
electronics

Article

Distributed Remote E-Voting System Based on Shamir’s Secret
Sharing Scheme

Marino Tejedor-Romero 1,*,† , David Orden 1,† , Ivan Marsa-Maestre 2,† , Javier Junquera-Sanchez 3,†

and Jose Manuel Gimenez-Guzman 4,†

����������
�������

Citation: Tejedor-Romero, M.;

Orden, D.; Marsa-Maestre, I.;

Junquera-Sanchez, J.; Gimenez-

Guzman; J.M. Distributed Remote

E-Voting System Based on Shamir’s

Secret Sharing Scheme. Electronics

2021, 10, 3075. https://doi.org/

10.3390/electronics10243075

Received: 25 October 2021

Accepted: 7 December 2021

Published: 9 December 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Departamento de Física y Matemáticas, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;
david.orden@uah.es

2 Departamento de Automática, Universidad de Alcalá, 28805 Alcalá de Henares, Spain; ivan.marsa@uah.es
3 Departamento de Ciencias de la Computación, Universidad de Alcalá, 28805 Alcalá de Henares, Spain;

javier.junquera@uah.es
4 Departamento de Comunicaciones, Universitat Politècnica de València, 46022 Valencia, Spain;

jmgimenez@upv.es
* Correspondence: marino.tejedor@uah.es
† These authors contributed equally to this work.

Abstract: A number of e-voting systems have been proposed in the last decades, attracting the
interest of the research community. The challenge is far from being fully addressed, especially for
remote systems. In this work, we propose DiverSEC, a distributed, remote e-voting system based
on Shamir secret sharing, operations in Galois field and mixnets, which enables end-to-end vote
verification. Parties participate as nodes in the network, protecting their interests and ensuring
process integrity due to the conflicting interests. The threat model is very conservative, not letting
even the most privileged actors to compromise votes privacy or integrity. Security in depth is
implemented, overlapping different mechanisms to offer guarantees even in the most adverse
operating conditions. The main contributions of the resulting system are our proposal for secret-
sharing among the political parties, which guarantees that no party can compromise the integrity of
the ballot without being detected and identified in real time, and the computational and architectural
scalability of the proposal, which make it easy to implement.

Keywords: e-voting; remote voting; verifiable voting; secret sharing

1. Introduction

During the past decades, the e-voting research field, essential for the development of a
bigger concept called e-democracy, has been attracting growing interest. First, because elec-
tions are a critical requirement for the proper operation of the current representative-
democratic government systems. Second, because we have experienced an explosive
digital development that enables alternative voting methods. In this moment, there is
powerful and efficient hardware with an acceptable cost. At the same time, there are lots of
technology-related and highly-capable professionals. Both circumstances enable combining
elections and digital automation.

E-Voting systems present immediate advantages over the paper ballot system. They
are more inexpensive and time-efficient, because traditional elections require the orchestra-
tion of many people and many resources in order to offer security guarantees. Electronic
elections can be not only simpler and cheaper, but also more user-friendly.

This idea is not novel. There are many publications about e-voting, and real-world
cases of elections powered using digital resources [1,2]. However, this fact does not imply
that e-voting has been properly accepted. These cases have been mostly affected by
controversy. In fact, several subsequent analysis over these real-world cases have revealed
that the protocols and systems chosen by the officers were not designed from a secure

Electronics 2021, 10, 3075. https://doi.org/10.3390/electronics10243075 https://www.mdpi.com/journal/electronics

https://www.mdpi.com/journal/electronics
https://www.mdpi.com
https://orcid.org/0000-0002-1679-0161
https://orcid.org/0000-0001-5403-8467
https://orcid.org/0000-0002-5529-2851
https://orcid.org/0000-0002-4597-6539
https://orcid.org/0000-0002-1645-8476
https://doi.org/10.3390/electronics10243075
https://doi.org/10.3390/electronics10243075
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/electronics10243075
https://www.mdpi.com/journal/electronics
https://www.mdpi.com/article/10.3390/electronics10243075?type=check_update&version=2


Electronics 2021, 10, 3075 2 of 19

perspective and had serious vulnerabilities [3,4]. For this reason, we need cryptographic
techniques and a secure design. Powerful hardware and a developed IT industry are not
sufficient by themselves. A correct design is not only meant to guarantee the integrity
and privacy of the vote; it is also important in order to gain the trust of users. Specially
nowadays, when the popular opinion of e-voting is not completely favorable.

There are already several e-voting proposals, which use cryptography to solve these
requirements, but we can still find weaknesses that must be solved before we take an-
other step forward. This paper contributes to bridge this gap by proposing DiverSEC: a
distributed, remote e-voting system (REV) which satisfies desirable properties like ballot
secrecy, integrity and verifiability, incorporating elements such as Shamir secret sharing
and polynomial rings, and a novel architecture based on a mixnet, which distributes re-
sponsibility of the process among the different political parties. As a result, none of them
can hinder the integrity of the ballot without being detected and identified by the others
in real time. The proposal is also flexible and easy to implement, with a computational
complexity that is linear to the number of voters, which can be easily divided in electoral
districts if needed.

The rest of this paper is organized as follows. Section 2 reviews the desirable properties
for an e-voting system, and briefly discusses the most relevant proposals to date. Then
Section 3 presents the threat model where our proposal operates, while Section 4 describes
the actual proposal: the DiverSEC e-voting system. Section 5 discusses the main properties,
strengths and limitations of our approach. Finally, Section 6 summarizes our conclusions
and sheds light on some future research directions.

2. State-of-the-Art
2.1. Desirable Properties for E-Voting Systems

There are several properties that are required of e-voting systems, from the basic prop-
erties extracted from traditional paper ballot elections (e.g., ballot secrecy or legitimacy),
to other requirements, inherent to electronic alternatives. These have been already listed
and explained by security researchers [5]. In the following, we briefly discuss the ones
more relevant to our work:

• Ballot secrecy : Only the voter can know the actual vote. In an e-voting system, this
means ensuring vote confidentiality against other voters, against attackers, and even
against the very entity performing the election.

• Legitimacy: Only previously registered participants can vote. That is, in the final
ballot there must not be any vote from an unauthorized participant. In electronic
systems, this is guaranteed via authentication.

• Eligibility: Just as illegitimate voting is not allowed, legitimate voters can emit only
one vote.

• Accuracy: The final result accounts for all legitimate votes, without any alteration
between emission and tally. This is related to vote integrity.

• Individual verifiability: The voter can verify the correctness of the election process
she has participated in.

• Coercion resistance: A voter can freely emit a vote even under coercion from a third
party. The usual way to achieve this property is by means of the impossibility for
the voter to prove her own vote. In this way, a third party cannot be sure of the final
decision of a voter, which indirectly de-incentivize coercion.

• Robustness: The system remains dependable even when some actors actively attempt
to corrupt the process. The types of corruption attempts are pre-defined. This is an
important requirement for an e-voting system, due to the number of actors involved.
The system must be designed taking into account the possibility of corrupted input.

