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a multidisciplinary comparison of coverage via citations 
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Abstract (also in Spanish, Chinese) 
Introduction 
New sources of citation data have recently become available, such as Microsoft 
Academic, Dimensions, and the OpenCitations Index of CrossRef open DOI-to-DOI 
citations (COCI). Although these have been compared to the Web of Science (WoS), 
Scopus, or Google Scholar, there is no systematic evidence of their differences across 
subject categories. 

Methods 
In response, this paper investigates 3,073,351 citations found by these six data sources 
to 2,515 English-language highly-cited documents published in 2006 from 252 subject 
categories, expanding and updating the largest previous study. 

Results 
Google Scholar found 88% of all citations, many of which were not found by the other 
sources, and nearly all citations found by the remaining sources (89%-94%). A similar 
pattern held within most subject categories. Microsoft Academic is the second largest 
overall (60% of all citations), including 82% of Scopus citations and 86% of Web of 
Science citations. In most categories, Microsoft Academic found more citations than 
Scopus and WoS (182 and 223 subject categories, respectively), but had coverage gaps 
in some areas, such as Physics and some Humanities categories. After Scopus, 
Dimensions is fourth largest (54% of all citations), including 84% of Scopus citations and 
88% of WoS citations. It found more citations than Scopus in 36 categories, more than 
WoS in 185, and displays some coverage gaps, especially in the Humanities. Following 
WoS, COCI is the smallest, with 28% of all citations. 

Conclusions 
Google Scholar is still the most comprehensive source. In many subject categories 
Microsoft Academic and Dimensions are good alternatives to Scopus and WoS in terms 
of coverage. 
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1. Introduction 

1.1 Timeline 
The first scientific citation indexes were developed by the Institute for Scientific 
Information (ISI). The Science Citation Index (SCI) was introduced in 1964, and was later 
joined by the Social Sciences Citation Index (1973) and the Arts & Humanities Citation 
Index (1978). In 1997, these citation indexes were moved online under the name “Web 
of Science”. Recently, these citation indexes, along with some new ones such as the 
Conference Proceedings Citation Index, the Book Citation Index, and the Emerging 
Sources Citation Index, were rebranded as the “Web of Science Core Collection” (from 
now on, WoS). The availability of this data was essential to the development of 
quantitative studies of science as a field of study (Birkle et al., 2020). 

In November 2004, two new academic bibliographic data sources that contained citation 
data were launched. Like WoS, Elsevier’s Scopus is a subscription-based database with 
a selective approach to document indexing (documents from a pre-selected list of 
publications). A few weeks after Scopus, the search engine Google Scholar was 
launched. Unlike WoS and Scopus, Google Scholar follows an inclusive and automated 
approach, indexing any seemingly academic document that its crawlers can find and 
access on the web, including those behind paywalls through agreements with their 
publishers (Van Noorden, 2014). Additionally, Google Scholar is free to access, allowing 
users to access a comprehensive and multidisciplinary citation index without charge. 

In 2006, Microsoft launched Microsoft Academic Search but retired it in 2012 4 (Orduña-
Malea et al., 2014). In 2016, Microsoft launched a new platform called Microsoft 
Academic, based on Bing’s web crawling infrastructure. Like Google Scholar, Microsoft 
Academic is a free academic search engine, but unlike Google Scholar, Microsoft 
Academic facilitates bulk access to its data via an Applications Programming Interface 
(API) (Wang et al., 2020). 

In 2018, Digital Science launched the Dimensions database (Hook et al., 2018). 
Dimensions uses a freemium model in which the basic search and browsing 
functionalities are free, but advanced functionalities, such as API access, require 
payment. This fee can be waived for non-commercial research projects. 

Also in 2018, the organization OpenCitations, dedicated to developing an open research 
infrastructure, released the first version of its COCI dataset (OpenCitations Index of 
CrossRef open DOI-to-DOI citations). The citation data in COCI comes from the lists of 
references openly available in CrossRef (Heibi et al., 2019). Until 2017, most publishers 
did not make these references public, but the Initiative for Open Citations (I4OC), 
launched in April 2017, has since convinced many publishers to do so. The rationale is 
that citation data should be considered a part of the commons and should not be only on 
the hands of commercial actors (Shotton, 2013, 2018). At the time of writing, 59% of the 
47.6 million articles with references deposited with CrossRef have their references 
open 5. However, some large publishers, such as Elsevier, the American Chemical 
Society, and IEEE have not yet agreed to opening their lists of references. Thus, COCI’s 
only partially reflects the citation relationships of documents recorded in CrossRef, which 
now covers over 106 million records (Hendricks et al., 2020). 

 
4 https://web.archive.org/web/20170105184616/https:/academic.microsoft.com/FAQ 
5 https://i4oc.org/ 

https://web.archive.org/web/20170105184616/https:/academic.microsoft.com/FAQ
https://i4oc.org/
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The new bibliographic data sources are changing the landscape of literature search and 
bibliometric analyses. The openly available data in Microsoft Academic Graph (MAG) 
has been integrated into other platforms, significantly increasing their coverage 
(Semantic Scholar, Lens.org). There are still some reuse limitations, such as that the 
current license of MAG (ODC-BY) requires attribution, which apparently precludes it from 
being able to be integrated into COCI (which uses a CC0 public domain license). This 
openness is nevertheless an advance on the previous situation, in which most citation 
data was either not freely accessible (WoS, Scopus), or free but with significant access 
restrictions (Google Scholar). At this point, citation data is starting to become ubiquitous, 
and even owners of closed bibliographic sources, such as Scopus, are beginning to offer 
researchers options to access their data for free 6. 

Other citation indexes have been developed within various academic platforms, but 
these are not analysed in this study, for various reasons:  

• CiteSeerX 7, from Penn State University, indexes documents in the public web 
and not those that are only found behind paywalls (Wu et al., 2019). 

• ResearchGate 8 generates its own citation index based on the full text documents 
that its crawler finds on the Web and those that its users upload to the platform. 
However, the platform does not offer a way to extract data in bulk, and it is difficult 
to use web scraping to obtain data because the complete list of citations to an 
article cannot be easily displayed. 

• Lens.org 9 integrates coverage from Microsoft Academic, CrossRef, PubMed, 
and a number of Patent datasets. It is not included in this analysis because two 
of its main sources (Microsoft Academic and CrossRef) are already included. 

• Semantic Scholar 10 originally focused on Computer Science and Engineering. 
Later it expanded to include Biomedicine, and recently it has integrated 
multidisciplinary coverage from Microsoft Academic (which is also the reason why 
we decided not to analyse it). 

• There are also several regional or subject-specific citation indexes, which only 
index documents published by journals and/or researchers who work in a specific 
country or region, or in specific topics. Given their specific scope these are not 
easily comparable to sources with a worldwide and/or multidisciplinary coverage. 

1.2. Previous analyses of coverage 
Document coverage varies across data sources (Ortega, 2014), and studies that analyse 
differences in coverage can inform prospective users about the comprehensiveness of 
each database in different subject areas. For citation indexes, greater coverage should 
equate to higher citation counts for documents, if citations can be extracted from all 
documents. Coverage is not the only relevant aspect that should be considered when 
deciding which data source should be used for a specific information need (e.g., literature 
search, data for bibliometric analyses). Other aspects such as functionalities to search, 
analyse, and export data, as well as transparency and cost, are also relevant, but not 
analysed here. Some of these aspects are analysed by Gusenbauer & Haddaway 
(2020). 

 
6 https://www.elsevier.com/icsr/icsrlab 
7 https://citeseerx.ist.psu.edu/index 
8 https://www.researchgate.net/ 
9 https://www.lens.org/ 
10 https://www.semanticscholar.org/ 

https://opendatacommons.org/licenses/by/1.0/
https://creativecommons.org/share-your-work/public-domain/cc0/
https://www.elsevier.com/icsr/icsrlab
https://citeseerx.ist.psu.edu/index
https://www.researchgate.net/
https://www.lens.org/
https://www.semanticscholar.org/
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1.2.1 The veterans: WoS, Scopus, and Google Scholar 
As the longest-running platforms, many studies have analysed the differences in 
coverage and citation data between WoS, Scopus, and Google Scholar. WoS covers 
over 75 million records in its Core Collection (which includes its main citation indexes), 
and up to 155 million records when other regional and subject-specific citation indexes 
are included (Birkle et al., 2020). Scopus claims to cover over 76 million records (Baas 
et al., 2020). Google Scholar does not disclose official figures about its coverage (Van 
Noorden, 2014), but the most recent independent studies have estimated that it covers 
well over 300 million records (Delgado López-Cózar et al., 2019; Gusenbauer, 2018). At 
this point most studies agree that Google Scholar has a more comprehensive coverage 
than Scopus and WoS, and includes the great majority of the documents that they cover. 
However, the relatively low quality of the metadata available in Google Scholar and the 
difficulty to extract it make it challenging to use Google Scholar data in bibliometric 
analyses (Delgado López-Cózar et al., 2019; Halevi et al., 2017; Harzing, 2016; Harzing 
& Alakangas, 2016; Martín-Martín et al., 2018; Moed et al., 2016). 

