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ABSTRACT

In this paper we continue to research relationships between closure-type
properties of hyperspaces over a space X and covering properties of X.
For a Hausdorff space X we denote by 2% the family of all closed subsets
of X. We investigate selection properties of the bitopological space
(2%, AT, AT) where A} is the upper A;-topology for each i = 1,2.
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1. INTRODUCTION

For a Hausdorff space X we denote by 2% the family of all closed subsets of
X. If Ais asubset of X and A a family of subsets of X, then

A°=X\Aand A°={A4A°: A e A},

A= ={Fe2X . FNnA+# g2},

At ={Fe2X:FCA}.

Let A be a subset of 2% closed for finite unions and containing all singletons.
Then the upper A-topology, denoted by A*, is the topology whose base is the
collection {(D°)* : D € A}uU{2X}.

We consider the next important cases:

e A is the collection CL(X) = 2%\ {o};

e A is the family K(X) of all non-empty compact subsets of X;
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e A is the family F(X) of all non-empty finite subsets of X.

When A = CL(X) we have the well-known upper Vietoris topology VT,
when A = K(X) we have the upper Fell topology (known also as the co-compact
topology) FT, and when A = F(X) we have the Z™-topology.

Many topological properties are defined or characterized in terms of the
following classical selection principles [5, 19, 21]. Let A and B be sets consisting
of families of subsets of an infinite set X. Then:

S1(A, B) is the selection hypothesis: for each sequence (A, : n € N) of
elements of A there is a sequence (b, : n € N) such that for each n, b, € A,,
and {b, : n € N} is an element of B.

Stin(A, B) is the selection hypothesis: for each sequence (A4, : n € N) of
elements of A there is a sequence (B,, : n € N) of finite sets such that for each
n, By, € Ap, and |, oy Bn € B.

In this paper, by a cover we mean a nontrivial one, that is, i is a cover of
Xif X=JUand X ¢U.

An open cover U of a space X is called:

e an w-cover (k-cover) if each finite (compact) subset C of X is contained
in an element of U;

e a y-cover (yi-cover) if U is infinite and for each finite (compact) subset C
of X the set {U € : C € U} is finite.

Because of these definitions all spaces are assumed to be Hausdorff non-
compact, unless otherwise stated.

Definition 1.1. An open cover U of a space X is called A-cover if each element
of A is contained in an element of U.

In particular, a A-cover is a w-cover (a k-cover) for A = F(X) (A =K(X)).

Definition 1.2. An open cover U of a space X is called ya -coverif U is infinite
and for each element C' of A the set {U € U : C ¢ U} is finite.

In particular, a ya-cover is a y-cover (a y,-cover) for A = F(X) (A = K(X)).

Different A-covers (k-covers, w-covers, kp-covers, cp-covers,...) exposed
many dualities in hyperspace topologies such as co-compact topology F¥, co-
finite topology Z™, Pixley-Roy topology, Fell topology and Vietoris topology.
They also play important roles in selection principles [2, 8, 10, 11, 13, 14, 16, 18].

In [15] we investigated selectors for sequence of subsets of the space 2%
with the ZT-topology and the upper Fell topology (FT-topology). Also we
considered the selection properties of the bitopological space (2X,F+,Z¥).

In this paper we continue to research relationships between closure-type
properties of hyperspaces over a space X and covering properties of X. We
investigate selection properties of the bitopological space (2%, A}, AJ) where
A7 is the upper A;-topology for each i = 1, 2.

2. SELECTIVE PROPERTIES OF BITOPOLOGICAL HYPERSPACES

Definition 2.1 ([15]). Let X be a space and let U = {U, : o € A} be an open
cover of X. Then U¢ = {X \ U, : a € A} converges to {@} in (2%, 7) where 7
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is a topology on 2%, if for every F' € 2% the U¢ converges to F, i.e. for each
neighborhood W of F in the space (2%,7), {a: (X \Us) € W,a € A}| < R,.

Since every I'a-cover contains a countably I'a-cover, then each converging
to {@} subset of (2%, AT) contains a countable converging to {@} subset of
(2%, AT).

