
 

 

APPLICATIONS OF DEEP LEARNING 

ON CARDIAC MRI:  

DESIGN APPROACHES FOR A 

COMPUTER AIDED DIAGNOSIS 

 

Manuel Pérez Pelegrí 

 

Dissertation submitted in partial fulfillment of 

the requirements for the degree of 

 

Doctor of Philosophy 

Ph.D. in Technologies for Health and Well-Being 

 

Supervisors: 

Prof. Dr. David Moratal Pérez 

Dr. José Vicente Monmeneu Menadas 

      Dr. María Pilar López Lereu 

 

 

February 2023 

 



  



Supervisors:  Prof. Dr. David Moratal Pérez 

Universitat Politècnica de València, Valencia, Spain 

Dr. José Vicente Monmeneu Menadas 

ASCIRES Biomedical Group 

Dr. María Pilar López Lereu 

ASCIRES Biomedical Group 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The research described in this thesis was conducted in the Centre for Biomaterials and 

Tissue Engineering of the Universitat Politècnica de València in collaboration with: 

 ASCIRES Biomedical Group 

 Hospital Clínic Universitari de València  



“I think that if you work as a radiologist you are like Wile E. Coyote in the 

cartoon. You’re already over the edge of the cliff, but you haven’t yet looked down. 

There’s no ground underneath. It’s just completely obvious that in five years deep 

learning is going to do better than radiologists. It might be ten years.” 

Geoffrey Hinton, 2016 

“AI won’t replace radiologists, but radiologists who use AI will replace those who 

don’t”. 

Curtis Langlotz, 2019 

 “AI will certainly affect radiologist, they just won´t have to do any manual tasks 

and will only focus on diagnosis with more information than ever, and the best 

thing is they won´t even need to learn to use any new tool, that is the job of us 

biomedical engineers”. 

Just a new PhD out there, 2022 
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Abstract 
 

 

Cardiovascular diseases are one of the most predominant causes of death and 

comorbidity in developed countries, as such heavy investments have been done in recent 

decades in order to produce high quality diagnosis tools and treatment applications for 

cardiac diseases. One of the best proven tools to characterize the heart has been magnetic 

resonance imaging (MRI), thanks to its high-resolution capabilities in both spatial and 

temporal dimensions, allowing to generate dynamic imaging of the heart that enable 

accurate diagnosis. The dimensions of the left ventricle and the ejection fraction derived 

from them are the most powerful predictors of cardiac morbidity and mortality, and their 

quantification has important connotations for the management and treatment of patients. 

Thus, cardiac MRI is the most accurate imaging technique for left ventricular 

assessment. In order to get an accurate and fast diagnosis, reliable image-based 

biomarker computation through image processing software is needed. Nowadays most 

of the employed tools rely in semi-automatic Computer-Aided Diagnosis (CAD) systems 

that require the clinical expert to interact with it, consuming valuable time from the 

professionals whose aim should only be at interpreting results. A paradigm shift is 

starting to get into the medical sector where fully automatic CAD systems do not require 

any kind of user interaction. These systems are designed to compute any required 

biomarkers for a correct diagnosis without impacting the physician natural workflow and 

can start their computations the moment an image is saved within a hospital archive 

system. 

Automatic CAD systems, although being highly regarded as one of next big 

advances in the radiology world, are extremely difficult to develop and rely on Artificial 

Intelligence (AI) technologies in order to reach medical standards. In this context, Deep 

learning (DL) has emerged in the past decade as the most successful technology to 

address this problem. More specifically, convolutional neural networks (CNN) have 

been one of the most successful and studied techniques for image analysis, including 

medical imaging. In this work we describe the main applications of CNN for fully 

automatic CAD systems to help in the clinical diagnostics routine by means of cardiac 

MRI. The work covers the main points to take into account in order to develop such 

systems and presents different impactful results within the use of CNN to cardiac MRI, 

all separated in three different main projects. 
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The first project involves the problem of automatic segmentation of the main 

cardiac regions within MR images. We present a new type of CNN architecture called 

PSPU-net and compare its results against the classical and successful architecture 3D U-

net. Both models could achieve state-of-the-art segmentation results, but the PSPU-net 

consistently surpassed the classic model in all settings and targeted tissues. The results 

demonstrate that the new PSPU-net model proposed can generalize the predicted 

segmentations better and with less computational resources. making it an excellent 

candidate to use on cardiac MRI to produce almost instant segmentations, enabling fast 

computation of the biomarkers of interest from them. 

The second project treats the problem of automatic computation of biomarkers 

from the images without employing any in-between segmentation step. We focus the 

target on the volume of the left ventricle on cardiac MRI. This type of approach has the 

advantage of not requiring costly labels such as manual segmentations, however it cannot 

be effectively integrated in a radiological setting due to the lack of spatial contextual 

information produced, meaning that the expert will not know where the prediction 

generated by the system came from. We address this problem known as explainabilty 

using a weak-supervised learning approach that allows to train a neural network with 

only the targeted biomarker values and enables it to produce a segmentation mask that 

directly shows the region that the model used to predict the biomarker. The considered 

approach addresses two problems at the same type, producing an explainable model that 

can be trusted in the clinical scenario and additionally provides a way to train models for 

segmentation when only the volume of the target region is available, potentially 

broadening the number of image databanks that could be exploited. The trained model 

was capable of estimating the left ventricle volumes with very low errors and with 

excellent correlation. Additionally, the segmentation masks that it generated were always 

accurately located in the correct region with a good overall quality that allowed for a 

high explainabilty power. 

