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A B S T R A C T

The 1𝐷 conduction heat transfer in multi-layered slabs is fundamental to building energy
simulation. Its solution could be split into two big categories: finite difference and root-finding
methods. These latter are also known as Laplace or Conduction heat Transfer Function methods
(CTF).

The paper briefly reviews why none of them, in its current formulation, fits the new trend
based on event-driven simulation. It proposes a new CTF whose inputs are the conduction heat
fluxes �̇� and the responses are the superficial temperature speeds �̇� on both slab sides. Thus it
could be classified as a root-finding procedure. However, it employs a solution rooted in the
uncommon Successive State Transition (SST) method from the 80’s Japanese school. Moreover,
it proves that both superficial temperatures 𝑇 can also be solved using this SST method. The
outcome is a solution procedure with many advantages; the main one is that it does suit the
novel event-driven paradigm.

Finally, the paper illustrates the procedure with an example.

1. Introduction

A fundamental problem that any building energy simulation solves is the 1𝐷 conduction heat transfer through each layer of a
wall or slab, modeled by the well-known partial differential equation:

𝜕2𝑇
𝜕𝑥2

= 1
𝛼
𝜕𝑇
𝜕𝑡

(1)

Between each layer, there is no thermal contact resistance, i.e., the touching points of two layers share the same temperature, and
there is continuity of the conduction heat flux �̇�.

Traditionally, the strategies to simulate or estimate the energy response of a multi-layered slab, according to the previous model,
might be split into two big categories:

• Finite difference
• Conduction (heat) transfer functions (CTF)

The first is usually represented graphically using an electrical analogy that the literature renames RC, i.e., resistance and capacitance
models. See Fig. 1.
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Symbols

𝛼 Thermal diffusivity 𝑘∕𝜌𝑐𝑝 [m2∕s]
𝛥𝑡 Elapsed time or time step [s]
�̇� Conduction heat flux [W∕m2]
(𝑠) Transfer function
𝑓 Laplace Transform of 𝑓
𝜙𝑆 Time response of signal 𝑆 to an input impulse
𝐴𝑚
𝑘 Residue at a pole 𝑘 of 𝑚(𝑠)

𝐶 Thermal capacity [J∕m2K]
𝑚 Index ∈ {00, 01, 10, 11} to identify output–input signals, respectively
𝑄 Energy [J∕m2]
𝑅 Thermal resistance [m2K∕W]
𝑠 Complex Laplace variable
𝑇 Temperature [K]

Fig. 1. Scheme of a discrete multi-layered slab model, with lumped masses and thermal resistances. RC-model.

The second is also known as root finding methods since they employ the Laplace Transform . In Ref. [1], the reader may find a
comparison between them.

Mitalas and Stephenson, in an ASHRAE report [2] dated in 1971, proposed the conduction heat transfer functions 𝑚(𝑠) shown
in Eq. (2) (see also [3]).

[

�̇�0
�̇�1

]

=
[

00(𝑠) 01(𝑠)
10(𝑠) 11(𝑠)

]

⋅
[

𝑇0
𝑇1

]

(2)

They relate the Laplace Transform of the conduction heat transfer �̇� at each side (denoted by 0 and 1) of the multi-layered slab
with the Laplace Transform of the superficial temperatures on both sides. The first and second superscripts of 𝑎𝑏(𝑠) indicate the
�̇�𝑎 response and 𝑇𝑏 excitation sides, respectively. Notice that the wall is ‘‘excited’’ by the superficial temperatures on both sides. Years
assed and fifty years later, Morrison’s book [4] (2020) still describes Mitalas’ method as state of the art.

Conventionally, the current simulation engines choose the time step as; fixed, variable, adaptive, or some intermediate strategy
mong the previous ones. In any case, time always drives the simulation. However, the recent trend [5] moves to a flexible event-
riven (and not time-driven) paradigm. The aim is to devise a general-purpose event-driven simulator that separates the model
efinition from their solution. During the calculation, each component schedules when it will suffer an internal state transition
ith the final goal of spending more computation time on those fast-evolving elements. The procedure focuses on the state of

ystem components, not the flow of time. Wetter et al. [6] greatly favor this new paradigm. Unfortunately, they claim that the
raditional solution to some fundamental problems needs to work better within the events paradigm. One of them is, precisely, the
onventional solution of 1𝐷 multi-layered conduction heat transfer posed at the beginning. As a temporary bypass solution, they
ropose to co-simulate [7].

To the previous difficulties, De Wilde [8] adds up what has been called the building energy performance gap, also supported by
2

many others (see for instance [9,10]). De Wilde points out, among other causes, the ‘‘mismatch between first principle energy models’’.
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Fig. 2. Conventional Mitalas’ method.
Source: Adapted from our previous
paper [12].

2. Drawbacks of traditional methods

The paper’s aim is not to discuss the previous problems in detail. However, this section gathers the main drawbacks of the
traditional methods that the paper tries to address.

In finite difference approach, a finite number of degrees of freedom replaces the original problem. Livio et al. in [11] showed
how to improve the RC model employed by the ISO 52016−1 standard. The ISO proposes a wall model with five degrees of freedom
and a fixed hourly time step. Livio et al. [11] modified this ‘‘oversimplified’’ model. They proposed a variable amount of wall states
(nodes) and a shorter time-step 𝛥𝑡 = 15 [min], because particularly Italy has many monumental and heavy-construction old buildings.
That paper stated that one must cautiously choose the amount and location of the nodes (capacities) of the RC model according to
the time step and the physical properties of the layers. The higher the sampling time–frequency (i.e., shorter time steps), the greater
the amount of nodes. Once the number of nodes is determined, the computation should track their states throughout the simulation.
At first sight, it could fit the event-driven paradigm. Nevertheless, if the wall sampling frequency differs from the one for which the
RC model was created, then the model loses its accuracy. Therefore is not a good option in practice.

In the case of the CTF, Fig. 2 illustrates the traditional solution applied to Eq. (2). The input signals are the superficial
temperatures on both sides, 𝑇0 and 𝑇1, sampled at a fixed predefined rate. These impulse trains are obviously not ‘‘physical’’ and
thus cannot be fed directly into the wall CTF, i.e., the 𝑚(𝑠). The method uses a holder or shaping element for these impulses.
One may think of any ‘‘sensible’’ holder shape. Traditionally, the shape is triangular. The idea behind this selection is to form a
continuous piecewise-linear temperature signal. Since the heat conduction model is a linear equation, the sum of triangles delayed
by a time step (i.e., convolution) creates such a ‘‘sensible’’ temperature profile. After using this artificially-shaped piece-wise linear
input-signal 𝑇 , although the output-signal �̇� is continuous, the same fixed sampling rate is used at the output (see Fig. 2). The result
is an input–output signal relationship at a predetermined sampling rate 𝛥𝑡. Livio et al. in [1], showed that this procedure is quicker
than the RC-model for 𝛥𝑡 = 1 [h] but similar for 𝛥𝑡 = 15 [min].

It is evident that this method does not fit an event-driven simulation. Moreover, the conduction heat flux evolution, which allows
such imposed linear temperature profiles, cannot be tracked. This leads to other problems (see more details in [12]). The transient
response of a superficial temperature to a sudden change of heat input is exponential-like rather than linear. Therefore, to get a
good approximation of heat loads and comfort, a 𝛥𝑡 = 15 [min] or lower is usually recommended in the guidebooks.

Recently, [13] studied the use of the conventional Mitalas’ CFTs (see Eq. (2)) in an event-driven simulation. It already employed
a formulation based on the Successive State Transition method (SST for short) with these traditional CTFs. The SST method belongs to
the Japanese school in the 80′𝑠 (see [14]), but unfortunately, it has been overlooked for a long. Paper [13] exploited, among others,
its capability to allow a variable time step. Unexpectedly, its conclusions were negative: the problems associated with imposing a
superficial temperature hinder the expected advantages of a full event-driven simulation. As aforementioned, the details can be found
in the previous work [12], nevertheless it is noteworthy to describe some of its ideas already published there. Assume the boundary
wall of a room in thermal equilibrium with it at 22 [◦C]. Suddenly, the wall receives a radiation heat-source; �̇�𝑟𝑎𝑑−𝑠𝑟𝑐 = 10 [W∕m2] for
2 [h], that is, an energy input rate of 36000 [J∕hm2] during 2 [h], and afterwards this source is switched off. Fig. 3 shows the superficial
temperature profile on the side where the radiation source is applied. The two profiles correspond to two different time steps: 5 [min]
3
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Fig. 3. Mitalas’ method applied to a simple case, with 𝛥𝑡 = 5 [min] and 𝛥𝑡 = 60 [min].
Source: Adapted from our previous paper [12].

and 60 [min], using the Mitalas’ method (remark: the sampling rates and holders are displayed for comparison). Obviously, the first
profile is closer to the actual temperature response than the second, as it has the correct exponential-like profile. The small sketch
at the top-right part of Fig. 3 shows the well-known heat power balance on the surface. It just says that the sum of all the ingoing
heat fluxes into the surface must be zero at any instant, i.e., formally:

�̇�𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑠𝑟𝑐 (𝑡) = 0 = �̇�𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡) (3)

Recall that the Mitalas’ method only forces Eq. (3) at the sampling points, along with the linear temperature profiles between them.
Nevertheless, imagine placing meters on that surface (see details in [12]) for any energy type. The meters sum should always give
zero, i.e., the integral of Eq. (3) over time until an instant 𝑡′ should fulfill:

∫

𝑡′

0

(

�̇�𝑐𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑐𝑜𝑛𝑣𝑒𝑐𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛(𝑡) + �̇�𝑠𝑟𝑐 (𝑡)
)

𝑑𝑡 =0 = ∫

𝑡′

0
�̇�𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡)𝑑𝑡 (4a)

SUM(𝑡′) = 𝑄𝑐𝑜𝑛𝑑 (𝑡′) +𝑄𝑐𝑜𝑛𝑣(𝑡′) +𝑄𝑟𝑎𝑑 (𝑡′) +𝑄𝑠𝑟𝑐 (𝑡′) =0 = 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒(𝑡′) (4b)

Fig. 4, based on data from Table 6 of [12], shows that this condition breaks down for ‘‘common’’ simulation time steps, like
𝛥𝑡 = 60 [min] (see the 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 curve). The smaller the time step, the smaller this energy unbalance. Fortunately, this cancels over
time. This outcome has the following interpretation. For big 𝛥𝑡 Mitalas’ method overlooks that the temperature response may be
exponential-like. Fig. 3 shows that, in this case, the actual temperature should rise quickly, but it does it slowly. Therefore after the
first hour, Fig. 4 marks 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒(1 [h]) > 0, while, as expected, the individual meters are negative because the energy flows out from
the surface, which is being heated. But their sum is unbalanced. In other words, it is like some missing energy is being diverted
to storage. After switching off the radiation source, the opposite occurs. The actual temperature decreases quickly, but the Mitalas’
method assumes a slow descent. Now from 𝑡 = 3 [h] on, 𝑄𝑠𝑡𝑜𝑟𝑎𝑔𝑒 < 0, i.e., the previously (and falsely) stored energy comes back,
keeping the temperature artificially high (see Fig. 3). The net result is that, from the room’s point of view, the method adds an extra
heat capacity to the walls, which is related to selecting a big time-step 𝛥𝑡.