1.2.2 Microsoft Academic 
Microsoft Academic has been recently reported to cover over 225 million publications 
(Wang et al., 2020). Harzing carried out an analysis of her own publication record and 
the publication records of 145 academics in five broad disciplinary areas (Harzing, 2016; 
Harzing & Alakangas, 2017a, 2017b). Microsoft Academic found more of her own 
publications than Scopus or WoS. For the sample of publications by 145 academics, 
Microsoft Academic provided higher citation counts than both Scopus or WoS in 
Engineering, Social Sciences, and the Humanities, and similar figures in Life Sciences 
and Sciences. Google Scholar reported the highest citation counts in all disciplines. 

Hug & Brändle (2017) also analysed the coverage of Microsoft Academic and compared 
it to Scopus and WoS. Based on publications included in the repository of the University 
of Zurich as a case study, Microsoft Academic had wider coverage of non-article 
documents than Scopus and WoS, while Scopus had a slightly lower coverage of journal 
articles than Microsoft Academic. Microsoft Academic showed similar biases to Scopus 
and WoS against non-English publications and publications in the Humanities. 
Haunschild et al. (2018) analysed a subset of the same sample used in the previous 
study (25,539 papers also covered by WoS) and found that 11% had no associated cited 
references in Microsoft Academic, while in WoS the same papers had associated cited 
references. However, for publications with less than 50 associated references in WoS 
(24,788) the concordance correlation coefficient applied to the number of references 
found by each source was 0.68, indicating a strong tendency for them both to report the 
same number. 

Thelwall (2017) analysed the citation counts of 172,752 articles in 29 large journals from 
various disciplines, and compared them to Scopus citation counts and Mendeley reader 
counts. For articles published between 2007 and 2017, Microsoft Academic found slightly 
more citations than Scopus overall, and significantly more than Scopus for documents 
published in 2017. In subsequent studies, Thelwall (2018a) found that Microsoft 
Academic did find earlier citations to recently published articles when compared to 
Scopus. Kousha & Thelwall (2018) studied the coverage and citation counts of books in 
Microsoft Academic and Google Books by analysing a sample of book records extracted 
from the Book Citation Index (BKCI) in WoS. They found 60% of the books in their sample 
overall, but this percentage was lower in some categories of the Humanities and Social 
Sciences. Citation counts in Microsoft Academic were higher than in BKCI in 9 out of 17 
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fields during 2013-2016. Kousha et al. (2018) analysed whether Microsoft Academic was 
able to find early citations of in-press articles using a sample of 65,000 in-press articles 
from 2016-2017, and found that Microsoft Academic was able to find 2-5 times as many 
citations as Scopus. This was mostly because Microsoft Academic (like Google Scholar) 
merges preprints (and the citations these receive) with their subsequent in-press 
versions, and because Microsoft Academic covers repositories such as arXiv. 

Visser et al. (2020) carried out a large-scale comparison of WoS, Scopus, Dimensions, 
Microsoft Academic, and CrossRef by matching the entire collection of documents in 
each source. They found that Microsoft Academic was the source with the largest 
coverage overall, and the one with the higher overlap with Scopus documents (81% of 
Scopus documents were found in Microsoft Academic). Some of the documents in 
Microsoft Academic were not of a scientific nature. Microsoft Academic was not able to 
detect 12.7% of the citations found by Scopus after adjusting for coverage differences. 

1.2.3 Dimensions 
Dimensions covers over 105 million publications, as well as other kinds of records such 
as grants data, clinical trials, patents, and policy documents (Herzog et al., 2020). 

Orduña-Malea & Delgado-López-Cózar (2018) analysed several small samples of 
journals, documents and authors in the field of Library & Information Science using 
Dimensions, and compared the data to Scopus and Google Scholar. Dimensions 
provided slightly lower citation counts than Scopus. Thelwall (2018c) analysed a random 
sample of 10,000 Scopus articles from 2012, finding that Dimensions covered the great 
majority of articles with a DOI (97%) and high correlations between citation counts in the 
two sources (median of 0.96 across narrow subject categories). 

Harzing (2019) analysed coverage of Dimensions and CrossRef, and compared it to the 
coverage in WoS, Scopus, Google Scholar, and Microsoft Academic using her own 
publication and citation record, as well as that of six top journals in Business & 
Economics. CrossRef and Dimensions had similar or better coverage of publications, 
and similar citation counts to those in WoS and Scopus, but still substantively lower than 
Google Scholar and Microsoft Academic. 

Visser et al. (2020) found that Dimensions had a substantially higher coverage than 
Scopus and WoS, which heavily relied on data from CrossRef. After computing the 
overlap in coverage between Dimensions and Scopus, they found that overall, 
Dimensions covered 78% of the documents available in Scopus (35.1 million out of 44.9 
million documents in Scopus). They also analysed the accuracy and completeness of 
citation links, finding that, after adjusting for coverage differences, there were 489.7 
million citations found by both sources (percentage of full overlap: 83%), 73.2 million only 
found by Scopus, and 25.8 million only found by Dimensions. 

1.2.4 COCI 
COCI has detected over 624 million citation relationships involving over 53 million 
documents (Peroni & Shotton, 2020). The citations recorded in this source are only a 
fraction of the citations that have actually occurred among the documents covered by 
CrossRef, because some publishers that deposit lists of references or CrossRef have 
not agreed to make them available, and other publishers and preprint servers do not 
deposit any references in CrossRef or do it only for some document types (Shotton, 
2018; van Eck et al., 2018). Huang et al. (2020) used citation data from COCI and 
bibliographic data from WoS, Scopus and Microsoft Academic to test the robustness of 
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university rankings created with these different sources, and concluded that despite its 
lack of comprehensiveness COCI is already a viable data source for cross comparisons 
at the system level. 

1.3 Objective 
The citation index coverage studies published so far have analysed a heterogeneous 
variety of samples of documents, disciplines, and data sources.  In response, this paper 
reports a systematic comparison of coverage of six data sources (Google Scholar, 
Microsoft Academic, Scopus, Dimensions, WoS, and COCI 11 ) across 252 subject 
categories using a relatively large sample of citations. This allows comparisons across a 
large number of disciplines for the most widely used bibliographic data sources. This 
study expands and updates a previous analysis of Google Scholar, Scopus and WoS 
(Martín-Martín et al., 2018). The main research question that drives this is investigation 
is: 

RQ.  How much overlap is there between Google Scholar, Microsoft Academic, 
Scopus, Dimensions, WoS, and COCI in the citations that they find to 
academic documents and does this vary by subject? 

2. Methods 

2.1. Direct coverage comparison vs. comparison of citations 

The most direct method to compare document coverage across different data sources 
would be to obtain a complete list of all documents covered by each source, match the 
documents across databases, and report the size of the overlaps (Visser et al., 2020). 
This is not possible here because of access restrictions. For example, Scopus and WoS 
charge for this kind of access and Google Scholar does not share its database. 

Because of these restrictions, studies analysing coverage differences across 
bibliographic data sources often use an alternative method: they select a seed sample 
of documents that are known to be covered by all the data sources under analysis, and 
then they compare the list of citing documents that each data source is able to find for 
each of the seed documents (Martín-Martín et al., 2018). The rationale of this method is 
that if data source A is not able to find a citation that data source B has found, the reason 
must be that the citing document is not covered by data source A. This assumes that all 
data sources are equally effective in detecting citation relationships. In fact, each data 
source has its own (usually secret) citation detection algorithms, and small discrepancies 
in citation data across databases exist even when removing the factor of differences in 
coverage (van Eck & Waltman, 2019; Visser et al., 2020). Furthermore, it is known that 
bibliographic databases do not always have access to cited reference lists for all the 
documents they cover, which also affects the citations they can detect. For example, 
reference lists are only available in a fraction of the documents indexed in CrossRef, so 
an analysis of the citations detected in this source does not accurately reflect the true 
size of the bibliographic database. Other sources, especially academic search engines, 

 
11  In the case of COCI, the results cannot reflect the full coverage of CrossRef given the 
incomplete availability of reference lists in this source. Nevertheless, including it in the analysis 
will inform us of what proportion of citations are currently available in the public domain. 
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are also affected by this issue to some degree 12. Lastly, academic documents that do 
not cite and are not cited by other documents cannot be detected by this type of analysis. 
Therefore, results from studies that analyse citations to identify relative differences in the 
sizes of bibliographic databases are likely to be affected by these confounding factors. 

Of the six data sources that are analysed in this study, only two (Microsoft Academic and 
COCI) offered free and unrestricted access to the complete list of documents (or citation 
relationships in the case of COCI) that they covered at the time of data collection, 
although Dimensions now also offers this to researchers. To include all data sources in 
this study in a comparable way, the alternative method (selection of seed sample and 
analysis of citations) was used to discover relative coverage differences among data 
sources across subject categories. Since citation extraction discrepancies seem likely to 
be small compared to coverage differences, the results should also be useful to detect 
differences in coverage between sources. 