The last project addresses the detection of the two major events in the cardiac 

cycle within the cardiac MRI, the end-systole and the end-diastole. Detecting these 

frames before any type of segmentation or biomarker estimation is required, as only these 

two time points are used for relevant cardiac contractility function calculations. In this 

project a fully convolutional neural network scheme is employed to treat both spatial and 

temporal analysis of the sequence. The key components of the developed model are the 

use of dilated convolutions for the temporal analysis and the use of the overlap Dice loss 

function for training, which has been very successful for segmentation tasks, but has not 

been employed for event detection on temporal data. We trained the model with this loss 
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and compared its results with the same model trained with the classic cross-entropy loss. 

The results showed that the Dice loss has notorious superiority for this task. The final 

model obtained highly accurate results at detecting both the end-systole and end-diastole, 

making it suitable to be used in clinical contexts.  

The full work presented describes novel and powerful approaches to apply CNN 

to cardiac MRI analysis. The work provides several key findings, enabling the 

integration in several ways of this novel but non-stop growing technology into fully 

automatic CAD systems that could produce highly accurate, fast and reliable results. The 

results described will greatly improve and impact the workflow of the clinical experts in 

the near future. 

Keywords: cardiac magnetic resonance imaging, deep learning, convolutional neural 

networks, computer-aided diagnosis, image segmentation, explainable-AI, weak-

supervised learning, dynamic imaging event detection 
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Resumen 
 

 

Las enfermedades cardiovasculares son una de las causas más predominantes de 

muerte y comorbilidad en los países desarrollados, por ello se han realizado grandes 

inversiones en las últimas décadas para producir herramientas de diagnóstico y 

aplicaciones de tratamiento de enfermedades cardíacas de alta calidad. Una de las 

mejores herramientas de diagnóstico para caracterizar el corazón ha sido la imagen por 

resonancia magnética (IRM) gracias a sus capacidades de alta resolución tanto en la 

dimensión espacial como temporal, lo que permite generar imágenes dinámicas del 

corazón para un diagnóstico preciso. Las dimensiones del ventrículo izquierdo y la 

fracción de eyección derivada de ellos son los predictores más potentes de morbilidad y 

mortalidad cardiaca y su cuantificación tiene connotaciones importantes para el manejo 

y tratamiento de los pacientes. De esta forma, la IRM cardiaca es la técnica de imagen 

más exacta para la valoración del ventrículo izquierdo. Para obtener un diagnóstico 

preciso y rápido, se necesita un cálculo fiable de biomarcadores basados en imágenes a 

través de software de procesamiento de imágenes. Hoy en día la mayoría de las 

herramientas empleadas se basan en sistemas semiautomáticos de Diagnóstico Asistido 

por Computador (CAD) que requieren que el experto clínico interactúe con él, 

consumiendo un tiempo valioso de los profesionales cuyo objetivo debería ser 

únicamente interpretar los resultados. Un cambio de paradigma está comenzando a entrar 

en el sector médico donde los sistemas CAD completamente automáticos no requieren 

ningún tipo de interacción con el usuario. Estos sistemas están diseñados para calcular 

los biomarcadores necesarios para un diagnóstico correcto sin afectar el flujo de trabajo 

natural del médico y pueden iniciar sus cálculos en el momento en que se guarda una 

imagen en el sistema de archivo informático del hospital. 

Los sistemas CAD automáticos, aunque se consideran uno de los grandes 

avances en el mundo de la radiología, son extremadamente difíciles de desarrollar y 

dependen de tecnologías basadas en inteligencia artificial (IA) para alcanzar estándares 

médicos. En este contexto, el aprendizaje profundo (DL) ha surgido en la última década 
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como la tecnología más exitosa para abordar este problema. Más específicamente, las 

redes neuronales convolucionales (CNN) han sido una de las técnicas más exitosas y 

estudiadas para el análisis de imágenes, incluidas las imágenes médicas. En este trabajo 

describimos las principales aplicaciones de CNN para sistemas CAD completamente 

automáticos para ayudar en la rutina de diagnóstico clínico mediante resonancia 

magnética cardíaca. El trabajo cubre los puntos principales a tener en cuenta para 

desarrollar tales sistemas y presenta diferentes resultados de alto impacto dentro del uso 

de CNN para resonancia magnética cardíaca, separados en tres proyectos diferentes que 

cubren su aplicación en la rutina clínica de diagnóstico. 

El primer proyecto implica el problema de la segmentación automática de las 

principales regiones cardíacas dentro de las imágenes de RM. Presentamos un nuevo tipo 

de arquitectura CNN llamada PSPU-net y comparamos sus resultados con la clásica y 

exitosa arquitectura 3D U-net. Ambos modelos logran resultados de segmentación de 

alta calidad, pero la PSPU-net supera sistemáticamente al modelo clásico en todos los 

contextos y tejidos específicos. Los resultados demuestran que el nuevo modelo PSPU-

net propuesto puede generalizar mejor las segmentaciones predichas y con menos 

recursos computacionales, lo que lo convierte en un excelente candidato para su uso en 

imágenes de resonancia magnética cardíaca para producir segmentaciones casi 

instantáneas, permitiendo un cálculo rápido de los biomarcadores de interés a partir de 

las mismas. 

El segundo proyecto trata el problema del cálculo automático de biomarcadores 

a partir de las imágenes sin emplear ningún paso de segmentación intermedio. 

