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Abstract

Measurements of reflected solar radiation by imaging spectrometers can quantify water in different states (solid, liquid, gas)
thanks to the discriminative absorption shapes. We developed a retrieval method to quantify the amount of water in each of the
three states from spaceborne imaging spectroscopy data, such as those from the German EnMAP mission. The retrieval couples
atmospheric radiative transfer simulations from the MODTRAN5 radiative transfer code to a surface reflectance model based on
the Beer-Lambert law. The model is inverted on a per-pixel basis using a maximum likelihood estimation formalism. Based on a
unique coupling of the canopy reflectance model HySimCaR and the EnMAP end-to-end simulation tool EeteS, we performed a
sensitivity analysis by comparing the retrieved values with the simulation input leading to an R2 of 0.991 for water vapor and 0.965
for liquid water. Furthermore, we applied the algorithm to airborne AVIRIS-C data to demonstrate the ability to map snow/ice
extent as well as to a CHRIS-PROBA dataset for which concurrent field measurements of canopy water content were available.
The comparison between the retrievals and the ground measurements showed an overall R2 of 0.80 for multiple crop types and a
remarkable clustering in the regression analysis indicating a dependency of the retrieved water content from the physical structure
of the vegetation. In addition, the algorithm is able to produce smoother and more physically-plausible water vapor maps than
the ones from the band ratio approaches used for multispectral data, since biases due to background reflectance are reduced. The
demonstrated potential of imaging spectroscopy to provide accurate quantitative measures of water from space will be further
exploited using upcoming spaceborne imaging spectroscopy missions like PRISMA or EnMAP.
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1. Introduction

Imaging spectroscopy or hyperspectral remote sensing of
the Earth’s system is based on spectroscopic measurements of
the solar radiation reflected by atmospheric and surface com-
ponents in contiguous spectral channels (Goetz et al., 1985;
Vane and Goetz, 1988). They cover the visible (VIS), near-
infrared (NIR) and shortwave-infrared (SWIR) part of the so-
lar spectrum featuring a wavelength range from 400 nm to
2500 nm (Goetz et al., 1985). Since land, water and atmosphere
constituents show characteristic spectral signatures, spectro-
scopic measurements enable their identification and quantifica-
tion using physically-based retrievals by modeling atmospheric
and surface absorption features. Based on this technique, imag-
ing spectroscopy can be applied to a wide range of different sci-
entific disciplines in Earth Observation (EO) such as quantifica-
tion of atmospheric greenhouse gases and aerosols, monitoring
vegetation phenology, soil and mineral mapping, as well as re-
trieval of water constituents over inland water bodies, coastal
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areas and open ocean (Schaepman et al., 2009). Imaging spec-
troscopy can therefore substantially contribute to a better under-
standing of Earth’s ecosystems and support studies of climate
change (Thompson et al., 2015).

So far, research in imaging spectroscopy has been mostly
based on airborne spectrometers and simulations of spaceborne
technology, but a number of satellite missions were recently
launched, or are to be launched soon. The German DLR Earth
Sensing Imaging Spectrometer (DESIS) (Mueller et al., 2016)
and the Italian Hyperspectral Precursor of the Application Mis-
sion (PRISMA) (Loizzo et al., 2018) came into operation in
June, 2018 and March, 2019, respectively. The German Envi-
ronmental Mapping and Analysis Program (EnMAP) (Guanter
et al., 2015) is scheduled for launch in 2021 and further mis-
sions like the NASA Surface Biology and Geology (SBG) (Lee
et al., 2015) and the Copernicus Hyperspectral Imaging Mission
(CHIME) (Bach et al., 2018) led by ESA are in the planning
phase.

The remote sensing of the three phases of water is an ideal
example of the potential of imaging spectroscopy for environ-
mental sciences, since it makes it possible to identify and quan-
tify water in different states due to the presence of sufficient nar-
row bands in the NIR (Green et al., 2006). In this connection,
the use of spaceborne imaging spectroscopy measurements pre-
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Figure 1: Overlapping transmittance spectra of the three phases of water. The
line of water vapor is calculated for an absorption of 5 mm precipitable water.
The lines of liquid water and ice are shown for five different absorption path
lengths between 1 mm and 9 mm.

sented in our study enables new possibilities in mapping local
and global trends of water vapor, liquid water and ice. On one
hand, it significantly contributes to climate research (Diedrich
et al., 2013). On the other, it is essential for evaluating the wa-
ter use efficiency of plants and their physiological status and
health (see Clevers et al. (2010); Wocher et al. (2018)). Finally,
it helps to assess the distribution and availability of fresh water
through predicting snow melt rates and processes (Green et al.,
2006).

Green et al. (2006) introduced a method to simultaneously
estimate the path lengths of water vapor, liquid water and
ice from airborne imaging spectroscopy data by applying a
physically-based nonlinear least squares inversion of the MOD-
TRAN Radiative Transfer Model (RTM) (Berk et al., 1989)
linked to a surface reflectance model. The latter incorpo-
rates the Beer-Lambert law, which expresses the radiation ab-
sorption as a function of the path length of pure liquid wa-
ter and ice (Born and Wolf, 1959). While water vapor can
be inferred from the MODTRAN simulations, the surface re-
flectance model enables the retrieval of the other two phases.
The approach is based on the decoupling of the overlapping ab-
sorption lines of water vapor, liquid water and ice (Green et al.,
2006; Thompson et al., 2015) (Figure 1). The lines of liquid
water and ice are shifted towards longer wavelengths. This dis-
placement, in combination with moderate absorption energies
enables a spectroscopic separation of the three phases (Green
et al., 2006). The study of Green et al. (2006) can be seen as
the first assessment to infer the amounts of all three phases of
water in a coupled way. Earlier studies only present combined
vapor and liquid retrievals (Gao and Goetz, 1990; Green et al.,
1991; Gao, 1996). Thompson et al. (2015) modified the method
of Green et al. (2006) by a linear approximation of the inversion
procedure, and additionally present an application on measur-
ing cloud thermodynamic phase (Thompson et al., 2016). Each
of the aforementioned retrieval studies used data from the air-
borne AVIRIS-C instrument (see Green et al. (1998); Vane et al.
(1993)).

In view of the upcoming satellite missions, this work presents
a novel application of the existing coupled retrieval of the three
phases of water by extending the approach to spaceborne imag-

ing spectroscopy measurements. We evaluate the performance
of the algorithm through a sensitivity analysis based on simu-
lated EnMAP data, which is new compared with previous appli-
cations, and show retrieval uncertainties, and discuss potential
issues. Additionally, we test the algorithm on AVIRIS-C data
to demonstrate the ability to map snow and ice extents, and
use CHRIS-PROBA data as a proxy for future satellite mea-
surements to illustrate the accuracy improvements using the
three phases approach compared with band ratio water vapor
retrievals. Finally, we focus on canopy water content (CWC) as
a sort of liquid water because of its especial relevance to vege-
tation studies, and show the potential of the algorithm to quan-
titatively map CWC from space. This is done by comparing the
retrievals with ground-based measurements and by discussing
the interpretation of the derived top-of-canopy (TOC) values as
a function of canopy structural parameters.