2.2. Selection of seed sample 

The sample of citations analysed in this paper was taken from a seed sample of highly-
cited documents: those listed in Google Scholar’s Classic Papers product 13 (GSCP). 
This sample comprises the top 10 most cited documents published in 2006 according to 
Google Scholar in each of 252 subject categories (except French Studies, which has 
only 5 documents). The 252 subject categories are also assigned to one or more of 8 
broad subject areas. The seed sample contains a total of 2,515 highly-cited documents. 
For more information on GSCP, see Orduna-Malea et al. (2018). 

This seed sample was considered useful for the purpose of this study, as it is the only 
sample of documents in Google Scholar for which an article-level subject classification 
is available.  At the time of data collection, no other sample of documents with an article-
level classification was readily available to us, and a sample with these characteristics 
was considered superior to the journal-level classification schemes that are used in 
sources such as Web of Science and Scopus. Additionally, being aware of the difficulties 
that extracting data from Google Scholar entail (Else, 2018), the election of a sample of 
documents that were known to be highly cited also guaranteed a high efficiency in the 
citation extraction process (each request to Google Scholar retrieved the maximum 
amount of records that the search engine displays per page). 

This study analyses the complete list of documents that cite this seed sample, as 
reported in a variety of citation indexes (Google Scholar, Microsoft Academic, Scopus, 
Dimensions, Web of Science, and COCI). In this study, they are called citing documents, 
or more simply, citations. Thus, this study follows the same approach as Martín-Martín 
et al. (2018). 

2.3. Collection of citation data 

Each of the 2,515 highly-cited documents were searched on Google Scholar, Microsoft 
Academic, Scopus, Dimensions, WoS, and COCI (Table 1). For each seed document 
found in a data source, the list of citing documents was extracted, as described below. 

 
12 Visser et al. (2020) found that a large number of citations missing from Microsoft Academic 
were caused by missing reference lists in the citing documents. As far as we know no study has 
analysed how many missing citations in Google Scholar are caused by missing reference lists. 
13 https://scholar.google.com/citations?view_op=list_classic_articles&hl=en&by=2006 

https://scholar.google.com/citations?view_op=list_classic_articles&hl=en&by=2006
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The searches and data extraction were carried out in May and June 2019 (i.e., not re-
using the data from the previous paper). 

Google Scholar has no data exporting capabilities in its web interface and no API. 
Instead, a custom web scraper was used to extract the list of citing documents for each 
highly-cited document in the seed sample (Martín-Martín, 2018). CAPTCHAs were 
solved manually when they appeared. 

Google Scholar provides up to 1,000 results per query. In order to download the 
complete list of citing documents for those with more than 1,000 citations, queries were 
split by the publication year of the citing documents. Using this method, we were able to 
download most of the citing documents available in Google Scholar: for 2,429 (96.5%) 
seed documents, we were able to extract a list of citing documents, amounting to at least 
98% of the total citation counts reported by Google Scholar for these seed documents. 
In eight cases (extremely highly-cited seed documents), splitting queries by publication 
year was not enough to find all possible citing documents, and in these cases the number 
of citing documents extracted from Google Scholar was lower than 75% of the reported 
Google Scholar citation counts. This disadvantages Google Scholar in comparison to the 
other sources, for which all citing documents could be extracted. 2,689,809 citations 
were extracted from Google Scholar. 

The metadata provided by Google Scholar is limited (Delgado López-Cózar et al., 2019). 
For example, Google Scholar does not provide the DOI of a document, which is very 
useful for document matching across data sources, and therefore relevant to our study. 
To enrich the limited metadata provided by Google Scholar, we followed several 
approaches. First, given that most of the citing documents from Google Scholar had 
already been analysed (Martín-Martín et al., 2018), we matched the newly extracted list 
of citing documents to the data from the previous study, and retrieved all the enriched 
metadata that was available in the dataset used for the 2018 study. Next, for all the citing 
documents that could not be matched in the previous step (mostly newer citations), 
metadata was extracted from the HTML Meta tags in the landing page of each citing 
document, and with public metadata APIs when a CrossRef or DataCite DOI could be 
found. These methods produced a DOI for 62.9% of all Google Scholar citations. 

To collect citation data from Microsoft Academic, the Academic Search API 14 was used. 
This API is free with a limit of 10,000 transactions per month. At the moment of data 
collection, this API did not facilitate searching directly by DOI (Thelwall, 2018b). For this 
reason, every highly-cited seed document was first searched for by title. Once the seed 
document was retrieved and confirmed to be correct, new queries were submitted to 
retrieve the list of citing documents. Up to 1,000 citing documents per query could be 
extracted (seed documents with over 1,000 citations required more than one query to 
extract all citations). For each citing document, the Microsoft Academic internal Id, as 
well as the DOI, the document title, the list of authors, the publication year, the language, 
and the citation counts, were retrieved. 1,840,702 citations were extracted from Microsoft 
Academic. 

To collect citation data from Scopus, the exporting capabilities of the web interface were 
used. Each seed highly-cited document was searched in Scopus by DOI and title, and, 
if found, the list of citing documents was exported in csv format. Scopus allows 2,000 
records per query to be exported. When seed documents had over 2,000 citations, the 
alternative email service was used, which allows 20,000 records to be exported. No 

 
14 https://msr-apis.portal.azure-api.net/docs/services/academic-search-api 

https://msr-apis.portal.azure-api.net/docs/services/academic-search-api
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document in the seed sample had more than 20,000 citations in Scopus. 1,738,573 
citations were extracted from Scopus. 

To collect citation data from Dimensions, its API was used, which is free for research 15. 
The Dimensions API allows searching by DOI. Therefore, all seed highly-cited 
documents were searched for using their DOI, and, when unavailable, by their title. Once 
all the seed documents had been identified in Dimensions, the API was also used to 
extract the list of citing documents. For each citation, the basic bibliographic information 
(DOI, title, authors, publication year, source, document type) was recorded. 1,649,162 
citations were extracted from Dimensions. 

To collect citation data from WoS, the web interface was used. All citation indexes in 
WoS Core Collection were included in the analysis, including the Emerging Sources 
Citation Index (from publication year 2005 to the present). Each seed highly-cited 
document was searched by its DOI, and, when unavailable, by its title. The list of citing 
documents was then exported in batches of up to 500. The exported files were 
consolidated into a single table using a set of R functions (Martín-Martín & Delgado 
López-Cózar, 2016). 1,503,657 citations were extracted from WoS. 

To collect citation data from COCI, the public API was used. The DOI of each seed 
highly-cited document was searched in order to retrieve the complete list of citing DOIs. 
852,413 citation relationships were extracted from COCI. 

Table 1. Nº of seed highly-cited documents and citations found in each data source 

Source Seed documents* Citations N % 
Google Scholar 2,515 100 2,689,809 
Microsoft Academic 2,500 99.4 1,840,702 
Scopus 2,447 97.3 1,738,573 
Dimensions 2,478 98.5 1,649,162 
WoS 2,342 93.1 1,503,657 
COCI 2,471 98.3 852,413 

* Due to the sample selection process, the figures related to the seed documents found in each data 
source cannot be used as evidence that Google Scholar has higher coverage than the other sources. 

2.4. Analysis of citation data 

To calculate citation overlaps across data sources, the citing documents from different 
data sources were matched. The matching process started with two data sources (WoS 
and Scopus), and the result was a full join of the two sources: a table containing all 
citations found both by WoS and Scopus, as well as the citations found only by one of 
the data sources. The resulting dataset was matched to the data obtained from another 
data source (Dimensions), and this process was repeated until all data sources were 
merged into a master list of citations (Table 2). The matching criteria are below, and are 
the same as previously used (Martín-Martín et al., 2018): 

1. For each pair of data sources A and B and a seed highly-cited document X, all 
citing documents with a DOI that cite X according to A where matched to all citing 
documents with a DOI that cite X according to B.  

2. For each of the unmatched documents citing X in A and B, a further comparison 
was carried out (except in the matching round where COCI data was integrated 

 
15 https://www.dimensions.ai/scientometric-research/ 

https://www.dimensions.ai/scientometric-research/
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into the master table). The title of each unmatched document citing X in A was 
compared to the titles of all the unmatched documents citing X in B, using the 
restricted Damerau-Levenshtein distance (optimal string alignment) (Damerau, 
1964; Levenshtein, 1966). The pair of citing documents which returned the 
highest title similarity (1 is perfect similarity) was selected as a potential match. 
This match was considered successful if either of the following conservative 
heuristics was met: 

o The title similarity was at least 0.8, and the title of the citing document was 
at least 30 characters long (to avoid matches between short, 
undescriptive titles such as “Introduction”). 

o The title similarity was at least 0.7, and the first author of the citing 
document was the same in A and B. 

Table 2. Rounds of the matching process 

Matching 
round 

Data sources being matched Resulting 
dataset 

Merged 
citations 

1st WoS ⟗ Scopus master_1 1,852,681 
2nd master_1 ⟗ Dimensions master_2 1,990,862 
3rd master_2 ⟗ Microsoft Academic master_3 2,263,896 
4th master_3 ⟗ COCI master_4 2,273,067 
5th master_4 ⟗ Google Scholar master_5 3,073,351 

 
The matching criteria described above are intentionally conservative, so a match is only 
accepted when the two documents have very similar metadata. The analysis does not 
attempt to remove duplicate citations within the same data source, although Google 
Scholar and Scopus (and perhaps others) are afflicted by this issue (Orduna-Malea et 
al., 2017; van Eck & Waltman, 2019). In this study, if there are duplicate citations within 
the same data source only one of the instances will be linked to the same citation in other 
sources, while the rest will (erroneously) appear as unique citations. Therefore, the 
percentage overlaps between sources calculated are conservative estimates (i.e., they 
might be higher than reported here). A replication of the overlap analysis carried in 
Martín-Martín et al. (2018) for one subject category (Operations Management) showed 
that overlap figures are affected little when duplicates are identified and removed, 
however (Chapman & Ellinger, 2019). 