These requirements are not completely independent. Some are connected between
them (e.g., accuracy and verifiability). Others have a certain degree of incompatibility, like
ballot secrecy against verifiability, and individual end-to-end verifiability against coercion
resistance. This is because the ability to track your own vote across the system implies



Electronics 2021, 10, 3075 3 of 19

having exclusive information, and voters could offer their private verification information
to an attacker. Therefore, this balance is typically the most difficult to satisfy.

Taking this into account, the goal is to achieve a reasonable compromise, adapted to
the current needs of the situation and the voters, and to the advantages that we deem most
valuable of the e-voting protocols over traditional ballots.

Besides the basic properties, there are other kinds of concerns about e-voting systems
we should solve before deploying them, regarding, for instance, electronic system guar-
antees. Given any e-voting system, the voters have little knowledge of what’s happening
under-the-hood, beyond their interaction with the system. This is why an open-source pub-
lic formalization is deeply encouraged. However, an open-source software implementation
of the e-voting system is not enough to solve this distrust, because it does not necessarily
imply that everyone in the system is running the open-source implementation [6]. Further
on, we will describe the threat and adversarial model we have considered for our proposal
but, for the moment, the most cautious choice is to be wary of every actor in the system.

Under this assumption, the only way to guarantee the voter’s security and trust,
along with the tally’s integrity is a secure design. An e-voting system is resistant even to
corruption coming from inside the system’s most privileged actors only if:

• The voter sends only the minimum information to the system for the entire process
to be completed correctly. The most critical point here, is that, with that minimum
amount of information, a malicious privileged actor should not be capable of compro-
mising the security of the vote.

• A malicious administration is not able to convincingly fake the tally. A usual way to
achieve this are distributed tally systems, in which there are no centralized tally au-
thorities. The degree of distribution may vary, ranging from a few nodes, as is our case,
to self-tallying systems where every user may perform the tally independently [7].

These two conditions allow the voter to participate securely in the election with-
out checking the software of the rest of the nodes. [5] regards this property as software
independence, although the author also refers to unintentional errors, not only inten-
tional corruption.

2.2. Protocols and E-Voting Systems to Date

We can find a wide variety of e-voting protocols in the literature, for a wide diversity
of scenarios, ranging from direct-recording electronic voting machines (DRE) to remote
systems, varying the use they make of cryptography, and so forth. The first relevant
proposals, driven by renowned cybersecurity researchers are ThreeBallot [8], PunchCard [9],
Scantegrity [10]. These three proposals use paper ballots as physical backup and optical
sensors to guarantee the integrity and privacy of each user’s vote. The proposals are
original and creative, and are the context of our state-of-the-art. However, we try to advance
through our new proposal, towards a completely virtual, remote and verifiable approach.

Regarding the use of cryptography, we can find several categories of protocols, de-
pending on the mechanisms used [5]:

• Mixnet [11]: They use a layered architecture where a chain of proxy servers is created.
These servers receive an input with data from different sources, and they pass the
data to the next proxy after a random permutation. This makes impossible to trace the
source of an input to the system (unless all nodes are corrupt). This is the underlying
principle of networks like Tor [12]. Some protocols that use mixnets are [13,14].

• Blind signature [15]: With a blind signature a principal obtains a cryptographic
validation for a message from another principal, without disclosing the message to the
latter. Typically, a voter gets the blind signature for her vote from the administration,
without the administration knowing the content of her vote. Some protocols that use
blind signatures are [16,17].

• Homomorphic encryption [18]: They use cryptographic techniques enabling to pro-
cess the information without decrypting it, therefore handling votes in an aggregate
manner without revealing individual votes [7,19,20].



Electronics 2021, 10, 3075 4 of 19

• Blockchain [21]: Blockchain is an emerging technology that jumped to the popu-
lar culture during the last years, mainly because it is the base of cryptocurrencies.
The principle of blockchain is a data structure that organizes items of information in
blocks, which are connected through hashes. The blockchain data is distributed, stored
and validated by the nodes. This is just a very small summary of this technique, since
it is the most complex point in this list, with lots of variations, different consensus
algorithms, and further analysis.
We have seen an extraordinary number of e-voting proposals using Blockchain [22].
However, we consider that this technology is not suitable for a really secure e-voting
system under our current threat model (at least in its current state). The main draw-
backs of the blockchain technology are its poor scalability, and the needless computa-
tional and energetic waste [23]. Recently, the alternative ’Proof of Stake’ consensus
algorithm has been proposed to replace ’Proof of Work’, as a means to solve the
computational problem, however, it still presents serious security drawbacks [24].
Although we have evaluated that, in our threat model, its advantages do not over-
weight its problems, there are some key design decisions we would like to extract and
apply to our proposal: a distributed network, and global verifiability of the messages
sent through hashes.

• Shamir’s secret sharing [25]: It is a well-known cryptographic technique, although it
is used significantly less often in e-voting [26]. It has been recently used in very
diverse application areas, such as randomness [27] and authentication [28]. The naive
version of Shamir’s secret sharing presents some known flaws, but, at the same time,
there are known solutions to these problems. For example:

– If this scheme is deployed using standard integer arithmetic, it does not fulfill
all the basic properties of the secret sharing concept. This is because shares leak
data about the secret. This is solved easily in our proposal using a finite field.

– This scheme is not verifiable. While there are schemes that aim to solve this issue,
like the ones based on PVSS [27], in our proposal we solve it using our own
integrated mechanism, as we will see below.

– If the shares are revealed sequentially, the last shareholder can alter the last share
in order to manipulate the output of the interpolation process. The easiest way to
overcome this issue is to force the shareholders to publish a hash of their shares
first, so they cannot change their share. This is typically called ’commitment’.

These groups are not exclusionary. In some cases, multiple techniques are overlapping
in the same e-voting system, and approaches are classified according to the main principle
of the schema.

In this moment, the most accepted and relevant remote and verifiable proposals are
Helios and Civitas/JCJ:

• Helios: Helios [6] is an e-voting system designed to be used through a web browser.
It takes Benaloh’s Simple Verifiable Voting [29] as base. It is a centralized system
that attempts to provide the two most basic and fundamental properties, integrity
and privacy. The author prioritizes absolute integrity over the secret ballot in the
worst case. Helios deliberately ignores the problem of coercion, arguing that it is an
inherent problem of REV proposals. The verification processes are interactive, that
is, the voter’s guarantees do not depend on the amount of information sent, or the
information publicly available. Instead, the verification is based on the outcome of the
voter’s interaction with the central Helios server and/or with the different participants
of the mixnet.

• Civitas/JCJ: Civitas/JCJ is another approach to remote voting, which employs anti-
coercion measures, through duplicate identities [30,31]. During the registration phase,
a valid ID is obtained, in addition to other fake credentials. These fake credentials,
which must be removed from the final count, are able to confuse a potential attacker
as they are indistinguishable from the real one. In order to satisfy this complicated
requirement, this system relies on loose assumptions. This is, voters have to place



Electronics 2021, 10, 3075 5 of 19

more blind trust because its threat model is more permissive. Under a more critical
analysis, these more relaxed assumptions are directly against the property discussed
previously: strong and blind voter guarantees. The initialization phase is distributed,
while vote counting and publication is done from the central server. Like Helios, vote
privacy is based on a mixnet that obfuscates the origin of each virtual ballot, encrypted
by the user.