2. Methods

The coupled retrieval of the three phases of water is based
on the inversion of a forward model, which models the top-of-
atmosphere (TOA) radiance spectra. Applying this technique,
the values of columnar water vapor (CWV), liquid water and ice
can be inferred by minimizing the difference between modeled
and measured spectra. The minimization uses a predefined cost
function in an iterative optimization procedure.

2.1. Forward model
Many algorithms in the field of remote sensing aim to in-

fer specified quantities from a set of measurements, generally
TOA radiance, by the inversion of a well-parameterized for-
ward model. In a general form, the TOA radiance y is modeled
by:

y = F(x,b) + ε, (1)

where F is the forward model, in this work composed of an at-
mospheric RTM and a surface reflectance model; x is the state
vector, here containing CWV, liquid water and ice path lengths
as well as slope and offset of the linear surface reflectance con-
tinuum of the chosen water absorption feature; b is the model
parameter vector containing known parameters required by the
forward model; and ε is an error vector containing different un-
certainty components. In our case, the forward model input
on one hand requires the observation geometry, i.e., the view-
ing zenith angle (VZA), the solar zenith angle (SZA), the rel-
ative azimuth angle (RAA) and the sensor altitude, and on the
other hand, two physical parameters, namely the surface ele-
vation (HSF) and aerosol optical thickness (AOT). ε consists of
measurement errors caused by instrument calibration and noise,
forward model errors, and errors in the state vector variables as
well as the known model parameters.

2.1.1. Atmospheric model
For the atmospheric radiative transfer simulations we use the

MODTRAN code (Berk et al., 1989, 2003; Bernstein et al.,
2007). It is a 1D scalar RTM to calculate transmittance, radi-
ance and fluxes for the ultraviolet (UV), VIS, NIR, SWIR and
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Table 1: Gridding of LUT parameters for MODTRAN radiative transfer simu-
lations (according to Guanter et al. (2009)).

1 2 3 4 5 6 7
VZA (◦) 0 10 20 30 40 - -
SZA (◦) 0 10 20 35 50 70 -
RAA (◦) 0 25 50 85 120 155 180

HSF (km) 0 0.7 2.5 8 - - -
AOT 0.05 0.12 0.2 0.3 0.4 0.8 -

CWV (gcm−2) 0 1 1.5 2 2.7 3.5 5

thermal infrared (TIR) spectrum covering a wavelength range
of 0.2 - 104 µm. We simulated wavelengths from 400 nm to
2500 nm to match the spectral coverage of EnMAP, AVIRIS-C
and CHRIS-PROBA and executed MODTRAN in band model
mode with a spectral sampling interval (SSI) of 1.0 cm−1. The
molecular absorption lines were obtained from the HITRAN
database (Rothman et al., 2009), and multiple scattering was
calculated using the DISORT N-stream (Stamnes et al., 1988).

Assuming clear sky and a plane-parallel atmosphere as well
as a Lambertian surface, the TOA radiance LTOA can be mod-
eled by a simplified solution of the radiative transfer equation
following the approach of Chandrasekhar (1960):

LTOA = L0 +
1
π
∗
ρs(Edirµsun + Edi f )T ↑

1 − S ρs
, (2)

where L0 is the atmospheric path radiance; ρs is the surface
reflectance; Edir and Edi f are the direct and diffuse solar irra-
diance, respectively, arriving at the surface; µsun is the cosine
of the solar zenith angle; T ↑ is the total upward atmospheric
transmittance; and S is the spherical albedo of the atmosphere.
All components except ρs are functions of the state vector x
and the model parameter vector b and are derived from the
MODTRAN output by applying specific conversions follow-
ing Guanter et al. (2009). To decrease the computational burden
and to increase the processing speed, the atmospheric compo-
nents were previously calculated for different atmospheric cases
and stored in a multidimensional Look-Up-Table (LUT) (Table
1). The simulations sum up to 35,380 cases and are assumed to
cover most of the acquisition conditions of the data used in this
study.

2.1.2. Surface reflectance model
Since water vapor is the only water phase appearing directly

within the MODTRAN code, the atmospheric RTM has to be
linked with a well-parameterized surface reflectance model to
account for the path lengths of liquid water and ice. Whereas
vapor is most dominant in the atmosphere, liquid and solid wa-
ter can be classified as surface parameters. We use the method
of Green et al. (2006) and model the surface reflectance as a
linear change in reflectance with wavelength attenuated by the
spectrally dependent absorption for liquid water and ice based
on the Beer-Lambert law (Born and Wolf, 1959). Consequen-
tially, the wavelength dependent surface reflectance ρs,λ is ex-
pressed by:

ρs,λ = (a + bλ)e(−dwαw,λ−diαi,λ), (3)

where a and b are offset and slope of the linear reflectance con-
tinuum; αw and αi are the wavelength dependent absorption co-
efficients of liquid water and ice, respectively; and dw and di are
the liquid water and ice path lengths, respectively, expressed in
the same unit as wavelength. αw and αi are calculated by using
the imaginary part of the complex index of refraction k, which
is also wavelength dependent (Petty, 2004):

αλ =
4πkλ
λ

. (4)

To obtain k, we use the table of Kedenburg et al. (2012) for
liquid water and the values from Warren (1984) for ice.

2.2. Inverse method
During the inversion of the forward model F, water vapor,

liquid water, and ice path lengths are iteratively adjusted to
match modeled and measured spectra within the water absorp-
tion feature around 1140 nm. We chose the 1140 nm win-
dow since EnMAP features two overlapping detectors around
the 940 nm water absorption band so that a complete coverage
of the window using only one detector is not possible. Fur-
thermore, both water bands can be used in a uniform manner
to retrieve the amounts of the three phases (Thompson et al.,
2015). The matching of the spectra is evaluated by a prede-
fined cost function and the needed atmospheric parameters are
obtained by a multidimensional linear interpolation within the
LUT. Since we do not revert to prior or background knowledge
about the uncertainties of the retrieval quantities, we apply a
maximum likelihood estimation instead of optimal estimation
to the iteration procedure with a focus on retrieval accuracy and
processing speed. The mathematical expressions presented in
the following section can be found in Rodgers (2000) as well as
in applications by Diedrich et al. (2013) and Diedrich (2016).

2.2.1. Maximum likelihood estimation
The maximum likelihood estimation enables the possibil-

ity to incorporate the error vector ε from Eq. 1 in terms of a
measurement error covariance matrix Se and to calculate the
retrieval uncertainty for each state vector parameter as a by-
product. The method is based on Bayes’ theorem about prob-
ability density and takes Gaussian distribution of the errors as
a basis. We invert the forward model by iteratively minimizing
the cost function f (x), which is commonly used for maximum
likelihood and optimal estimation procedures:

f (x) = (x − xa)T S−1
a (x − xa)

+(y − F(x))T S−1
e (y − F(x)),

(5)

where xa is the a priori state vector; and Sa is its error covari-
ance matrix. Here, the difference between modeled spectra F(x)
and measured spectra y is evaluated by taking into account the
residuals between state vector and a priori state vector. Both
quantities are weighted by their uncertainties and the state vec-
tor is changed at each iteration step to find the solution with the
highest probability based on a given measurement and a priori
information about the state. Since we apply the maximum like-
lihood estimation without considering information about the
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uncertainties of the entries of xa, we fill the matrix Sa with suf-
ficient high values (see Section 2.2.2). For convergence, we use
the criterion:

(xi − xi+1)T S−1
x (xi − xi+1) < εxn, (6)

where Sx is the a posteriori or retrieval error covariance matrix;
εx is a threshold in fraction of variance (here: εx = 0.01); and n
is the number of dimensions of the state vector. The retrieval er-
ror covariance matrix gives a direct measure of the uncertainty
of each parameter and is calculated by propagating the mea-
surement uncertainty into the state vector space:

Sx = (S−1
a + KT

i S−1
e Ki)−1, (7)

where K is the Jacobian of the forward model and expresses the
change in modeled TOA radiance in the j-th instrument channel
for a small change in the k-th parameter of the solution state
vector x at iteration step i:

K j,k = {
δy j

δxk
}. (8)

Se is decomposed into a matrix Sy describing the uncertainties
due to physical instrument noise and a matrix Sb accounting
for errors caused by unknown forward model parameters. Sy is
calculated by:

Sy
j,k = {c j,kσy, jσy,k}, (9)

where σy, j is the measurement error in units of standard devi-
ation for the j-th band of the imaging spectrometer; and c j,k is
the correlation between the errors in the j-th and k-th band. For
standard imaging spectrometers it can be assumed that c j,k = 0.
Consequentially, Se has only diagonal elements:

(δy
j, j)

2 = (
L j

S NR j
)2 + ∆2

j , (10)

where L j is the radiance measured in band j; S NR j is the signal-
to-noise ratio (y/σy); and ∆ j is the uncertainty of the calibration
of band j.

We treat the uncertainties due to unknown forward model pa-
rameters as independent error sources by adding their contribu-
tions to Sy, which is equivalent to standard error propagation:

Se = Sy + KbSbKT
b , (11)

where Kb is the Jacobian of the model unknowns, which ex-
presses the change in modeled TOA radiance in the j-th instru-
ment channel for a small change in the k-th unknown model
parameter. It is expressed by:

Kb
j,k = {

δy j

δbk
}. (12)

Sb comprises uncertainties due to unknown, not retrieved pa-
rameters of the forward model. Following Thompson et al.
(2018), they can be attributed to the surface, the instrument and
the atmosphere. Their classification accounts for sky view ef-
fects, intrinsic error in absorption line intensities of water va-
por, systematic calibration and radiative transfer uncertainty,

Table 2: Uncertainties due to unknown, not retrieved forward model parame-
ters.

Source Elements Value
Sky view factor 1 10 %

Water vapor absorption intensity 1 1 %
Liquid water absorption intensity 1 2 %
Solid water absorption intensity 1 2 %

and non-systematic radiometric uncertainty. We adopt their val-
ues for sky view effects and the water vapor absorption intensity
and cover errors in liquid and solid water absorption line inten-
sity by incorporating uncertainties of the imaginary part of the
complex index of refraction k presented by Kou et al. (1993).
Since our sensitivity analysis is based on simulated data, we
resign systematic and non-systematic errors. Table 2 gives an
overview of the different error sources and their associated un-
certainty values.

2.2.2. A priori knowledge and first guess
We assume no mentionable correlation between the different

water phases so that a priori knowledge about their uncertainties
is not taken into account. Hence, the diagonal entries of the
a priori covariance matrix S a are set to relatively high values.
This leads to an infinitesimally small weight of the first part
of Eq. 5, and consequentially, the cost function only evaluates
the measurement uncertainty and errors in the forward model
parameters.

The inversion method generally requires a first guess solution
for the state vector parameters. We use the a priori state vector
xa as first guess and start each iteration with the result from a
band ratio retrieval for CWV (after Guanter et al. (2008a)). For
the a priori state of liquid water, we calculate the normalized
difference water index (NDWI) (Gao, 1996) and use its rela-
tionship to the liquid water path length presented by Gao (1996)
to come up with a scaled value. A similar approach is taken into
account for the a priori value of the ice path length. Here, we
calculate the normalized difference snow index (NDSI) (Hall
et al., 1995) and apply the thresholds proposed by the MODIS
snow products user guide to start the iteration either with 0.1 or
0 (Riggs and Hall, 2015). Additionally, the offset a and slope b
from Eq. 3 have to be optimized and are initialized by approx-
imating the surface reflectance. For this purpose, we use the
TOA reflectance ρTOA at both absorption feature shoulders (λ1
and λ2):

ρTOA,λ =
π ∗ LTOA,λ

S 0,λ ∗ µsun
, (13)

where S 0,λ is the wavelength dependent exoatmospheric solar
irradiance. Now, a and b can be estimated by:

a = ρTOA,λ2 −
(ρTOA,λ1 − ρTOA,λ2 ) ∗ λ2

λ1 − λ2
, (14)

b =
(ρTOA,λ1 − ρTOA,λ2 )

λ1 − λ2
. (15)
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2.2.3. Retrieval uncertainty
The retrieval error covariance matrix Sx is obtained during

the iteration procedure and provides information about the re-
trieval uncertainty and the error correlation between the re-
trieved state vector parameters. According to Rodgers (2000),
the square root of the diagonal entries of Sx gives the retrieval
error in the unit of the respective state vector parameter. It is
equivalent to the standard deviation of the retrieved quantity.
To enable an interpretation of the error correlation, we apply a
normalization or rescaling leading to an error correlation matrix∑

(i, j) (Govaerts et al., 2010):∑
(i, j) =

Sx(i, j)√
Sx(i, i) ∗ Sx( j, j)

. (16)

The equation for
∑

(i, j) results from the definition of the er-
ror covariance. If

∑
(i, j) → +1, the uncertainties of the state

vector parameters are correlated, meaning an overestimation or
underestimation of i leads to the same for j. If

∑
(i, j) → −1,

the uncertainties are anticorrelated, that is, an overestimation or
underestimation of i leads to the opposite for j. If

∑
(i, j)→ 0,

an error in the retrieval of i does not effect the retrieval of j.
The reliability of this approach including some examples can
be found in Wagner et al. (2010).

3. Materials

We use both simulated and measured data from imaging
spectrometers for evaluating the performance of the retrieval
algorithm. First, we conduct a sensitivity analysis on simulated
EnMAP data since the instrument is not launched yet. The
workflow of the simulation is described in the following Sec-
tion 3.1. Subsequent, Section 3.2 shortly presents the charac-
teristics and chosen datasets of both the airborne AVIRIS-C and
the spaceborne CHRIS-PROBA sensors, which we additionally
use to validate the retrieval.

3.1. Simulation of EnMAP spectra
For the sensitivity analysis, we used a unique coupling of

the leaf reflectance model PROSPECT (Jacquemoud and Baret,
1990), the 3D canopy reflectance model Hyperspectral Simula-
tion of Canopy Reflectance system (HySimCaR) (Kuester et al.,
2014) and the sensor model EnMAP end-to-end Simulation tool
(EeteS) (Segl et al., 2012) to simulate EnMAP-like TOA radi-
ance spectra of 3D cereal canopies with known CWV and leaf
water content (LWC) (Figure 2). The main focus is to assess the
retrieval of CWC from vegetated agricultural surfaces. There-
fore, we scaled up LWC to canopy level by multiplying with
the leaf area index (LAI) (Clevers et al., 2010), which was cal-
culated during the HySimCaR simulations.