Given that the objective is to detect relative differences in coverage across databases, 
to make comparisons as fair as possible the subset of citations that are considered in 
each comparison is adapted to include only citation relationships where the cited seed 
document is covered by all sources present in the comparison. For example, in a 
comparison of coverage across the six data sources analysed in this study (Table 1, top), 
only citations to the 2,319 seed highly-cited documents covered by all six data sources 
are considered. However, in pairwise comparisons, such as the Venn diagram that 
represents overlapping and unique citations in Google Scholar and Microsoft Academic 
(Figure 2A), the citations to the 2,500 seed highly-cited documents that are known to be 
covered by these two sources were analysed. 

Data processing was carried out with the R programming language (R Core Team, 2014) 
using several R packages and custom functions (Dowle et al., 2018; Krassowski, 2020; 
Larsson et al., 2018; Martín-Martín & Delgado López-Cózar, 2016; van der Loo et al., 
2018; Walker & Braglia, 2018; Wickham, 2016; Wilke, 2019). The resulting data files are 
openly available 16. 

 
16 https://osf.io/gnb72/ (2019 folder) 

https://osf.io/gnb72/
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3. Results 

3.1. Overall results (all subject categories) 

3.1.1. Relative overlap 
Overall, Google Scholar has the highest coverage, as it found 88% of all possible 
citations (2,918,105) to the 2,319 highly-cited documents in our sample that were 
covered by the six sources under analysis (Figure 1, first row). Microsoft Academic, 
Scopus, Dimensions and WoS found substantially fewer (60%-52% of all citations). 
COCI found only 28% of all possible citations. 

In terms of relative overlaps between two data sources, larger data sources are able to 
find a vast majority of the citations found by the smaller data sources (Figure 1, row 2 
through 6). Thus, Google Scholar found 89% of the citations in the second data source 
with the largest coverage (Microsoft Academic), and up to 94% of the citations in the 
smaller sources (WoS, COCI). On the other side of the spectrum, COCI, the smallest 
source, found between 30% and 51% of the citations found by the other sources (Google 
Scholar and Dimensions, respectively). 

 
Figure 1. Percentage of citations found by each database, relative to all citations (first row), and relative to 
citations found by the other databases (subsequent rows) 
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For Microsoft Academic, Scopus, Dimensions, and WoS, the relative overlap between 
any two of these sources ranges from high (WoS found 73% of the citations found by 
Microsoft Academic) to almost full overlap (Dimensions found 98% of the citations 
available in COCI). Figure 1 shows that it is not always the case that the larger the 
source, the higher the proportion of citations from another source that it will be able to 
find. For example, Dimensions found 80% of the citations available in Microsoft 
Academic, while Scopus (larger than Dimensions) found 77%. The cause of this might 
be that both Microsoft Academic and Dimensions cover non-journal content, such as 
preprints, while Scopus does not. Scopus found 93% of the citations found by WoS, while 
Microsoft Academic (larger than Scopus) found 86%.  Dimensions was able to find the 
highest proportion of COCI citations (98%) out of all the other sources (including Google 
Scholar). 

3.1.2. Overlaps within the full set of citations 
A quarter (26%) of all citations were found only by Google Scholar (Figure 2), 21% of the 
citations were found by the six sources, while 18% were found by all sources except 
COCI. The remaining 35% were found by combinations of four or less data sources, and 
the highest values were found in sectors that include Google Scholar and/or Microsoft 
Academic. 

 
Figure 2. Overlaps of citations found by Google Scholar, Microsoft Academic, Scopus, Dimensions, Web of 
Science, and COCI. Values expressed as percentages relative to N = 2,918,105 citations to 2,319 
documents. Combinations with values below 1% are not displayed. 

When considering all possible pairwise combinations (Figure 3), the pairs of data sources 
that are most similar in terms of full citation overlap are Scopus/WoS (78% of all citations 
found by either were found by both), followed by Scopus/Dimensions (75%), 
Dimensions/WoS (75%), and Microsoft Academic/Dimensions (74%). Pairs that include 
Google Scholar or COCI display lower percentages of overlap: in the case of Google 
Scholar this is caused by the extra coverage in Google Scholar that is not found in the 
other sources, while for COCI the reason is the opposite. 
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Figure 3. Comparison of citing document overlaps between Google Scholar, Microsoft Academic, Scopus, 
Dimensions, Web of Science, and COCI (pairwise). Figures within Venn diagrams expressed as 
percentages.  
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3.2. Analysis by subject areas and categories 

3.2.1. Relative overlap 
Disaggregating the data by broad subject areas provides a more detailed picture of the 
coverage of these sources. Google Scholar found the great majority of citations (85%-
90%) in all eight subject areas (Table 3) and COCI found the fewest. COCI has 
differences in coverage across areas: in the Humanities and Social Sciences it found 
18%-20% of all citations, while in the STEM areas (Science, Technology, Engineering, 
and Mathematics) it found a higher proportion of citations (27%-32%). 

Between these two extremes, the other four sources (Microsoft Academic, Scopus, 
Dimensions, and WoS) tend to have similar coverage of each field, but differences 
between fields (Table 3). They have more comprehensive coverage for Chemical & 
Material Sciences (69%-72%), followed by Life Sciences & Earth Sciences (60%-68%). 
Conversely, their coverage is much lower in Humanities, Literature & Arts (25%-39%), 
Social Sciences (33%-47%) and Business, Economics & Management (29%-47%). 
Among these four, Microsoft Academic seems to have the most comprehensive 
coverage, except in Physics & Mathematics, where it found fewer of the citations (57%) 
than the other sources. 

Table 3. Percentage of citations found by each data source, relative to the total number of citations found 
overall and by broad areas. 

 N 
% of citations found (relative to N) 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Humanities, Literature & 
Arts 89,337 87% 39% 31% 29% 25% 18% 

Social Sciences 406,661 88% 47% 40% 36% 33% 20% 
Business, Economics & 

Management 235,338 88% 47% 34% 32% 29% 19% 

Engineering & Computer 
Science 691,164 88% 63% 61% 54% 48% 30% 

Physics & Mathematics 317,320 90% 57% 64% 59% 59% 36% 
Health & Medical 

Sciences 1,001,507 85% 63% 59% 58% 51% 27% 

Life Sciences & Earth 
Sciences 571,817 89% 68% 64% 63% 60% 32% 

Chemical & Material 
Sciences 253,990 90% 69% 75% 72% 72% 32% 

 

Further disaggregating the data to identify the percentage of relative citation overlap for 
each pair of sources in each subject area (Table 4), the patterns for the complete dataset 
(Figure 1) recur. Google Scholar consistently found most citations found by the other 
sources across all areas; there is a higher relative overlap between Microsoft Academic 
and Dimensions/COCI than between Microsoft Academic and Scopus/WoS; conversely, 
the relative overlap between Scopus and WoS is always higher than between Scopus 
and other sources; the highest relative overlap in each area is always for 
Dimensions/COCI; Microsoft Academic seems to lack coverage in Physics & 
Mathematics, as evidenced by its lower relative overlap in this area. 
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Table 4. Relative pairwise overlaps between data sources (%). Overall and by broad subject areas. 

A. Humanities, Literature & Arts 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  39% 33% 30% 29% 19% 
Microsoft Acad. 86%  57% 62% 53% 42% 

Scopus 84% 68%  65% 68% 42% 
Dimensions 89% 86% 75%  69% 59% 

Web of Science 87% 73% 80% 70%  46% 
COCI 93% 92% 77% 94% 73%  

 

B. Social Sciences 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  48% 41% 39% 37% 22% 
Microsoft Acad. 88%  66% 69% 60% 40% 

Scopus 89% 78%  75% 76% 43% 
Dimensions 93% 90% 83%  76% 54% 

Web of Science 92% 82% 88% 81%  47% 
COCI 96% 95% 85% 96% 80%  

 

C. Business, Economics & Management 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  46% 35% 34% 31% 20% 
Microsoft Acad. 85%  58% 61% 52% 36% 

Scopus 91% 80%  77% 75% 45% 
Dimensions 93% 90% 82%  75% 55% 

Web of Science 93% 84% 87% 83%  50% 
COCI 94% 92% 83% 95% 78%  

 

D. Engineering & Computer Science 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  65% 62% 58% 55% 32% 
Microsoft Acad. 90%  79% 78% 70% 43% 

Scopus 89% 82%  81% 79% 45% 
Dimensions 93% 91% 91%  82% 53% 

Web of Science 93% 86% 94% 87%  49% 
COCI 94% 94% 92% 97% 83%  
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Table 4 (cont.) Relative pairwise overlaps between data sources. Overall and by broad subject areas. 