Enfocamos el objetivo en el volumen del ventrículo izquierdo en la imagen de resonancia 

magnética cardíaca. Este tipo de enfoque tiene la ventaja de que no requiere etiquetas 

costosas de obtener como las segmentaciones manuales, sin embargo, no se puede 

integrar de manera efectiva en un entorno radiológico debido a la falta de información 

contextual espacial producida, lo que significa que el experto no sabrá de donde viene la 

predicción ofrecida por el sistema. Abordamos este problema conocido como 

explicabilidad utilizando un enfoque de aprendizaje débilmente supervisado que permite 

entrenar una red neuronal solo con los valores de biomarcadores específicos, y le permite 

producir una máscara de segmentación que muestra directamente la región que el modelo 

usó para predecir el biomarcador. El enfoque considerado aborda dos problemas 

diferentes pero relacionados, produciendo un modelo explicable en el que se puede 

confiar en el escenario clínico y, además, proporciona una forma de entrenar modelos 

para la segmentación cuando solo está disponible el volumen de la región objetivo, lo 

que podría ampliar el número de bancos de imágenes que podrían ser explotados. El 
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modelo entrenado fue capaz de estimar los volúmenes del ventrículo izquierdo con 

errores bajos y con una excelente correlación. Además, las máscaras de segmentación 

que generaba siempre se ubicaban con precisión en la región correcta con una buena 

calidad general ofreciendo una alta capacidad de explicabilidad. 

El último proyecto aborda la detección de los dos eventos temporales en el ciclo 

cardíaco dentro de la secuencia de resonancia magnética cardíaca, la telesístole (fin de 

la sístole) y la telediástole (fin de la diástole). Detectar estos eventos es un prerrequisito 

previo a cualquier tipo de segmentación o estimación de biomarcadores, ya que solo se 

pueden utilizan estos dos puntos temporales para los cálculos relevantes de la función de 

contractilidad cardíaca. En este proyecto se emplea un esquema de red neuronal 

convolucional para tratar el análisis espacial y temporal de la secuencia. Los 

componentes clave del modelo desarrollado son el uso de convoluciones dilatadas para 

el análisis temporal y el uso de la función de pérdida de solapamiento de Dice para el 

entrenamiento, la cual ha tenido mucho éxito para tareas de segmentación, pero no se ha 

empleado para la detección de eventos en datos temporales. Se entrenó el modelo con 

esta función de pérdida y se compararon los resultados con el mismo modelo entrenado 

con la clásica función de entropía cruzada. Los resultados mostraron que la función de 

pérdida de Dice es notablemente superior para la tarea. El modelo final obtuvo resultados 

muy precisos al detectar tanto el final de sístole como el final de diástole, lo que lo hace 

adecuado para su uso en contextos clínicos. 

El trabajo completo presentado describe enfoques novedosos y de alto impacto 

para aplicar CNN al análisis de resonancia magnética cardíaca. El trabajo proporciona 

varios hallazgos clave, permitiendo varias formas de integración de esta reciente y 

creciente tecnología en sistemas CAD completamente automáticos que pueden producir 

resultados altamente precisos, rápidos y confiables. Los resultados descritos mejorarán 

e impactarán positivamente el flujo de trabajo de los expertos clínicos en un futuro 

próximo. 

Palabras clave: imagen por resonancia magnética cardíaca, aprendizaje profundo, redes 

neuronales convolucionales, diagnóstico asistido por computadora, segmentación de 

imágenes, IA explicable, aprendizaje débilmente supervisado, detección de eventos en 

imágenes dinámicas 
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Resum 
 

 

Les malalties cardiovasculars són una de les causes de mort i comorbiditat més 

predominants als països desenvolupats, s'han fet grans inversions en les últimes dècades 

per tal de produir eines de diagnòstic d'alta qualitat i aplicacions de tractament de 

malalties cardíaques. Una de les tècniques millor provades per caracteritzar el cor ha 

estat la imatge per ressonància magnètica (IRM), gràcies a les seves capacitats d'alta 

resolució tant en dimensions espacials com temporals, que permeten generar imatges 

dinàmiques del cor per a un diagnòstic precís. Les dimensions del ventricle esquerre i la 

fracció d'ejecció que se'n deriva són els predictors més potents de morbiditat i mortalitat 

cardíaca i la seva quantificació té connotacions importants per al maneig i tractament 

dels pacients. D'aquesta manera, la IRM cardíaca és la tècnica d'imatge més exacta per 

a la valoració del ventricle esquerre. Per obtenir un diagnòstic precís i ràpid, es necessita 

un càlcul fiable de biomarcadors basat en imatges mitjançant un programa de 

processament d'imatges. Actualment, la majoria de les ferramentes emprades es basen 

en sistemes semiautomàtics de Diagnòstic Assistit per ordinador (CAD) que requereixen 

que l'expert clínic interaccioni amb ell, consumint un temps valuós dels professionals, 

l'objectiu dels quals només hauria de ser la interpretació dels resultats. S'està començant 

a introduir un canvi de paradigma al sector mèdic on els sistemes CAD totalment 

automàtics no requereixen cap tipus d'interacció amb l'usuari. Aquests sistemes estan 

dissenyats per calcular els biomarcadors necessaris per a un diagnòstic correcte sense 

afectar el flux de treball natural del metge i poden iniciar els seus càlculs en el moment 

en què es deixa la imatge dins del sistema d'arxius hospitalari. 