Additionally, the most recent research has tried to refine both proposals. For example,
we can mention:

• Ordinos [32]: Ordinos is an improvement to the Helios voting system. Its most promi-
nent feature is called ’tally-hiding’. Through the use of a multi-party computation
network, the system exposes a result calculated from the tally, instead of the tally
itself. Like Helios, it is verifiable end-to-end, accountable, and it trusts the central
Helios server.

• Incoercible fully-remote electronic voting protocol [33]: This system is not exactly
based on JCJ/Civitas. It takes it as an inspiration, while the authors address its
recognized problems and propose a new alternative that overcome said vulnerabilities.
However, we can still perceive relaxed assumptions.

3. Adversarial and Threat Model

In any system, from a security point of view, it is crucial to specify the participants,
their motivations, and what malicious behaviour is expected from them. Once we have
established the desirable properties from our system and the threat model, we can analyze
the proposed system, its strengths and vulnerabilities.

In our e-voting proposal, there are three different types of participants.

• Administration: It is the organization that manages the entire voting process. It
would correspond, for example, to the government in the case of a national or regional
election. We can expect the administration to be dependent on one or more political
parties in power at the time of the election.
Their main interest is that the voting process develops correctly and that the results are
valid, since all users can verify their vote. Moreover, considering that this organization
may not be independent, we have to consider a malicious partisan interest. It could
try to manipulate the result in its favor with its special privileges.

• Parties: Each political party participates in the electoral process with a server that
collects part of the fragments of information needed to later reconstruct the result. It
is to be expected that the parties will have conflicting interests, for selfish reasons in
a competitive environment, and for differences in their doctrines. Perhaps, in some
cases, there may be complicity between two parties close in the ideological spectrum,
although experience reveals that competition for votes is the priority during elections,
unless these two formations present a joint candidacy (in which case, for technical
purposes in this model, they are counted as a single party). Joint or independent
corruption of the total number of parties is not considered viable.
Their main motivation is to win as many votes as possible. In the balance between
the struggle of interests from all parties, the security of the vote is ensured. Their
possible attacks are based on discovering the vote of some users, buying their votes,
or modifying the votes during the voting as much as possible so that the result is
favorable to them. The rest of the parties will not accept attacks, since their interest is
also to protect their votes.

• Voters: They are the users of the system, registered in a census, who have the right to
vote (only once) in the voting system. They are the least privileged participants within
the system and they do not hold responsibilities. This is the largest group, and at the
same time the most varied and unpredictable. The margin of action they may have is
reduced to a minimum.



Electronics 2021, 10, 3075 6 of 19

Their primary legitimate interest is to vote, and then verify their participation in the
final tally. However, malicious voters may try to boycott the election or vote more
than once to gain an illegal advantage for their political choice.

It is important to emphasize the fact that political parties and the administration are
public entities, and are subject to public scrutiny. This means that there are two levels
of security measures against attacks coming from the administration or from political
parties (which are the privileged agents of the system, since voters barely have attack
margin). At the same time, we can actively try to block attacks and try to make them
visible. The moment one of these entities attempts an attack to manipulate the vote, it will
be detected by the rest of the actors. The parties and the administration must maintain a
positive image in the eyes of the citizens. The empirical and demonstrated exposure of an
attack coming from a public entity would terribly undermine their credibility.

4. The DiverSEC Proposal

Here we describe our remote e-voting proposal in detail, with a section for each of its
stages: initialization, vote generation, authentication and casting, mixnet, recomposition
and publication.

4.1. Initialization

In the first phase of the protocol, the administration establishes all the parameters
and publishes all the information to the rest of the participants. We will list all the actors
involved, the parameters that are published and their notation.

• Parties {p1, p2, p3, . . .}: P parties participate in the voting process, noted as pi, 1 ≤ i ≤
P. Their network addresses IPpi and all their public keys (that have been generated
for this system) Ki are published. Every party has been assigned a public coordinate
in the X axis. This parameter is important for the purposes of Shamir’s secret sharing
scheme. From now on, and without loss of generality, we will assume that for every
pi, x = i.

• Options {0, 1, 2, 3, . . .}: There are O options to vote on. This number of options is
necessarily a prime number. If the number of options required by the situation is
not a prime number, then the next higher prime is selected by adding blank padding
votes. The options include the blank vote and all parties as a minimum. Addition-
ally, it is possible to add other alternative options. The list, known at initialization
time, includes the numbers in FO along with the option each one of them represents.
For example, this is a possible list for O = 7:

– 0: Blank vote
– 1: Party A
– 2: Party B
– 3: Party C
– 4: Party D
– 5: Alternative E
– 6: Blank vote

• Voters {v1, v2, v3, . . .}: Citizens who have the right to cast a single vote and to verify
the result later. They are identified by their public key, within the current PKI. The cen-
sus is public, as it happens in a traditional election, linking voter and public key. V is
the number of registered voters, and vj, 1 ≤ j ≤ V is the denomination of each voter.
Each voter’s public key is Kpub,j.

• Mixnet sequence (M): The administration establishes an order for the parties, or in
other words, a distribution of the set {1, 2, . . . , P}. Any permutation is equally valid,
but we assume from now on that an ascending numerical order is chosen for its
simplicity. M is, in fact, a cycle, since the last party of the sequence will precede the
first. We denote by Mi the sequence M shifted so that the last element is i.



Electronics 2021, 10, 3075 7 of 19

• Authentication challenge (Rau): Random prefix that will serve as a challenge in the
authentication phase, to avoid replay attacks.

• Recomposition challenge (Rrc): Random prefix that will serve as part of the random
number that will later be used to recompose the fragments of each vote.

All these parameters must be communicated to each voter, personally or through a
public ‘board’. The method used is irrelevant. From now on these elements are assumed
to be common knowledge. Figures and examples will be used to illustrate the procedure
graphically, with four parties and five options, hence P = 4, O = 5, M = {1, 2, 3, 4}.

4.2. Vote Generation

In order to cast a vote, each voter must generate a polynomial that reflects her or her
voting intention. This phase is divided in two parts, the generation of the polynomial and
the packaging.

We work on the finite field defined by the elements of FO, mod O. The voter generates
a random polynomial of degree P− 1, f (x) = a0 + a1x + a2x2 + . . . + a(P−1)x(P−1), whose
threshold is k = P. The free term a0 represents the option chosen by the voter, according to
the published list of options. The rest of the terms {a1, a2, . . . , a(P−1)} are random integers
in the finite field FO. Fixed the polynomial f (x), all the shares f (i) are calculated, one
for each party, 1 ≤ i ≤ P. An example for the polynomial f (x) = 2 + 3x + x2 + 3x3 is
illustrated in Figure 1.

f (0) = 2; f (1) = 2 + 3 + 1 + 3 = 4; f (2) = 2 + 1 + 4 + 4 = 1; . . .

Figure 1. Obtaining shares from the generated polynomial.

