the intensity of the light is significantly attenuated when passing though the
samples. For this reason, the reflectance mode is usually preferred [1,17].

Given the large amount of complex data produced by hyperspectral cameras, data
analysis tools are required to properly convert the spectral data into the desired enological
information. In this context, the use of advanced machine learning methods, in combination
with hyperspectral technology in reflectance mode, has been proven to be a valid line
of research to properly deal with the complexity of data, and to extract the relevant
information for the prediction of enological parameters in grapes berries [1–3,18–29]. One of
the main advantages of using machine learning methods relies on their ability to generalize,
i.e., to estimate the enological parameters for future samples, once a proper calibration of
the system is done, using training samples and the corresponding enological parameters.
Nevertheless, monitoring the level of maturation is a complex problem due to the large
variability of grape composition, grape variety and terroirs over time. Thus, assessing
the generalization ability of a model for different vintages and varieties is an important
task, in order to assess the robustness of the final methodology. Despite the existence of
numerous works published in the literature for grape ripeness assessment, most of them
address the case of samples from no more than one or two harvested years. In fact, the
generalization assessment of machine learning models is almost absent from the technical
literature, with the exception of a few works where models were trained with grapes from
one vintage/variety and tested with grapes from another vintage/variety [2,18,22,27,29].

The present work reports the development of four different machine learning (ML)
methods, including a deep learning approach, towards the assessment of grape ripeness
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and in particular the sugar content. The sugar content is an essential maturity index in
the wine industry, and is directly related with the alcoholic strength of the wine. The
ML methods considered are ridge regression (RR); partial least squares regression (PLSR);
artificial neural networks (NN); and one-dimensional convolutional neural networks (1D
CNN). These methods are developed and compared using an extensive dataset composed
of several vintages of one variety for training, and different vintages and varieties used for
testing and not employed during training. This rich dataset also incorporates the effects
of natural variability such as that originated from differences between grape varieties,
climate factors, sun exposition, varying water availability, heterogeneous soil quality and
different altitudes, etc., which is a fundamental aspect for assessing the performance in
real world conditions. Indeed, it is relevant to carry out this comparison among such
different machine learning methods since the assumptions of each proposed method is
different, and it is impossible to know in advance which method is most suitable for the
proposed problem. The choice of using partial least squares [3,18,19,21,23,25–28] and neural
networks [1,18,29,30] methods in the current work was based on the fact that these are the
most commonly applied approaches in the scientific literature for predicting enological
parameters of grape berries from spectroscopic data. On the other hand, ridge regression
was selected due to the excellent performance demonstrated in a previous work conducted
by the authors [31], concerning berry component predictions using one vintage and variety.
Finally, convolutional neural networks, one of the most popular architectures of deep
learning, have been emerging in the computer science domain with excellent results in
extracting complex patterns of data for a wide field of applications. Thus, this method was
selected to assess whether a one-dimensional convolutional neural network architecture
can bring added value to this prediction context. Details of the scientific literature for the
prediction of sugar content in wine grape berries using spectroscopic data in reflectance
mode are summarized in Table 1.

Table 1. Works measuring sugar content in grape berries using spectroscopic techniques in reflectance mode combined with
machine learning methods.

Reference ML Method RMSE a (◦Brix) Features

[1] NN 0.95 Model with one vintage and small number of berries per
sample.

[3] LS-SVM 1 0.96 Model with one vintage plus three blending varieties and small
number of berries per samples.PLS 0.93

[18]
PLS 0.94 and 1.34 Model with one vintage and small number of berries per

sample. Also tested with a different vintage.NN 0.96 and 1.36

[19] MPLS 2 1.00 Model with three vintages and large number of berries
per sample.

[21] MPLS 2 1.37 Model with one vintage and large number of berries
per sample.

[22] SVR 3 1.41 and2.44/3.44 Model with four vintages and small number of berries per
sample. Also tested for two different varieties.

[23] PLS 1.27 and 1.89 Model with one vintage for one and two varieties and small
number of berries per sample.