EnMAP is a push-broom imaging spectrometer, which is
scheduled for launch in 2021 and scientifically led by the
GFZ German Research Centre for Geosciences (Guanter et al.,
2015). It is a high performance scientific mission leading to
Level 2A products including an open data policy. EnMAP will
be in sun-synchronous orbit carrying two cameras: a VIS/NIR
camera covering 420-1000 nm with a mean SSI of 6.5 nm and

Table 3: Parameter values used for PROSPECT simulations with all possible
permutations resulting in 360 simulated reflectance signatures.

Cab Car Cbrown Cw Cm N
[µg/cm2] [µg/cm2] [0-1] [cm] [m2/2] [0-1]

20 5 0.0 0.006 0.002 1.0
30 15 0.5 0.012 0.008
40 25 1.0 0.018
50 0.024

0.030

a SWIR camera covering 900-2450 nm with a mean SSI of
10 nm. The instrument has a swath width of 30 km and a spa-
tial sampling distance (SSD) of 30 m. The mission lifetime is
scheduled for 5 years.

3.1.1. Modeling at leaf level - PROSPECT simulations
PROSPECT is a leaf RTM, which simulates reflectance as a

function of leaf bio-physical and -chemical parameters (Jacque-
moud and Baret, 1990). It is coupled to canopy RTM’s such
as SAIL, like in PROSAIL, which also includes canopy struc-
tural elements (Jacquemoud et al., 2009), or SCOPE, which is
a variation of PROSAIL including photosynthesis (van der Tol
et al., 2009). Here, we used PROSPECT to generate leaf re-
flectance and transmittance spectral signatures with varying leaf
water content (Cw), chlorophyll content (Cab), carotenoid con-
tent (Car), brown pigments (Cbrown), dry matter content (Cm)
and leaf mesophyll structure (N) (Table 3). The parameter val-
ues were varied according to experiences from several years
of in-situ measurements and literature values like from Jacque-
moud and Baret (1992) or Xiao et al. (2014).

3.1.2. Modeling at canopy level - HySimCaR simulations
HySimCaR has been developed in the context of the EnMAP

mission. This spectral, spatial and temporal simulation system
consists of detailed virtual 3D cereal canopies for different phe-
nological stages, whose geometries are linked to corresponding
spectral information. The system enables the simulation of re-
alistic bidirectional reflectance spectra on the basis of virtual
3D scenarios by incorporating any possible viewing position
with ray tracing techniques. The sampling of the virtual 3D
canopies is performed by the aDvanced Radiometric rAy Tracer
(DRAT), an efficient MCRT (Monte Carlo Ray Tracing) soft-
ware that was developed by Lewis (1999). DRAT calculates the
canopy reflectance based on 3D descriptions with linked spec-
tral properties, predefined camera imaging properties and illu-
mination conditions using reverse ray tracing. The reflectance
results conform to case 1 (bidirectional) of Nicodemus et al.
(1977) using a planar camera model with orthographic meth-
ods and a directional illumination source. Since the third phase
of RAMI (RAdiation transfer Model Intercomparison, RAMI-
3 (Widlowski et al., 2007)) the DRAT model belongs to a series
of credible 3D MCRT models. HySimCaR has been validated
with respect to structural and spectral accuracy using three ce-
real types, including wheat (Triticum aestivum), rye (Secale ce-
reale) and barley (Hordeum vulgare), and 13 different pheno-
logical stages between leaf development and senescence (after
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Figure 2: Structure chart of the simulation process to gain EnMAP-like vegetation canopy TOA radiance data.

the phenological scale system of Meier (1997)). A detailed de-
scription of HySimCaR, including the entire virtual plant and
canopy build up, the virtual sampling process and its validation
can be found in Kuester (2011); Kuester et al. (2014), and Spen-
gler (2014). In addition, the model has already been used for
several applications found in Kuester et al. (2017); Kuester and
Spengler (2018), and Spengler et al. (2011, 2013). Based on
the model, the influence of plant and canopy architecture on
cereal canopy reflectance, the anisotropic behaviour of cereal
canopy reflectance and its inter-annual variations were investi-
gated by Kuester and Spengler (2018). Additionally, the influ-
ence of vegetation cover on the prediction of soil spectral fea-
tures was investigated and quantified by Kuester et al. (2017).

We modeled 72 structurally different virtual canopies vary-
ing in canopy phenology and architecture (see Table 4 for re-
spective HySimCaR parameter values). The values of the vir-
tual canopies were chosen to balance between natural variety,
management and computational costs. Phenology, the number
of plants per meter of seeding row, the number of tillers per
plant and the distance between the rows are parameters deter-
mining canopy density and volume that influences the shape
of the reflectance signal mainly due to leaf pigment absorption
and volume scattering. The relative orientation of the seeding
rows against the sun azimuth angle (SAA) influences the bright-
ness of the whole reflectance signal due to different sunlit and
shading effects. The spectral properties of the soil background
were kept constant, as the focus of this study is on the veg-

Table 4: Parameter values used for HySimCaR simulations resulting in 72 vir-
tual cereal canopy scenarios. (Meier, 1997)

Row orientation Plants per Tillers per Row distance Phenology
against SAA meter row plant (Meier, 1997)
0◦ 13 5 - 3 dev. 13 cm - 17 cm 24-25 late tillering
30◦ 15 22 cm - 26 cm 37-39 stem elongation
60◦ 17 41-43 late stem elongation
90◦

etation parameters. As a consequence, the retrieval of liquid
water content from vegetated surfaces is less violated and is as-
sumed to report only the amounts included in the canopy. This
enables a higher retrieval accuracy and a direct interpretation
of the results with respect to plant conditions. Otherwise, the
algorithm would likely report additional liquid water amounts
in terms of soil moisture or water included in minerals. Also,
overlapping absorption features of minerals could impact the
liquid water retrieval. Only the 3D structure of the soil back-
ground was included to consider the typical sunlit and shading
effects. LAI and fCover were calculated directly from the 3D
geometry of the virtual canopies and range between 0.32 and
3.17 for LAI and between 0.18 and 0.87 for fCover. The values
of both parameters are almost equally distributed. All virtual
canopies were coupled with PROSPECT leaf reflectance and
transmittance. This sums up to 25,920 different leaf-canopy
combinations that were sampled virtually. All resulting canopy
reflectance spectra contain 467 continuous spectral bands (4 nm
SSI) between 400 nm and 2448 nm with the exception of the
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ranges of atmospheric absorption ([1352 nm, 1416 nm] and
[1824 nm, 1936 nm]).