With the computed shares, the voter generates a recomposition nonce using the prefix
and a random private part generated by each voter j: Nrc,j = Rrc ‖ Randj. The voter must
remember her Nrc,j in order to verify her vote later. Then, the shares are encoded and
encrypted as follows.

1. The share and the nonce are concatenated: “ f (i) = . . . , Nrc = . . .”
2. The shifted mixnet sequence Mi is obtained, so we can iterate from the last element i

to the first.
3. For each index m, the voter takes the current state of the share and the nonce and

encrypts it for the party pm with its public key.



Electronics 2021, 10, 3075 8 of 19

4. During each iteration, the voter saves a hash of the current state of the packet of share
and nonce, from plaintext until it has been encrypted P times.

After this process, each point f (i) of the polynomial attached to Nrc has been en-
crypted using the public keys of all parties. The encryption order is determined by each
shifted sequence Mi. The result is called SCi. In our example scenario with four parties,
the sequence M2 used to encrypt the second share, would be:

M = {1, 2, 3, 4}, M2 = {3, 4, 1, 2}

SC2 =

{{{{
f (2) = 1, Nrc,j = d5a3bb . . .

}
K2

}
K1

}
K4

}
K3

,

where Nrc = d5a3bb . . . represents the random nonce.
The voter must store an array of size P(P + 1). This data will be used to verify the

correct transmission and decryption of each share through the network. Figure 2 shows an
example for a voter Alice.

Figure 2. Hashes corresponding to voter Alice, for mixnet stage verification.

4.3. Authentication and Casting

Authentication is performed via public key, since the voter census includes their
public keys and has been disclosed in the first phase. A process analogous to the public-key
method of the SSHv2 protocol, documented in RFC4252 [34], is used. In this system,
the voter digitally signs her intention to vote, along with her name, her public key, and the
challenge Rau. This signature is sent to each of the parties and the administration.

Once the voter is authenticated, parties then accept only one encrypted share from
each voter. The voter distributes her information as follows. Each point f (i) must reach
the party pi, which is in charge of the position x = i. For this reason, the voter takes each
encrypted share SCi and observes its order Mi, which ends at the party pi. The first element
of Mi is the start of the chain, so the voter must send each SCi to the first index of that list
(Figure 3).



Electronics 2021, 10, 3075 9 of 19

Figure 3. Each SCi traveling through the node chain.

4.4. Mixnet

The mixnet phase begins when all voters have cast their shares. Of the total census,
of size V, only a subset consisting of V′ voters, where V′ ≤ V, participates. It is to be
expected that not all voters use their right to vote. This subset is known, moreover, given
the authentication signatures, which are shared by all parties and the administration.

Before starting, all parties confirm the reception of V′ encrypted shares and different
voter signatures. They publish a list of hash of all the SCi they own, for voter verification.
From now on we note as a hash-list the result of calculating the hash of each of the
encrypted shares held by a party at a given time, in ascending order with respect to the
hash, instead of the origin. This detail is critical; the order of the hash-list does not provide
any information about the order of the preimages. Then, the rounds of the mixnet begin:

• Each party calculates the hash-list of all the encrypted shares received, and compares
it with the hash-list published by the previous node, to make sure that there has
been no manipulation. The first round does not rely on this check, since the previous
node is not a party but the voters, and they have already checked the hash-list at
the beginning.

• Each party decrypts all shares received with its private key, removing one of the
encryption layers.

• Each party calculates the hash-list after decryption, and publishes it for verification by
the voter the following party.

• Unless it is the last round (the last encryption layer has been removed), each party
randomizes the order of its encrypted shares, and sends them to the next node,
according to the cyclic order defined by M.

After P rounds, every encryption layer is removed, and each party pi has V′ shares
in plaintext. Figure 4 shows this process by isolating the shares of party p2. Five voters
cast their SC2 to p3, and reach their destination after passing through all parties. Each one
decrypts the layer it can, publishes the hash-list and transmits their data to the next party,
randomizing its order. In each published hash-list, an entry has been highlighted. Figure 2
shows a column of the matrix that Alice has saved in a previous phase. Alice can verify
that, in each of the published lists, her share is in the state it should be. As a result, her
share has not been tampered with or deleted.



Electronics 2021, 10, 3075 10 of 19

Figure 4. Mixnet example isolating shares from p2.

4.5. Recomposition

Each party has, at this point, a list of V′ nonces Nrc,j. Voters themselves may attempt to
attack the integrity of the election. Therefore, the list of nonces for each party is published.
Those entries that do not include the required prefix Rrc are removed, and those that do
not appear on all lists are removed. The rest, which are valid, are sorted according to a
common rule. For simplicity, we have assumed an ascending order.

In Figure 5, we show how the nonces for our example have been ordered, and one
inconsistent nonce, sent by Mallory, has been removed. Voters know their nonce, but no
one else can link nonce to voter.



Electronics 2021, 10, 3075 11 of 19

Figure 5. Ordering of the nonces.

From now on, we work on the finite field FOV′ . Being a finite field which cardinality is
the power of a prime number, the elements of the set are not numbers anymore, they are
polynomials, according to the theory of finite fields [35]. In this case, the polynomials that
form this field are of degree V′− 1 and the coefficients are integers mod O. We will call them
sum polynomials s(α) = t0 + t1α + t2α2 + . . . + t(V′−1)α

(V′−1). We will denote as si(α) the
sum polynomial of each party pi. Each of them composes its sum polynomial as follows:
Taking the ordered list, each party p(i) determines all coefficients (t0, t1, t2, . . . , t(V′−1))
with all points f (i) received, ordered according to their nonce. In other words, t0 will
correspond to the f (i) whose nonce is first in the list, t1 will correspond to the f (i) whose
nonce is second in the list, and so on.

4.6. Publication

After computing the polynomial sum si(α), each party publishes the hash digest of that
polynomial, using random padding to avoid precalculation attacks. The space of possible
polynomials is OV′ . Therefore, given a large number of choices and voters who have
participated, an attack based on the precalculation of all H(s(α)) may be unapproachable.
However, adding random padding provides extra security without drawbacks.

Once every polynomial hash H(si(α)) has been published, the parties publish the sum
polynomial in plaintext. It is possible to check that the hash and the polynomial match,
and in this way we avoid asynchronous publication attacks, this is, that the last of the
parties can observe the information of the rest to elaborate an illegal si(α), which does
not correspond to reality, in order to tamper the results. In Figure 6 we see an example of
sum polynomials.

The voting result can be checked by all actors in the system at this point. We denote as
u(i) the polynomial of degree 0 whose free term is i. By interpolation, we must compute the
polynomial R(x), given the points {R(u(i)) = si(α), 1 ≤ i ≤ P}. The result of the voting
process is found in R(0), which is a polynomial of degree V′ − 1, with V′ − 1 coefficients.
Each of the coefficients, integers of the field FO, is a vote, according to the table of options
defined from the initialization. According to the example in the figures, we look for a R(x)
such that:

R(1 + 0α + 0α2 + 0α3) = 3 + 1α + 4α2 + 2α3

R(2 + 0α + 0α2 + 0α3) = 1 + 0α + 1α2 + 2α3

R(3 + 0α + 0α2 + 0α3) = 4 + 1α + 1α2 + 3α3

R(4 + 0α + 0α2 + 0α3) = 3 + 2α + 2α2 + 2α3



Electronics 2021, 10, 3075 12 of 19

By interpolation, the polynomial of degree 3 we are looking for is:

(4 + 1α + 2α2 + 1α3)

+(4 + 4α + 3α2 + 3α3)x

+(4 + 3α + 1α2 + 1α3)x2

+(1 + 3α + 3α2 + 2α3)x3

The result R(0) = (4 + 1α + 2α2 + 1α3) reveals that option 1 has obtained two votes,
option 2 has obtained one vote, and option 4 has obtained one vote.