Els sistemes CAD automàtics, tot i ser molt considerats com un dels propers 

grans avanços en el món de la radiologia, són extremadament difícils de desenvolupar i 

depenen de les tecnologies d'Intel·ligència Artificial (IA) per assolir els estàndards 

mèdics. En aquest context, l'aprenentatge profund (DL) ha sorgit durant l'última dècada 

com la tecnologia amb més èxit per abordar aquest problema. Més concretament, les 

xarxes neuronals convolucionals (CNN) han estat una de les tècniques més utilitzades i 

estudiades per a l'anàlisi d'imatges, inclosa la imatge mèdica. En aquest treball es 

descriuen les principals aplicacions de CNN per a sistemes CAD totalment automàtics 

per ajudar en la rutina de diagnòstic clínic mitjançant ressonància magnètica cardíaca. 

El treball recull els principals punts a tenir en compte per desenvolupar aquest tipus de 
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sistemes i presenta diferents resultats d'impacte en l'ús de CNN a la ressonància 

magnètica cardíaca, tots separats en tres projectes principals diferents. 

El primer projecte implica el problema de la segmentació automàtica de les 

principals regions cardíaques dins d'imatges de RM. Presentem un nou tipus 

d'arquitectura CNN anomenada PSPU-net i comparem els seus resultats amb 

l'arquitectura clàssica 3D U-net. Els dos models aconsegueixen resultats de segmentació 

de alta qualitat, però la xarxa PSPU va superar el model clàssic en tots els entorns i teixits 

objectiu. Els resultats demostren que el nou model PSPU-net proposat pot generalitzar 

millor les segmentacions previstes i amb menys recursos computacionals. convertint-lo 

en un excel·lent candidat per utilitzar-lo en ressonància magnètica cardíaca per produir 

segmentacions quasi instantànies, permetent un càlcul ràpid dels biomarcadors d'interès 

d'ells. 

El segon projecte tracta el problema del càlcul automàtic de biomarcadors a 

partir de les imatges sense emprar cap pas de segmentació intermèdia. Centrem l'objectiu 

en el volum del ventricle esquerre de la ressonància magnètica cardíaca. Aquest tipus 

d'enfocament té l'avantatge de no requerir etiquetes costoses com les segmentacions 

manuals, però no es pot integrar eficaçment en un entorn radiològic a causa de la falta 

d'informació contextual espacial produïda, de manera que l'expert no sabrà d’on prové  

la predicció generada pel sistema. Abordem aquest problema conegut com a 

explicabilitat mitjançant un enfocament d'aprenentatge supervisat feble que permet 

entrenar una xarxa neuronal només amb els valors de biomarcadors objectiu i li permet 

produir una màscara de segmentació que mostra directament la regió que el model va 

utilitzar per predir el biomarcador. L'enfocament considerat aborda dos problemes del 

mateix tipus, produint un model explicable en el que es pot confiar a l'escenari clínic i, a 

més, proporciona una manera d'entrenar models per a la segmentació quan només està 

disponible el volum de la regió objectiu, ampliant potencialment el nombre de bancs 

d’imatge i de dades que es podrien explotar. El model entrenat es capaç d'estimar els 

volums del ventricle esquerre amb errors molt baixos i amb una correlació excel·lent. A 

més, les màscares de segmentació que produides sempre estaven localitzades amb 

precisió a la regió correcta amb una bona qualitat general que permetia una gran capacitat 

d'explicació. 

L'últim projecte aborda la detecció dels dos esdeveniments principals del cicle 

cardíac dins de la RM cardíaca, la telesístole (sístole final) i la telediàstole (diàstole 

final). La detecció d'aquests punts és necessària abans de qualsevol tipus de segmentació 

o estimació de biomarcadors, ja que només aquests dos punts de temps s'utilitzen per als 

càlculs rellevants de la funció de contractilitat cardíaca. En aquest projecte s'utilitza un 
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esquema de xarxa neuronal totalment convolucional per tractar tant l'anàlisi espacial com 

temporal de la seqüència. Els components clau del model desenvolupat són l'ús de 

cconvolucions dilatades per a l'anàlisi temporal i l'ús de la funció de pèrdua de 

superposament de Dice, que ha tingut molt èxit per a tasques de segmentació, però no 

s'ha utilitzat per a la detecció d'esdeveniments en seqüencies temporals. Es va entrenat 

el model amb aquesta pèrdua i vam comparat els seus resultats amb el mateix model 

entrenat amb la clàssica funció de pèrdua d'entropia creuada. Els resultats van mostrar 

que la pèrdua de Dice té una superioritat notòria per a aquesta tasca. El model final va 

obtenir resultats altament precisos a l'hora de detectar tant la sístole final com la diàstole 

final, el que el va apte per ser utilitzat en contextos clínics. 

El treball complet presentat descriu enfocaments nous i potents per aplicar CNN 

a l'anàlisi de ressonància magnètica cardíaca. El treball proporciona diversos 

descobriments clau, que permeten la integració de diverses maneres d'aquesta tecnologia 

nova però en constant creixement en sistemes CAD totalment automàtics que podrien 

produir resultats altament precisos, ràpids i fiables. Els resultats descrits milloraran i 

afectaran considerablement el flux de treball dels experts clínics en un futur proper. 