3.1.3. Modeling at sensor acquisition level - EeteS simulations
Based on HySimCaR model outputs, EnMAP TOA radiance

spectra were simulated using EeteS (Segl et al., 2012). This
tool simulates the entire image data acquisition, calibration
and processing chain from spatially and spectrally oversam-
pled data to intermediate Level-1A (systematically-corrected)
raw data and to the final EnMAP products, such as Level-
1B (radiometrically-corrected, spectrally- and geometrically-
characterized radiance), Level-1C (orthorectified Level-1B
product) and Level-2A data. Data acquisition consists of a
sequential processing chain represented by four independent
modules: atmospheric, spatial, spectral, and radiometric. These
modules allow flexible customization of a wide range of simu-
lation input parameters. They are coupled with a backward sim-
ulation branch consisting of calibration modules, such as non-
linearity, dark current, and absolute radiometric calibration, and
a series of preprocessing modules such as radiometric calibra-
tion, co-registration, orthorectification, and atmospheric correc-
tion. Since the modeled data base only consists of a collection
of reflectance spectra, the simulation of the two spaceborne sen-
sors is only performed in terms of spectral and radiometric char-
acteristics. No spatial simulation was performed with EeteS as-
suming that the pixel size already is 30 m. The atmospheric
simulation was performed with settings for the end of May us-
ing identical parameters for all 25,920 canopy reflectance spec-
tra with respect to viewing geometry and physical parameters
(AOT: 0.2, rural aerosol model, HSF: 0 km). Only CWV was
varied between 1.9 and 2.2 g

cm2 . To calculate the measurement
error covariance matrix S e within the retrieval algorithm, we
obtained the EnMAP SNR from Guanter et al. (2015). EeteS
provides the option to add instrument noise to the simulated
TOA radiance (Figure 2). But since we assume no significant
influences of noise effects on the three phases retrieval, we ab-
stained from including them (see Section 4.1.3).

3.2. Imaging spectroscopy measurements
To extend the analysis on real data, we chose two additional

datasets of imaging spectroscopy measurements for assessing
the retrieval results. The first one is an airborne AVIRIS-C im-
age acquired over a mountainous area in the Sierra Nevada, Cal-
ifornia, on 02/24/2015. The particular aim is to show the pos-
sibility of the algorithm to map snow/ice extent. We generated
two subsets of the acquisition: one containing vegetated agri-
cultural areas and rock surfaces in equal parts covering 35.70◦N
- 35.76◦N and 118.07◦W - 118.13◦W, and another consisting of
partly snow- and forest-covered mountain ranges reaching from
35.57◦N to 35.65◦N and from 118.04◦W to 118.13◦W. The first
subset shows a surface elevation of 400 m to 600 m for the veg-
etated areas and up to 1700 m for the mountainous parts. The
second, more elevated region reaches up to 2300 m HSF for the
highest snow-covered mountains.

AVIRIS-C has a similar wavelength range and SSI to the En-
MAP sensor but varying ground sampling distance due to dif-
ferent flying altitudes (Green et al., 1998). It is installed on the

NASA ER-2 research aircraft so that AVIRIS-C is able to ac-
quire data from a height of up to 20 km, which results in an
SSD of 20 m. The coefficients to calculate the measurement
uncertainty were taken from the Python ISOFIT repository and
the AVIRIS-C SNR needed for the retrieval algorithm was cal-
culated according to Thompson et al. (2018).

To demonstrate the applicability to satellite images we also
used a spaceborne CHRIS-PROBA dataset from the ESA
SPARC’03 campaign in Barrax, Spain, acquired on 07/14/2003.
The image covers a mixture of agricultural areas and open soil
so that it is well suited for the CWC retrieval analysis. The ac-
quisition reaches from 38.97◦N to 39.13◦N and from 2.00◦W to
2.19◦W. There are no remarkable differences in surface eleva-
tion throughout the image as the Barrax region is part of a high
plateau in south-east Spain.

CHRIS-PROBA is a push-broom imaging spectrometer fea-
turing a swath width of 13.5 km and an SSD of 36 m in the
hyperspectral mode. It has a spectral range covering 410 nm
to 1050 nm and an SSI of 1.25 nm (at 400 nm) and 11 nm (at
1050 nm) (Barducci et al., 2005). Barducci et al. (2005) also
provided the SNR required for the retrieval algorithm. Since
CHRIS-PROBA is missing channels beyond 1050 nm, we used
the 940 nm water absorption feature for the retrieval.

4. Results and discussion

4.1. Retrieval from simulated EnMAP data - sensitivity analy-
sis

4.1.1. Water vapor
We first compare the results from the maximum likelihood

estimation with the simulation input described in Section 3.1.
We achieve a very good matching with the input values show-
ing an R2 of 0.99 and an RMSE of 0.007 gcm−2 with an over-
all very slight underestimation of the CWV values (Figure 3a).
Figure 3b illustrates the absolute CWV retrieval error as a func-
tion of simulated CWC from the three phases retrieval. For
low CWC values of up to 0.02 gcm−2, we find a negative er-
ror of around -0.01 gcm−2 for the CWV retrieval. As it will
be presented in Section 4.1.2, the retrieval clearly overesti-
mates the CWC, especially for low vegetation canopy heights
and small LAI. This causes the very slight underestimation of
CWV for low CWC since the algorithm seems to attribute a
very small fraction of CWV to nonpresent CWC. However, Fig-
ure 3b shows a clear linear trend of the CWV retrieval error
from underestimation for low CWC values to an overestima-
tion for higher CWC. This accords with the experience from
band ratio CWV retrievals, which tend to even more overes-
timate CWV under the presence of high liquid water absorp-
tion (Thompson et al., 2015). To confirm this assumption, we
additionally show the results from the a priori band ratio CWV
retrieval (Figure 3c and Figure 3d). The values clearly more
scatter around the 1:1-line with a tendency to overestimation
and the absolute CWV retrieval errors are immensely higher.
The retrieval is slightly biased due to the a priori state which is
based on the overestimated CWV values. As a consequence, a
very small overestimation of CWV for higher simulated CWC
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Figure 3: Comparison of derived CWV with the input of the HySimCaR + EeteS simulations. a) Results from the three phases retrieval. b) Absolute CWV retrieval
error as a function of simulated CWC values for the three phases retrieval. c) Results from the band ratio retrieval. d) Absolute CWV retrieval error as a function of
simulated CWC values for the band ratio retrieval.

still occurs (Figure 3b). However, our results accord with the
outcomes of previous studies that estimating CWV and liquid
water amounts in a simultaneous way improves the accuracy
of atmospheric correction procedures since biases due to back-
ground reflectance are reduced (Gao and Goetz, 1995; Green
et al., 1991; Thompson et al., 2015).

4.1.2. Canopy water content
In the same way as for CWV, we compare retrieved CWC

with the simulation input. Again, a very good correlation be-
tween retrieved and simulated values can be observed depicting
an R2 of 0.96 (Figure 4a). Though, the result shows a constant
mean overestimation with a slope of approximately 3.37 and
virtually no offset. This induces the relatively high RMSE of
0.07 gcm−2. Nearly the same behavior was found by Wocher
et al. (2018), whose CWC retrieval from TOC spectra is like-
wise based on the Beer-Lambert law too, but with a constant
overestimation of around 3.52. They calibrated their retrieval
model with simulated PROSPECT spectra and tested the ap-
proach on ASD measured in situ data and HyMAP images. This
overestimation is due to volume scattering processes within the
vegetation canopies, which the Beer-Lambert law cannot take
into account (Zhang et al., 2011). Although Wocher et al.
(2018) received accurate results, it has to be mentioned that
both, their study and our simulations of EnMAP data, are based
on spectra of more or less uniform canopies of low-lying ce-
real crops between tillering and late stem elongation and there-
fore, higher uncertainties might be assumed by applying such

model calibration factors to more complex canopies and/or dif-
ferent observing conditions. Especially different observation
geometries, such as those planned for EnMAP (off-nadir obser-
vations up to ±30◦ (Guanter et al., 2015)) lead to an increase
of the uncertainties. Asner and Martin (2008) showed that LAI
and viewing geometry most negatively impact the accuracy of
the spectroscopic retrieval of especially CWC. The difficulty to
transfer between different observation geometries largely stems
from changing fractions of sunlit or shaded vegetation (opaque
or translucent) or soil. Depending on the viewing angle, the
sensor observes a different composition of the reflecting sur-
faces due to the path of radiation through the vegetation canopy.
For this, more investigations would have to be made in order to
be able to evaluate the transferability of the method to differ-
ent observation geometries. Kuester and Spengler (2018) have
analyzed the spectral influences of different canopy architec-
ture and observation geometries on cereal canopy reflectance
and found that the larger the fraction of the radiation reflected
by the vegetation canopy, the stronger is the influence of the
canopy architecture on the reflectance signal. A finding that
can very likely also be assumed for other vegetation canopies
such as pastures or shrublands. A detailed discussion of the in-
fluence of crop canopy architecture on the CWC three phases
retrieval of arable lands and a test investigating possible modi-
fications of the Beer-Lambert law are provided in Section 4.4.