The voter can now verify her vote in R(0). First, the voter locates the nonce within
the ordered list. If this position is c, the coefficient of the term αc of the polynomial R(0)
must match the voter’s option, that is, the a0 of the polynomial it generated at the time.
In addition, the coefficients of the term αc of the sum polynomials si(α) must match each
share sent to each party, f (i). In Alice’s case, she must find the coefficients of α2 in the sum
polynomials si(α) and in the result R(0).

Figure 6. Sum polynomials according to nonces ordering.

5. Results and Discussion of the Contributions

In this section we describe the main results of this work and the ways in which it
contributes to the existing state of the art. First, we review the properties achieved by
the proposed schema. Then we outline its main strength, and also its current limitations.
Finally, we perform a computational analysis of the system.

5.1. Properties Achieved

In Section 2.1, we enumerated the list of properties expected from an e-voting system
according to the literature. It is appropriate to review them and check which ones this
proposal satisfies and under which assumptions.

• Ballot secrecy: In a REV system, this property takes on a double dimension. No
participant in the network, which is shared by voters, administration and parties,
should know the content of a voter’s ballot. We must decouple the vote from the
voter’s identity. This includes the data used to authenticates the voter, but also
from any other data which could be traced to a specific voter, such as its IP address.
The system must provide a solution to this problem without telling the voter to use a
proxy or hidden network service.



Electronics 2021, 10, 3075 13 of 19

The parties are directly involved in the process, collecting the shares, decrypting
them layer by layer and sending them to the next node, and then publishing the sum.
For this reason, the parties could violate the ballot secrecy, in two ways:

1. Decrypting each voter’s vote as it is cast. It seems impossible, if we consider the
cipher used to be secure. A single party must know or break the keys of all the
other parties and collect every share. Obviously, if the encryption is broken or
the keys are violated, there is no privacy.

2. Linking a clear vote to its origin. At the end of the mixnet phase, each party
receives a point of the polynomial function along with a nonce. If a party is able
to identify its origin, either by its IP address or by association with the digital
signature that authenticates it, then it would violate the secret ballot. However,
to identify the origin of a nonce from the beginning to the end of the mixnet,
it is necessary that all the participating parties, without exception, are corrupt
and conniving with each other. If only one of the parties randomizes the shares
without revealing the order, it is impossible to trace any share to its source.

Taking this into account, we claim the system satisfies ballot secrecy under our
threat model.

• Integrity: The integrity of each vote depends on the mixnet phase. Once the nonces and
sum polynomials are published, the outcome of the election is determined. However,
up to that point, the shares of each user are left vulnerable during the mixnet phase.
During one of the iterations, a party could alter the shares it owns. The loss of the
integrity of one or more shares of each voter results in the elimination of that vote
(since the nonces will not match). The corrupt party in question does not know which
vote it is manipulating, because of the properties of Shamir’s secret sharing. For this
reason, it would not be able to predict the outcome either. Assuming he could change
one vote for another, the result would be random and there would be no incentive to
perform such an attack.
In addition, there are two mechanisms to detect this phenomenon. On the one hand,
users can check the hash-list that is published per party and per round during the
mixnet phase. In this way, the voter is able to identify where an attack has occurred,
in which round and which party was the culprit. On the other hand, the parties
are forced to send consistent data. This is because, by randomizing and forwarding
the shares from party A to party B, party B can check, before decrypting, that the
hashes of what it receives correspond to those published by party A. With these two
mechanisms, corruption is detected both in the transmission between parties and in
the decryption, so there is no way to violate the integrity of the vote without it being
detected by the voter.

• Legitimacy and elegibility: The total census of voters, with their identity and public
key, is known from the beginning of the election process. This detail, coupled with
the fact that the proposed system is distributed, prevents a successful attack in which
an illegitimate voter participates, or a legitimate voter casts two votes. The length of
the signature list and the hash-lists must match for all parties, and must be constant
throughout the iterations.

• Verifiability: Voters can verify their votes end-to-end against the final tally thanks to
the reconstruction challenge. The shares published must be the ones cast, and the vote
must match the one cast. In addition, each voter can also verify their hashes during
the mixnet. This verification reveals which party is the culprit of the attack.

• Coercion resistance: This proposal does not implement receipts issued by the admin-
istration or by any other means to verify the vote. Instead, it is the voter who generates
a random nonce that identifies all the shares. Once these nonces are published and
sorted, then there is no possibility of a coercion attack. Prior to this point, however,
there is a vulnerability by which a voter could demonstrate her or her vote to a third
party. If this voter communicates the nonce used to a third entity, this entity can check
whether this nonce is in the ordered list of nonces, and the associated vote.



Electronics 2021, 10, 3075 14 of 19

• Error tolerance: There are several expected error cases in this proposed voting sys-
tem. Although not all of them have an associated troubleshooting protocol, they are
detectable in real time. The following cases are considered, ordered according to the
phase in which they might occur:

– Voters using integers outside the associated finite field.
– Voters sending authentication signatures and/or signatures only to part of the

parties.
– Parties refusing to accept authentication signatures and/or shares.
– Parties that tamper with shares during the mixnet phase.
– Parties that publish points and/or nonces that do not correspond to what they receive.

5.2. Computational Analysis

The proposed voting system has three main parameters on which the computational
complexity depends: the number of parties P, the number of choices O and the number of
voters V.

• P: The number of parties determines the number of iterations of the mixnet phase.
In addition, the voters have to encrypt their P shares, P times each share. The maxi-
mum complexity observed with respect to P is quadratic, O(P2), during the second
phase (vote generation), as we will observe in the following analysis.

• O: The number of options determines the finite field in which the users will operate
in order to generate their vote and the finite field in which the voting result will be
interpolated, FO and FOV , respectively. It does not affect the number of operations
done by the actors in our system.

• V: Assuming that all voters participate (the most conservative case), the number of
voters affects the finite field FOV at the time of polynomial interpolation. The voting
result is a polynomial with as many terms as voters, as are all polynomials pub-
lished by the parties. Thanks to the optimization presented in the following analysis,
the maximum complexity for this dimension is linear, O(V), found in the last three
stages of the protocol.

In order to analyze the feasibility of the system, it is necessary to delimit the ex-
pected range of values for each of these parameters. The reality is that in each country,
the configuration P, O, and V may change.

• P: The major parties tend to vary within the interval [2, 10], but the total set of parties
can be expected to be significantly larger. In any case, it is estimated that it will never
exceed 50 parties, and that this is a stable and controlled number.