It is clear that the superficial temperature determines the wall heat exchange with its surroundings which in turn modifies
the incoming heat flux to the wall and vice versa. So, there is a feedback loop. To correctly track this process-loop behavior, the
superficial temperature velocity �̇� must be known. A high �̇� value means that the wall state is changing fast, and thus alongside, it
ought to force a reevaluation (sampling event) of the heat flux �̇�.

The new CTF became a necessary solution based on previous works and [13]. So, the event-driven simulation paradigm should
give up using the traditional CTF for 1𝐷 conduction heat transfer. The paper analyzes a novel proposal, along with a solution based
on the SST method. Its main features are:

• Fits event-driven simulations.
• It can be designed to cope with the shortest expected time-step.
• The computational cost is self-adaptive. A shorter time between events requires a higher computation load and vice versa.
• The slab is excited by conduction heat fluxes, thus allowing tracking of the energy flows and the thermal disequilibrium

processes.

Finally, before the conclusions section, some examples illustrate the method.
4
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Fig. 4. Energy unbalance through the surface of Fig. 3 due to the time step 𝛥𝑡 = 60 [min] employed in the Mitalas’ method.
Source: Adapted from our previous paper [12].

3. Theory

3.1. The new conduction heat transfer functions ′′(𝑠)

The goal is to solve the following new Eq. (5):
[

�̇�0
�̇�1

]

=
[

′′,00(𝑠) ′′,01(𝑠)
′′,10(𝑠) ′′,11(𝑠)

]

⋅
[

�̇�0
�̇�1

]

(5)

By comparing Eq. (2) (conventional CTF) and (5) (new CTF), it shows up that the input and output signals are different. Now the
slab response is driven by the conduction heat flux �̇� applied on both sides. Notice also that the response is not the superficial
temperature but its time derivative, rate of change �̇� , or simply its velocity.

Let us deduce the new ′′,𝑚(𝑠). Appendix A exposes the deduction of the traditional CTF. In order to get Eqs. (5), (A.8) must be
inverted:

[

𝑇0
𝑇1

]

=
[

′00(𝑠) ′01(𝑠)
′10(𝑠) ′11(𝑠)

]

⋅
[

�̇�0
�̇�1

]

(6)

where:

′,00(𝑠) = −𝐴𝐴 ⋅ 𝐵𝐵
(1 − 𝐴𝐴 ⋅𝐷𝐷)

(7a)

′,10(𝑠) = −𝐵𝐵
(1 − 𝐴𝐴 ⋅𝐷𝐷)

= −′,01(𝑠) (7b)

′,11(𝑠) = 𝐵𝐵 ⋅𝐷𝐷
(1 − 𝐴𝐴 ⋅𝐷𝐷)

(7c)

Notice the prime over ′,𝑚(𝑠). Since the time derivative is required, by multiplying by 𝑠:

′′,00(𝑠) = −𝑠 ⋅ 𝐴𝐴 ⋅ 𝐵𝐵
(1 − 𝐴𝐴 ⋅𝐷𝐷)

= 𝑠 ⋅ ′,00(𝑠) (8a)

′′,10(𝑠) = −𝑠 ⋅ 𝐵𝐵
(1 − 𝐴𝐴 ⋅𝐷𝐷)

= −′′,01(𝑠) = 𝑠 ⋅ ′,10(𝑠) (8b)

′′,11(𝑠) = 𝑠 ⋅ 𝐵𝐵 ⋅𝐷𝐷
(1 − 𝐴𝐴 ⋅𝐷𝐷)

= 𝑠 ⋅ ′,11(𝑠) (8c)
5
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Fig. 5. Successive state transition (STT) scheme applied to the new CTF. The heat fluxes �̇� are inputs, and the temperature velocities �̇� are outputs.

All previous ′,𝑚(𝑠) and ′′,𝑚(𝑠) in general have the form:

′ ,𝑚(𝑠) =
𝐻 ′,𝑚(𝑠)
𝐺′,𝑚(𝑠)

(9)

(Remark:the numerator of ′′ ,𝑚(𝑠) is just 𝐻 ′′,𝑚(𝑠) = 𝑠𝐻 ′,𝑚(𝑠), but 𝐺′′,𝑚(𝑠) = 𝐺′,𝑚(𝑠)). Thus, the residue theorem of complex variable
theory is applied to obtain the reverse Laplace transform. This theorem leads to the following expression for each matrix element
in Eq. (6):

(𝜙𝑚
𝑇 (𝑡)) = 𝐺′𝑚(𝑠) =

𝐴𝑚
0
𝑠

+
∞
∑

𝑘=1

𝐴𝑚
𝑘

𝑠 + 𝛼𝑘
(10)

r directly in its time form:

𝜙𝑚
𝑇 (𝑡) = 𝐴𝑚

0 +
∞
∑

𝑘=1
𝐴𝑚
𝑘 ⋅ 𝑒−𝛼𝑘⋅𝑡 (11)

ere, by 𝐴𝑚
𝑘 , it is meant the residue at pole −𝛼𝑘. The exponent 𝑚 ∈{00, 01, 10, 11} indicates which ′ ,𝑚(𝑠) are implied. The poles are

he points 𝑠𝑘 on the complex plane where ′ ,𝑚(𝑠) goes to infinity. All these poles can be found on the negative real axis. Therefore by
𝑘 let us denote its absolute value. The infinite set of poles and residues uniquely identify the thermal response of the multi-layered
lab. Looking at Eq. (11) or (10), it can be deduced that 0 is also a simple pole of ′ ,𝑚(𝑠).

As aforementioned, the Laplace transform property:

(𝜙𝑚
𝑑𝑇 ∕𝑑𝑡(𝑡)) = 𝑠 ⋅ (𝜙𝑚

𝑇 (𝑡)) −

=0
⏞⏞⏞
𝑇 (0) (12)

llow us to finally get the target transfer function:

𝐺′′,𝑚(𝑠) = 𝑠 ⋅ 𝐺′,𝑚(𝑠) = 𝐴𝑚
0 +

∞
∑

𝑘=1

𝐴𝑚
𝑘 ⋅ 𝑠

𝑠 + 𝛼𝑘
(13)

which shares residues and poles (but the zero) with ′ ,𝑚(𝑠), but has another form.

3.2. The successive state transition formulation

Fig. 5 illustrates the idea behind the SST method. Briefly, the methodology consists of the following steps. First, the method needs
an abrupt end in the holder. Thus a trapezoid suffices. The result is a trapezoid-pulse of conduction heat flux during 𝛥𝑡. Next, the
product of the Laplace transform of this holder by ′′,𝑚(𝑠) is renamed ′′,𝑚,∗(𝑠). Finally, it samples the input heat fluxes and output
temperature velocities at the end of 𝛥𝑡. This corresponds to computing the  transform of ′′,𝑚,∗(𝑠). Conversely to conventional
6
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Fig. 6. Laplace transform of the trapezoidal holder.

methods, it does not require keeping the sampling frequency fixed. Only the first input–output values are related in the -transform
i.e., the coefficients of the term 𝑧−1). After the time-lapse 𝛥𝑡, the slab internal states are stored. They will be necessary to construct
he subsequent response to the next incoming heat flux pulse. In other words, the method transports the slab state over time, after
ach input. This transport allows computing the output superficial temperature velocities after a beforehand unknown 𝛥𝑡.

The mathematical details are as follows.
Fig. 6 describes how to obtain the Laplace transform of the trapezoid holder. It is parametrized by: 𝛥𝑡 the duration of the heat

ulse, and ℎ ⋅ 𝑢0 = 𝑢𝛥𝑡 − 𝑢0, where 𝑢𝑡′ = 𝑢(𝑡′), 𝑡′ = 𝑡𝑛 − 𝑡𝑛−1. When the pulse is unitary, i.e. 𝑢0 = 1 then ℎ = 𝑢𝛥𝑡 − 1 or 𝑢𝛥𝑡 = 1+ ℎ. In our
case, the input-signal 𝑢 ≡ �̇� is the conduction heat flux on either slab side.

By using Eq. (13), the ′′,𝑚,∗(𝑠) expression is:

′′,𝑚,∗(𝑠) = ′′,𝑚(𝑠) ⋅ ⊓(𝑠)

′′,𝑚,∗(𝑠) = 𝐴𝑚
0 ⋅ ⊓(𝑠) +

∞
∑ 𝐴𝑚

𝑘
[

(1 − 𝑒−𝑠𝛥𝑡) + ℎ
(

−𝑒−𝑠𝛥𝑡 +
(1 − 𝑒−𝑠𝛥𝑡)

)] (14)
7
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w
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The next step is computing the -transform of the Eq. (14).