However, Figure 4b gives an impression of the advantages
of imaging spectroscopy with respect to multispectral instru-
ments. The correlation between retrieved CWC and NDWI is
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Figure 4: Comparison of derived CWC from the three phases retrieval with a) the input of the HySimCaR + EeteS simulations and b) the previously calculated
NDWI, which has been used to build the a priori state of liquid water.

clearly lower with an R2 of 0.85 showing a stronger scattering
around the regression line. Consequentially, we assume that the
three phases approach can better capture changes in CWC than
multispectral indices are able to and thus, offers a high potential
for accurate vegetation analysis.

4.1.3. Surface reflectance
We additionally used the CWV and CWC retrieval results to

calculate atmospherically corrected surface reflectance spectra.
This enables a quantitative comparison with the input canopy
reflectance spectra simulated by HySimCaR. We evaluate the
wavelength range around the used water absorption feature at
1140 nm (Figure 5). Very good results can be observed for both
the modeled TOA radiance and the surface reflectance. The
residual errors range within 0.5 % for low CWC and within
1 % for high CWC, which makes the results similar to those
obtained by Thompson et al. (2015).

We achieved the results based on noise free simulated TOA
radiance spectra. Adding instrument noise to the simulations
leads only to a marginal decrease of retrieval accuracy. Fig-
ure 6 shows the norm of the mean residual errors of all sim-
ulated spectra for both the modeled TOA radiance and the re-
trieved surface reflectance. Again, we evaluate the absorption
feature around 1140 nm separated in results for spectra contain-
ing either low or high CWC. The dashed lines represent simu-
lations with additional instrument noise while the solid lines
illustrate the simulations without noise used for our sensitiv-
ity analysis. Both modeled TOA radiance and retrieved sur-
face reflectance show a similar behavior when noise is added to
the simulations. For low CWC the residual errors increase by
a factor of 2 to 4, whereas for high CWC the errors are only
marginally higher. Especially the surface reflectance retrieval
seems to be nearly unaffected by instrument noise under the
presence of high CWC. Furthermore, the retrieval accuracy of
CWV and CWC only slightly decreases when noise is added to
the simulations (Table 5). The R2 still shows values of 0.98 for
CWV and 0.93 for CWC, respectively, indicating a very good
correlation. Although the RMSE for CWV rises of about 23 %,
the absolute retrieval error still is below 0.5 % of the mean re-
trieved CWV. The RMSE for CWC even rises about only 2 %

Table 5: Regression coefficients and correlation metrics for retrieved CWV and
CWC for simulations including instrument noise and for noise free simulations
used for the sensitivity analysis.

Slope Offset R2 RMSE
CWV 0.9969 0.0053 0.9919 0.0077

CWV (noise) 0.9828 0.0348 0.9869 0.0095
CWC 3.3746 0.0082 0.9650 0.0767

CWC (noise) 3.4583 0.0044 0.9328 0.0784

under the influence of instrument noise. These results justify
our previous assumption not to add instrument noise to the sim-
ulations.

4.1.4. Correlation errors
Based on Eq. 16 we calculated the correlation error matrix

for the synthetic EnMAP dataset. Figure 7 shows the correla-
tion of the retrieval errors between the state vector parameters,
which are all optimized during the iteration procedure. Errors
in the estimation of slope and offset of the linear reflectance
continuum clearly influence the CWC retrieval featuring coef-
ficients of 0.93 and -0.92, respectively. Otherwise, the CWV
retrieval seems to be nearly uncorrelated with the CWC deriva-
tion. This justifies the use of the maximum likelihood approach
instead of the optimal estimation method at least for the CWV
and CWC retrieval. However, the correlation coefficients for
offset and slope indicate that a priori information about both
quantities is needed to increase the accuracy of the retrieval. In
general, if a priori uncertainties are known and free of biases,
adding a priori knowledge, that is, applying optimal estimation,
can significantly improve the retrieval results (Rodgers, 2000).

4.2. Retrieval from AVIRIS-C data
Figure 8b-c shows the retrieved CWV and CWC maps for

the AVIRIS-C Sierra Nevada vegetation subset. As previously
shown in Green et al. (2006), the distribution of the CWV val-
ues obviously matches the texture of the surface elevation in
an anticorrelated way and CWC is clearly higher for vegetated
areas compared with rock surfaces (also see Thompson et al.
(2015)). The derived CWV ranges from 0.78 gcm−2 and less
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Figure 5: Results for the TOA radiance spectral fit and the surface reflectance retrieval from simulated EnMAP data for the water absorption feature at 1140 nm.
Left panel: simulated and fitted TOA radiance as well as simulated and retrieved surface reflectance. Right panel: relative residual errors for both quantities. Upper
panel: low CWC amount. Lower panel: high CWC amount.
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Figure 7: State vector correlation error matrix for the three phases retrieval from
the simulated EnMAP data.

for the highest elevations of up to 1700 m and 0.90 gcm−2 and
more for lower elevated areas of around 500 m. This is plau-
sible when comparing with AERONET data. The nearest sta-
tion at a distance of approx. 250 km in Fresno, CA (36.8◦N,
119.8◦W, 100 m surface elevation) shows a mean CWV of
0.91 gcm−2 and a maximum value of 0.98 gcm−2 for Febru-
ary 24, 2015 (AERONET, 2019). The retrieved CWC of 0-
0.2 gcm−2 is also meaningful when comparing to the results
from the sensitivity analysis (Section 4.1.2).

We additionally produced uncertainty maps from the a pos-
teriori covariance matrix showing the retrieval errors for CWV
and CWC (Figure 8d-e). Overall, CWV shows lower errors than
CWC due to less variance within the retrieved values, which
was also shown by the sensitivity analysis on simulated data.
Furthermore, the type of surface has not that much influence on
the amount of vapor in the atmosphere. This influence can be
seen in the CWC uncertainty map yielding the highest retrieval
errors over dark surfaces, e.g., the shady sides of the mountains,
since the CWC estimation depends on the signal strength of the
surface reflection. Also, a general issue of RTMs is that they
are not able to realistically simulate shaded areas.

For a continuative evaluation, we compared the retrieved
CWC with the NDWI, which has been previously calculated
to build the a priori state of liquid water (see Section 2.2.2)
(Figure 9). We achieve an R2 of 0.71, which indicates a good
correlation between derived CWC and NDWI and confirms the
plausibility of the three phases retrieval result.