E. Physics & Mathematics 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  58% 65% 61% 61% 37% 
Microsoft Acad. 91%  83% 83% 78% 48% 

Scopus 91% 74%  85% 87% 52% 
Dimensions 93% 80% 93%  88% 60% 

Web of Science 93% 75% 95% 88%  55% 
COCI 92% 77% 94% 98% 90%  

 

F. Health & Medical Sciences 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  64% 61% 62% 58% 29% 
Microsoft Acad. 87%  78% 84% 75% 41% 

Scopus 88% 84%  86% 84% 40% 
Dimensions 91% 91% 86%  82% 45% 

Web of Science 95% 87% 92% 89%  43% 
COCI 94% 96% 89% 99% 86%  

 

G. Life Sciences & Earth Sciences 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  69% 67% 67% 64% 34% 
Microsoft Acad. 91%  82% 86% 80% 45% 

Scopus 93% 88%  88% 88% 46% 
Dimensions 94% 93% 90%  87% 50% 

Web of Science 95% 91% 94% 91%  48% 
COCI 96% 96% 92% 98% 90%  

 

H. Chemical & Material Sciences 

… that are also  
found by ⇨ 

Percentage 
of citations in ⇩ … 

Google 
Scholar 

Microsoft 
Academic Scopus Dimensions Web of 

Science COCI 

Google Scholar  71% 78% 75% 75% 34% 
Microsoft Acad. 93%  90% 92% 88% 43% 

Scopus 93% 83%  89% 92% 40% 
Dimensions 94% 89% 94%  91% 44% 

Web of Science 94% 84% 96% 90%  41% 
COCI 95% 93% 93% 98% 91%  

 

 

  



17 
 

3.2.2. Full overlap 
The differences in coverage between the older (Google Scholar, Scopus, WoS) and 
newer (Microsoft Academic, Dimensions) sources across subject areas are also evident 
from three-way comparisons (Figures 4, 6, and 8). The three-set combinations of data 
sources that are not displayed here are accessible from Appendix 1. The combinations 
that include more than one of the older sources are not included here because they were 
discussed in a previous study (Martín-Martín et al., 2018) and the results have barely 
changed. The combinations that include COCI are not displayed here because it is 
essentially a subset of the other sources (especially Dimensions). 

Venn diagrams for the 252 specific subject categories are also accessible from Appendix 
1. Figures 5, 7, 9 and 10 display the distribution of the proportions of citations that would 
fall in each section of the Venn diagrams calculated at this level of aggregation, for 
various pairs of data sources. The remaining combinations are accessible from Appendix 
2. 

Google Scholar and the new sources: Microsoft Academic, and Dimensions 

For Google Scholar, Microsoft Academic, and Dimensions, the largest percentages of 
full overlap (citations found by the three sources) occur in the STEM fields (Figure 4). 
These range from 46% in Physics and Mathematics, to 63% in Chemical and Material 
Sciences. Full overlap in the areas of Humanities and Social Sciences is distinctly lower 
(25%-34%). This is caused by lower coverage of these areas in Microsoft Academic and 
Dimensions. The percentage of citations in Microsoft Academic and/or Dimensions that 
is not covered by Google Scholar ranges from 6% (in Chemical and Material Sciences) 
to 11% (in Health & Medical Sciences). 

At the level of specific subject categories, for pairwise comparisons between Google 
Scholar/Microsoft Academic and Google Scholar/Dimensions (Figure 5) the general 
trend of the subject area is followed, with variations in some subject categories. The 
variation seems to be higher between Google Scholar/Dimensions than between Google 
Scholar/Microsoft Academic. Nevertheless, in both comparisons the percentages in the 
sector “Only in Google Scholar” are higher in the Humanities and Social Sciences, and 
lower in STEM fields. The sector “In both data sources” almost mirrors the one above, 
and the sectors “Only in Microsoft Academic” and “Only in Dimensions” have values 
almost exclusively below 10%, with two major exceptions. These correspond to the 
categories Astronomy & Astrophysics 17, and Psychology 18. In these two categories, 
many citations found by Microsoft Academic and Dimensions were not found by Google 
Scholar. In the case of Psychology, the low citation coverage in Google Scholar is 
caused by one extremely highly-cited document (Using thematic analysis in psychology, 
by Virginia Braun and Victoria Clarke 19), which at the time of data collection had 54,323 
citations in Google Scholar. However, because of the limitations of Google Scholar’s 
search interface for data extraction, only 10,996 citations could be extracted from Google 
Scholar for this article. 

 
17 Google Scholar/Microsoft Academic: https://osf.io/g8z42/; Google Scholar/Dimensions: 
https://osf.io/bwv5s/ 
18 Google Scholar/Microsoft Academic: https://osf.io/jqwah/; Google Scholar/Dimensions: 
https://osf.io/xnf24/ 
19 https://www.tandfonline.com/doi/abs/10.1191/1478088706QP063OA 

https://osf.io/g8z42/
https://osf.io/bwv5s/
https://osf.io/jqwah/
https://osf.io/xnf24/
https://www.tandfonline.com/doi/abs/10.1191/1478088706QP063OA
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Figure 4. Overlaps between citations found by Google Scholar, Microsoft Academic, and Dimensions in 
broad subject areas. Figures within Venn diagrams expressed as percentages. 
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Figure 5. Distribution of citations that fall within each sector of the Venn diagrams that compare Google 
Scholar to Microsoft Academic and Dimensions. Calculated at the level of subject categories, and 
aggregated by subject areas.  
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Scopus and the new sources: Microsoft Academic and Dimensions 

For Microsoft Academic, Scopus, and Dimensions, none of the sources is always larger 
than the others, with the results varying by subject area (Figure 6). Microsoft Academic 
sometimes has larger coverage than Scopus (Humanities and Social Sciences), 
although in these areas both contribute many unique citations. Scopus also sometimes 
provides more coverage than Microsoft Academic (Physics & Mathematics, Chemical & 
Material Sciences). The previously seen trend of higher percentages of full overlap in 
STEM fields also occurs here. The number of citations found by Dimensions is similar to 
that of Scopus across all subject areas, but there are also many citations that one of 
them finds that the other does not in the Humanities and Social Sciences. Comparing 
the three sources together, Dimensions provides the fewest unique citations. 

In most subject categories (Figure 7), there are large Microsoft Academic/Scopus and 
Scopus/Dimensions citation overlaps. This is especially evident in STEM categories, 
where the overlap in almost all cases exceeds 50%. For Microsoft Academic/Scopus 
(Figure 7, top), there are 66 (out of 252) subject categories where the overlap exceeds 
70%, and for Scopus/Dimensions, 148 categories exceed this overlap. Extreme cases 
of low overlap between sources are almost always in the Humanities and Social 
Sciences. For Microsoft Academic/Scopus, the lowest overlaps (below 30%) are in 
French Studies 20 (9%, although in this case the results are based only on citations to 
one seed document, because the rest were not covered by Microsoft Academic and 
Scopus), International Law 21 (20%), European Law 22 (21%), American Literature & 
Studies 23  (24%), Law 24  (26%), and Film 25  (27%). In 182 categories (out of 252) 
Microsoft Academic found more citations than Scopus. There are also some outlier cases 
of low overlap in STEM categories, such as over 50% of citations in Computer 
Graphics 26 and Discrete Mathematics 27 only being available in Microsoft Academic 
(compared to Scopus), or 48% of citations in High Energy & Nuclear Physics 28 and 
Quantum Mechanics 29 only being found by Scopus (compared to Microsoft Academic). 
For Scopus/Dimensions (Figure 7, bottom), many of the same categories have the lowest 
overlap: French Studies 30 , International Law 31 , American Literature & Studies 32 , 
European Law 33, and History 34. These low coverage figures are caused by Microsoft 
Academic and Dimensions having a lower coverage of citations in these categories than 
Scopus. In 36 categories (out of 252) Dimensions found more citations than Scopus. 

 
20 https://osf.io/gmrju/ 
21 https://osf.io/bzha2/ 
22 https://osf.io/f36sn/ 
23 https://osf.io/7qzmk/ 
24 https://osf.io/4gtdc/ 
25 https://osf.io/ctzb7/ 
26 https://osf.io/rz4cj/ 
27 https://osf.io/v6bgy/ 
28 https://osf.io/vafzp/ 
29 https://osf.io/87cdh/ 
30 https://osf.io/bqpz4/ 
31 https://osf.io/p26ua/ 
32 https://osf.io/fngph/ 
33 https://osf.io/pdnxt/ 
34 https://osf.io/xjhfw/ 

https://osf.io/gmrju/
https://osf.io/bzha2/
https://osf.io/f36sn/
https://osf.io/7qzmk/
https://osf.io/4gtdc/
https://osf.io/ctzb7/
https://osf.io/rz4cj/
https://osf.io/v6bgy/
https://osf.io/vafzp/
https://osf.io/87cdh/
https://osf.io/bqpz4/
https://osf.io/p26ua/
https://osf.io/fngph/
https://osf.io/pdnxt/
https://osf.io/xjhfw/
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Figure 6. Overlap between citations found by Scopus, Microsoft Academic, and Dimensions, by broad 
subject area. Figures within Venn diagrams expressed as percentages. 
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Figure 7. Distribution of citations within each sector of the Venn diagrams that compare Scopus to 
Microsoft Academic and Dimensions. Calculated at the level of subject categories, and aggregated by 
subject areas. 
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Web of Science and the new sources: Microsoft Academic and Dimensions 

Comparing Microsoft Academic, Dimensions and WoS (Figure 8), there are many unique 
citations in Microsoft Academic and WoS. Out of these three, Dimensions found the 
fewest unique citations (2-6% depending on the area). Again, the divergence is higher in 
the Humanities and Social Sciences, where Microsoft Academic has the highest 
percentages of unique citations. Microsoft Academic also has lower coverage in Physics 
& Mathematics and (to a lower degree) in Chemical & Material Sciences. 