[26] PLS 1.15 Model with one vintage and small number of berries
per sample.

[27] PLS 0.65 and 1.09
Model with one vintage plus three blending varieties and large

number of berries per samples. Also tested with a different
vintage.

a Root mean square error.1 Least squares support vector machines.2 Modified partial least squares.3 Support vector regression.
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The major novelty of this work is the use of a large database collected over an extended
period of time, composed by different varieties and vintages, to perform a comparison
between distinct classes of machine learning methods, including the most recent deep
learning class. To the best of our knowledge, this is one of the first works where conven-
tional machine learning methods are compared with a deep learning algorithm to predict
sugar content of grapes through spectroscopic measurements.

2. Material and Methods

Figure 1 portrays the overall workflow followed in this study. The main steps are
briefly described in the following subsections.
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Figure 1. Graphical representation of the experimental procedure adopted in the current work.

2.1. Samples Description

Three varieties widely used to produce Port wine in one of the oldest appellation
regions of the world, the Portuguese Douro region, were selected to conduct this study:
Touriga Franca (TF), Touriga Nacional (TN) and Tinta Barroca (TB). These grape varieties
were selected due to their importance to the Porto wine industry, and were harvested from
vineyards of Quinta do Bomfim, Pinhão (Portugal), in three different locations within the
vineyard (from vines with small, medium and large vigor) and with two different sun
expositions (sunny and shaded sides). Grape samples of TF were collected in 2012, 2013,
2014, 2016, 2017 and 2018 vintages, while TN and TB varieties were harvested in 2013, 2014,
2016 and 2017 vintages. All vintages and varieties were collected between the beginning of
veraison and maturity, composing a total of 1748 samples for TF, 454 samples for TN and
463 samples for TB. TF samples were used to develop and test the predictive models while
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TN and TB were only used to test the generalization capacity of models created with TF for
different varieties.

Each sample for each variety was composed of six (from 2012 to 2014 vintages) or
twelve (from 2016 to 2018 vintages) grape berries randomly collected from a single bunch
with their pedicel attached. This small number of grape berries per sample was used due to
the practice of some wineries to select the best berries from each bunch for the production
of high-quality wines [1,29]. The increase from six to twelve grape berries per sample was
due to the fact that sometimes, depending on the variety, six grape berries may not be
enough to obtain a representative sample for carrying out the conventional analysis. A
line-scan hyperspectral image acquisition (described in Section 2.2) was performed using
fresh grape samples and after imaging, and before conventional analysis, all samples were
frozen at −18 ◦C.

2.2. Data Acquisition

Hyperspectral measurements were collected using the following hyperspectral imag-
ing system acquisition (Figure 1): a hyperspectral camera, composed of a JAI Pulnix
(JAI, Yokohama, Japan) black and white camera and a Specim Imspector V10E spectro-
graph (Specim, Oulu, Filand); lighting, using a lamp holder with 300 × 300 × 175 mm3

(length × width × height) that held four 20 W, 12 V halogen lamps and two 40 W, 220 V
blue reflector lamps (Spotline, Philips, Eindhoven, The Netherlands). The halogen lamps
were powered by continuous current power supplies to avoid light flickering and the re-
flector lamps were powered at only 110 V to reduce lighting and prevent camera saturation.
The acquired images have a spatial resolution of 1040 × 1392 pixels, where 1040 pixels
correspond to the wavelength channels, ranging between 380 and 1028 nm, with approx-
imately 0.6 nm width for each channel. The 1392 pixels stand for the spatial dimension
(one line over the samples) with approximately 110 mm of width. The distance between
the camera and the sample base was set to 420 mm, and the camera was controlled with
the Coyote software from JAI. All the hyperspectral measurements were done inside a
semi-darkened room and at room temperature (20 ◦C). After image collection, the grape
berries were identified and extracted using a threshold-based segmentation method.