(′′,𝑚,∗(𝑠)) = 𝐴𝑚
0 ⋅(⊓(𝑠)) +

∞
∑

𝑘=1
(𝑓𝑚

𝑘 (𝑠)) (15)

where 𝑓𝑚
𝑘 (𝑠) represents each 𝑘-term inside the summation symbol in Eq. (14). The following general relationships between

Laplace-transform and -transform have been employed:


[

𝐵𝑒∓𝑠𝛥𝑡

𝑠 + 𝑎

]

= 𝐵𝑧∓𝑛

1 − 𝑒−𝑎𝛥𝑡𝑧−1
(16a)


[

𝐵𝑒∓𝑠𝛥𝑡

𝑠(𝑠 + 𝑎)

]

= 1
𝑎
⋅

𝐵(1 − 𝑒−𝑎𝛥𝑡)𝑧(−1∓𝑛)

(1 − 𝑧−1)(1 − 𝑒−𝑎𝛥𝑡𝑧−1)
(16b)


[

𝐵𝑒∓𝑛𝑠𝛥𝑡

𝑠2

]

= 𝐵𝛥𝑡𝑧(−1∓𝑛)

(1 − 𝑧−1)2
(16c)

The -transform of ⊓(𝑠) is:

(⊓(𝑠)) =
1

(1 − 𝑧−1)
− 𝑧−1

(1 − 𝑧−1)
+ ℎ

(

− 𝑧−1

(1 − 𝑧−1)
+ 𝑧−1

(1 − 𝑧−1)2
− 𝑧−2

(1 − 𝑧−1)2

)

= 1 (17)

hile the -transform of each term 𝑓𝑚
𝑘 (𝑠) is given by:

(𝑓𝑘(𝑠)) =
𝐴𝑚
𝑘 (1 − 𝑧−1)

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+

𝐴𝑚
𝑘 ℎ

[

−𝑧−1

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+

(1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘𝛥𝑡(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
−

(1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−2

𝛼𝑘𝛥𝑡(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]
(18)

perating, in the previous expression, on the term between square brackets:

(𝑓𝑘(𝑠)) =
𝐴𝑚
𝑘 (1 − 𝑧−1)

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+

𝐴𝑚
𝑘 ℎ

[

−𝛼𝑘𝛥𝑡(1 − 𝑧−1)𝑧−1 + (1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−1 − (1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−2

𝛼𝑘𝛥𝑡(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]

=

=
𝐴𝑚
𝑘 (1 − 𝑧−1)

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+ 𝐴𝑚

𝑘 ℎ
[

−𝛼𝑘𝛥𝑡(1 − 𝑧−1)𝑧−1 + (1 − 𝑒−𝛼𝑘𝛥𝑡)(𝑧−1 − 𝑧−2)
𝛼𝑘𝛥𝑡(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]

=

=
𝐴𝑚
𝑘 (1 − 𝑧−1)

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+ 𝐴𝑚

𝑘 ℎ
[

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘𝛥𝑡(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]

(19)

Let us name 𝑈∗ (here 𝑈∗ = �̇�∗) and 𝑉 ∗ (here 𝑉 ∗ = �̇� ∗), the sampled input and output signals, respectively. To simplify the notation
using Eq. (15):

𝑉 ∗(𝑧) = (′′,𝑚,∗(𝑠))(𝑧) ⋅ 𝑈∗(𝑧) = 𝐴𝑚
0 ⋅

=1
⏞⏞⏞⏞⏞
(⊓(𝑠)) ⋅𝑈∗(𝑧) +

∞
∑

𝑘=1
(𝑓𝑚

𝑘 (𝑠)) ⋅ 𝑈
∗(𝑧) (20)

The sampled output and input signals have the following form in -transform form, respectively:

𝑉 ∗(𝑧) = 𝑣0 + 𝑣1 ⋅ 𝑧
−1 + 𝑣2 ⋅ 𝑧

−2 +⋯

𝑈∗(𝑧) = 𝑢0 + 𝑢1 ⋅ 𝑧
−1 + 𝑢2 ⋅ 𝑧

−2 +⋯
(21)

The coefficients of equal 𝑧 power in Eq. (20) must equated. As aforementioned, the 𝑧−1 coefficient is the goal. The first term on the
right-hand side of the Eq. (20) contributes to this coefficient with:

𝐴𝑚
0 ⋅ 𝑢1 ⋅ 𝑧

−1 (22)

Now labeling 𝑊 𝑚
𝑘 (𝑧) to the result of each term of the summation in Eq. (20):

𝑊 𝑚
𝑘 (𝑧) = (𝑓𝑚

𝑘 (𝑠)) ⋅ 𝑈
∗(𝑧) =

=
𝐴𝑚
𝑘 (1 − 𝑧−1)

(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
⋅ 𝑈∗(𝑧) + 𝐴𝑚

𝑘 ℎ
[

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)𝑧−1

𝛼 𝛥𝑡(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]

⋅ 𝑈∗(𝑧)
(23)
8
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o

E

by clearing:

𝑊 𝑚
𝑘 (𝑧) ⋅ (1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1) = 𝐴𝑚

𝑘 (1 − 𝑧−1) ⋅ 𝑈∗(𝑧) + 𝐴𝑚
𝑘 ℎ

[

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘𝛥𝑡

]

⋅ 𝑈∗(𝑧) (24)

the left-hand side is:

𝑤𝑚
𝑘,0 +𝑤𝑚

𝑘,1⋅𝑧
−1 +𝑤𝑚

𝑘,2 ⋅ 𝑧
−2 +⋯+

−𝑤𝑚
𝑘,0𝑒

−𝛼𝑘𝛥𝑡⋅𝑧−1 −𝑤𝑚
𝑘,1𝑒

−𝛼𝑘𝛥𝑡 ⋅ 𝑧−2 +𝑤𝑚
𝑘,2 ⋅ 𝑧

−2 −⋯ =
(25)

r:

𝑤𝑚
𝑘,0 + (𝑤𝑚

𝑘,1 −𝑤𝑚
𝑘,0𝑒

−𝛼𝑘𝛥𝑡) ⋅ 𝑧−1 +⋯ (26)

The expansion, on the right-hand side of Eq. (24) is:

𝐴𝑚
𝑘 ⋅ 𝑢0 + 𝐴𝑚

𝑘 ⋅ 𝑢1⋅𝑧
−1 +⋯+

−𝐴𝑚
𝑘 ⋅ 𝑢0⋅𝑧

−1 − 𝐴𝑚
𝑘 ⋅ 𝑢1 ⋅ 𝑧

−2 −⋯+

𝐴𝑚
𝑘 ℎ𝑢0

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)
𝛼𝑘𝛥𝑡

⋅𝑧−1 +⋯

(27)

quating the coefficients of 𝑧−1 in Eq. (24):

𝑤𝑚
𝑘,1 −𝑤𝑚

𝑘,0𝑒
−𝛼𝑘𝛥𝑡 = 𝐴𝑚

𝑘 (𝑢1 − 𝑢0) + 𝐴𝑚
𝑘 ⋅ ℎ𝑢0 ⋅

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)
𝛼𝑘𝛥𝑡

(28)

But as ℎ𝑢0 = 𝑢1 − 𝑢0:

𝑤𝑚
𝑘,1 −𝑤𝑚

𝑘,0𝑒
−𝛼𝑘𝛥𝑡 = 𝐴𝑚

𝑘 (𝑢1 − 𝑢0) + 𝐴𝑚
𝑘 ⋅ (𝑢1 − 𝑢0) ⋅

(1 − 𝑒−𝛼𝑘𝛥𝑡 − 𝛼𝑘𝛥𝑡)
𝛼𝑘𝛥𝑡

(29)

the next expression is obtained:

𝑤𝑚
𝑘,1 −𝑤𝑚

𝑘,0 ⋅ 𝑒
−𝛼𝑘𝛥𝑡 = 𝐴𝑚

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
⋅ (𝑢1 − 𝑢0) (30)

or:

𝑤𝑚
𝑘,1 = 𝑤𝑚

𝑘,0 ⋅ 𝑒
−𝛼𝑘𝛥𝑡 + 𝐴𝑚

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
⋅ (𝑢1 − 𝑢0) (31)

This last is the successive state transition equation for the transfer function 𝑚. It relates the relaxation of a sub-system state (or mode),
indexed by 𝑘 and corresponding to pole −𝛼𝑘, between two successive sampling points. Building up the output response at the end
of 𝛥𝑡 (i.e., in 𝑧−1) leads to:

𝑣1 = 𝐴𝑚
0 ⋅ 𝑢1 +

∞
∑

𝑘=1
𝑤𝑚

𝑘,1 (32)

Finally, it remains to reconstruct the signals as appear in Fig. 5. The current state is renamed 0 ≡ (𝑛− 1) and the new one, after 𝛥𝑡,
1 ≡ 𝑛. The correct labels for the input and output signals are, respectively: 𝑣 ≡ �̇� and 𝑢 ≡ �̇�. The output temperature rate at each side
is the sum of the two output contributions due to the conduction heat flux pulses at both sides. As a result, the linear expressions
of the superficial velocities on both sides as a function of the new conduction heat fluxes, are:

�̇�0,𝑛 = 𝐴00
0 ⋅ �̇�0,𝑛 +

∞
∑

𝑘=1
𝑤00

𝑘,𝑛 + 𝐴01
0 ⋅ �̇�1,𝑛 +

∞
∑

𝑘=1
𝑤01

𝑘,𝑛 = 𝐴00
0 ⋅ �̇�0,𝑛 + 𝐴01

0 ⋅ �̇�1,𝑛 +
∞
∑

𝑘=1
𝑤0

𝑘,𝑛 (33a)

�̇�1,𝑛 = 𝐴10
0 ⋅ �̇�0,𝑛 +

∞
∑

𝑘=1
𝑤10

𝑘,𝑛 + 𝐴11
0 ⋅ �̇�1,𝑛 +

∞
∑

𝑘=1
𝑤11

𝑘,𝑛 = 𝐴10
0 ⋅ �̇�0,𝑛 + 𝐴11

0 ⋅ �̇�1,𝑛 +
∞
∑

𝑘=1
𝑤1

𝑘,𝑛 (33b)

Eq. (33) define the total state of 0-side 𝑤0
𝑘, as the sum of the states 00 and 01. In concrete, at 𝑛: 𝑤0

𝑘,𝑛 = 𝑤00
𝑘,𝑛 +𝑤01

𝑘,𝑛. Analogously, on
the other side 𝑤1

𝑘,𝑛 = 𝑤10
𝑘,𝑛 +𝑤11

𝑘𝑛. Using the explicit expressions (31) the successive state transition at both sides is just:

𝑤0
𝑘,𝑛 =𝑤

0
𝑘,(𝑛−1) ⋅ 𝑒

−𝛼𝑘𝛥𝑡+

𝐴00
𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�0,𝑛 + 𝐴01

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�1,𝑛+

−𝐴00
𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼 𝛥𝑡
�̇�0,(𝑛−1) − 𝐴01

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼 𝛥𝑡
�̇�1,(𝑛−1)

(34)
9
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𝑤1
𝑘,𝑛 =𝑤

1
𝑘,(𝑛−1) ⋅ 𝑒

−𝛼𝑘𝛥𝑡+

𝐴10
𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�0,𝑛 + 𝐴11

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�1,𝑛+

−𝐴10
𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�0,(𝑛−1) − 𝐴11

𝑘
(1 − 𝑒−𝛼𝑘𝛥𝑡)

𝛼𝑘𝛥𝑡
�̇�1,(𝑛−1)

(35)

In short, Eq. (33) can be written more simply:

�̇�0,𝑛 = 𝑎00 ⋅ �̇�0,𝑛 + 𝑎01 ⋅ �̇�1,𝑛 + 𝑑0 (36a)

�̇�1,𝑛 = 𝑎10 ⋅ �̇�0,𝑛 + 𝑎11 ⋅ �̇�1,𝑛 + 𝑑1 (36b)

where by defining two secondary transition parameters:

𝜑𝑘 = 𝑒−𝛼𝑘𝛥𝑡 (37a)

𝑟𝑘 =
(1 − 𝜑𝑘)
𝛼𝑘𝛥𝑡

(37b)