The results by subject category confirm that some categories deviate from the trend in a 
broad area (Figure 9). Considering Microsoft Academic/WoS (Figure 9, top), Microsoft 
Academic’s coverage is large compared to WoS for Computing Systems 35 (73% of all 
citations), Software Systems 36  (63%), Educational Administration 37  (62%), Chinese 
Studies & History 38 (60%), and Discrete Mathematics 39 (58%). The gaps in coverage of 
Microsoft Academic in International Law 40, and Law 41 occur again here, as 47% and 
46% of the citations in these categories (respectively) are only found by WoS. Something 
similar occurs in the categories included in Physics & Mathematics: the distribution of 
citations only found by WoS in this area has an unusually wide interquartile range when 
compared with the other areas, which is a sign that Microsoft Academic’s gaps in 
coverage in this area affect more than one category. The most extreme cases are again 
Quantum Mechanics 42 and High Energy & Nuclear Physics 43, with 47% and 44% of 
citations only found by WoS (respectively). In 223 categories (out of 252) Microsoft 
Academic found more citations than WoS. For the distributions of overlap and unique 
citations between Dimensions/WoS (Figure 9, bottom), there are some similarities with 
the previous comparison: 51% of the citations in Computing Systems 44 are only found 
by Dimensions, and in Humanities and Social Sciences over a third of the citations in 
Chinese Studies & History 45 , and Foreign Language Learning 46  are only found by 
Dimensions, which reveals coverage gaps in these categories in WoS. In other 
Humanities categories, such as American Literature & Studies 47 (51%), History 48 (46%), 
or Literature & Writing 49 (46%) WoS found more unique citations than Dimensions. 
Dimensions also has gaps in coverage in Computer Graphics 50, International Law 51, 
Law 52, and Middle Eastern & Islamic Studies 53, compared to WoS. In 185 categories 
(out of 252) Dimensions found more citations than WoS. 

 
35 https://osf.io/ugvh3/ 
36 https://osf.io/6vrnp/ 
37 https://osf.io/x9g3e/ 
38 https://osf.io/54xky/ 
39 https://osf.io/fa8sr/ 
40 https://osf.io/9584j/ 
41 https://osf.io/h7jt2/ 
42 https://osf.io/ghws2/ 
43 https://osf.io/gpyse/ 
44 https://osf.io/rsj4m/ 
45 https://osf.io/bvr3p/ 
46 https://osf.io/vmdbx/ 
47 https://osf.io/zd53e/ 
48 https://osf.io/q529p/ 
49 https://osf.io/qcdsh/ 
50 https://osf.io/sfd2g/ 
51 https://osf.io/a9mtx/ 
52 https://osf.io/n2e98/ 
53 https://osf.io/za5ks/ 

https://osf.io/ugvh3/
https://osf.io/6vrnp/
https://osf.io/x9g3e/
https://osf.io/54xky/
https://osf.io/fa8sr/
https://osf.io/9584j/
https://osf.io/h7jt2/
https://osf.io/ghws2/
https://osf.io/gpyse/
https://osf.io/rsj4m/
https://osf.io/bvr3p/
https://osf.io/vmdbx/
https://osf.io/zd53e/
https://osf.io/q529p/
https://osf.io/qcdsh/
https://osf.io/sfd2g/
https://osf.io/a9mtx/
https://osf.io/n2e98/
https://osf.io/za5ks/
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Figure 8. Overlaps between citations found by Web of Science, Microsoft Academic, and Dimensions, by 
broad subject areas. Figures within Venn diagrams expressed as percentages. 
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Figure 9. Distribution of citations within each sector of the Venn diagrams that compare Web of Science to 
Microsoft Academic and Dimensions. Calculated at the level of subject categories, and aggregated by 
subject areas. 
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Microsoft Academic and Dimensions 

At the level of subject categories, the vast majority of citations in Microsoft 
Academic/Dimensions are found either by both databases, or only by Microsoft 
Academic. In 209 out of 252 categories, the percentage of unique citations in Dimensions 
is below 10% (Figure 10). The exceptions are in Physics & Mathematics, where 45% of 
the citations in Quantum Mechanics 54, 39% of the citations in High Energy & Nuclear 
Physics 55, and 26% of the citations in Plasma & Fusion 56 (also included in Engineering 
& Computer Science) are only found by Dimensions. This again reveals the gap in 
coverage of Microsoft Academic in these categories. In 226 categories (out of 252) 
Microsoft Academic found more citations than Dimensions. 

Figure 10. Distribution of citations within each sector of the Venn diagrams that compare Microsoft 
Academic and Dimensions. Calculated at the level of subject categories, and aggregated by subject areas. 

4. Discussion 

4.1. Limitations 

Because this study uses an updated and extended version of the sample used in 
Martín-Martín et al. (2018), many of the limitations declared in that study are also 
applicable here, as summarised below. 

• The seed sample of documents used all highly-cited documents published in 
English in 2006. To generalize the results presented here, it must be assumed 

 
54 https://osf.io/3npwu/ 
55 https://osf.io/7qb8v/ 
56 https://osf.io/n5j8v/ 

https://osf.io/3npwu/
https://osf.io/7qb8v/
https://osf.io/n5j8v/
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that the population of documents that cite these highly-cited documents is 
comparable to the general population of citing documents within each subject 
category. This might not be true in some cases, because different topics within 
the same category might have different citation patterns (certain highly-cited 
topics within a category might be overrepresented). Also, these results probably 
do not represent the reality of coverage of academic literature published in 
languages other than English and literature about regionally-relevant topics, 
where Google Scholar, Microsoft Academic, Dimensions and COCI may have an 
advantage. 

• Google Scholar might have an unfair advantage in this analysis, as the initial seed 
sample was selected from a list of the highest-cited documents in this source (the 
accuracy of citation detection of Google Scholar in this specific sample could be 
higher than the average accuracy of citation detection across all documents in 
Google Scholar, which is unknown). However, the correlations between the 
citation counts of citing documents available in Martín-Martín et al. (2018) 
suggest that this advantage is not substantial: when analysing documents from 
the entire distribution of citation counts (not only highly-cited documents), Google 
Scholar still consistently reports higher citation counts than WoS and Scopus, 
while providing essentially the same citation rankings at the document level in 
most subject categories as the other two sources. 

• The algorithm that matches citations across data sources is intentionally 
conservative: it is set to minimize false positives, potentially at the expense of 
false negatives. Therefore, the percentages of overlap shown in this study are 
lower bounds. 

• Unlike Martín-Martín et al. (2018), where citations from documents included in 
the ESCI Backfile for documents published between 2005 and 2014 were not 
included in the analysis, in this study all available citation data available in the 
citation indexes that are part of WoS Core Collection is analysed. 

• Data extraction for this analysis was carried out in May/June 2019. However, the 
rapid development of these platforms may render the results obsolete in the 
future. Updated analyses similar to this one might be necessary to ascertain the 
current coverage of the data sources, especially if regular reports on coverage 
development are not issued by the sources themselves. 

Other aspects related to coverage, such as the distribution of document types, language, 
date of publication, or indexing speed are not analysed here and could be investigated 
in future studies, as they are also necessary for users who need to decide which data 
source(s) are most suitable for their needs. 

4.2. Comparison with previous studies 

The results generally agree with previous studies comparing the coverage of Microsoft 
Academic and Dimensions. Similarly to Harzing & Alakangas (2017a, 2017b) and 
Thelwall (2017), Microsoft Academic detected more citations than WoS and Scopus. This 
citation detection advantage seems to be higher in the Humanities, Social Sciences, and 
Business & Economics than in the other areas, where in some cases Microsoft Academic 
had lower coverage (Physics, Chemistry). The results here cannot be directly compared 
to Hug & Brändle (2017), who reported that Scopus had slightly greater coverage of 
journal articles than Microsoft Academic, because this study does not analyse specific 
document types. However, assuming that most citations come from journal articles, 
Microsoft Academic seems to have now surpassed Scopus in raw size, at least in the 
three areas mentioned above. 
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For Dimensions, the results also agree with those reported by Harzing (2019), who found 
that it had a similar or better coverage than WoS and Scopus in Business & Economics. 
Here the results show that the three data sources offer a similar coverage (Scopus is 
slightly larger, followed by Dimensions), but each can detect a non-negligible proportion 
of citations that the others can’t. 