Regarding the established lighting conditions (Figure 1), measurements were done in
reflectance mode. To do so, it was necessary to determine the reflectance values, aiming
to correct signal variations caused by the illumination and the hyperspectral camera.
Reflectance is defined as the ratio between the total intensity of light reflected by a sample
and the total intensity of light incident on the sample. To compute the intensity of light
that illuminates the grape berries, a white reference target called Spectralon (Specim, Oulu,
Filand) was used. Spectralon reflects almost 100% of the light that reaches its surface in
the ultraviolet, visible and infra-red wavelengths. Thus, for a given wavelength, λ, and,
due to the use of hyperspectral imaging, also for a certain position, x, the reflectance, R, is
computed as:

R(x, λ) =
GI(x, λ)− DI(x, λ)

SI(x, λ)− DI(x, λ)
(1)

where GI is the intensity of light reflected by the grape berries, SI the intensity of light
coming from the white reference target and DI the dark current signal (electronic noise)
associated to hyperspectral camera output acquired by keeping the camera shutter closed.
The dark current signal depends on the camera electronics and must be subtracted from
the grape berries and Spectralon intensities to avoid tampering in the determination of the
reflectance values.

In the present work, the hyperspectral measurements for each sample were carried
out along the berry “equator”, considering the pedicel as the pole, and for three different
berry positions corresponding to berry rotations of approximately 120◦ between positions,
allowing that the whole equator was imaged. In order to minimize the measurement
noise, an accumulation of 32 hyperspectral images were acquired for SI(x, λ), DI(x, λ)
and for each set of positions in GI(x, λ). The final hyperspectral images were obtained by
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averaging the 32 images and, after the identification of grape berries, the reflectance values
were calculated through Equation (1). To create a unique reflectance spectrum for each
sample, the reflectance spectra measured for all berries’ points were averaged over the
spatial dimension and positions. Furthermore, to properly develop the predictive models,
it was also necessary to determine the reference values for the sugar content, through
conventional chemical analysis. In this work, for each analytical sample, the grapes were
defrosted, crushed and the ◦Brix was then determined by refractometry [32].

After data acquisition, each acquired spectrum was paired with the reference mea-
surements for the sugar contents to create the final datasets. Moreover, in order to handle
undesirable physical phenomena in the spectra and to develop more parsimonious and
stable predictive models, the spectral data was preprocessed using Savitzky–Golay first
derivative. More information about the data acquisition process and measurement proto-
cols are available in [1,18,22,29].

2.3. Predictive Methods

Four different approaches were considered in this work (RR, PLSR, NN and 1D CNN)
for the predictive model. A brief description of these four approaches is provided below as
more detailed descriptions are provided in the literature [1,18,29,33–35].

Ridge regression (RR) is a popular machine learning method that belongs to the class
of penalized regression methods. It imposes a squared penalty (L2-norm) on the magnitude
of the regression coefficients, constraining their magnitude to be low. The penalty term
stabilizes the estimation of the coefficients, mitigating the effects of collinearity, overfitting,

and improving model robustness. In this regard, the regression coefficients,
(

^
bRR

)
, are

obtained by solving the following optimization problem (2):

^
bRR = argmin

b=[b0 ...bp ]
T

{
n

∑
i=1

(y(i)− ŷ(i))2 + γ
p

∑
j=1

b2
j

}
(2)

where
p
∑

j=1
b2

j is the squared L2-norm penalization, y(i) is the ith observed response value,

ŷ(i) is the corresponding model prediction and γ controls the bias-variance tradeoff,
weighting the contribution of the classical least-squares term with the penalization term
for the regression coefficient size. Suitable values of γ were selected through k-fold
cross-validation in order to control the bias-variance tradeoff and impose an adequate
penalization for maximum prediction accuracy [33].

Partial least squares regression (PLSR) is a method widely used in chemometrics
and related areas, fitting into the class of latent variables. The basic assumptions of PLSR
rely on the inference of new variables called latent variables (LV), corresponding to the
projections of the input (X) and output (Y) sets of variables into new subspaces, where the
covariance between X and Y is maximized [36]. The number of latent variables was chosen
by minimizing the root mean squared error obtained through k-fold cross-validation. The
maximum number of latent variables considered was set to eighty.