, the coefficients are:

𝑎𝑚 = 𝐴𝑚
0 +

∞
∑

𝑘=1
𝑟𝑘 ⋅ 𝐴

𝑚
𝑘 (38a)

𝑑0 =
∞
∑

𝑘=1
𝑤0

𝑘,(𝑛−1) ⋅ 𝜑𝑘 −

( ∞
∑

𝑘=1
𝑟𝑘 ⋅ 𝐴

00
𝑘

)

⋅ �̇�0,(𝑛−1) −

( ∞
∑

𝑘=1
𝑟𝑘 ⋅ 𝐴

01
𝑘

)

⋅ �̇�1,(𝑛−1) (38b)

𝑑1 =
∞
∑

𝑘=1
𝑤1

𝑘,(𝑛−1) ⋅ 𝜑𝑘 −

( ∞
∑

𝑘=1
𝑟𝑘 ⋅ 𝐴

10
𝑘

)

⋅ �̇�0,(𝑛−1) −

( ∞
∑

𝑘=1
𝑟𝑘 ⋅ 𝐴

11
𝑘

)

⋅ �̇�1,(𝑛−1) (38c)

and the successive state transition expressions, i.e., Eqs, (34) and (35) are:

𝑤0
𝑘,𝑛 =𝑤

0
𝑘,(𝑛−1) ⋅ 𝜑𝑘 + 𝑟𝑘

(

𝐴00
𝑘 �̇�0,𝑛 + 𝐴01

𝑘 �̇�1,𝑛
)

− 𝑟𝑘
(

𝐴00
𝑘 �̇�0,(𝑛−1) + 𝐴01

𝑘 �̇�1,(𝑛−1)
)

(39)

𝑤1
𝑘,𝑛 =𝑤

1
𝑘,(𝑛−1) ⋅ 𝜑𝑘 + 𝑟𝑘

(

𝐴10
𝑘 �̇�0,𝑛 + 𝐴11

𝑘 �̇�1,𝑛
)

− 𝑟𝑘
(

𝐴10
𝑘 �̇�0,(𝑛−1) + 𝐴11

𝑘 �̇�1,(𝑛−1)
)

(40)

So, summarizing, Eq. (36) represent the outputs �̇�0,𝑛, �̇�1,𝑛 due to the linear evolution, from their previous values, of the new
conduction heat fluxes �̇�0,𝑛, �̇�1,𝑛, at the end of 𝛥𝑡.

Notice that the response computation relies on the internal states, indexed by 𝑘, on which the {𝑎𝑚} and {𝑑0, 𝑑1} depend. The
independent terms {𝑑0, 𝑑1}, are functions of the previous states (𝑤0

𝑘,(𝑛−1), 𝑤1
𝑘,(𝑛−1)) and previous conduction heat fluxes (�̇�0,(𝑛−1),

�̇�1,(𝑛−1)) (see Eqs. (39), (40)). These {𝑎𝑚} and {𝑑0, 𝑑1} depend on the secondary parameters 𝜑𝑘 and 𝑟𝑘 that take into account each
internal state 𝑘 and 𝛥𝑡.

Although the paper will discuss the implementation details afterward, it is worthwhile to point out that both (𝜑𝑘 and 𝑟𝑘) go to
zero as 𝛥𝑡 or 𝛼𝑘 increases. Therefore, there is no need to compute an infinite series in practice.

Finally, once the response is known, at the sampling point 𝑛, the procedure must update the superficial states anew with Eqs. (39)
and (40). The states must be stored as (𝑤0

𝑘,(𝑛−1), 𝑤
1
𝑘,(𝑛−1)) to use them in the next sampling point.

3.3. SST method applied to 𝑇 response

This subsection applies the SST method to the ′,𝑚(𝑠) (see Eq. (10)), that relates the superficial 𝑇 response with the conduction
heat flux excitation. In practice, the method cannot directly compute the 𝑇 response. Without going into the details, it would need
an infinite series of terms. Fortunately, the 𝛥𝑇 = 𝑇𝑛 − 𝑇𝑛−1 does fit the SST method.

Algebraic manipulation is a bit more involved than before. Eq. (7) leads to Eq. (10) and now the -transform to compute is:

(𝐺′,𝑚,∗(𝑠)) = (𝐺′,𝑚(𝑠) ⋅ 𝐺⊓(𝑠)) (41)

Repeating those previous equations here for easy reading:

′,𝑚(𝑠) = (𝜙𝑚
𝑇 (𝑡)) =

𝐴𝑚
0
𝑠

+
∞
∑

𝑘=1

𝐴𝑚
𝑘

(𝑠 + 𝛼𝑘)

⊓(𝑠) =
(1 − 𝑒−𝑠𝛥𝑡)

𝑠
+ ℎ ⋅

[

− 𝑒−𝑠𝛥𝑡

𝑠
+

(1 − 𝑒−𝑠𝛥𝑡)
𝛥𝑡𝑠2

]

10
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T

Thus:

𝐺′,𝑚,∗(𝑠) = 𝐴𝑚
0
(1 − 𝑒−𝑠𝛥𝑡)

𝑠2
⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟

𝐼

+

+ 𝐴𝑚
0 ℎ

[

− 𝑒−𝑠𝛥𝑡

𝑠2
+

(1 − 𝑒−𝑠𝛥𝑡)
𝛥𝑡𝑠3

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝐼

+

+
∞
∑

𝑘=1

⎡

⎢

⎢

⎢

⎢

⎢

⎣

𝐴𝑚
𝑘
(1 − 𝑒−𝑠𝛥𝑡)
𝑠(𝑠 + 𝛼𝑘)

⏟⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏟
𝐼𝐼𝐼

+𝐴𝑚
𝑘 ℎ

[

− 𝑒−𝑠𝛥𝑡

𝑠(𝑠 + 𝛼𝑘)
+

(1 − 𝑒−𝑠𝛥𝑡)
𝛥𝑡𝑠2(𝑠 + 𝛼𝑘)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐼𝑉

⎤

⎥

⎥

⎥

⎥

⎥

⎦

(42)

where four terms are grouped, 𝐼 , 𝐼𝐼 , 𝐼𝐼𝐼 , and 𝐼𝑉 , to facilitate their handling. The -transform of each labeled term is:

(𝐼) → 𝐴𝑚
0
(1 − 𝑧−1)𝛥𝑡𝑧−1

(1 − 𝑧−1)2
(43a)

(𝐼𝐼) → 𝐴𝑚
0 ℎ

[

− 𝑧−1𝛥𝑡𝑧−1

(1 − 𝑧−1)2
+

(1 − 𝑧−1)𝛥𝑡2𝑧−1(1 + 𝑧−1)
2𝛥𝑡(1 − 𝑧−1)3

]

(43b)

(𝐼𝐼𝐼) → 𝐴𝑚
𝑘

(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘(1 − 𝑧−1)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
(43c)

(𝐼𝑉 ) →
𝐴𝑚
𝑘 ℎ

[

− 𝑧−1(1−𝑒−𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘(1−𝑧−1)(1−𝑒−𝛼𝑘𝛥𝑡𝑧−1)
+

(1−𝑧−1)
(

(𝛼𝑘𝛥𝑡−1+𝑒−𝛼𝑘𝛥𝑡)+(1−𝑒−𝛼𝑘𝛥𝑡−𝛼𝑘𝛥𝑡𝑒−𝛼𝑘𝛥𝑡)𝑧−1
)

𝑧−1

𝛥𝑡𝛼2𝑘(1−𝑧
−1)2(1−𝑒−𝛼𝑘𝛥𝑡𝑧−1)

] (43d)

simplifying them:

(𝐼) → 𝐴𝑚
0

𝛥𝑡𝑧−1

(1 − 𝑧−1)
(44a)

(𝐼𝐼) → 𝐴𝑚
0 ℎ

𝛥𝑡𝑧−1

2(1 − 𝑧−1)
(44b)

(𝐼𝐼𝐼) → 𝐴𝑚
𝑘

(1 − 𝑒−𝛼𝑘𝛥𝑡)𝑧−1

𝛼𝑘(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
(44c)

(𝐼𝑉 ) → 𝐴𝑚
𝑘 ℎ

(𝛼𝑘𝛥𝑡 − 1 + 𝑒−𝛼𝑘𝛥𝑡)𝑧−1

𝛥𝑡𝛼2𝑘(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)
(44d)

he general output-signal 𝑉 (𝑧) to an input-signal 𝑈 (𝑧) will be given by:

𝑉 (𝑧) = (𝐺′,𝑚,∗(𝑠)) ⋅ 𝑈 (𝑧) (45)

where 𝑉 (𝑧) is any superficial temperature and 𝑈 (𝑧) the conduction heat flux at any side. The 𝑚 determines the output–input couple,
as before.

Looking at Eq. (42), -transform of [(𝐼) + (𝐼𝐼)] ⋅𝑈 (𝑧) is the 𝑊 𝑚
0 0-state (notice the capital 𝑊 ). Analogously, [(𝐼𝐼𝐼) + (𝐼𝑉 )] ⋅𝑈 (𝑧)

is the 𝑘-state, 𝑊 𝑚
𝑘 . Thus:

𝑉 (𝑧) = (𝐺′,𝑚,∗(𝑠)) ⋅ 𝑈 (𝑧) = 𝑊 𝑚
0 (𝑧) +

∞
∑

𝑘=1
𝑊 𝑚

𝑘 (𝑧) (46)

Naming the state transition 𝑊 𝑚
0 , as:

𝑊 𝑚
0 (𝑧) = 𝑊 𝑚

0,0 +𝑊 𝑚
0,1𝑧

−1 +𝑊 𝑚
0,2𝑧

−2 +⋯ =

=
(

𝐴𝑚
0 𝛥𝑡𝑧

−1

(1−𝑧−1) +
𝐴𝑚
0 ℎ𝛥𝑡𝑧

−1

2(1−𝑧−1)

)

⋅ (𝑈0 + 𝑈1𝑧−1 + 𝑈2𝑧−2 +⋯)
(47)

𝑊 𝑚
0 (𝑧) ⋅ (1 − 𝑧−1) = (𝑊 𝑚

0,0 +𝑊 𝑚
0,1𝑧

−1 +𝑊 𝑚
0,2𝑧

−2 +⋯)(1 − 𝑧−1) =

=
(

𝐴𝑚
0 𝛥𝑡𝑧

−1 +
𝐴𝑚
0 ℎ𝛥𝑡𝑧

−1

2

)

⋅ (𝑈0 + 𝑈1𝑧−1 + 𝑈2𝑧−2 +⋯)
(48)

The polynomials, at both member sides, must be equal. Thus their coefficients must also be equal. Only the coefficient of 𝑧−1 is
required for the SST method:

(𝑊 𝑚 −𝑊 𝑚 ) =
(

𝐴𝑚𝛥𝑡𝑈0 +
𝐴𝑚
0 𝛥𝑡ℎ𝑈0

)

(49)
11

0,1 0,0 0 2
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E

(
𝑧

t

A

T
E

but since ℎ𝑈0 = 𝑈1 − 𝑈0:

𝑊 𝑚
0,1 = 𝑊 𝑚

0,0 + 𝐴𝑚
0 𝛥𝑡

(𝑈0 + 𝑈1)
2

(50)

Analogously, for the other states 𝑊 𝑚
𝑘 :

𝑊 𝑚
𝑘 (𝑧) = 𝑊 𝑚

𝑘,0 +𝑊 𝑚
𝑘,1𝑧

−1 +𝑊 𝑚
𝑘,2𝑧

−2 +⋯ =

=

[

𝐴𝑚
𝑘

[

𝛼𝑘𝛥𝑡(1 − 𝑒−𝛼𝑘𝛥𝑡) + ℎ(𝛼𝑘𝛥𝑡 − 1 + 𝑒−𝛼𝑘𝛥𝑡)
]

𝑧−1

𝛼2𝑘𝛥𝑡(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1)

]

⋅

⋅ (𝑈0 + 𝑈1𝑧
−1 + 𝑈2𝑧

−2 +⋯)

(51)

𝑊 𝑚
𝑘 (𝑧) ⋅ (1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1) = (𝑊 𝑚

𝑘,0 +𝑊 𝑚
𝑘,1𝑧

−1 +𝑊 𝑚
𝑘,2𝑧

−2 +⋯)(1 − 𝑒−𝛼𝑘𝛥𝑡𝑧−1) =

=

[

𝐴𝑚
𝑘

[

𝛼𝑘𝛥𝑡(1 − 𝑒−𝛼𝑘𝛥𝑡) + ℎ(𝛼𝑘𝛥𝑡 − 1 + 𝑒−𝛼𝑘𝛥𝑡)
]

𝑧−1

𝛼2𝑘𝛥𝑡

]

⋅

⋅ (𝑈0 + 𝑈1𝑧
−1 + 𝑈2𝑧

−2 +⋯)

(52)

y focusing on the coefficient of 𝑧−1, i.e., how the state evolves, and by using ℎ𝑈0 = 𝑈1 − 𝑈0:

𝑊 𝑚
𝑘,1 = 𝑊 𝑚

𝑘,0 ⋅ 𝑒
−𝛼𝑘𝛥𝑡 +

𝐴𝑚
𝑘

𝛼2𝑘𝛥𝑡

[

(1 − (1 + 𝛼𝑘𝛥𝑡)𝑒−𝛼𝑘𝛥𝑡)𝑈0 + (𝛼𝑘 − 1 + 𝑒−𝛼𝑘𝛥𝑡)𝑈1
]

(53)

qs. (50) and (53) just tell us how any state, in this case, evolves over time from one sampling point to the next.
Nevertheless, to calculate how the superficial temperature changes, i.e., 𝛥𝑇 , from a sampling time point (labeled 0) to the next

labeled 1), the difference in the output-signals 𝑉1 −𝑉0 is used instead. Therefore, the difference between the coefficients of 𝑧−1 and
0 is computed as:

𝑉1 = 𝑊 𝑚
0,1 +

∞
∑

𝑘=1
𝑊 𝑚

𝑘,1 (54)

𝑉0 = 𝑊 𝑚
0,0 +

∞
∑

𝑘=1
𝑊 𝑚

𝑘,0 (55)

hat is:

𝛥𝑉 = 𝑉1 − 𝑉0 = 𝑊 𝑚
0,1 −𝑊 𝑚

0,0 +
∞
∑

𝑘=1
(𝑊 𝑚

𝑘,1 −𝑊 𝑚
𝑘,0)

𝛥𝑉 = 𝑉1 − 𝑉0 = 𝐴𝑚
0 𝛥𝑡

(𝑈0 + 𝑈1)
2

+
∞
∑

𝑘=1
(𝑊 𝑚

𝑘,1 −𝑊 𝑚
𝑘,0)

(56)

where the terms between brackets, taking into account (53) have the form:

𝑊 𝑚
𝑘,1 −𝑊 𝑚

𝑘,0 =

− 𝑊 𝑚
𝑘,0(1 − 𝑒−𝛼𝑘𝛥𝑡) +

𝐴𝑚
𝑘

𝛼2𝑘𝛥𝑡

[

(1 − (1 + 𝛼𝑘𝛥𝑡)𝑒−𝛼𝑘𝛥𝑡)𝑈0 + (𝛼𝑘 − 1 + 𝑒−𝛼𝑘𝛥𝑡)𝑈1
] (57)

t this point, the following points should be stressed:

• Eqs. (56) and (57) allow us to compute 𝛥𝑉 = 𝛥𝑇 𝑚 for a certain output–input couple labeled by 𝑚. The linear composition
means that the actual changes on either side are given by:

𝛥𝑇0 = 𝛥𝑇 00 + 𝛥𝑇 01 (58)

𝛥𝑇1 = 𝛥𝑇 10 + 𝛥𝑇 11 (59)

• However the states evolve as Eqs. (50) and (53) show.

he final expressions, similar to the ones in the previous section, are the following. Labeling the change of 𝑇 at the 0-side, as 𝛥𝑇0.
q. (58) leads to:

𝛥𝑇0,(𝑛) =𝐴00
0 𝛥𝑡

(�̇�0,(𝑛−1) + �̇�0,(𝑛))
2

+
∞
∑

𝑘=1
(𝑊 00

𝑘,(𝑛) −𝑊 00
𝑘,(𝑛−1))+

+𝐴01
0 𝛥𝑡

(�̇�1,(𝑛−1) + �̇�1,(𝑛)) +
∞
∑

(𝑊 01
𝑘,(𝑛) −𝑊 01

𝑘,(𝑛−1))

(60)
12

2 𝑘=1
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where now (𝑛) and (𝑛 − 1) are the current and previous sampling points, respectively. Using (57):

𝛥𝑇0,(𝑛) =
(𝐴00

0 �̇�0,(𝑛−1) + 𝐴01
0 �̇�1,(𝑛−1))

2
𝛥𝑡 +

(𝐴00
0 �̇�0,(𝑛) + 𝐴01

0 �̇�1,(𝑛))
2

𝛥𝑡+

+
∞
∑

𝑘=1
−

𝑊 0
𝑘,(𝑛−1)

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(𝑊 00

𝑘,(𝑛−1) +𝑊 01
𝑘,(𝑛−1))(1 − 𝑒−𝛼𝑘𝛥𝑡)+

+
∞
∑

𝑘=1

[

𝐴00
𝑘

𝛼2𝑘𝛥𝑡
(1 − (1 + 𝛼𝑘𝛥𝑡)𝑒−𝛼𝑘𝛥𝑡)�̇�0,(𝑛−1) +

𝐴01
𝑘

𝛼2𝑘𝛥𝑡
(1 − (1 + 𝛼𝑘𝛥𝑡)𝑒−𝛼𝑘𝛥𝑡)�̇�1,(𝑛−1)

]

+

+
∞
∑

𝑘=1

[

𝐴00
𝑘

𝛼2𝑘𝛥𝑡
(𝛼𝑘 − 1 + 𝑒−𝛼𝑘𝛥𝑡)�̇�0,(𝑛) +

𝐴01
𝑘

𝛼2𝑘𝛥𝑡
(𝛼𝑘 − 1 + 𝑒−𝛼𝑘𝛥𝑡)�̇�1,(𝑛)

]

(61)

where 𝑊 0
𝑘 is the ‘‘full’’ state at the 0-side. Due to the linearity of the physical model, it is just the sum of the ‘‘partial’’ states.

Analogously to the previous case, three secondary parameters are defined (notice that there is one more than before):

𝜑𝑘 = 𝑒−𝛼𝑘𝛥𝑡 (62a)

𝑟𝑇 ,𝑘 =
1 − (1 + 𝛼𝑘𝛥𝑡)𝑒−𝛼𝑘𝛥𝑡

𝛼2𝑘𝛥𝑡
(62b)

𝑝𝑇 ,𝑘 =
𝛼𝑘 − 1 + 𝑒−𝛼𝑘𝛥𝑡

𝛼2𝑘𝛥𝑡
(62c)

and by using Eq. (61), the next two linear equations are obtained:

𝛥𝑇0,(𝑛) =𝑎00𝑇 ⋅ �̇�0,(𝑛) + 𝑎01𝑇 ⋅ �̇�1,(𝑛) + 𝑑0𝑇 (63a)

𝛥𝑇1,(𝑛) =𝑎10𝑇 ⋅ �̇�0,(𝑛) + 𝑎11𝑇 ⋅ �̇�1,(𝑛) + 𝑑1𝑇 (63b)

where:

𝑎𝑚𝑇 =
𝐴𝑚
0
2

+
∞
∑

𝑘=0
𝑝𝑇 ,𝑘 ⋅ 𝐴

𝑚
𝑘 (64a)

𝑑0𝑇 =
∞
∑

𝑘=1
−𝑊 0

𝑘,(𝑛−1) ⋅ (1 − 𝜑𝑘)+

+

(

𝐴00
0
2

+
∞
∑

𝑘=1
𝑟𝑇 ,𝑘 ⋅ 𝐴

00
𝑘

)

⋅ �̇�0,(𝑛−1) +

(

𝐴01
0
2

+
∞
∑

𝑘=1
𝑟𝑇 ,𝑘 ⋅ 𝐴

01
𝑘

)

⋅ �̇�1,(𝑛−1)

𝑑1𝑇 =
∞
∑

𝑘=1
−𝑊 1

𝑘,(𝑛−1) ⋅ (1 − 𝜑𝑘)+

+

(

𝐴10
0
2

+
∞
∑

𝑘=1
𝑟𝑇 ,𝑘 ⋅ 𝐴

10
𝑘

)

⋅ �̇�0,(𝑛−1) +

(

𝐴11
0
2

+
∞
∑

𝑘=1
𝑟𝑇 ,𝑘 ⋅ 𝐴

11
𝑘

)

⋅ �̇�1,(𝑛−1)

(64b)

The successive 𝑘-state transitions at both sides 𝑊 0
𝑘 and 𝑊 1

𝑘 , are given by:

𝑊 0
𝑘,(𝑛) = 𝑊 00

𝑘,(𝑛) +𝑊 01
𝑘,(𝑛)

𝑊 0
𝑘,(𝑛) = 𝑊 0

𝑘,(𝑛−1) ⋅ 𝜑𝑘+
+ 𝑝𝑇 ,𝑘 ⋅ (𝐴00

𝑘 ⋅ �̇�0,(𝑛) + 𝐴01
𝑘 ⋅ �̇�1,(𝑛)) + 𝑟𝑇 ,𝑘 ⋅ (𝐴00

𝑘 ⋅ �̇�0,(𝑛−1) + 𝐴01
𝑘 ⋅ �̇�1,(𝑛−1))

(65a)

𝑊 1
𝑘,(𝑛) = 𝑊 10

𝑘,(𝑛) +𝑊 11
𝑘,(𝑛)

𝑊 1
𝑘,(𝑛) = 𝑊 1

𝑘,(𝑛−1) ⋅ 𝜑𝑘+
+ 𝑝𝑇 ,𝑘 ⋅ (𝐴10

𝑘 ⋅ �̇�0,(𝑛) + 𝐴11
𝑘 ⋅ �̇�1,(𝑛)) + 𝑟𝑇 ,𝑘 ⋅ (𝐴10

𝑘 ⋅ �̇�0,(𝑛−1) + 𝐴11
𝑘 ⋅ �̇�1,(𝑛−1))

(65b)

. Discussion

Though the paper aims to present the fundamentals of this new methodology, not the details of its efficient implementation,
ome discussion is advisable. In our opinion, some additional research could significantly improve its performance.