• O: For simplicity we can assume that the value of O equals P + 1. In the most
conservative case, all political parties will actively participate.

• V: This is the most critical value for the computation analysis. In the worst case,
we can say that there are as many voters as the population of legal age with the
corresponding nationality. However, this assumption is rather extreme, since the most
typical case will be to fragment the elections in different polling stations, by necessity
of the corresponding electoral law or for technical convenience. In any case, it is
undoubtedly the largest parameter, and can be expected to be at least 1000 individuals.

Finally, we can list the phases of the system with their computational complexity.
For better scalability, we look for a low complexity class, so we can increase the number of
voters without making the execution of the process unfeasible. Typically, linear complexity
is usually desired.

1. Initialization: During the initial phase, the configuration is established along with all
the necessary elements, including addresses and public keys, are made public. This
phase does not require computational power.

2. Vote generation: Each voter generates a polynomial, computes the different shares
and packs them for distribution. The generation of a polynomial involves generating



Electronics 2021, 10, 3075 15 of 19

P− 1 random coefficients, and computing P points of the corresponding polynomial
function. These two operations are independent, so a linear complexity is observed
O(P). The second part involves encrypting each of these points for all parties. That is,
each of these P points is encrypted P times. The complexity in this case is quadratic,
O(P2).

3. Authentication and distribution: Each voter distributes authentication signatures
and her or her shares. The complexity is linear O(P).

4. mixnet: The mixing network involves as many rounds as there are layers of encryption
applied to the shares, therefore, the number of rounds equals P. Each round is
independent. The operations that occur in each round are decryption, randomization,
and computation of the hash of all the shares they manage. The complexity is linear
in these two dimensions, O(P) and O(V).

5. Reconstruction: The reconstruction of the polynomial sum of each party is, in short,
to order some coefficients according to the consensus list. The complexity is linear
with respect to the number of voters O(V).

6. Disclosure: This is the most computationally complex phase. Anyone can interpolate
the polynomial of degree P− 1 into the finite field FOV that fits the values provided
by the parties. The complexity of the polynomial interpolation itself depends on the
algorithm used, especially if we take into account that we do not need the whole
polynomial, but the independent term. Shamir himself states in her proposed scheme
for shared secret [25] that there are algorithms of complexity O(P log2(P)) for polyno-
mial interpolation. On the other hand the concern about operations on the finite field
FOV can also be solved, by translating each operation with polynomials of degree
V − 1 to V independent operations on the field FO, whose elements are integers mod
O. In this sense, the complexity is linear O(V).

The computational analysis reveals that the highest complexity observed is quadratic,
regarding the number of parties in the vote generation phase, when encrypting the points
obtained. This was to be expected, since the voter must obtain a matrix of hashes for
subsequent verification. However, the number of parties is going to remain small, and this
is not expected to be any problem for any modern CPU.

The other problematic aspect is the use of operations with very high degree polynomi-
als, V − 1. The parameter that can grow the most is that of voters. In fact, a high number of
these are expected. However, the complexity is linear with respect to this parameter thanks
to the ability to independently interpolate each of the coefficients of the voting result.

5.3. Strengths and Limitations of the Proposal

The main strengths of the DiverSEC system can be summarized as follows:

1. The addition of secret sharing implies that the system is distributed. Distributed
systems have added complexity, but that complexity creates, in return, a security
tension between nodes, where parties cannot perform attacks without being detected
by each other. In a centralized model, the different voting authorities could perform
attacks due to their privileges, and there are only two options against this approach:
prevent the attacks or trust the authorities. After distributing those privileges among
independent actors, these attacks are no longer possible. In our case, each mixnet
node knows just one part of the information. For this reason, their attack surface is
greatly reduced.

2. The privileges of this system are not only distributed, they are distributed among
entities with clearly competing interests. For this reason, they will make sure to report
attacks from the rest of the nodes. On top of that, political parties are public entities,
subject to scrutiny and judgment by the voters.

3. Attacks are prevented twofold. First, attacks are detected in real time, thanks to the
verification processes. Both political parties and voters are checking the hashes in
every step of the mixnet. It is impossible to tamper a vote without being detected
as long as the chosen hash function remains secure against collisions. Second, it



Electronics 2021, 10, 3075 16 of 19

is impossible to perform targeted attacks. During the mixnet phase, the shares are
encrypted, so the nodes do not know the content nor the voter of any share. Replacing
the content with a new generated share is not possible, since the attacker ignores the
recomposition nonce. Even if we ignore these facts, in the Shamir’s Secret Sharing
Scheme, it is not possible to craft a malicious share that gives a desired arbitrary
output (as long as we use a commitment scheme to publish the shares).

4. In this case, verification is based on a very simple process, based on public information.
Each voter can verify the processing of her shares by comparing her stored hashes
against the list published by each node during the mixnet, and can verify her vote
end-to-end by identifying her private nonce and the matching plaintext shares and
secret. This verification is not interactive and is persistent over time.

It is also important to mention that the proposed scheme is easy to implement. With the
computational complexity analysis described above, we can see that a current standard
server machine is able to process all the information, given the operations that we have
listed until now. Any current end-user device is enough for the voter tasks, such as
generation, distribution, and verification. The computational complexities are linear for
the number of voters (which is the clearly the higher dimension of a voting system) and
quadratic for the number of parties. However, if the amount of voters grew to be a problem,
this scheme permits easily distributing the election. This approach is similar to the current
election system, which distributes the complete census in different electoral districts.

One of the current concerns in designing crypto-based systems is the impact that
the advance of quantum computing may have in them, so this is an issue that must be
taken in consideration when proposing a new system [36]. As far as our e-voting system
is concerned, the Shamir secret sharing scheme should not be impacted by the advances
on quantum computing. Traditional asymmetric cryptography primitives such as RSA,
however, are expected to be threatened by these advances. Fortunately, our system is
flexible in the use of cryptographic primitives, so it does not need any specific primitive
for encryption or signing, and thus could be easily adapted to any quantum-safe standard
used at the time of implementation. Likewise, the public key management mechanisms or
bulletin board implementations (i.e., [20] or [37]) are not specified either.

Regarding limitations, the main problem with this proposal is the ability of the voters
to prove their vote accurately to a third party, in the lapse of time between the gener-
ation of the vote and its publication of the tally. This enables voluntary vote buying,
or forced coercion.

Secondly, the proposal has no real-time troubleshooting protocols to correct integrity
attacks. The current proposal can only detect them, and expose the attacker.

Finally, there are some aspects of an actual e-voting system which are out of the scope
of our proposal. For asymmetric encryption to be usable in practice, a PKI infrastructure
must be in place for citizens and political parties. In a similar way, actual device protection
is out of the scope of our work, but there are plenty of security mechanisms that could be
used to protect the computation if needed, such as security enclaves like the ones used
in [36]).

6. Conclusions and Future Work

In this work, we propose a novel distributed, remote e-voting system (REV) for
elections. Our proposal involves three novel elements in addition to the techniques typically
used in the state of the art:

1. Shamir’s secret sharing scheme. Its use has generally been limited because of its
integrity vulnerabilities. Only a very recent proposal [26] uses it, but it solves this
problem in a completely different way: it employs DRE machines under the assump-
tion that those machines are secure.