Although the solid water phase was not considered for the
sensitivity analysis, we included an appropriate dataset to apply
the algorithm on snow-covered surfaces. Figure 10b-d shows
the retrieved maps for the three water phases for the AVIRIS-C
snow/ice subset. To improve the interpretation of spatial trends
of the three phases, we produced a combined RGB map (Fig-
ure 10e). CWV, CWC and ice are displayed in red, green,
and blue, respectively. Consequentially, turquoise colors de-
pict melting snow since both ice and liquid water are present.

Again, the CWV values anticorrelate with surface elevation
and the value range of CWV (0.72-0.88 gcm−2) likewise fits
well to the AERONET observations at Fresno mentioned be-
fore (AERONET, 2019). The derived CWC of up to 0.4 gcm−2

increases for surfaces covered by wet snow and accords with
typical value ranges for liquid water observed by Green et al.
(2006). The distribution of snow and ice-covered areas cor-
responds well with the false-color image and the results with
many pixels showing around 0.5 gcm−2 or enormously more
are in a good compliance with typical values for dry and wet
snow presented by Green et al. (2006).

We also compare the derived ice amounts with the NDSI,
which results in a very good correlation with an R2 of 0.94
(Figure 11). The fitted polynomial regression indicates that
the three phases retrieval is able to better distinguish between
medium and high ice amounts compared to the NDSI, which
becomes saturated at a value of around 0.9.

4.3. Retrieval from CHRIS-PROBA data
Figure 12b-d shows the retrieval results for the CHRIS-

PROBA Barrax dataset incorporating the CWV and CWC maps
from the three phases retrieval. The true-color image is supple-
mented by the indicators of ground-truth data conducted dur-
ing the ESA SPARC’03 campaign, which amongst others con-
tain CWC measurements. Additionally, we present a CWV
map derived from the a priori band ratio retrieval (see Sec-
tion 2.2.2). As likewise shown in Thompson et al. (2015), the
CWV map from the three phases retrieval is much smoother
and physically-plausible. In contrast, the CWV map from the
band ratio approach has clear biases in form of textures accord-
ing with vegetated areas indicating a higher sensitivity to back-
ground reflectance. Also low-frequency striping patterns are
visible, which have been previously observed by Guanter et al.
(2008b). The result from the algorithm presented in our study
is nearly free of these influences. Cloud pixels have been ex-
cluded from the retrieval and areas of cloud shadow have to be
treated carefully within the analysis since retrieved CWV gen-
erally shows a strong positive bias for these pixels (Barducci
et al., 2004).

As one major result, the three phases retrieval leads to a de-
coupling of retrieved CWV from apparent CWC. Already rec-
ognizable in the maps of Figure 12, the influence of present
surface liquid water on the CWV retrieval declines compared
with the band ratio retrieval. This is underlined by both the
decreasing slope and R2 from 0.49 to 0.08 and from 0.38 to
0.08, respectively, when comparing retrieved CWV with re-
trieved CWC for the different methods (Figure 13). This trend
was also observed by Thompson et al. (2015).

The derived CWC map provides a clear distinction of agri-
cultural areas and bare soil as pixels with high water content can
be distinguished well from the surroundings. Furthermore, the
validation with the CWC field measurements yields a good cor-
relation resulting in an R2 of 0.8 (Figure 14). The overestima-
tion of CWC by the Beer-Lambert model is clearly visible and
varies depending on the crop type, which results in a remarkable
forming of clusters. For example, the measured CWC of garlic
and alfalfa is in a similar range, but the retrieval overestimates
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Figure 8: Results for the three phases retrieval from the AVIRIS-C Sierra Nevada vegetation subset, supplemented by the uncertainty maps from the a posteriori
covariance matrix. a) False-color image (RGB: 1602/870/560 nm). b) CWV map. c) CWC map. d) CWV uncertainties. e) CWC uncertainties. The pixel values of
the uncertainty maps represent the standard deviation in the unit of the retrieved parameter.

Figure 9: Comparison of NDWI with retrieved CWC from the AVIRIS-C Sierra
Nevada vegetation subset.

most of the alfalfa CWC by a factor of 2 to 3. The clusters indi-
cate the different crop type architectures and penetration depths
and thus, the varying ability to detect CWC. Pasqualotto et al.
(2018) recently developed two new hyperspectral indices to re-
trieve CWC: the water absorption area index (WAAI) and the
depth water index (DWI). They also used the dataset of field
measurements from the ESA SPARC’03 campaign in Barrax,
Spain, acquired on 07/14/2003, but in combination with atmo-
spherically corrected airborne HyMap data. They achieved an
R2 of 0.8 for the WAAI and 0.7 for the DWI. Hence, the result
from the three phases retrieval ranges in the same order of mag-
nitude and even outperforms one of the proposed hyperspectral
indices.

Another substantial fact is that the algorithm is able to mean-
ingfully map CWV and CWC without having the right shoul-
der of the 940 nm water absorption feature at its disposal since
CHRIS-PROBA is missing channels beyond 1050 nm. How-
ever, these missing bands can lead to higher retrieval uncertain-
ties when looking at the validation of absolute values. This is
also expressed by the uncertainty maps from the a posteriori
matrix, which show much higher uncertainties for both CWV
and CWC than for the AVIRIS data. Especially, a strong cor-
relation between retrieved CWC and retrieval error is observ-
able (Figure 12e-f). Another error source within the CWV re-
trieval are the miscalibration trends of CHRIS-PROBA in the
NIR wavelength range. This issue was reported by Guanter
et al. (2005) who stated that the resulting underestimation of
the signal cannot be used for common radiative transfer algo-
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Figure 10: Results for the three phases retrieval from the AVIRIS-C Sierra Nevada snow/ice subset. a) False-color image (RGB: 1602/870/560 nm). b) CWV map.
c) CWC map. d) Ice map. e) Combined three phases map (RGB: CWV/CWC/Ice).

Figure 11: Comparison of NDSI with retrieved ice path lengths from the
AVIRIS-C Sierra Nevada snow/ice subset.

rithms, which instead have to be supplemented by empirical
line approaches to obtain useful results.