The previous sections show the new formulation that always takes the conduction heat flux �̇� as the input signal, while
onventionally, this was the output one. Chiefly, our response target is the rate of change �̇� of the superficial temperatures.
evertheless, Section 3.3 tackles the case of finding out 𝛥𝑇 , as well. In any case, the outcome is just a pair of linear equations;
qs. (36) and (63), respectively. Roughly, the difficulty relies on how to compute the coefficients of that system.
13

The procedure follows the next steps:
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Table 1
Physical properties of the example-wall layers. Overall: 𝑈 = 0.45 [W/m2K], 𝐿𝑡𝑜𝑡𝑎𝑙 = 0.23 [m], 𝐶𝑡𝑜𝑡𝑎𝑙 = 385.6 [kJ/m2K], specific
weight 307 [kg/m2].
Pos. 𝑘 [W/mK] 𝜌 [kg/m3] 𝑐𝑝 [J/kgK] 𝐿 [m] 𝑅 [m2K/W] 𝐶 [kJ/m2K]

1 0.870 1800 1380 0.120 0.1379 2980.8
2 1.400 2000 1050 0.015 0.0107 31.5
3 0.033 25 837 0.040 1.2121 0.8
4 0.049 1200 920 0.040 0.8183 44.2
5 0.300 800 920 0.015 0.0500 11.0

1. Given a slab composition, a number 𝐾 of poles 𝛼𝑘 and residues 𝐴𝑚
𝑘 must be calculated (𝑘 < 𝐾). Recall that the impulsion

time-response (see Eq. (11)) shows that the slab has an infinite number of response modes (states) that decay exponentially.
The quicker the decay, the bigger 𝛼𝑘 of the mode. This number 𝐾 depends on the shortest time 𝛥𝑡𝑚𝑖𝑛 for which the method
should be able to compute a response and, of course, on the properties of the slab.
In practice, the original Japanese SST method [14], used a maximum amount 𝑘𝑚𝑎𝑥 < 𝐾 of poles. The terms associated with
the difference 𝐾 −𝑘𝑚𝑎𝑥 were employed to reduce the impulse time response (like, for instance, Eq. (11)) to a finite series plus
a correction term. However, this term is not included here for exposition clarity, since it does not affect the essentials. It is
assumed that enough poles are used to build an accurate response.

2. Initialization: at 𝑛 = 0, all temperatures, their states and the inputs �̇�0,0≡𝑛 and �̇�1,0≡𝑛 are zero.
3. Next, current step becomes the previous one (𝑛 − 1) ← 𝑛. After a 𝛥𝑡, new heat fluxes �̇�0,𝑛, �̇�1,𝑛 have been sampled.

(a) Calculate the coefficients {𝑎𝑚} or {𝑎𝑚𝑇 }, 𝑚 ∈ {00, 01, 10, 11} and the independent terms {𝑑0, 𝑑1} or {𝑑0𝑇 , 𝑑1𝑇 } by using
Eqs. (38) or (64), in order to compute the response �̇� or 𝛥𝑇 , respectively.

(b) Notice that the independent terms depend on the previous superficial states: 𝑤𝑚
𝑘,(𝑛−1), or 𝑊 𝑚

𝑘,(𝑛−1), for �̇� or 𝛥𝑇 ,
respectively.

(c) There are several other secondary parameters indexed by 𝑘; {𝜑𝑘} common to �̇� or 𝛥𝑇 response, and one specific {𝑟𝑘}
for the �̇� , and two {𝑟𝑇 .𝑘, 𝑝𝑇 ,𝑘} for 𝛥𝑇 .
The example section and Appendix B.2 illustrate that these parameters go to zero as 𝛼𝑘 and 𝛥𝑡 increase. It is obvious
for 𝜑𝑘 = 𝑒−𝛼𝑘𝛥𝑡. In other words, if the elapsed time between transitions is short, many states are excited, which must be
retained between evolution calls to build the response. In an event-driven simulation, this situation would correspond
to a high superficial �̇� . On the contrary, if 𝛥𝑡 is long (i.e., 𝑇 changes slowly), many states go to zero (i.e., disappear)
and have a negligible effect on the response. Otherwise stated, with fewer states, it is possible to estimate the response
after 𝛥𝑡.
One possible criterion, already successfully used in [15], was the following. Before computing everything, that is; the
coefficients, the independent terms, and the successive state transition, the following quick check is made: 𝜑𝑘 < 𝑇𝑜𝑙.
For instance, take 𝑇 𝑜𝑙 = 10−10. Thus it may be assumed that,

∀ 𝑘 > 𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑚𝑎𝑥 ⇝ 𝜑𝑘 ≈ 0 (66)

along with all the other corresponding secondary 𝑘-parameters. Clearing from 𝜑𝑘 < 𝑇𝑜𝑙, the threshold 𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑚𝑎𝑥
would be found from:

𝛼𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑠𝑡𝑎𝑡𝑒 >
10 ln(10)

𝛥𝑡
(67)

4. Compute the SST evolution: update only those states 𝑘 ≤ 𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑚𝑎𝑥, while those corresponding to 𝑘 > 𝑘𝑡𝑟𝑎𝑛𝑠𝑖𝑡𝑖𝑜𝑛−𝑚𝑎𝑥 are set
to zero directly or simply deleted.

5. If a new event requires the computation of �̇� or 𝛥𝑇 due to a new conduction heat flux input-event, then go to step 3.

Next section illustrates all the previous outcomes with a concrete example.

5. Calculation: example wall

Table 1 describes the properties of a multi-layered wall, also illustrated in Fig. 7.
This wall has a thermal conductivity 𝑈 = 0.45 [W∕m2K], total thickness 𝐿𝑡𝑜𝑡𝑎𝑙 = 0.23 [m], and a heat capacity per m2 𝐶𝑡𝑜𝑡𝑎𝑙 =

385, 6 [kJ∕m2K]. Its weight is 307 [kg∕m2]. Thus, it is a medium or heavy wall attending to its properties. Recall that the bigger the
pole (in absolute value, i.e., 𝛼𝑘), the quicker the wall’s response mode.

The example wall has 4729 poles such that 𝛼𝑘 < 500. However, Appendix B shows only the first 50 and their corresponding
residues. For practical uses, 50 is more than enough. Nevertheless, more than 50 was used to create the following Figures, illustrating
the new ideas. Incidentally, the poles/residues computation relies on a fast algorithm based on [16,17].
14
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Fig. 7. Scheme of the example wall layers. Remark: 0 means outside, 1 inside.

Fig. 8. Impulse response of 𝑇0(𝑡) to a conduction heat flux �̇�0 = 𝛿(𝑡), at 0-side, of the example wall.

.1. 𝑇 response to an impulse �̇�

First, to understand our new CFT, the temperature time response to an impulse conduction heat flux �̇� is sought. If the excitation
s on the 0-side, then Fig. 8 shows the response on the same side. Logically, in 𝑡 = 0 the summation ∑∞

𝑘=1 𝐴
00
𝑘 of Eq. (11) does not

onverge. After receiving heat (�̇�0 = 𝛿(𝑡) [W∕m2]), the superficial temperature at the same side goes to infinity, as expected. The
esponse is very rapid during the first 𝑡 = 1 [s]. Nevertheless, due to the scale in Fig. 8, the steady state seems to be reached very
oon, but it takes several hours. If 𝑡 → ∞ Eq. (11) tends to 𝐴00

0 , i.e., to a constant temperature value that depends on the wall
roperties. Looking at Appendix B, its value is 0.00000259324666703 (the residue at 𝛼0 = 0). This temperature value will be the
ame at any point within the wall at the end of the process. Notice that the excitation is an injection of heat, concretely in Fig. 8: at
-side �̇�1(𝑡) = 0 for 𝑡 ≥ 0, i.e., that side is always adiabatic, while 0-side receives a ‘‘sudden’’ heat impulse 𝛿(𝑡) (Kronecker’s delta),
nd thereafter it is always �̇�0(𝑡) = 0 for 𝑡 > 0, that is, it becomes adiabatic once more.

Fig. 9, shows the 𝑇 response at the opposite side 1 to the same heat impulse �̇�0 = 𝛿(𝑡), as before. Initially, there is no response,
ut after a while (around 1 [h]), 𝑇1 starts rising until it reaches a stationary value. Notice that 𝐴10

0 = 𝐴00
0 (see Appendix B). It takes
15

ong, roughly 24 [h], to reach 80% of its final value, due to the high weight of the wall. An interesting feature is that, according to
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Fig. 9. Impulse 𝑇1(𝑡) response to �̇�0 = 𝛿(𝑡) for the example wall.

Fig. 10. Impulse 𝑇1(𝑡) response to �̇�1 = 𝛿(𝑡), for the example wall.

ig. 9, at 𝑡 = 0, Eq. (11) must sum zero. Therefore, the next must be true:

𝐴10 +
∞
∑

𝑘=1
𝐴10
𝑘 = 0 (68)

The response 𝜙01
𝑇 (𝑡) (not represented), is similar to 𝜙10

𝑇 (𝑡), but with opposite sign. It is so because the heat impulse �̇�1 = 𝛿(𝑡) is now
a heat extraction (see the positive 𝑥-axis). Thus, it creates a temperature decrease in the whole wall.