Artificial neural networks (NN) form another class of machine learning methods,
consisting of parallel assemblies of non-linear mathematical units disposed in layers mim-
icking the function of neurons in the brain [37]. This method has the ability of learning
from patterns that constitute the training set [38]. In this work we used a feedforward
multilayer perceptron, composed of several layers of neurons interconnected by weights
that store the knowledge acquired during the learning process [1]. During the training pro-
cess, the weights are computed iteratively in order to minimize the deviations between the
estimates and the reference sugar contents. Each iteration for weights adjustment is called
an epoch. Furthermore, the neural networks were trained using the Levenberg–Marquardt
algorithm [37], a backpropagation approach with a variable learning rate that is more
efficient than the conventional algorithm approach. The training step was repeated for 100
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different randomly generated initial weights and was stopped when the number of epochs
with the lowest mean squared error for validation was achieved (known as early stopping).
The hyperbolic tangent (non-linear function) and the identity (linear function) were the
activation functions used to compute the hidden and output neurons, respectively. As the
input data dimensionality of a neural network should be kept as low as possible to provide
model parsimony and lower the risk of overfitting, principal component analysis (PCA)
was applied to reduce the high dimensionality of the spectra. To find the optimal number
of principal components, a range between one and eighty was tested. The procedure of
k-fold cross-validation was also adopted for the development of the neural network model.

Convolutional neural networks (CNN), abbreviated as ConvNets herein, belong to
the deep learning class of machine learning methods and have been applied in different
research fields, notably for image classification. CNN models usually contain layers
of 2D convolutional kernels [34]. However, in our approach, the sets of spectral data
resulting from hyperspectral imaging procedure are one-dimensional (1D), which implies
using a 1D kernel in the CNN instead of the commonly employed 2D or 3D kernels. The
customized 1D CNN (see Figure 2) was built in Python using keras v.2.2.4 package, fed with
a one-dimensional input (1040 × 1) and followed by two one-dimensional convolutional
layers. Twenty 1D filters were used in each convolutional layer with sixteen and eight
1D kernel sizes, respectively, using a rectified linear unit (ReLU) as non-linear activation
function. This way we aim to capture first the coarse spectral connections and then refine
them. Pooling layers are usually employed after the convolutional layers to reduce the
dimensionality of feature maps. However, they are not always used in problems dealing
with one-dimensional spectral data [39,40], being simply replaced in these circumstances
by a convolutional layer with increased stride and usually without significant loss in
accuracy [39,41]. This modification also simplifies the network structure. In this work,
we adopt the strategy of not using pooling layers, building a simpler 1D CNN (i.e., with
fewer layers) to derive the model. Thus, the ‘same’ padding was used and the stride
value of the first convolutional layer was set to one and the second to eight. The outputs
arising from the final convolutional layer were flattened and a dropout layer was added to
avoid overfitting before connecting to a fully connected dense layer with a ReLU activation
function. The output layer was a single dense neuron with a linear activation function. The
training process was done using the Adadelta optimizer [42] and the convolutional weights
were initiated using ‘Glorot uniform’ initialization [43] and computed, iteratively, for 300
epochs. Batch size was set to 64. To obtain the model, an early stopping was included and
the mean squared error was defined as loss function.

RR, PLSR and NNs computations were conducted in the MATLAB R2019b environ-
ment (MathWorks, Inc., Natick, Massachusetts, United States).