4.4. Interpretation of CWC retrieval results

Wocher et al. (2018) used the regression slope for calibrat-
ing their CWC retrieval results, but our study indicates that this
factor cannot be seen as a global calibration. As shown in Fig-
ure 14, the overestimation varies depending on the vegetation
type and the according characteristics. We further investigate
this with some analysis on the simulated EnMAP data. As a re-
sult, a critical factor influencing the overestimation is the vege-
tation canopy height (Figure 15a). Increasing the height of sim-
ulated cereal plants from 12 cm to 66.5 cm leads to a decrease in
regression slope from 5.28 to 3.05. Furthermore, the overesti-
mation decreases from 3.77 to 2.88 for increasing LAI from less
than 2 to more than 3 (Figure 15b). On one hand, the overesti-
mation can be attributed to volume scattering processes within
the canopy, which the Beer-Lambert law is not able to account
for (Zhang et al., 2011). These are very special effects in vege-
tation canopies due to the multitude of scattering objects, e.g.,
leaves, and their ability to transmit radiation (Kuester and Spen-
gler, 2018). On the other hand, it can be stated that the higher
the modeled canopies and the LAI are, the better is the accu-
racy of retrieved CWC. Roberts et al. (1998) showed that LAI
and vegetation canopy liquid water amounts are well correlated.
Consequentially, we assume that with increasing LAI the vol-
ume scattering effect indeed gets stronger, but since the liquid
water contents simultaneously increase, the additional amounts
retrieved by the Beer-Lambert law get smaller compared to the
actual CWC and lead to a higher retrieval accuracy. This fits to
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Figure 12: Retrieval results from the CHRIS-PROBA Barrax dataset, supplemented by the uncertainty maps from the a posteriori covariance matrix. a) True-color
image with pink colored points representing locations of field measurements (RGB: 653/563/481 nm). b) CWC map derived from the three phases retrieval. c)
CWV map derived from the three phases retrieval. d) CWV map derived from the a priori band ratio retrieval. e) CWV uncertainties. f) CWC uncertainties. White
colored pixels indicate masked clouds, which have been excluded from the retrievals. Except for the upper panel, each colorbar accounts for both left and right
panel. The pixel values of the uncertainty maps represent the standard deviation in the unit of the retrieved parameter.
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Figure 13: Comparison of retrieved CWV with retrieved CWC for different retrieval methods. a) Band ratio retrieval. b) Three phases retrieval.
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Figure 14: Comparison of retrieved CWC with measured CWC from the Bar-
rax SPARC’03 field campaign. Error bars indicate the standard deviation of
retrieved CWC.

the findings of Wocher et al. (2018) who got best results in the
early young growth stages when most of the scattering objects
in the canopy are leaves. In general, the more opaque stalks
and ears are present in the canopy, the lower is the retrieval ac-
curacy.

We added a test of NIR reflectance as an indicator of vol-
ume scattering by calculating the NIR reflectance of vegetation
(NIRv) for each spectrum. This index was presented by Bad-
gley et al. (2017) and is related to photon escape probability,
i.e., NIR reflectance, and corrects for the non-green parts of the
pixel:

NIRv = (NDVI − 0.08) ∗ ρTOA,λNIR . (17)

It is calculated as the product of normalized difference veg-
etation index (NDVI) and NIR TOA reflectance ρTOA,λNIR at
λNIR ∼ 780 nm. Badgley et al. (2017) proposed to sub-
stract 0.08 from the NDVI values to account for bare soil. Fig-
ure 16 shows the NIRv compared with LAI for different canopy
heights. The NIR reflectance is well correlated with LAI yield-
ing an R2 of 0.81 and clearly increases for higher LAI. The
canopy height seems to have less effect on the NIRv. Only for
very small vegetation the NIR reflectance is substantially lower.
Concluding, we assume that the volume scattering effects are
mainly correlated with LAI and not necessarily with canopy
height. Thus, a future approach will be to supplement the sur-
face reflectance model based on the Beer-Lambert law with in-
formation about the LAI and the NIR reflectance to correct for
canopy structural effects. Finally, also soil moisture content
and water included in surface minerals have to be considered.
Both can influence the retrieved liquid water path over bare soil
since the Beer-Lambert law is not able to distinguish between
water included in different kinds of surface. An illustration can
be found in Figure 14 where bare soil pixels with a measured
CWC of 0 gcm−2 show retrieved values of 0.05-0.08 gcm−2.

Hunt et al. (2013) proposed not to use the absolute CWC val-
ues retrieved by the surface model based on the Beer-Lambert
for further analyses. They pointed to alternative retrieval meth-
ods, which are insensitive to volume scattering effects, e.g., par-
tial least squares regression (Asner and Martin, 2008; Li et al.,
2008) or wavelet transforms (Cheng et al., 2011). However, our
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Figure 15: Comparison of retrieved CWC with simulated CWC as a function of a) mean canopy height, and b) LAI, from the simulated EnMAP data.

Figure 16: Comparison of NIRv with LAI for different mean canopy heights.

study shows that the Beer-Lambert surface reflectance model
indeed can be improved with additional terms, but neverthe-
less, leads to promising results, which are already interpretable
regarding absolute retrieved CWC.

5. Conclusion

We present a coupled retrieval of the three phases of wa-
ter applied to spaceborne imaging spectroscopy measurements
such as the upcoming German EnMAP mission. We analyze the
sensitivity of the algorithm by a novel combination of field val-
idation using CHRIS-PROBA measurements and a simulation
study based on synthetic EnMAP data. The latter are obtained
from canopy reflectance spectra simulated by the 3-dimensional
HySimCaR system. Previous studies mainly validated their re-
sults by a visual interpretation (see Green et al. (2006), Thomp-
son et al. (2015)) or used 1-dimensional PROSAIL spectra as
input without simulating the atmosphere (see Clevers et al.
(2010), Wocher et al. (2018)). Focusing on canopies of ce-
real crops, our sensitivity analysis demonstrates the ability of
the proposed three phases of water retrieval to infer CWV and
CWC with a high correlation to the simulation input showing
an R2 of 0.99 and 0.96, respectively.

However, our investigation shows that CWC is strongly over-
estimated by a mean factor of 3.37, which results from a large
dependency on canopy structure and crop type. From a phys-
ical perspective, volume scattering effects related to LAI are
primarily responsible for the observed overestimation. Other-
wise, increasing the LAI from less than 2 to more than 3 leads
to a decrease of the regression slope from 3.77 to 2.88. This
supports the assumption that plant structure also plays an es-
sential role in the overestimation. The more that stalks and ears
influence the radiation signal, the less is the retrieval accuracy.
This hypothesis is supported by the validation of CWC retrieved
from CHRIS-PROBA data with field measurements. The anal-
ysis indeed yields an R2 of 0.80 but provides a separation of
different crop types depending on their physical structure. This

16



is also visualized by a remarkable clustering in the scatter plot.
Furthermore, by producing smoother and more plausible CWV
maps we achieve an accuracy improvement of CWV retrieved
from CHRIS-PROBA data instead from a band ratio retrieval
in the presence of liquid water absorption. This indicates that
the algorithm leads to improvements in atmospheric correction
procedures.

As a confirmatory of previous studies, we additionally show
results of the three phases retrieval applied to airborne AVIRIS-
C data. Based on an evaluation of the derived CWC from a
vegetated surface, we assume that imaging spectroscopy tracks
changes in CWC better than multispectral indices, such as the
NDWI. Furthermore, the snow/ice retrieval from AVIRIS-C
data produces a good correlation with the NDSI with an R2

of 0.94 illustrating the ability of the three phases retrieval to
clearly distinguish between different quantities of ice. In fact,
higher amounts are tracked better than by using the NDSI since
it becomes saturated at a value of around 0.9.

In summary, our study shows that the presented surface re-
flectance model based on the Beer-Lambert law can indeed be
improved with additional terms to account for physical pro-
cesses such as volume scattering. Also, the retrieval accuracy
could be increased by integrating, if available, a priori informa-
tion about the type of vegetation and the structure of the canopy
in the framework of optimal estimation. However, even with-
out improvement, this process has delivered promising results,
which are already interpretable regarding absolute retrieved
CWC. Recently launched or upcoming spaceborne imaging
spectroscopy missions like PRISMA or EnMAP will provide
valuable input for a further validation of the three phases of wa-
ter retrieval.
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