Finally, Fig. 10 shows the response 𝜙11
𝑇 (𝑡). Logically, since �̇�1 = 𝛿(𝑡) removes energy from the wall, the temperature has a similar

behavior than 𝜙00
𝑇 (𝑡). However, the response on this side is quicker than 𝜙00

𝑇 (𝑡). The cause is that this side has a smaller heat capacity.
Next section illustrates also this asymmetric behavior for this particular example case.

.2. Successive state transition: example

The previous section showed the wall state evolution to what perturbs its thermodynamic equilibrium; the conduction heat fluxes
�̇� imposed at both sides. Now, the developed SST method is applied to illustrate the superficial responses: �̇� and 𝑇 .

Appendix B.2 shows for 𝛥𝑡 = 10 [min] and 𝛥𝑡 = 60 [min], the number of poles used, according to the criterion of Section 4. In
oncrete, that number varies with 𝛼𝑘𝛥𝑡.
16

As instances, two wall excitation cases are posed. In both, �̇�0(𝑡) = �̇�1(𝑡) just to make the exposition simple.
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Fig. 11. Example wall response to case 1 (see Appendix B.3). Top: heat fluxes sampled at the solid circles, i.e., sampling points where �̇� and 𝑇 values are also
computed. However, on the other two graphs, lines connect them to grasp the expected profiles.

• Case 1: the aim here is to mimic a sort of sudden transition process. It increases the heat fluxes at the same rate, from zero
up to a constant value of �̇� = 4.5 [W∕m2]. At approximately 14 [h], they reach 90% of this latter value, and the calculation
proceeds until 24 [h]. The sampling time points have been chosen randomly with an arbitrarily selected minimum elapsed time
of 5 [min].
Appendix B.3 shows the employed values. As discussed, the holder element forces a linear heat flux profile between sampling
points.
Fig. 11 displays the result. On top, the heat flux appears with a solid circle marking the sampling points.
The graph in the middle displays the superficial temperature velocities �̇� . Initially, both 𝑇 speeds are null, rise to a maximum,
and then go back to zero since the wall is reaching its steady state of heat conduction. Notice that �̇� > 0 but �̇� < 0: that is,
17
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Fig. 12. Example wall response to case 2. �̇� and 𝑇 are only known at sampling points.

0-side is warming up (is receiving heat), while 1-side is cooling down (heat is removed). The speed at 0-side is lower than at
1-side due to the unsymmetrical physical properties (see Table 1) of the wall at either side.
Finally, the bottom graph shows the 𝑇 on both sides. Initially, the whole wall was set to 𝑇 = 0 [◦C], but it could be any other
value since the model evaluates how it changes its state over time, i.e., the 𝛥𝑇 evolution between samples. Since the overall
thermal conductivity of the wall is 𝑈 = 0.45 [W∕m2K] (see Table 1), the steady-state temperature difference between both
sides will be 10 [◦C]. Looking at the Figure, after 24 [h] of the randomly chosen heating process, the temperature difference is
around 5 [◦C]. Based on its thermal inertia (related to the 𝑅𝐶 value), this heavy wall would take around 35 [h] to approach its
steady state.
18
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• Case 2: the aim now is to mimic a case where, after some random and rising excitation path of the �̇�, the wall suffers a sudden
deviation, in the opposite direction. As before, both heat fluxes moved symmetrically up and down and were randomly chosen.
Table B.4 shows the heat flux values. The sampling time-points have also been selected randomly with no intention of emulating
an event-driven simulation. A minimum of 5 [min] separates the sampling points.
The upper graph in Fig. 12 displays how the heat fluxes evolve. The heat fluxes are abruptly reduced after a while, or in other
words, the wall suddenly ‘‘becomes more adiabatic’’, so to say.
The middle graph shows the �̇� at the sampled points. Notice that the high flux acceleration also changes significantly the
temperature speeds. Even they exchange their signs: the 0-side decreases its temperature as heat flows to the right while the
1-side one rises since it receives heat from the left while that side boundary condition becomes closer to ‘‘adiabatic’’ (reduced �̇�).
Finally, the bottom graph shows, as before, the 𝑇 on both sides. It is noteworthy that the 𝑇 responses are the ‘‘exact’’ outcomes,
not approximations, to the applied heat fluxes. Therefore, regardless of 𝛥𝑡, the possible exponential-like 𝑇 responses are
retained by the procedure. This 𝑇 behavior differs entirely from the traditional approach.

. Conclusions

The building energy simulation realm has been evolving quickly in the last decade due to the new requirements imposed by the
nergy and climate crisis on engineering. The trend is to move onto a discrete event simulation rather than to remain within the
ime perspective. Recent studies show that even fundamental aspects might need to be dealt with correctly in our current methods
nd procedures. This problem is also known as the building energy performance gap. The paper tries to make a small step forward.

Concretely, it tackles the multi-layered slab 1𝐷 conduction heat transfer calculation. Historically, there are two approaches: the
inite difference and the conduction transfer function method, or CTF, for short. They had remained basically untouched for more
han 50 years. Undoubtedly, they are very useful. Nevertheless, they do not fit the current simulation trends and need an upgrade
r a rethink. Based on previous results [13], this paper considers a new transfer function: one that relates the conduction heat flux �̇�
t both sides of the element to the speed of its superficial temperatures �̇� . In contrast, the traditional method takes 𝑇 as inputs and

�̇� as outputs. But, additionally, the solution procedure should fit better in a discrete event simulation paradigm. So, instead of using
italas’ method, the paper recovers a somewhat forgotten one from the Japanese literature: the successive state transition method,

r briefly SST. The linear Eq. (38) and the successive state transition rules given by Eqs. (39) and (40), summarize the solution.
dditionally, Eq. (37) provide a suitable secondary set of parameters that aid us in establishing the solution procedure.

Moreover, the paper shows that the same SST methodology can be used to obtain the exact 𝑇 responses to heat input �̇� pulses
n both sides. It is indirectly possible through the temperature difference 𝛥𝑇 . Now, the linear Eq. (63) along with Eq. (64) and the
uccessive state transition rules (65) define the solution. Analogously to the previous case, Eq. (62) gather the suitable auxiliary
arameters which help establishing the solution procedure.

The method has the following features:

• Variable time steps with conduction transfer functions.
• Knowing �̇� allows us to track the wall state, thus allowing scheduling more frequent events for those fast-evolving walls. In

simple terms: it fits an event-driven simulation of the building’s solid parts. Thus a fully event-driven building simulation is
enabled.

• Additionally, the paper shows how to compute the 𝑇 response. Therefore, it allows us to estimate the process variables (heat
exchange fluxes) more accurately.
Moreover, this has implications for improving QSS methods (Quantized State System) used in discrete event simulation of
continuous systems (see [18]).

• Since, contrary to the conventional method, the energy input into the wall is known, the simulations could be more physically
consistent. In other words, it contributes to reducing the energy performance gap.

• Recall that the evolution of the superficial temperatures is not forced or imposed, as in the traditional method. Thus, it allows
a better indoor comfort estimation.
Incidentally, this is an increasing importance target due to the climate change and energy crisis resilience challenges.

• The computational burden is adaptive. When the time sampling points are closer (i.e., small 𝛥𝑡)), the effort rises, and vice versa.
This trade-off does not occur with the finite difference models or with the fixed time-step methods. Our procedure uses, in
practice, a variable quantity of internal states to build the response. This amount depends roughly on each 𝛥𝑡 and on the
physical properties of the element.

• The proposed method can use as much information as needed about the thermal response of the element. Beforehand, the user
must define the smallest 𝛥𝑡 for which the method should deliver a response. Then all the required information is computed
and used adaptively according to the actual elapsed time between heat flux events.

This new method of dealing with the 1D conduction heat transfer in multi-layered walls adds the complexity of computing the
oles and residues inherent to any root-finding method. Besides, the SST method has a particularity; it needs the evaluation of costly
xponential functions.

Future research will use the proposed methodology and the discrete event specification scheme to analyze its practical application
19

n building energy simulation (i.e., similar to our previous work [13]).
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Appendix A. Traditional CTF

Starting with the well-known expressions for the conventional 𝑚(𝑠) in Eq. (2). For a single layer characterized by its thickness
𝐿, thermal diffusivity 𝛼 and thermal conductivity 𝑘:

00(𝑠) = 𝑘
√

𝑠∕𝛼 ⋅
cosh(𝐿

√

𝑠∕𝛼)

sinh(𝐿
√

𝑠∕𝛼)
(A.1a)

01(𝑠) = −𝑘
√

𝑠∕𝛼 ⋅
1

sinh(𝐿
√

𝑠∕𝛼)
= −10(𝑠) (A.1b)

11(𝑠) = −𝑘
√

𝑠∕𝛼 ⋅
cosh(𝐿

√

𝑠∕𝛼)

sinh(𝐿
√

𝑠∕𝛼)
(A.1c)

sually, the literature uses the following terminology:

𝑅 = 𝐿∕𝑘 (A.2a)

𝑀(𝑠) = 𝐿
√

𝑠∕𝛼 =
√

𝐿2 ⋅ 1∕(𝑘∕(𝜌𝑐𝑝)) ⋅
√

𝑠 =
√

𝑅𝐶 ⋅
√

𝑠 (A.2b)

𝐶 = 𝜌 ⋅ 𝑐𝑝 ⋅ 𝐿 (A.2c)

where 𝑅 is the thermal resistance, 𝑀 is the thermal inertia and 𝐶 the thermal capacity per m2. To compose the multi-layered slab,
Eq. (2) is not useful. The conditions on one side {𝑇 , �̇�} must be related to the ones on the other:

[

𝑇1
�̇�1

]

=
[

𝐴(𝑠) −𝐵(𝑠)
−𝐶(𝑠) 𝐷(𝑠)

]

⋅
[

𝑇0
�̇�0

]

, (A.3)

where using Eq. (A.2):

𝐴(𝑠) = cosh𝑀(𝑠) = 𝐷(𝑠) (A.4a)

𝐵(𝑠) = 𝑅 ⋅ sinh𝑀(𝑠)∕𝑀(𝑠) (A.4b)

𝐶(𝑠) = 1
𝑅

⋅𝑀(𝑠) sinh𝑀(𝑠) (A.4c)

Eq. (A.3) can also be transformed into (swapping 0 for 1):
[

𝑇0
�̇�0

]

=
[

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)

]

⋅
[

𝑇1
�̇�1

]

(A.5)

If the layer sequence is taken as in Fig. 1, i.e., from outside 0 (layer 1) to inside 1 (layer 𝑛), the multi-layered matrix is obtained
by multiplication as:

[

𝑇0
�̇�0

]

=
[

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)

]

𝑛
⋅
[

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)

]

𝑛−1
…

[

𝐴(𝑠) 𝐵(𝑠)
𝐶(𝑠) 𝐷(𝑠)

]

1
⋅
[

𝑇1
�̇�1

]

(A.6)

[

𝑇0
]

=
[

𝐴𝐴(𝑠) 𝐵𝐵(𝑠)
]

⋅
[

𝑇1
]

(A.7)
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and clearing for the heat fluxes:
[

�̇�0
�̇�1

]

=
[

𝐷𝐷(𝑠)∕𝐵𝐵(𝑠) −1∕𝐵𝐵(𝑠)
1∕𝐵𝐵(𝑠) −𝐴𝐴(𝑠)∕𝐵𝐵(𝑠)

]

⋅
[

𝑇0
𝑇1

]

(A.8)

Eq. (A.8) is a more explicit form of (Eq. (2)).