From Visser et al. (2020) the percentage of documents covered by Scopus that are also 
covered by Dimensions is 78%, but in this study the percentage of citations found by 
Scopus that are also found by Dimensions is higher (84%). The causes of the difference 
between these figures is unclear, but some possibilities are a) this study uses a sample 
of citations while Visser et al. use the entire collection of source documents, b) the 
possibility that Dimensions has a lower coverage of older documents (our study analyses 
citations from 2006-2018, while Visser et al. analysed coverage between 1996-2017), or 
c) that there was an increase in coverage between the time Visser et al. obtained their 
data (December 2018), and the time the data for this study was extracted (May-June 
2019). The overlap Visser et al. found between Scopus and WoS is significantly lower 
than found here: according to their results (overlap of 29.1 million documents, and 44.9 
million documents in total in Scopus), WoS covered 65% of the documents available in 
Scopus. In the current study, however, WoS found 83% of the citations found by Scopus. 
The cause of this significant difference is also unknown, but it might be in part caused 
by the fact that Visser et al. analysed only documents in the SCI, SSCI, and A&HCI and 
the Conference Proceedings Citation Index (CPCI), while this study also considers other 
citation indexes within WoS Core Collection, such as ESCI and BKCI. Lastly, the 
percentage of Scopus documents also covered by Microsoft Academic reported by 
Visser et al. (81%) is very similar to the percentage of Scopus citations also found by 
Microsoft Academic reported here (82%). However, the full overlap between the two 
sources is much higher here (66%) than in Visser et al. (18%), because in the latter study 
a much higher amount of unique content was detected in Microsoft Academic. One 
possible reason for this might be that our study only considers documents with recorded 
relationships to other documents (through citations), while some of the documents in 
Microsoft Academic analysed in Visser et al. might not have these connections, which 
would make them undetectable to our methodology. 

Although most of the results of the overlap analysis reported here closely match those 
of the previous study with the same seed set (Martín-Martín et al., 2018), several 
discrepancies were found. In two subject categories (Psychology, and Astronomy & 
Astrophysics), the updated analysis showed that Google Scholar had a lower coverage 
than the other data sources, while in the old dataset, this was not the case. In the case 
of Astronomy & Astrophysics, this apparent fluctuation in coverage is consistent with an 
editorial published in August of 2019 in the journal Astronomy & Astrophysics, which 
denounced a sharp decrease in the h5-index of this journal in the 2019 edition of Google 
Scholar Metrics Forveille (2019) caused by a technical error in Google Scholar. 
Therefore, this seems to be a new case of a major coverage outage in Google Scholar, 
similar to one previously reported by Delgado López-Cózar & Martín-Martín (2018) which 
affected many journals published in Spain, and which was resolved when Google 
Scholar rebuilt its index a few months later. This issue will be analysed in detail in a future 
study as an example of how coverage in Google Scholar can suffer large (downward) 
fluctuations over time, as this can negatively affect literature search. 
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5. Conclusions 

5.1. Comprehensiveness of data sources across subject categories 

The results show that Google Scholar is still the most comprehensive data source among 
the six studied here. This holds true for the overall results and the results across all 
subject areas, with some exceptions such as Astronomy & Astrophysics. Google Scholar 
found nearly all the citations found by Microsoft Academic, Dimensions, and COCI (89%, 
93%, and 94%, respectively). The largest divergences occur in the Humanities and 
Social Sciences (lowest value is 84%, which corresponds to the percentage of Scopus 
citations in the Humanities found by Google Scholar). Additionally, there is a significant 
amount of extra coverage in Google Scholar that is not found in any of the other data 
sources (26% of all citations across all data sources). Google Scholar could therefore 
make an important contribution to the scientific community by opening its bibliographic 
and citation data, which would also facilitate the identification of errors such as coverage 
fluctuations. 

Whilst the results confirm that Microsoft Academic and Dimensions provide at least as 
many citations as Scopus and WoS in many subject categories, some gaps still exist: 

• Microsoft Academic seems to index the Humanities, Social Sciences, and 
Business, Economics & Management particularly well, although not for all 
categories. 

• Dimensions is closely behind Scopus in all areas in terms of citations found, but 
surpasses WoS in all areas, except in two (Physics & Mathematics, and Chemical 
& Material Sciences) where they are tied, although there are also differences at 
the level of subject categories (Dimensions also has coverage gaps in some 
Humanities categories). 

5.2. Implications for academic literature search 

Although Google Scholar and Microsoft Academic are the two most comprehensive 
bibliographic data sources analysed in this study, their search functionalities have a 
number of limitations, such as limited support of Boolean and other types of search 
operators, limited filtering capabilities (Google Scholar), and non-transparent algorithms 
to process queries and rank the documents in the results page (Microsoft Academic uses 
artificial intelligence, and Google Scholar uses publicly unknown heuristics to rank 
documents by relevance) (Beel & Gipp, 2009c, 2009b, 2009a; Martin-Martin et al., 2017; 
Orduña-Malea et al., 2016; Rovira et al., 2019; Wang et al., 2020).These characteristics, 
which prevent users from being able to generate complex search equations that are 
guaranteed to stay reproducible over time, have led some authors to consider Google 
Scholar and Microsoft Academic inadequate for query-based search (Gusenbauer & 
Haddaway, 2020). Dimensions, which does not allow complex Boolean searches in its 
web interface either, was not analysed in that study. 

On the other hand, Scopus and WoS have a lower coverage, especially in some areas 
such as the Humanities and Social Sciences, do not cover non-peer-reviewed scientific 
documents (Martín-Martín et al., 2018), are slower at indexing (Moed et al., 2016), and 
are not free. These characteristics reduce their usefulness in situations where fast and 
unrestricted access to the latest studies is important, such as the COVID-19 pandemic 
in which preprints play a critical role (Fraser et al., 2020). Nevertheless, these sources 
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offer advanced search and filtering functionalities, and were considered suitable tools for 
evidence synthesis in the form of systematic reviews (Gusenbauer & Haddaway, 2020). 

Thus, there seems to be a mismatch between the bibliographic data sources that are 
currently the most comprehensive, and those that offer users the most control over their 
searches. Since systematic reviews require both comprehensiveness of coverage and 
control over the search process, it is possible that in some cases no single currently 
available data source is adequate for the task, and instead at least two sources should 
be used. One way to do this would be to expand the concept of systematic search beyond 
the traditional search query to include other non-query-based search processes that can 
also be carried out in a systematic and reproducible manner. One possibility would be 
the expansion of a document collection obtained in a query-based search through the 
analysis of its citation network. This expansion can be carried out in a more 
comprehensive data source, different from the one where the initial search was carried 
out. As a longer term solution, academic search tools should strive to offer more a 
transparent and reproducible search process and embrace community standards for 
interoperability and reuse of document metadata (Haddaway & Gusenbauer, 2020). 

Lastly, searches suitable for systematic reviews are only one of the many types of search 
that are carried out in these data sources. Indeed, the more recent academic search 
platforms (Microsoft Academic, Semantic Scholar, Dimensions) have not implemented 
traditional advanced query-based capabilities (Dimensions supports them in its API), and 
seem to be instead focusing on the browsing experience (advanced filtering), and in 
offering analytics dashboards. Lens.org seems to be an exception, as it also offers 
advanced structured query-based search (Tay, 2019). Future studies could focus on the 
suitability of these and other bibliographic data sources to solve specific types of 
information needs, as it is important that researchers are aware of the strengths and 
limitations of each data source for specific use cases and in specific knowledge domains. 

5.3. Implications for bibliometric analyses 

As new sources of bibliographic data (including citation data) become openly available 
and validated for specific types of bibliometric analyses, the need to rely on expensive 
proprietary data sources may diminish. Regarding the findings in this study, the final 
decision about which source to use may depend on properties of the sources other than 
coverage, such as metadata quality and bulk access options. If these factors are not of 
overriding importance, however, then Google Scholar is the best choice in almost all 
subject areas for those needing the most comprehensive citation counts but not needing 
complete lists of citing sources. If complete lists are needed, then Microsoft Academic is 
the best alternative and is also free. The amount of citation data in the public domain 
(through COCI) is still low and not useful on its own, presumably because its role is to 
feed other sources, not to be more comprehensive than them. 

In use cases where exhaustiveness of coverage is required, but coverage divergence is 
considered to be large (many unique citations in each data source), the combination of 
several sources is recommended. 