Paraules clau: ressonància magnètica cardíaca, aprenentatge profund, xarxes neuronals 

convolucionals, diagnòstic assistit per ordinador, segmentació d'imatges, IA explicable, 

aprenentatge supervisat feble, detecció d'esdeveniments d'imatge dinàmica 
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Abbreviations and 

Acronyms 
 

 

Artificial intelligence and deep learning  

ADAM Adaptative Moment Estimator 

ADAMW Adaptative Moment Estimator with Weight decay 

AI Artificial Intelligence 

AN Artificial Neuron/s 

ANN Artificial Neural Network/s 

BERT Bidirectional Encoder Representation Transformer 

BN Batch Normalization 

CNN Convolutional Neural Network/s 

CAM Class Activation Mapping / Class Activation Map  

GCU Growing Cosine Unit 

GPT-3 Third generation Generative Pre-trained Transformer 

DL Deep Learning 

FCL Fully Connected Layer/s 

FCN Fully Convolutional Neural Network/s 

FCNN Fully Connected Neural Network/s 

GAN Generative Adversarial Network/s 

GDL Generalized Dice loss 

GELU Gaussian Error Linear Unit 

Grad-CAM Gradient-Weighted Class Activation Mapping 

GRU Gated Recurrent Unit 

LIME Local Interpretable Model-Agnostic Explanation 

LSTM Long Short Term Memory 

ML Machine Learning 

MLP Multilayer Perceptron/s 

NLP Natural Language Processing 

PSP Pyramid Scene Parsing 
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ReLU Rectified Linear Unit 

RNN Recurrent Neural Network/s 

SGD Stochastic Gradient Descent 

SHAP SHapley Additive exPlanations 

WDL Weighted Dice Loss 

XAI Explainable Artificial Intelligence 

 

Medical imaging 

CMRI Cardiac Magnetic Resonance Imaging 

CT Computed Tomography 

DICOM Digital Imaging and Communications in Medicine 

MRI Magnetic Resonance Imaging 

NIfTI Neuroimaging Informatics Technology Initiative 

PACS Picture Archiving and Communication System 

 

Magnetic resonance imaging  

B0
 Magnetic Field 

GRE Gradient Echo 

1H Hydrogen atom 

M0 Net magnetization 

RF Radio frequency 

T Tesla unit 

T1 longitudinal relaxation time 

T2 Transversal relaxation time 

TE Echo Time 

TR Repetition Time 

SE Spin-Echo 

SSFP Steady State Free Precession 

 

Cardiovascular setting 

CO Cardiac Output 

ECG Electrocardiography 
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ED End-Diastole 

EF Ejection Fraction 

ES End-Systole 

LV Left Ventricle 

RV Right Ventricle 

SV Stroke Volume 

VI Volume Index 

WThg Wall Thickening 

 

Hardware and software 

CAD Computer Aided Diagnosis 

CPU Central Processing Unit 

GB Gigabyte 

GPU Graphics Processing Unit 

IDE Integrated Development Environment 

RAM Random Access Memory 

TPU Tensor Processing Unit 

VRAM Video Random Access Memory 

 

Miscellaneous 

2D Two dimensions, two-dimensional or bi-dimensional 

3D  Three dimensions or three-dimensional 

4D Four dimensions or fourth-dimensional 

BSA Body Surface Area 

DC Dice Coefficient 

FOV Field Of View 

GDS Generalized Dice Score 

MAE Mean Absolute Error 

ml Milliliters  

NN Neural Network 

RMAE Relative Mean Absolute Error 

RMSE Root Mean Square Error 

ROI Region Of Interest 
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XOR Exclusive OR logical operator 
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Chapter 1.                      

Introduction 
 

 

 

1.1. Artificial intelligence and healthcare 

Artificial intelligence (AI) has seen a great explosion in popularity in recent 

years. Its applications extend to any field where some type of automation might be 

useful. However, although AI has been around for many years, it became notoriously 

popular in the last decade due to the advent of most of the computing technology 

employed in deep learning (Figure 1.1).  

 

 

Figure 1.1 Overview of the historical evolution of Artificial intelligence, from its beginning in the 

1950’s to the emergence of practical applications of deep learning in the 2010’s. Image source: 

https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/. 

 

Deep learning (DL) encompasses all the AI algorithms based on artificial neural 

networks (ANN). Nowadays it is common to hear about AI when it is only referred to 

https://www.privatewallmag.com/inteligencia-artificial-machine-deep-learning/
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ANN. However, ANN are only a subfield of it. More specifically AI involves any 

algorithm that can solve a problem in an intelligent manner, this includes any method 

that applies a fixed set of rules. Within AI, an important subfield is machine learning 

(ML), a branch of algorithms which make use of generic models that can learn to adjust 

themselves with the use of data in order to solve a specific problem. Within ML there 

are tons of algorithms, from the simple linear regression to the more complex random 

forest, support vector machines or artificial neural networks. ANN are one of the more 

powerful models within ML, these algorithms are further expanded in the deep learning 

subfield (encompassing all the deep neural networks). Then, within the DL field there 

are also a variety of different ANN architectures, convolutional neural networks (CNN) 

being one of the most important ones. CNN are a subtype of ANN designed for image 

processing, which they are especially good at. Figure 1.2 summarizes the general AI 

branches described. 

 

 

Figure 1.2 Schematic of the main branches of artificial intelligence nowadays. Machine learning is a 

specific type of AI algorithms that are capable of learning to improve themselves from examples. Deep 

learning is one type of machine learning algorithms that uses artificial neural networks. Finally, 

convolutional neural networks are those neural networks specially designed to treat computer vision 

problems [1]. 

 

Deep learning has demonstrated a great versatility and quality in its applications. 

Healthcare is one of the main fields where DL has gained much attention, and more 

specifically in the radiology field due to the more widespread data available and the CNN 

great success in image processing tasks. However, DL and AI in general is entirely 

dependent on the data available, and if the data used in not a good representative of the 
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real population or there exists some intrinsic bias the algorithms will reproduce these 

issues in their response. Taking this into account any medical-related problem can be 

specially challenging. First because of the difficulty in the data accessibility (due to 

patient’s privacy) and second for the possible bias present within the data that if not taken 

into account can lead to discriminative and fatal results [2,3]. Additionally, most of ANN 

are hard to interpret, and are employed as a black box that “just works”. This makes 

adoption of these systems harder in the medical setting, where there are several tasks 

(such as diagnosis or treatment recommendations) that require some explanation on the 

decision taken in order to be accepted by the medical community.  