2.4. Model Development and Assessment

In order to develop, assess and compare the predictive ability of the different esti-
mated models, the data (spectral and the respective reference measurements) were split
into training and independent test sets, using a stratified scheme based on the response
percentiles. To perform this step, the data for each Touriga Franca vintage (from 2012 to
2018) was grouped into 5 intervals according to the following sugar content percentiles:
20th, 40th, 60th and 80th. In each group of percentile intervals, 10% of samples were
reserved for the independent test set and the remaining were used for model training. The
final datasets (training and independent test sets) were formed by collecting the respective
TF samples partitioned for each vintage. This independent test set was used in the test
phase to assess the prediction performance of each method in order to ensure an unbiased
measurement of the model’s robustness.
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Regarding the ridge regression, partial least square and neural networks methods,
a stratified k-fold cross-validation approach was used during model training in order to
select the suitable hyperparameter(s) mentioned in Section 2.3 for each predictive method.
This was done using 9-fold cross-validation wherein the data was partitioned in nine folds,
eight used for training and one for validation. Training was repeated nine times using
a different validation fold each time. The cross-validation results presented in this work
consist of the average of the results obtained in the nine folds when they were used for
validation. The final models were trained using the nine folds and the respective best
hyperparameter(s) obtained by k-fold cross-validation approach. For the development
of the proposed one-dimensional convolutional neural network architecture, unlike the
other three methods, the training set was divided into calibration and validation sets using
the same stratified scheme based on percentiles explained above, with 10% of TF samples
reserved for validation set. The calibration set was used to estimate the model and the
validation set was applied to tune the internal parameters (weights and biases).

The performance of each machine learning method (RR, PLS, NN and 1D CNN) was
assessed and compared using the independent test set formed with all samples of TF
vintages not employed during the training stage, and the model’s generalization ability
was evaluated through all samples of TN and TB varieties (different years and varieties)
as independent test sets. Table 2 provides detailed information about the training and
independent test sets created to conduct the comparison.

Table 2. Outline of the scenarios performed in the sections below (TF—Touriga Franca; TN—Touriga
Nacional; TB—Tinta Barroca).

Training Set Independent Test Sets Section

TF 2012 to 2018
TF 2012 to 2018 Section 3.2
TN 2013 to 2017

Section 3.3TB 2013 to 2017

The root mean squared error (RMSE) was used as an evaluation criterion of the model
and to compare the proposed approaches.



Processes 2021, 9, 1241 9 of 16

3. Results and Discussion
3.1. Results for the Sugar Chemical Analysis

A summary of the descriptive statistics obtained by conventional techniques for sugar
content in each vintage and for all varieties is presented in Table 3. These enological values
were used as reference values to create and test the proposed models. From Table 3, it
is possible to observe differences between varieties for the same vintage, and differences
between vintages for the same variety, which may create difficulties in the prediction of
new samples not employed in the training stages. The ranges between the maximum and
minimum are due to the ripening of berries that were collected from the beginning of the
veraison until the date of harvest. Furthermore, the differences in terroir combined with the
constant climatic variations over the years show a substantial impact in the grape ripening
stage within a vintage and between vintages. The mean standard deviation and percentiles
vary widely between vintages and varieties but, in general, TB variety presents the larger
variability. Overall, within varieties and for each vintage, TF values range from 7.87 up to
30.26 ◦Brix, while in TN and TB have minimums of 6.95 and 5.48 ◦Brix and the maximums
of 29.66 and 29.95 ◦Brix, respectively. For more information about the descriptive statistics
of the datasets used in the following subsections, see the boxplot presented in Appendix A
(Figure A1).

Table 3. Summary of the descriptive statistics for the reference measurements of sugar contents by variety and vintage.

Variety and
Vintage

N a Mean SD b 95% CI Min c Max d Range
(Max–Min)

Q1
e Median Q3

f
Percentiles

5th 95th

TF 2012 240 16.93 3.34 (16.50; 17.35) 9.06 24.72 15.66 14.92 17.06 19.07 11.10 22.58
TF 2013 81 19.40 3.58 (18.60; 20.18) 8.10 25.00 16.9 17.85 20.00 21.74 13.40 23.94
TF 2014 120 13.55 3.66 (12.89; 14.21) 7.87 25.66 17.79 10.77 13.00 15.57 9.04 21.11
TF 2016 407 17.83 2.61 (17.57; 18.08) 10.07 26.03 15.96 16.07 17.54 19.47 14.07 22.42
TF 2017 540 19.86 3.36 (19.57; 20.14) 10.94 30.08 19.14 17.82 20.34 22.18 13.14 24.77
TF 2018 360 19.01 2.68 (18.72; 19.28) 11.92 30.26 18.34 17.37 18.65 20.38 15.27 23.76