To conclude, the evidence presented in this study is intended to serve as a tool for 
researchers and other users of bibliographic databases, one that will hopefully help them 
make more informed decisions when they need to select one or more of these data 
sources to solve a specific information need. 
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Appendix 1 
Complete list of Venn diagrams computed for this study 

 

No subject aggregation  
Two-set Venn diagrams (all subject categories) https://osf.io/bwpaq/ 

Three-set Venn diagrams (all subject categories) https://osf.io/jkrge/ 

Aggregated by 8 subject areas  
Google Scholar – Microsoft Academic – Scopus https://osf.io/h7m8s/ 

Google Scholar – Microsoft Academic – Dimensions  https://osf.io/7v4kr/ 

Google Scholar – Microsoft Academic – Web of Science https://osf.io/fn3yh/ 

Google Scholar – Microsoft Academic – COCI  https://osf.io/s3bmp/ 

Google Scholar – Scopus – Dimensions  https://osf.io/q8ecx/ 

Google Scholar – Scopus – Web of Science  https://osf.io/qkc2a/ 

Google Scholar – Scopus – COCI  https://osf.io/mrvdb/ 

Google Scholar – Dimensions – Web of Science https://osf.io/nwm83/ 

Google Scholar – Dimensions – COCI  https://osf.io/dzs5x/ 

Google Scholar – Web of Science – COCI  https://osf.io/64chg/ 

Microsoft Academic – Scopus – Dimensions  https://osf.io/hgzn6/ 

Microsoft Academic – Scopus – Web of Science  https://osf.io/f7xpa/ 

Microsoft Academic – Scopus – COCI  https://osf.io/c6tpz/ 

Microsoft Academic – Dimensions – Web of Science https://osf.io/f5zxs/ 

Microsoft Academic – Dimensions – COCI  https://osf.io/ry87a/ 

Microsoft Academic – Web of Science – COCI  https://osf.io/vxyj4/ 

Scopus – Dimensions – Web of Science  https://osf.io/xqg3y/ 

Scopus – Dimensions – COCI  https://osf.io/jmvb6/ 

Scopus – Web of Science – COCI  https://osf.io/e43kt/ 

Dimensions – Web of Science - COCI https://osf.io/ew7fj/ 

Aggregated by 252 subject categories (zipped)  
Google Scholar – Microsoft Academic https://osf.io/v4ek3/ 

Google Scholar – Scopus  https://osf.io/umsyw/ 

Google Scholar – Dimensions  https://osf.io/jqmuy/ 

Google Scholar – Web of Science https://osf.io/4b8uq/ 

Google Scholar – COCI  https://osf.io/gytuh/ 

Microsoft Academic – Scopus  https://osf.io/jw2bt/ 

Microsoft Academic – Dimensions  https://osf.io/a2mp7/ 

Microsoft Academic – Web of Science https://osf.io/2hkxq/ 

Microsoft Academic – COCI  https://osf.io/ch4gb/ 

Scopus – Dimensions  https://osf.io/q4swk/ 

Scopus – Web of Science https://osf.io/qcpbh/ 

Scopus – COCI  https://osf.io/2xvbh/ 

Dimensions – Web of Science https://osf.io/pdycb/ 

Dimensions – COCI  https://osf.io/j7qte/ 

Web of Science - COCI https://osf.io/mnwe7/ 

 

https://osf.io/bwpaq/
https://osf.io/jkrge/
https://osf.io/h7m8s/
https://osf.io/7v4kr/
https://osf.io/fn3yh/
https://osf.io/s3bmp/
https://osf.io/q8ecx/
https://osf.io/qkc2a/
https://osf.io/mrvdb/
https://osf.io/nwm83/
https://osf.io/dzs5x/
https://osf.io/64chg/
https://osf.io/hgzn6/
https://osf.io/f7xpa/
https://osf.io/c6tpz/
https://osf.io/f5zxs/
https://osf.io/ry87a/
https://osf.io/vxyj4/
https://osf.io/xqg3y/
https://osf.io/jmvb6/
https://osf.io/e43kt/
https://osf.io/ew7fj/
https://osf.io/v4ek3/
https://osf.io/umsyw/
https://osf.io/jqmuy/
https://osf.io/4b8uq/
https://osf.io/gytuh/
https://osf.io/jw2bt/
https://osf.io/a2mp7/
https://osf.io/2hkxq/
https://osf.io/ch4gb/
https://osf.io/q4swk/
https://osf.io/qcpbh/
https://osf.io/2xvbh/
https://osf.io/pdycb/
https://osf.io/j7qte/
https://osf.io/mnwe7/
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Appendix 2 
Complete list of boxplots computed for this study 

 

Subject category-level overlap data aggregated by 8 subject areas 
Google Scholar – Microsoft Academic https://osf.io/b94xp/ 

Google Scholar – Scopus  https://osf.io/rvbw9/ 

Google Scholar – Dimensions  https://osf.io/ubtrm/ 

Google Scholar – Web of Science https://osf.io/7wb49/ 

Google Scholar – COCI  https://osf.io/7ekdr/ 

Microsoft Academic – Scopus  https://osf.io/jx7by/ 

Microsoft Academic – Dimensions  https://osf.io/x4257/ 

Microsoft Academic – Web of Science https://osf.io/rdw7g/ 

Microsoft Academic – COCI  https://osf.io/f8a9e/ 

Scopus – Dimensions  https://osf.io/3a97k/ 

Scopus – Web of Science https://osf.io/w4zv3/ 

Scopus – COCI  https://osf.io/jtnyu/ 

Dimensions – Web of Science https://osf.io/gsjwm/ 

Dimensions – COCI  https://osf.io/sr4wu/ 

Web of Science - COCI https://osf.io/6dkw4/ 

 

  

https://osf.io/b94xp/
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https://osf.io/7ekdr/
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https://osf.io/x4257/
https://osf.io/rdw7g/
https://osf.io/f8a9e/
https://osf.io/3a97k/
https://osf.io/w4zv3/
https://osf.io/jtnyu/
https://osf.io/gsjwm/
https://osf.io/sr4wu/
https://osf.io/6dkw4/
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Resumen (volver arriba) 

Introducción 

Recientemente han aparecido nuevas fuentes de datos de citas, como Microsoft 
Academic, Dimensions, y el índice citas DOI-a-DOI con datos de CrossRef realizado por 
OpenCitations (COCI). Aunque estas fuentes ya han sido comparadas con Web of 
Science, Scopus, y Google Scholar, todavía no hay evidencias sistemáticas sobre sus 
diferencias a nivel de categorías temáticas. 

Metodología 

En respuesta, este trabajo analiza 3.073.353 citas encontradas por estas seis fuentes a 
2.515 documentos altamente citados publicados en inglés en 2006, clasificados en 252 
categorías temáticas, expandiendo y actualizando así el estudio con una mayor muestra 
publicado anteriormente. 

Resultados 

Google Scholar encontró el 88% de todas las citas, (muchas de las cuales no fueron 
detectadas por las otras fuentes) así como la mayoría de las citas encontradas por las 
otras fuentes (89%-94%). Este patrón se mantenía en la mayoría de las categorías 
temáticas. Microsoft Academic es la segunda fuente más grande (60% de todas las 
citas), incluyendo el 82% de las citas de Scopus y el 86% de las de Web of Science. En 
la mayoría de las categorías, Microsoft Academic encontró más citas que Scopus y Web 
of Science (en 182 y 223 categorías, respectivamente), pero tenía huecos en la 
cobertura de algunas áreas, como en Física y algunas categorías de las Humanidades. 
Después de Scopus, Dimensions es la cuarta fuente más grande (54% de todas las 
citas) incluyendo el 84% de las citas de Scopus y el 88% de las de Web of Science. 
Dimensions encontró más citas que Scopus en 36 categorías, más que Web of Science 
en 185, y también presenta algunos huecos de cobertura, especialmente en las 
Humanidades. Después de Web of Science, COCI es la fuente más pequeña, con el 
28% de todas las citas. 

Conclusiones 

Google Scholar es todavía la fuente con mayor cobertura. En muchas categorías 
temática MA y Dimensions son ya buenas alternativas a Scopus y Web of Science en 
términos de cobertura. 
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摘要（回到首页） 

引言 

Microsoft Academic，Dimensions 和带有 OpenCitations (COCI)发布的 CrossRef 数据的

DOI-a-DOI 引文索引，作为新出现的引文数据库，尽管已经与 Web of Science，Scopus

和 Google Scholar 进行了比较，但是仍然没有研究验证它们在主题类别方面的差异，本

文将对此进行系统性的研究。 

研究方法 

本文分析了这六种数据库的 3,073,353 个引用，引用来自 2006 年发表的 2515 篇英文高

被引文章，文章归属 252 个主题类别。采用近期发表的更大样本数让研究更具概括性和

及时性。 

结果 

Google Scholar 可以发现所有引用中的 88％（其中许多未被其他数据库检测到）以及其

他来源中的大多数被引（89％-94％）。在大多数主题类别中都是如此。Microsoft 

Academic 是第二大数据来源（占所有引用的 60％），包括 82％的 Scopus 引用和 86％

的 Web of Science 引用。在大多数类别中，Microsoft Academic 所引用的文献多于

Scopus 和 Web of Science（分别在 182 个和 223 个类别中），但在某些领域如物理和某

些人文学科的覆盖范围上则表现较弱。Dimensions 是仅次于 Scopus 的第四大来源（占

所有引用的 54％），包括 84％的 Scopus 引用和 88％的 Web of Science 引用，并在 36

个类别中的引用多于 Scopus，在 185 个类别中多于 Web of Science。Dimensions 在覆

盖面上也有薄弱，特别是人文学科。COCI 是 Web of Science 之后，覆盖面最少的数据来

源，占所有引用的 28％。 

结论 

Google Scholar 仍然是覆盖面最高的数据来源。在很多主题类别上 Microsoft Academic

和 Dimensions 是替代 Scopus 和 Web of Science 不错的选择。 
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