2. Galois’ field. Shamir’s secret sharing needs finite field operations in order to eliminate
one of its vulnerabilities, but it has not previously been exploited in order to limit
the possible values to vote on. The size of the field was traditionally irrelevant, and a



Electronics 2021, 10, 3075 17 of 19

sufficiently large prime number was chosen. In this case, in our field FOV′ neither the
base nor the exponent are arbitrary, but correspond to voting parameters.

3. The proposal of a distributed system in which the parties themselves form the voting
network. Since we are confronting the selfish interests of each political party against
the rest, this creates a positive balance that empowers our security model. It is the
electronic equivalent of having supervisors from every party inspecting the ballot
boxes in person.

The designed system satisfies the main concerns and needs of REV systems. In an
exhaustive review of the list of desirable properties, this system fulfills all but coercion
resistance, which is one of the biggest problem in the current state-of-the-art.

The two most critical dimensions, ballot privacy and integrity are covered in depth. It
is to be expected that vulnerabilities will arise that undermine the security offered in any
protocol, system, or cryptographic primitive. For this reason, multi-layer security provides
a shield against these undiscovered vulnerabilities. Encryption protects confidentiality,
but at the same time, each vote is divided into different shares, which do not reveal
information about the secret unless a single entity receives every single share in plaintext.
Publication of the verification hashes in turn protects integrity and, at the same time,
removes the incentive for parties to manipulate the shares they manage.

The non-technical dimension is also important. The vote verification process is ex-
tremely simple, accessible to any non-technical voter. This detail is critical for the popula-
tion to accept the guarantees offered by this system, as opposed to others that are just as
good but are extremely complex.

It should be mentioned that the threat model and the system assumption are realistic.
On the contrary, other proposals are secure only under very lax criteria.

In summary, the proposal is considered to add value to the current state of electronic
voting research. It is also flexible and easy to extend, so additions such as failure recovery
protocols or as security layers against coercion could be easily added to this base.

Indeed, the two most immediate priorities for improving this proposal are:

• An exhaustive search for a solution to the coercion problem, to fully cover the list of
desirable properties.

• Defining automatic protocols for real-time corruption detection and resolution, ac-
cording to the cases we have mentioned previously in the analysis. The means for
voters to report any error or manipulation are already provided, but the real-time
resolution protocol is yet to be defined.

Once both requirements are met, this proposal satisfies all the current needs of e-voting
systems. From this point, it is possible to think about developing an implementation, for a
real future use. This would require a study on the platforms to be used, both on the server
and client side, and on the scope of adoption.

Author Contributions: All authors have made relevant contributions to this work. The proposal of
the problem was proposed by M.T.-R. and developed in numerous meetings involving D.O., J.J.-S.,
J.M.G.-G. and I.M.-M., who later led different parts of the work. Although all the authors actively
participated in all tasks including writing and editing the manuscript, the theoretical part of the
paper was leaded by M.T.-R. and D.O. All authors have read and agreed to the published version of
the manuscript.

Funding: M.T.-R. is funded by a predoctoral grant from the University of Alcala. M.T.-R., I.M.-M.
and J.M.G.-G. are partially funded by Project PID2019-104855RB-I00/AEI/10.13039/501100011033 of
the Spanish Ministry of Science and Innovation, by Project SBPLY/19/180501/000171 of the Junta
de Comunidades de Castilla-La Mancha and FEDER and by Project UCeNet (CM/JIN/2019-031) of
the Comunidad de Madrid and University of Alcalá. D.O. is partially supported by Project PID2019-
104129GB-I00/AEI/10.13039/501100011033 of the Spanish Ministry of Science and Innovation, and by
H2020-MSCA-RISE project 734922—CONNECT.

Conflicts of Interest: The authors declare no conflict of interest.



Electronics 2021, 10, 3075 18 of 19

References
1. Gibson, J.P.; Krimmer, R.; Teague, V.; Pomares, J. A Review of E-Voting: The Past, Present and Future. Ann. Telecommun. 2016,

71, 279–286. [CrossRef]
2. Madise, Ü.; Martens, T. E-Voting in Estonia 2005. The First Practice of Country-Wide Binding Internet Voting in the World; Gesellschaft

für Informatik e.V.: Bregenz, Austria, 2006 .
3. McDaniel, P.; Blaze, M.; Vigna, G. EVEREST: Evaluation and validation of election-related equipment, standards and testing. In

Ohio Secretary of State’s EVEREST Project Report; Office of the Ohio Secretary of State: Columbus, OH, USA, 2007.
4. Jones, D.; Simons, B. Broken Ballots: Will Your Vote Count? CSLI Publications: Stanford, CA, USA, 2012.
5. Peacock, T.; Ryan, P.Y.A.; Schneider, S.; Xia, Z. Chapter 69—Verifiable Voting Systems. In Computer and Information Security

Handbook, 2nd ed.; Vacca, J.R., Ed.; Morgan Kaufmann: Murlington, MA, USA, 2013; pp. 1103–1125. [CrossRef]
6. Adida, B. Helios: Web-Based Open-Audit Voting. USENIX Secur. Symp. 2008, 17, 335–348.
7. Yang, X.; Yi, X.; Kelarev, A.; Han, F.; Luo, J. A distributed networked system for secure publicly verifiable self-tallying online

voting. Inf. Sci. 2021, 543, 125–142. [CrossRef]
8. Rivest, R.L. The Threeballot Voting System. 2006. Available online: https://dspace.mit.edu/handle/1721.1/96593 (accessed on

6 December 2021).
9. Popoveniuc, S.; Hosp, B. An Introduction to Punchscan. In IAVoSS Workshop on Trustworthy Elections (WOTE 2006); Robinson

College United Kingdom: Cambridge, UK, 2006; pp. 28–30.
10. Chaum, D.; Essex, A.; Carback, R.; Clark, J.; Popoveniuc, S.; Sherman, A.; Vora, P. Scantegrity: End-to-End Voter-Verifiable

Optical-Scan Voting. IEEE Secur. Priv. 2008, 6, 40–46. [CrossRef]
11. Chaum, D.L. Untraceable electronic mail, return addresses, and digital pseudonyms. Commun. ACM 1981, 24, 84–90. [CrossRef]
12. Reed, M.G.; Syverson, P.F.; Goldschlag, D.M. Anonymous connections and onion routing. IEEE J. Sel. Areas Commun. 1998,

16, 482–494. [CrossRef]
13. Querejeta-Azurmendi, I.; Arroyo Guardeño, D.; Hernández-Ardieta, J.L.; Hernández Encinas, L. NetVote: A Strict-Coercion

Resistance Re-Voting Based Internet Voting Scheme with Linear Filtering. Mathematics 2020, 8, 1618. [CrossRef]
14. Islam, N.; Alam, K.M.R.; Tamura, S.; Morimoto, Y. A new e-voting scheme based on revised simplified verifiable re-encryption

mixnet. In Proceedings of the 2017 International Conference on Networking, Systems and Security (NSysS), Dhaka, Bangladesh,
5–8 January 2017; pp. 12–20.