TN 2013 60 23.25 2.44 (22.62; 23.88) 17.20 27.20 10.00 21.56 23.84 24.90 17.80 26.26
TN 2014 118 15.67 4.35 (14.88; 16.46) 6.95 24.86 17.91 12.67 15.87 19.06 8.67 22.86
TN 2016 132 19.37 2.90 (18.87; 19.87) 12.94 24.70 11.76 16.98 19.49 21.61 14.40 24.02
TN 2017 144 21.28 3.87 (20.64; 21.92) 11.61 29.66 18.05 18.86 21.44 23.86 14.41 27.20

TB 2013 82 22.30 4.39 (21.33; 23.26) 11.40 29.45 18.05 19.47 23.37 25.40 14.00 28.11
TB 2014 120 15.70 4.79 (14.83; 16.57) 6.67 28.55 21.88 11.93 15.14 19.43 8.44 23.38
TB 2016 143 21.21 3.98 (20.55; 21.87) 5.48 29.70 24.22 18.29 21.10 24.30 15.29 27.70
TB 2017 118 23.51 4.27 (22.73; 24.29) 10.41 29.95 19.54 20.94 23.62 27.15 15.73 29.46

a Number of samples. b Standard deviation. c, d Minimum and maximum values. e, f 1st and 3rd Quartile or 25th and 75th percentiles,
respectively.

3.2. Comparison of Predictive Models in the TF Samples Testing Scenario

In this stage, we aimed to evaluate and compare the prediction performance of RR,
PLS, NN and 1D CNN models using the independent test set created with different vintages
of TF (the same variety as in the training stage). Table 4 summarizes the results obtained
with validation set (9-fold cross-validation and validation as described in Section 2.4) and
independent test set, regarding the four ML classes considered. The best neural network
structure obtained by k-fold cross-validation had one hidden layer with four neurons and
54 PCs for inputs while the best performance for PLS was obtained with 35 latent variables.
Concerning RR, the best performance was found with a γ value of 0.1. From the analysis
of Table 4, it is possible to identify the one-dimensional convolutional neural network as
the best predictive method to predict sugar content in the current scenario, obtaining the
lowest RMSE values. The validation results obtained with each machine learning method
presented a root mean square error of 1.40, 1.41, 1.10 and 0.93 ◦Brix for RR, PLS, NN and
1D CNN, respectively; for the independent test set the RMSE values were 1.45, 1.47, 1.14
and 0.97 ◦Brix, respectively.
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Table 4. Results obtained by the four classes of machine learning methods for validation and test
sets, using the Touriga Franca variety.

Model
Validation Set Independent Test Set

R2 RMSECV
a/RMSEV b (◦Brix) R2 RMSEP c (◦Brix)

RR 0.84 1 1.40 1 0.83 1.44
PLS 0.84 1 1.41 1 0.83 1.47
NN 0.91 1 1.10 1 0.89 1.14

1D CNN 0.94 0.93 0.92 0.97
a Root mean square error of cross-validation. b Root mean square error of validation. c Root mean square error of
prediction. 1 Results obtained by 9-fold cross-validation.

Figure 3 depicts the histograms of absolute errors (AE) for each predictive method,
regarding the independent test set. The percentage of samples with AE smaller than
0.5 ◦Brix is 29.14% for RR, 30.86% for PLS, 35.43% for NN and 47.43% for 1D CNN. With
AE smaller than 1.0 ◦Brix is 54.43%, 54.29%, 73.72% and 74.29%, respectively. Regarding
AE smaller than 1.5 ◦Brix and also lesser than 2.0 ◦Brix, the percentage of samples is 79.43%
and 85.15% for RR; 71.43% and 82.86% for PLS; 85.15% and 90.86% for NN; and 88.58%
and 96.01% for 1D CNN, respectively.
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In order to evaluate if there are statistical differences between the absolute errors of
predictions across each pair of methods, a paired t-test with a significance level of 0.05 was
computed (see Table 5). Through the analysis of this table, it is possible to observe that
the means of absolute error for NN and 1D CNN are significantly different from the other
two methods and differ significantly between them. Thus, although NN has a similar
percentage of samples for absolute errors between 0.5 and 1.5 ◦Brix, 1D CNN present the
best overall performance.