Even with the multiple challenges that DL needs to address, it is incredibly 

powerful and has demonstrated being capable of solving complicated health-related 

tasks, and it has had great success at different applications including triages, radiological 

diagnosis, drug interaction predictions, telemedicine applications or electronic health 

records management as some important examples. This thesis is focused on the 

application of these models to a specific problem that involves the radiology and 

cardiovascular medical branches.  

1.2. Motivations 

A good clinical assessment based on radiological information often requires 

measurements of regions of interest (ROIs) from which radiological biomarkers can be 

extracted. This step typically involves segmentation (that is, classifying each pixel within 

the image in different categories for the different ROIs and the background) which can 

be accomplished using manual, semiautomatic or fully automatic tools.  

Manual segmentation is a hard and especially time-consuming task, furthermore 

it is also a monotonous task. This limits manual segmentation of medical images to very 

expert clinicians that have very good knowledge on the images treated. On the other 

hand, semiautomatic segmentation typically makes use of software capable of 

performing general segmentation tasks as long as the user provides some sort of input to 

help the system perform the most complicated and laborious parts, still this usually 

implies that the clinical expert must learn to properly use this tool and validate its results. 

Often these systems also include correction tools to refine the results in case some errors 

were made. Finally, fully automatic segmentation allows to obtain the ROIs 

segmentation without any interaction from the user. These systems need to be extremely 

accurate and fast if it is meant to avoid posterior manual correction by the health 
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professional, and for these reasons each segmentation problem usually requires a 

dedicated system especially designed to perform that specific task. 

In the clinical setting it is not a widespread practice to perform extensive 

analysis of the radiological information due to the requirement of the user interaction 

with a software that usually requires experience (and much less if this also requires a full 

manual segmentation). This means that a lot of valuable information is lost in the 

diagnostic workflow. Furthermore, even in the specific cases where the clinical expert is 

trained to use a software to obtain more detailed information, they are still in most cases 

semi-automatic approaches that makes the diagnostic workflow not very efficient.  

Automatic computer-aided diagnosis (CAD) is a relatively new paradigm in the 

diagnostic workflow which leaves the clinical user outside of the biomarker computation 

work. This is accomplished by integrated fully automatic systems that start processing 

the images the moment they are acquired and stored and provide the biomarker analysis 

results along the original acquisition to the final user, making the diagnostic workflow 

seamless. Additionally, by avoiding the intervention of the user, these systems are 

reproducible in different environments, as their results are user-independent. This is a 

relatively new paradigm that has seen great growth with the development of machine 

learning and deep learning technologies. Fig 1.3 summarizes the main differences 

between the two main diagnostic paradigms that allow for advance biomarker integration 

into the clinical workflow that exist today. 
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Figure 1.3 Comparison of the two clinical diagnosis paradigms that make use of advance imaging 

biomarkers. The classic method is to use manual or semiautomatic tools to help in the segmentation 

of the region to analyze. The CAD paradigm completely erases any user intervention by automatically 

processing the images acquired. Ideally, the CAD system is integrated within the PACS system of the 

hospital, making the diagnosis a fast and seamless workflow. 

 

From this perspective it is very clear that radiology can be highly impacted by 

CAD systems that make use of DL techniques. On one hand the development of such 

systems add value to the diagnostic capabilities offered by the original images by 

providing biomarkers that otherwise would not be available, and on the other hand allows 

for the prediction of these biomarkers without requiring interaction from clinical users, 

whose actual focus falls on the final diagnosis. In the end this will save time, allowing 

for more patient’s being diagnosed in the same time frame and with more information 

available. 

The described context is especially important in those cases where the original 

images do not provide by themselves enough information to have a good diagnosis, and 

where some type of biomarker measurement is a must. One of such cases is the routinely 

clinical assessment of the heart by means of magnetic resonance imaging (MRI). Even 

in the simplest cardiac MRI studies (CMRI), it is required to have the images analyzed 

to extract parameters of interest. These types of studies aim at imaging the heart`s 

motion, which in turn allows for the calculation of certain dynamic parameters of the 

heart that derive from the volume values of certain regions of the heart during its cycle. 
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Most specifically the LVEF (left ventricle ejection fraction) is the most relevant to 

characterize the heart function, and to compute it the LV volumes at both end-systole 

and end-diastole are necessary. To compute these parameters, it is first required to select 

the regions of interest. In clinical practice this is usually done by employing 

semiautomatic software that can make most of the work, but still require the user to 

manually adjust the final results. As it can be seen, this is a perfect clinical scenario 

where deep learning-based CAD systems can be applied to improve the clinical 

workflow. This is even more true considering that cardiac-related conditions are one of 

the main causes of death in modern societies nowadays [4-6], which implies that a great 

demand of these techniques is assured. 

1.3. Objectives 

The overall aim of this thesis consisted on studying, implementing and testing 

DL techniques in order to replicate the typical clinical procedure applied by clinical 

professionals in assessing the heart condition, and more specifically the LV function 

employing cardiac MRI. With this approach, it was intended to investigate and develop 

the key components that would allow a satisfactory workflow from beginning to end 

based on DL technology. Besides this principal objective, a secondary one was to study 

additional DL methods to tackle more specific situations that could also be encountered 

in medical imaging in general and more specifically in cardiac MRI. 