15. Chaum, D. Blind signature system. In Advances in Cryptology; Springer: Berlin/Heidelberg, Germany, 1984; p. 153.
16. Kumar, M.; Katti, C.P.; Saxena, P.C. A secure anonymous e-voting system using identity-based blind signature scheme. In

Proceedings of the International Conference on Information Systems Security, Mumbai, India, 16–20 December 2017; Springer:
Berlin/Heidelberg, Germany, 2017; pp. 29–49.

17. Darwish, A.; El-Gendy, M.M. A new cryptographic voting verifiable scheme for e-voting system based on bit commitment and
blind signature. Int. J. Swarm. Intel. Evol. Comput. 2017, 6, 2. [CrossRef]

18. Rivest, R.L.; Adleman, L.; Dertouzos, M.L. On data banks and privacy homomorphisms. Found. Secur. Comput. 1978, 4, 169–180.
19. Yang, X.; Yi, X.; Nepal, S.; Kelarev, A.; Han, F. A secure verifiable ranked choice online voting system based on homomorphic

encryption. IEEE Access 2018, 6, 20506–20519. [CrossRef]
20. Yang, X.; Yi, X.; Nepal, S.; Kelarev, A.; Han, F. Blockchain voting: Publicly verifiable online voting protocol without trusted

tallying authorities. Future Gener. Comput. Syst. 2020, 112, 859–874. [CrossRef]
21. Nakamoto, S. Bitcoin: A peer-to-peer electronic cash system. Decentralized Bus. Rev. 2008, 21260.
22. Pawlak, M.; Poniszewska-Marańda, A. Trends in blockchain-based electronic voting systems. Inf. Process. Manag. 2021, 58, 102595.

[CrossRef]
23. Jafar, U.; Aziz, M.J.A.; Shukur, Z. Blockchain for Electronic Voting System—Review and Open Research Challenges. Sensors 2021,

21, 5874. [CrossRef] [PubMed]
24. Nair, P.R.; Dorai, D.R. Evaluation of Performance and Security of Proof of Work and Proof of Stake using Blockchain. In

Proceedings of the 2021 Third International Conference on Intelligent Communication Technologies and Virtual Mobile Networks
(ICICV), Tirunelveli, India, 4–6 February 2021; pp. 279–283.

25. Shamir, A. How to Share a Secret. Commun. ACM 1979, 22, 612–613. [CrossRef]
26. Liu, Y.; Zhao, Q. E-Voting Scheme Using Secret Sharing and K-Anonymity. World Wide Web 2019, 22, 1657–1667. [CrossRef]
27. Cascudo, I.; David, B. Albatross: Publicly attestable batched randomness based on secret sharing. In Proceedings of the

International Conference on the Theory and Application of Cryptology and Information Security, Daejeon, Korea, 7–11 December
2020; Springer: Berlin/Heidelberg, Germany, 2020; pp. 311–341.

28. Gupta, K.D.; Rahman, M.L.; Dasgupta, D.; Poudyal, S. Shamir’s Secret Sharing for Authentication without Reconstructing
Password. In Proceedings of the 2020 10th Annual Computing and Communication Workshop and Conference (CCWC),
Las Vegas, NV, USA, 6–8 January 2020; pp. 0958–0963.

29. Benaloh, J. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing. EVT 2007, 7, 14.
30. Neumann, S.; Feier, C.; Volkamer, M.; Koenig, R. Towards A Practical JCJ/Civitas Implementation. In INFORMATIK 2013;

Horbach, M., Ed.; Jahrestagung der Gesellschaft für Informatik: Koblenz, Germany, 2013.
31. Juels, A.; Catalano, D.; Jakobsson, M. Coercion-Resistant Electronic Elections. In Towards Trustworthy Elections; Springer:

Berlin/Heidelberg, Germany, 2010; pp. 37–63.

http://doi.org/10.1007/s12243-016-0525-8
http://dx.doi.org/10.1016/B978-0-12-394397-2.00069-6
http://dx.doi.org/10.1016/j.ins.2020.07.023
https://dspace.mit.edu/handle/1721.1/96593
http://dx.doi.org/10.1109/MSP.2008.70
http://dx.doi.org/10.1145/358549.358563
http://dx.doi.org/10.1109/49.668972
http://dx.doi.org/10.3390/math8091618
http://dx.doi.org/10.4172/2090-4908.1000158
http://dx.doi.org/10.1109/ACCESS.2018.2817518
http://dx.doi.org/10.1016/j.future.2020.06.051
http://dx.doi.org/10.1016/j.ipm.2021.102595
http://dx.doi.org/10.3390/s21175874
http://www.ncbi.nlm.nih.gov/pubmed/34502764
http://dx.doi.org/10.1145/359168.359176
http://dx.doi.org/10.1007/s11280-018-0575-0


Electronics 2021, 10, 3075 19 of 19

32. Küsters, R.; Liedtke, J.; Müller, J.; Rausch, D.; Vogt, A. Ordinos: A Verifiable Tally-Hiding E-Voting System. In Proceedings of the
2020 IEEE European Symposium on Security and Privacy (EuroS P), Genoa, Italy, 7–11 September 2020; pp. 216–235. [CrossRef]

33. Neji, W.; Blibech, K.; Rajeb, N.B. Incoercible fully-remote electronic voting protocol. In Proceedings of the International Conference
on Networked Systems, Marrakech, Morocco, 17–19 May 2017; Springer: Berlin/Heidelberg, Germany, 2017; pp. 355–369.

34. Ylonen, T.; Lonvick, C. The Secure Shell (SSH) Authentication Protocol; Technical Report; RFC 4252; IETF: Fremont, CA, USA, 2006.
35. Judson, T. Abstract Algebra: Theory and Applications; Virginia Commonwealth University Mathematics: Richmond, VA, USA, 2009.
36. Nguyen, V.L.; Lin, P.C.; Cheng, B.C.; Hwang, R.H.; Lin, Y.D. Security and privacy for 6G: A survey on prospective technologies

and challenges. IEEE Commun. Surv. Tutorials 2021, 23, 2384–2428. [CrossRef]
37. Culnane, C.; Schneider, S. A Peered Bulletin Board for Robust Use in Verifiable Voting Systems. In Proceedings of the 2014 IEEE

27th Computer Security Foundations Symposium, Vienna, Austria, 19–22 July 2014; pp. 169–183. [CrossRef]

http://dx.doi.org/10.1109/EuroSP48549.2020.00022
http://dx.doi.org/10.1109/COMST.2021.3108618
http://dx.doi.org/10.1109/CSF.2014.20

	Introduction
	State-of-the-Art
	Desirable Properties for E-Voting Systems
	Protocols and E-Voting Systems to Date

	Adversarial and Threat Model
	The DiverSEC Proposal
	Initialization
	Vote Generation
	Authentication and Casting
	Mixnet
	Recomposition
	Publication

	Results and Discussion of the Contributions
	Properties Achieved
	Computational Analysis
	Strengths and Limitations of the Proposal

	Conclusions and Future Work
	References