Table 5. Paired t-test to evaluate differences between the absolute errors of predictions for each pair
of methods applied (α = 0.05) in the 175 samples of the independent test set.

Methods Mean Difference p-Value

RR-PLS −0.07 0.11
RR-NN 0.20 <0.01

RR-1D CNN 0.35 <0.001
PLS-NN 0.27 <0.001

PLS-1D CNN 0.42 <0.001
NN-1D CNN 0.15 <0.001

The scientific literature about the training and testing of models with more than one
vintage is practically nonexistent, and can only be found in a few references [19,22]. In [22],
samples from three different vintages and same location were used to train and test a
support vector regression (SVR) algorithm, revealing a RMSEP value of 1.41 ◦Brix; in [19],
a modified partial least squares (MPLS) regression algorithm was implemented to data
gathered between 2006 and 2008, obtaining a RMSECV value of 1.0 ◦Brix. However, [19]
used a large number of berries per sample (whole bunches), which reduces the variability
in both the reflectance spectra and the reference values measured for sugar content, making
the prediction problem easier. The predictions obtained with 1D CNN are more accurate
than those reported in these references, while for the remaining methods the results are in
accordance with [22].

3.3. Assessing the Generalization Ability: Testing with Different Varieties

The study of the model’s generalization ability was performed for the four models
developed in Section 3.2. Thus, two new independent test sets (with different varieties and
vintages, TN and TB) not employed during training, as described in Section 2.4, were used
to assess the generalization capacity of each model established in Section 3.2. The results
obtained with the new independent test sets and for each machine learning method are
summarized in Table 6.

Table 6. RMSEP values for sugar content when independent test sets with different varieties/vintages
are applied in the previously established models to evaluate and compare their generalization ability.

Independent Test
Sets N a

RMSEP (◦Brix)

RR PLS NN 1D CNN

TN 2013 to 2017 454 2.59 2.22 1.45 1.15
TB 2013 to 2017 463 3.12 3.09 1.75 1.31

a Number of samples in the independent test set.

Regarding each model’s generalization ability, it is possible to observe a decrease
in the performance of the models, with higher RMSE values in the independent test sets
for TN and TB varieties compared to the results obtained for the TF test set (Table 4).
Nevertheless, convolutional neural networks present the best predictions for these two
scenarios, obtaining the lowest RMSEP. Also, from the analysis of Table 6, it can be denoted
that the models generalized better for samples of TN variety and worse for samples of
TB variety. This might be related to the different distribution presented in Table 3 and
Figure A1 (Appendix A), in which, within vintages, TB samples present a larger standard
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deviation when compared with the other varieties from the same vintage. Following the
same procedure of Section 3.2, a paired t-test, with a significance level of 0.05, was carried
out to investigate statistical differences between the absolute errors of predictions in the
new independent test sets (see Table 7). This table clearly discloses the one-dimensional
convolutional neural network as the most suitable approach for generalization tests using
different vintages and varieties, being the method that most differs significantly from the
others, showing the smallest RMSEP values.

Table 7. Paired t-test to evaluate differences between the absolute errors of predictions for each pair
of methods, regarding the model’s generalization ability (α = 0.05).