For a topological space X, consider A; for i = 1,2. Then (2%, Af, A;) isa
bitopological space. We denote:

e D}, — the family of dense subsets of (2%, A});

e Di. — the family of converging to {@} subsets of (2%, Af).

o O, — the family of A;-covers of X;

o ['n, — the family of ya,-covers of X.

Lemma 2.2. Let U = {U, : a € A} be an open cover of X and (2X,A%) is a
hyperspace. Then

(a) U is an A-cover of X < U € Dq.

(b) U is an ya-cover of X < U° € Dr.

Proof. (a). Let U be an A-cover of X and let (K¢)™ be a basic open subset of
(2%, A*) where K € A. There is a member U of U containing K. Thus we
have U§, € (K°)T and hence U° € Dq,.

Let U° € Dg. Let K € A. Pick aset D in (K°)* NU°. We have D¢ € U
and K C D¢.

(b). Let U = {U, : o € A} be an ya-cover of X and F € 2%X. For each
neighborhood W of F' in the space (2%, 7), [{a: (X \Us) € W,a € A}| < R.
Hence U°¢ € Dr.

Let U¢ € Dr where U = {U, : a € A}. Then for every F € 2% and for each
neighborhood W of F in the space (2%,7), [{a: (X \ Us) € W, € A}| < Ry.
Hence U is an ya-cover of X. O

Theorem 2.3. Assume that ®, ¥ € {Q.T'}, x € {1, fin}. Then for a space X
the following statements are equivalent:

(1) X satisfies S« (Pa,, Va,);

(2) (2%, AT, AT) satisfies S,(DL, D).

Proof. We prove the theorem for x = fin, the other proofs being similar.

(1) = (2). Let (D; : i € N) be a sequence of dense subsets of (2%, A]) such
that D; € D} for each i € N. Then (DY : i € N) is a sequence of open covers
of X such that Df € ®4, for each ¢ € N. Since X satisfies Syin(®a,,Ta,),
there is a sequence (4; : i € N) of finite sets such that for each i, A; C D¢, and
Usen 4i € Wa,. It follows that | J;cy A5 € D},

(2) = (1). Let (U, : n € N) be a sequence of open covers of X such
that U,, € ®a,. For each n, A, := U is a dense subset of (2%, AT) such
that A, € D}. Applying that (2%, AT, AT) satisfies Sti, (DL, D), there is
a sequence (4, : n € N) of finite sets such that for each n, A, C A,, and
Unen An € D3 Then {J,, o Un is an open cover of X where U, = AS, for each
neNand (J,cnyUn € Va,.
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Corollary 2.4 (Theorem 6 in [9]). For a space X the following are equivalent:
(1) X satisfies S1(KC,§2);
(2) (2X,F+,Z%) satisfies Sl(D5+,D£Z)+).

Corollary 2.5 (Theorem 14 in [9]). For a space X the following are equivalent:
(1) X satisfies Syin(KC,Q);
(2) (2X,F*+,Z") satisfies Syin(DE ', DE").

3. LOCAL PROPERTIES OF HYPERSPACES

Let X be a topological space, and x € X. A subset A of X converges to x,
x =lim A, if A is infinite, ¢ A, and for each neighborhood U of z, A\ U is
finite. Consider the following collection:

e, ={ACX:zeA\ A}

o', ={AC X :z=1limA}.

Note that if A € ', then there exists {a,} C A converging to x. So, simply
I', may be the set of non-trivial convergent sequences to x.

e A space X has strictly Fréchet-Urysohn, if X satisfies S1(Q,T%).
e A space X has strongly Fréchet-Urysohn, (if x € (A, and A,41 C A,

n
then there exist a,, € A,, such that a,, — z), if X satisfies Syin(Qs, ).

Theorem 3.1. Assume that &,V € {Q, T}, x € {1, fin}. Then for a space X
the following statements are equivalent:
(1) Each open set Y C X has the property Sx(Pa,, Ua,);
X (90X A+ A+ , AT AT
(2) For each E € 2%, (2%, A, A7) satisfies S, (P, V5 ).