In particular, three specific objectives related to the context’s problem were 

defined: 

1. Automatic segmentation of the main regions of interest present within the 

images whose analysis is used to characterize the heart. This includes the 

segmentation of the left ventricle myocardium and the left ventricle and 

right ventricle inner chambers. 

2. Automatic estimation of biomarker volume values of the left ventricle 

without employing segmentations. Additionally, this problem setting 

overlaps with the challenging explainable-AI problem (XAI), making this a 

dual objective, automatic estimation of the values and providing an 

explanation of the cause that produced the prediction by the artificial neural 

network. 

3. Automatic detection of end-systole and end-diastole within the CMR 

images. This involves working with whole dynamic acquisitions and 

classifying each time point.  
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Besides these specific objectives, and additional objective of the thesis was to 

test new neural network architectures and methodologies that could be exploited in 

general DL settings. In this sense, all the developments were intended to be applicable 

to any problem of similar nature to that of CMRI analysis and provide new contributions 

directly involving the DL field. 

1.4. Contributions to knowledge 

This thesis offers three main novel contributions for the automatic assessment 

of the LV volume and function with conventional short-axis CMRI employing CNN. 

Additionally, the thesis also derives other novel contributions that are generalizable to 

the DL field itself, which involves different sub-fields including Weak-supervised 

training, loss function choice, explainable-AI and architecture design optimization. 

The first contribution is that convolutional neural networks for segmenting the 

main regions of interest in short-axis CMRI can be reliably employed, offering excellent 

quality in their results. More specifically, this contribution also determines that CNN that 

process images in 2D can obtain better results with less parameters than those that treat 

the images in 3D when more specific and optimum designs are employed, allowing the 

use of faster and lighter models. 

The second contribution is that left ventricle volume values and segmentations 

can be estimated with great precision with CNN when some restrictions are applied to 

the learning schedule, even when only trained to target the volume values with no 

segmentations available. The method described by this contribution allows to design 

weak-supervised training methods in CNN that both improves the estimated biomarkers 

and offers a segmentation as an estimation of the region within the image that the 

network targeted to calculate the biomarkers. This methodology also contributes to solve 

the explainability problem within the XAI field, in this case specifically targeted for the 

clinical user’s understanding. 

The third and last contribution is that CNN can automatically detect the ES and 

ED within short-axis CMRI sequences with a variable number of frames and of slices 

per frame. Concretely, models employing dilated convolutions instead of recurrent layers 

show a great potential to process the temporal information of these sequences with great 

capacity even with a reduced number of parameters. Furthermore, this contribution 

includes the finding that employing loss functions usually employed for training 
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segmentation CNN can be used in problems regarding temporal classification with 

greater results than classic loss functions. 

By combining the information offered by the three contributions this thesis 

derives an additional one, which is that a fully automatic CNN system to estimate the 

main information of interest required in the assessment of short-axis CMRI can be 

designed by coupling the third with either the first or second contributions. This system 

would allow to generate the results with high accuracy and in a matter of seconds 

provided it could be used with the required hardware. This would allow for a great 

increase in the speed of diagnosis in the clinical setting. 

1.5. Thesis Structure 

This thesis is structured in 10 chapters. Chapter 1 presents a summary of the 

general and specific objectives of the thesis and the novel contributions to knowledge. 

Chapters 2 to 3 describe the theoretical background that is essential for understanding 

the experimental studies. Chapter 4 describes the data employed for the different 

experiments, as well as a description of the hardware and software used in them.  

Chapters 5 to 7 present the experimental projects performed. Chapter 8 present the final 

overall conclusions of this thesis, along the limitations encountered and future lines of 

work. Chapter 9 covers all the referenced bibliography within the thesis. Finally, chapter 

10 covers all the publications derived from this thesis. A summary of the main chapters 

of this thesis is introduced below:  

Chapter 1: Introduction  

The current chapter gives a background on motivations and objectives proposed 

for the thesis development. The main contributions to knowledge and the overall thesis 

structure is described here as well. 

Chapter 2: Background on cardiac MRI  

This chapter gives a background on the principles of cardiac MRI, with a focus 

on the techniques used to assess patients with suspected heart pathologies. The chapter 

begins with a summary of the anatomical and physiological principles of the heart, 

followed by an introduction of the general principles of MRI physics, and finishes with 

a detailed description of short axis cine sequences. 
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Chapter 3: Image processing with deep learning 

In this chapter an overview on the history and the principal features and 

components of CNN is presented. It addresses the use of these types of DL models for 

image processing, and more specifically for medical image processing. 

Chapter 4: Materials 

This chapter cover all the materials employed in the experiments. It covers a full 

detailed description of the data available. The chapter also covers a description on the 

hardware and software used to produce all the results. 

Chapter 5: Automatic semantic segmentation  

This chapter describes the experimental study aimed to evaluate the use of CNN 

for segmenting the main regions of the left and right ventricles in the images. Two 

different types of CNN were compared, a more basic model that could process data in 

3D and a novel architecture that only processed the data in 2D but that included several 

additional capabilities. The experiments aim at determining how good the segmentation 

results are for the different targeted tissues and how different they are between the two 

models. 

Chapter 6: Automatic Biomarker Estimation and Explainability 

In this chapter the problem of automatic estimation of biomarkers from the 

images is addressed. More specifically the direct estimation of the LV volume. The 

experiments consisted on the design and training of a model that was only fed with the 

LV volume but that could produce both the estimated volume and a segmentation of the 

region where it based this estimation. With this setting the experiment also covers the 

topics of weak-supervised training and explainability within the DL field. 