Appendix B. Example wall

B.1. Poles and residues at the poles

For the example wall, this section contains its computed poles and residues.
Residues for 𝑘 = 0 (𝛼0 = 0):

𝐴00
0 = 0.00000259324666703 (B.1)

𝐴10
0 = 0.00000259324666703 (B.2)

𝐴11
0 = −0.00000259324666703 (B.3)

the next Table B.2 are the first 50 poles 𝛼𝑘 and their residues 𝑘 ≥ 1:

Table B.2
Values ordered top-down from 𝑘 = 1…50.
𝛼𝑘 𝐴00

𝑘 𝐴10
𝑘 𝐴11

𝑘

1.62E−05 5.78E−07 −3.03E−06 −1.59E−05
5.33E−05 −6.43E−19 7.30E−18 8.29E−17
2.01E−04 5.98E−06 5.95E−07 −5.92E−08
2.98E−04 3.03E−16 2.94E−17 −2.85E−18
4.48E−04 2.31E−18 −3.36E−17 −4.88E−16
7.93E−04 6.09E−06 −3.56E−07 −2.08E−08
1.24E−03 3.08E−18 2.20E−16 −1.57E−14
1.63E−03 5.47E−08 1.68E−06 −5.15E−05
1.79E−03 6.09E−06 −1.63E−06 −4.34E−07
2.44E−03 −1.38E−17 5.50E−16 2.19E−14
3.04E−03 −3.83E−14 −1.98E−15 1.03E−16
3.19E−03 6.18E−06 3.04E−07 −1.50E−08
4.05E−03 −2.98E−17 1.62E−15 8.78E−14
5.01E−03 6.17E−06 −1.35E−06 −2.94E−07
5.44E−03 3.59E−08 1.53E−06 −6.54E−05
6.08E−03 −3.30E−17 −1.98E−15 1.19E−13
7.24E−03 6.16E−06 −7.08E−07 −8.15E−08
8.45E−03 3.56E−15 −1.39E−14 −5.42E−14
8.85E−03 −2.02E−14 −1.35E−14 9.03E−15
9.46E−03 1.57E−06 2.49E−06 −3.95E−06
1.01E−02 4.81E−06 −2.73E−06 −1.55E−06
1.02E−02 1.24E−13 −5.59E−14 −2.52E−14
1.15E−02 −5.72E−16 −8.10E−15 1.14E−13
1.25E−02 1.89E−07 2.64E−06 −3.68E−05
1.30E−02 5.98E−06 −2.19E−06 −7.99E−07
1.47E−02 1.82E−17 −6.91E−16 −2.62E−14
1.64E−02 6.14E−06 2.59E−07 −1.09E−08
1.75E−02 −2.33E−13 −1.35E−14 7.80E−16
1.83E−02 2.07E−16 −3.55E−15 −6.07E−14
2.03E−02 6.10E−06 −3.14E−07 −1.62E−08
2.23E−02 −1.75E−16 −1.09E−14 6.77E−13
2.31E−02 1.60E−08 7.88E−07 −3.88E−05
2.45E−02 6.05E−06 −7.23E−07 −8.64E−08
2.67E−02 −7.58E−16 1.15E−14 1.74E−13
2.77E−02 3.10E−14 2.84E−15 −2.60E−16
2.90E−02 6.04E−06 3.54E−07 −2.07E−08
3.15E−02 8.00E−16 −3.00E−14 −1.13E−12
3.40E−02 5.90E−06 −1.84E−06 −5.74E−07
3.55E−02 1.51E−07 2.88E−06 −5.50E−05
3.65E−02 −6.31E−15 −9.70E−14 1.49E−12
3.86E−02 −1.61E−12 1.99E−12 2.45E−12
3.89E−02 2.88E−06 −4.60E−06 −7.37E−06
3.99E−02 3.40E−06 3.75E−06 −4.13E−06
21
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B.2. Secondary parameters

This section illustrates how the value of the secondary parameters (37) and (62), for responses 𝑇 and �̇� respectively, vary with
the absolute value of the pole 𝛼𝑘 and the elapsed time 𝛥𝑡. In order to make the scales comparable, and since the value of all the
secondary parameters go to zero with 𝛼𝑘, they are normalized, by dividing each value by its maximum absolute value (i.e., its value
for 𝛼1): for instance 𝜑𝑘 = 𝜑𝑘∕|𝜑1|, 𝑟𝑇 ,𝑘 = 𝑟𝑇 ,𝑘∕|𝑟𝑇 ,1|, and so on. Therefore, all the normalized values (denoted by an over-line) are
in the interval [−1, 1] (see Table B.2). Fig. B.13 shows the normalized values of the secondary parameters (62) (𝑇 response), for
the example wall. The tolerance criterion of Section 4 is marked on its 𝛼𝑘𝛥𝑡 axis. It can be seen that, for short elapsed times, the
amount of poles (states) which are taken into account is higher (40, for 10 min pulses in this example), while for longer ones only
remain a few (16, for 1 h pulse in this example).

Fig. B.13. Secondary parameters for the 𝑇 response, (62), applied to the example wall and for two different elapsed times 𝛥𝑡, short at the top and long at the
bottom.

Fig. B.14 shows the normalized values of the secondary parameters, (37) (�̇� response), for the example wall. Since the tolerance
criterion is the same, the amount of poles used in building up the response is the same as before for 𝛥𝑡 = 10 [min] and 𝛥𝑡 = 60 [min].
The 𝜑 parameter is the same in both Figures. It determines the exponential decay of the 𝑘-state with 𝛥𝑡.
22
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Fig. B.14. Secondary parameters for the �̇� response, . (37), applied to the example wall and for two different elapsed times 𝛥𝑡, short at the top and long at
the bottom.

B.3. Case 1: radom �̇� values used in the example section of the SST method

See Table B.3.
Table B.3
Case 1: random conduction heat flux. Equals at both sides.
𝑛 𝑡 [s] �̇�𝑐𝑜𝑛𝑑,0 [W/m2] �̇�𝑐𝑜𝑛𝑑,1 [W/m2] 𝛥𝑡 [s]

0 0 0.00 0.00
1 1034 0.36 0.36 1034
2 2142 0.71 0.71 1108
3 4748 1.42 1.42 2606
4 6693 1.87 1.87 1945
5 9638 2.42 2.42 2945
6 12924 2.90 2.90 3286

(continued on next page)
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Table B.3 (continued).
𝑛 𝑡 [s] �̇�𝑐𝑜𝑛𝑑,0 [W/m2] �̇�𝑐𝑜𝑛𝑑,1 [W/m2] 𝛥𝑡 [s]

7 14291 3.07 3.07 1367
8 17514 3.39 3.39 3223
9 18646 3.49 3.49 1132
10 20454 3.62 3.62 1808
11 23517 3.81 3.81 3063
12 25597 3.92 3.92 2080
13 26340 3.95 3.95 743
14 29775 4.08 4.08 3435
15 33019 4.18 4.18 3244
16 34388 4.21 4.21 1369
17 35928 4.25 4.25 1540
18 38118 4.29 4.29 2190
19 39863 4.31 4.31 1745
20 41114 4.33 4.33 1251
21 41665 4.34 4.34 1251
22 42057 4.34 4.34 392
23 45090 4.38 4.38 3033
24 48759 4.41 4.41 3669
25 51282 4.44 4.44 2523
26 54693 4.45 4.45 3411
27 56655 4.46 4.46 1962
28 59434 4.47 4.47 2779
29 62167 4.47 4.47 2733
30 64550 4.48 4.48 2383
31 67960 4.48 4.48 3410
32 69013 4.48 4.48 1053
33 69562 4.48 4.48 549
34 71323 4.49 4.49 1761
35 73390 4.49 4.49 2067
36 77215 4.49 4.49 3825
37 77798 4.49 4.49 583
38 81058 4.49 4.49 3260
39 83238 4.49 4.49 2180
40 84582 4.49 4.49 1344
41 87150 4.50 4.50 2568

B.4. Case 2: radom �̇� values used in the example section of the SST method

See Table B.4.
Table B.4
Case 2: random conduction heat flux. Equals at both sides.
𝑛 𝑡 [s] �̇�𝑐𝑜𝑛𝑑,0 [W/m2] �̇�𝑐𝑜𝑛𝑑,1 [W/m2] 𝛥𝑡 [s]

0 0 0.00 0.00
1 692 0.10 0.10 692
2 1038 0.15 0.15 346
3 1482 0.20 0.20 444
4 2160 0.30 0.30 678
5 2849 0.40 0.40 689
6 3550 0.45 0.45 701
7 4400 0.50 0.50 850
8 5045 0.55 0.55 645
9 5514 0.60 0.60 469
10 6336 0.65 0.65 822
11 6858 0.80 0.80 522
12 7544 1.20 1.20 686
13 8170 1.25 1.25 626
14 8791 1.26 1.26 621
15 9501 1.80 1.80 710
16 10159 2.00 2.00 658
17 10956 3.00 3.00 797
18 11580 4.00 4.00 624
19 12324 5.00 5.00 744
20 12836 5.50 5.50 512
21 13182 5.70 5.70 346
22 13563 5.80 5.80 381

(continued on next page)
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Table B.4 (continued).
𝑛 𝑡 [s] �̇�𝑐𝑜𝑛𝑑,0 [W/m2] �̇�𝑐𝑜𝑛𝑑,1 [W/m2] 𝛥𝑡 [s]

23 13959 5.90 5.90 396
24 14628 6.00 6.00 669
25 15201 6.10 6.10 573
26 15949 6.20 6.20 748
27 16807 6.30 6.30 858
28 17190 6.35 6.35 383
29 17733 6.40 6.40 543
30 18454 6.70 6.70 721
31 18924 6.70 6.70 470
32 19814 6.70 6.70 890
33 20561 1.00 1.00 747
34 21083 1.00 1.00 522
35 21525 1.00 1.00 442
36 22093 1.00 1.00 568
37 22434 1.00 1.00 341
38 23044 1.00 1.00 610
39 23835 1.00 1.00 791
40 24538 1.00 1.00 703
41 24870 1.00 1.00 332
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