Proof. (1) = (2). Let E € 2% and let (A, : n € N) be a sequence such

that A,, € @gf for each n € N. Then (AS : n € N) is a sequence of open
covers of E¢ such that AS € ®a, for each n € N. Since E° has the property
S(®a,, Pa,), there is a sequence (A% : n € N) such that A% € AS for each
n € N and {AS : n € N} is open cover of E€ such that {AS :n € N} € Ua,. It
follows that {4, : n € N} € \1122*_

(2) = (1). Let Y be an open subset of X and let (F,, : n € N) be a sequence
of open covers of Y such that F,, € ®y where @y is the @, family of covers
of Y. Let E = X\Y. Put A, = F¢ for each n € N. Then A, C 2% and

At . X + + . At AT
A, € &' for each n € N. Since, by (2), (2%, AT, AT) satisfies S, (®5' , ¥5*),
there is a sequence (A, : n € N) such that 4, € A, for each n € N and
+
{A, :n €N} € U3? . It follows that {F, : F, = AS,n € N} € Up,.
O
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Corollary 3.2 (Theorem 3 in [6]). For a space X the following statements are
equivalent:

(1) Each open setY C X has the property S1(Q,T);

(2) (2%,Z%) is Fréchet-Urysohn;

(3) (2X,Z%) is strongly Fréchet-Urysohn.

Corollary 3.3 (Theorem 9 in [9]). For a space X the following are equivalent:
(1) Each open setY C X satisfies Spin(£2,Q);
(2) (2%,Z%) has countable fan tightness (For each E € 2%, (2%, Z%) sat-
isﬁes Sfin(QE7 QE))

Corollary 3.4 (Theorem 31 in [1]). Assume that ® € {T'x,K}, ¥ € {T,Q},
* € {1, fin}. Then for a space X the following statements are equivalent:

(1) Fach open set Y C X has the property S,(®,¥);

(2) For each E € 2%, (2X F+,Z") satisfies S, (95", WZ").

Recall that a space is perfect if every open subset is an Fj,-subset [7]. Clearly
every semi-stratifiable space is perfect.

The well-known that all properties in the Scheepers Diagram [4, 20] are
hereditary for F, subsets, i.e. if X satisfies Si(®Pa,¥a) for A = F(X) then
each F,-set F' C X satisfies S4(®a, Ta) (Corollary 2.4 in [12]).

Definition 3.5. A subset A of a space X is called an A-F,-set if A can be

o0

represented as A = |J F; where F; is a closed set in X for each ¢ € N and for
i=1

any set B € A and B C A there exists i € N such that B C Fj.

In particular, A-F,-set is F,-set (k-Fy-set) of X for A = F(X) (A = K(X))
[15].

Definition 3.6. A space X is called A-perfect if every open subset is an A-
F_-subset of X.

In particular, we get the definitions of perfect space for A = F(X) and
k-perfect space for A = K(X) [15].

Note that every perfectly normal space is k-perfect (Proposition 4.10 in [15])
and, by definition, every k-perfect space is perfect. For the Sorgenfrey line S,
the space S x S is perfect [7], but not k-perfect [15].

In [15] we raised the question: Is there a k-perfect space which is not (per-
fectly) normal?

According to [17], a regular space with a o-locally finite k-network is called
an N-space. Since every metric space has a o-locally finite base, it is an N-space.
Recall that Foged in [3] constructed a non-normal space which is an R-space.

Proposition 3.7. Fvery X-space is k-perfect.

Proof. Let B =JB; be a o-locally finite k-network of X where B; is a locally
finite family of closed subsets of X for each i € N. Fix an non-empty open set
Wof X. Let F; = |J{A € B, : A C W}. Since every locally finite family of

© AGT, UPV, 2023 Appl. Gen. Topol. 24, no. 1 |5



closed sets in X is closure-preserving, F; is a closed subset of X for each ¢ € N.
Let P, = |J F}. Since B is a k-network of X, for any compact set T C W

k<i+1
there is a finite family {B;,, ..., B;.} such that T C | U{B;,, :m=1,....s} CW
and B;, € B;, for each m =1,...,s. Then T'C P, where t = max{iy, ..., i5}.
O
Proposition 3.8. There is a non-normal k-perfect space.
Proof. Consider a non-normal R-space (e.g. Foged’s example in [3]).
O

Let X be a topological space. A family A of compact subsets of X is called
an ideal of compact sets if [JA = X and for any sets A, B € A and compact
subset ¥ C X we get AUB € A and ANF € A, ie. if A covers X and is
closed under taking finite unions and closed subspaces. The most important
cases are the ideal A = F(X) and the ideal A = K(X).