Varieties/Vintages Methods Mean Difference p-Value

TN 2013 to 2017

RR-PLS 0.27 <0.001

RR-NN 0.90 <0.001

RR-1D CNN 1.12 <0.001

PLS-NN 0.62 <0.001

PLS-1D CNN 0.85 <0.001

NN-1D CNN 0.23 <0.001

TB 2013 to 2017

RR-PLS 0.04 0.09

RR-NN 1.21 <0.001

RR-1D CNN 1.56 <0.001

PLS-NN 1.17 <0.001

PLS-1D CNN 1.52 <0.001

NN-1D CNN 0.35 <0.001

Furthermore, since NN demonstrated to be the second method with the best perfor-
mance, a comparison between both NN and 1D CNN was carried out, as illustrated in
Figure 4, taking into account the predictions obtained for the independent test set com-
posed by all samples of TN and TB plus the 10% of all samples of TF used as independent
test set in Section 3.2. Through the interpretation of the results, we can see that 1D CNN
shows a better performance than NN. Besides, the p-value obtained by the paired t-test
showed that the means for each independent test set differ significantly (p-value < 0.001).
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One of the strengths of deep learning and consequently the proposed 1D CNN, is the
ability to automatically perform feature extraction, which is a fundamental procedure in
machine learning to improve the model accuracy. As mentioned before, PCA was used
to reduce the input dimensionality of the neural network; however, for the development
of the 1D CNN model, all 1040 wavelengths were considered as feature input. Besides,
despite the enormous amount of data generally needed to train deep learning methods,
the results presented here provide good insights into the characteristics of the relationship
between this methodology (hyperspectral imaging + 1D CNN) and the sugar content as
the enological parameter. Nevertheless, the overall performance achieved with neural
networks was indeed very satisfactory and with the prediction errors in an acceptable
range, indicating that this can be a good choice to predict sugar content in the current
scenario, and for the future addition of new features.

Concerning the scientific literature for the prediction of sugar content, there is only
one work [22] that tackles the model’s generalization ability, taking into consideration
different varieties not employed in the training. In [22] the generalization capacity of a
SVR model was assessed using samples of TN and TB varieties from 2013 vintage, which
revealed RMSE values of 2.44 and 3.44 ◦Brix, respectively. Thus, the RMSE values obtained
in the present work (Table 6) are lower than [22] those for 1D CNN and NN, but similar for
RR and PLS methods.

4. Conclusions

In the present work, we propose an approach that lays the groundwork for the
development of an on-the-fly non-invasive sensing methodology for predicting and moni-
toring the key enological parameters of Port wine grape berries that are essential for their
ripeness assessment. Four different machine learning methods (ridge regression, partial
least squares, neural networks and convolutional neural networks) were developed and
compared for predicting the sugar content in grapes, one of the parameters most related
to grape maturity. This comparison focused on the generalization ability for different
vintages and varieties not employed in the training model. The prediction errors obtained
by each method were within acceptable ranges, and as a result, the general performance
achieved was indeed highly satisfactory in terms of robustness. Furthermore, these results
reveal that the proposed 1D CNN architecture can be successfully applied to estimate sugar
content of wine grape berries, achieving a better performance rate when compared with
the other three methods of ridge regression, partial least squares and neural networks.

Additionally, this study shows that the differences in terroir and grape varieties
have a considerable impact in the grape ripening stage within and between vintages and,
consequently, on the robustness of the predictive models. Nevertheless, the combina-
tion of hyperspectral imaging technology with appropriate machine learning approaches
proved to be a competitive candidate for the development of a powerful tool for fast, non-
destructive and non-invasive evaluation of grape quality, and consequently, a potential
tool to achieve desired wine properties and quality standards. In particular, the results
obtained in the present work are promising to accurately measure the sugar content of
wine grapes during ripening, providing important information to adapt the procedure
defined at the laboratory level (laboratory-acquired data) to an on-the-fly non-invasive
sensing approach. Furthermore, these results suggest that the increase of the number of
training samples will further improve the robustness of the prediction models, making its
use irrespective of the specific vintage year. The addition of pooling layers to the 1D CNN
architecture should also be subjected to future research in order to compare its performance
with the current architecture and verify whether or not the use of pooling layers can bring
more predictive power to the problem. Finally, it is important in future research to perform
field hyperspectral data acquisition to upscale these models at real conditions.
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Figure A1. Boxplot of the descriptive statistics for sugar content reference values used for training 
process and independent test sets. The box represents the 25th, 50th and 75th percentiles, the whisk-
ers the 5th and 95th percentiles, the lower and upper open circle the minimum and maximum values 
and the plus symbol the mean values. 
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