Theorem 3.9. Assume that ®,V € {Q, T}, x € {1, fin}, X has the property
Se(®a,, Ua,), Ay is an ideal of compact sets and A is an Ay U Ag-F,-set.
Then A has the property Sy(Pa,, Pa,).

Proof. We prove the theorem for x = fin, the other proofs being similar.
Assume that X has the property Sfin(®a,,¥a,) and A is an Ay U Ag-F,-
set. Consider a sequence (U; : i € N) of covers A such that U; € 4 (where ® 4

is the ®a, family of covers of A) for each i € N. Let A = |J F; where F; is a

closed set in X for each ¢ € N and for any compact set B C ZAland B e AjUA,
there exists ¢’ € N such that B C F;;. Consider V; = {(X \ F;,)JU : U € U;}
for each 7 € N.

We claim that V; € ®a, for each i € N. Let S € Ay. Then S F; is
a compact subset of A. Since A; is an ideal of compact sets, S F; € A;.
There is U € U; such that S(F; C U. It follows that S C (X \ F;)|JU for
(X\F)UU €V,

Since X has the property S¢in(®Pa,, ¥a,), there is a sequence (B; : i € N)
of finite sets such that for each i, B; C V;, and UieN B; € Up,.

We claim that J;cn{Bi (N Fi 0 Bi (1 Fi C Uy, i € N} € Uy where Wy is the
WA, family of covers of A. Let B be a compact subset of A such that B € Aq
then there exists ¢/ € N such that B C Fj,. Since UiEN B; is a large cover
of X thereis kK € N and V,, € By, C V;, such that £k > ¢ and B C V. But
Vie = (X \ Fx) JUyg for U € Uy. Since k > i/, B C Uy. It follows that A has
the property Sfin(®a,, ¥a,). O

Corollary 3.10. Assume that X is a A1 UAg-perfect space and A1 is an ideal
of compact sets, ®,¥ € {Q, T}, x € {1, fin}. Then for a space X the following
statements are equivalent:

(1) X has the property S«(®Pa,, Pa,);

+ +
(2) For each E € 2%, (2X AT, AT) satisfies S*(<I>§1 ,\Ilg2 ).
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Corollary 3.11. Assume that ®, ¥ € {I',Q}, x € {1, fin}. Then for a per-
fectly normal space X the following statements are equivalent:

(1) X satisfies Sy (®,V);

(2) (2X7 Z+) satisﬁes S*(ID(IMID‘I/);

(3) For each E € 2%, (2X,Z7) satisfies S, (g, V).

Corollary 3.12. Assume that ®,¥ € {T'y,K}, x € {1, fin}. Then for a R-
space X the following statements are equivalent:

(1) X satisfies Sy (P, V);
(2) (2%,F*) satisfies S, (Ds,Dy);
(3) For each E € 2%, (2X,F1) satisfies Si(®p, V).

We can summarize the relationships between considered selective properties
in next theorem.

Theorem 3.13. Assume that X is a A1 U Ag-perfect space and A1 is an ideal
of compact sets, ®,¥ € {Q, T}, x € {1, fin}. Then for a space X the following
statements are equivalent:

(1) X satisfies S« (Pa,, Va,);
(2) (2%, AT, AT) satisfies S,(Dk,D32).
(3) Each open setY C X has the property Si(®a,, Va,);
. Af S AT
(4) For each E € 2%, (2%, AT, AY) satisfies So(®p' , V52 ).
In particular, this theorem is true for k-perfect spaces and, hence, for R-
spaces.
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