Chapter 7: Automatic End-Systole and End-Diastole detection 

The chapter cover the work done in the design and implementation of a CNN 

that could detect the ES and ED frames within the image sequences. The experiments 

included a new way of preprocessing the images to train the model more efficiently, a 

model design employing dilated convolutions to process the temporal information of the 

sequence, a final postprocessing methodology to assign a final classification based on 

the probabilities generated by the model and a training schedule using an overlap loss 

function compared to a classical classification loss function. 

 



Chapter 1. Introduction 

 

 

28 

Chapter 8: Final conclusions 

This chapter comprises the final conclusions reached throughout the thesis 

project, a deep discussion on the technologies described, the adequacy of the work as a 

whole, and its potential application in real-world conditions. Limitations and future lines 

of work are also described in this chapter. 
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Chapter 2.                         

Background on cardiac 

magnetic resonance 

imaging 
 

 

 

 

2.1. Introduction 

The heart is the organic muscle in charge of pumping blood throughout the entire 

human body, a heart failure can easily result in death making it one of the most important 

organs within the human body. This organ is the most important element when studying 

all major cardiovascular diseases, which are one of the main causes of death in developed 

countries [4-6]. 

Nowadays, the best technique to characterize the heart is cardiac MRI (CMRI), 

due to both its great spatial and temporal resolution capabilities [7-10]. CMRI 

encompasses any MRI acquisition that targets to image the heart and its activity. 

This chapter starts with a description of key information regarding the heart 

anatomy and physiological function, followed by an overview of the basic elements that 

characterize MRI technology and ends up describing with more detail the specific 

application of CMRI. 
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2.2. Cardiac anatomy and physiology 

2.2.1. Anatomical structure 

The heart is an organ composed mainly of muscle tissue. It is located within the 

thoracic cavity, in a space known as mediastinum, placed between the lungs. It is 

surrounded by the pericardial sac, composed of different layers. The pericardial sac is in 

contact with the heart wall. The heart wall is made up of three layers: endocardium (most 

inner layer), myocardium (middle layer) and epicardium (most external layer, shared 

with the pericardial sac). The thicker layer of the heart wall is the myocardium, 

composed of muscular tissue (composed of cardiac fibers) in charge of its contractility 

function. This muscle layer is surrounded by the epicardium layer on its external face 

and by the endocardium on its internal face (inner layer) [11, 12]. 

 

 

Figure 2.1. Cardiac layers of heart that surround the myocardium by the outside and inside [11]. 

 

The heart is composed of four inner chambers or cavities: right atrium, right 

ventricle (RV), left atrium and left ventricle (LV). The atrium cavities receive blood from 

the outside while the ventricles pump it to the outside. The atrium cavities are above their 

respective ventricles and separated to them by the tricuspid (right) and mitral (left) 

valves. These valves allow the pass of blood only from the atrium to the ventricle and 

are controlled by the papillary muscles. The cardiac wall separating the right chambers 
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from the left ones is the septum. The myocardium layer thickness varies across these 

chambers and it has its greatest thickness around the left ventricle. 

 

 

Figure 2.2 Full anatomic representation of the heart including the different valves and chambers [11]. 

2.2.2. Heart function 

The heart’s principal function is to pump oxygenated blood to the rest of the 

body and to recover the venous deoxygenated blood to pump it to the lungs for 

oxygenation. This is accomplished by its constant contraction and relaxation in the 

cardiac cycle which encompasses several phases (Fig 2.3).  

Overall the cardiac cycle can be divided in the diastolic and the systolic phases. 

The diastolic phase or diastole is the state when the heart is relaxed, in contrast the 

systolic phase or systole is the contraction state of the heart. Both the atrial and 

ventricular chambers have their own systolic and diastolic phases. The entire cardiac 

cycle starts with the atrial filling at the end of the ventricular systole. After the filling, 

the ventricles start their relaxation (beginning of ventricular diastole) while the atrium 

cavities start their contraction (beginning of atrial systole). At the end of the atrial systole 

the blood passes from the atrium to the ventricles through the mitral and tricuspid valves. 

After this, the ventricular systole begins (the ventricles start contracting) while the atrium 

cavities start their diastole phase. At the end of the ventricular systole the ventricles pump 

all the blood to the outside of the heart and the cycle starts again. 

The ventricular systole is remarkably different between the left and right 

ventricles. The main reason is that the RV pumps the blood to the lungs which are 
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proximal to the heart. In contrast the LV pumps the blood throughout the entire body 

until reaching again the heart. Thus, the ejection force of the LV is greater, which is 

accomplished by its thicker cardiac wall. 

 

 

Figure 2.3 Schematic of the cardiac cycle [11]. 

 

There are different cardiac parameters that measure the functionality and give 

valuable information regarding its contractility function. Since the left ventricle is in 

charge of pumping the blood to the body and this is the main heart’s function, these 

parameters are focused on the LV function, but they are equally applicable to the RV. 

The most important ones are the following: 
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 End-systolic volume: the volume of blood measure within the ventricle at 

the end of contraction measured in ml. It represents the minimum amount 

of blood present within the ventricle. Normal values range from 22-66 ml 

and 26-86 ml for women and men respectively for the LV [13]. 

 End-diastolic volume: the volume of blood measured within the ventricle 

at the end of relaxation measured in ml. It represents the maximum 

amount of blood when the ventricle is filled. Normal values range from 

86-178 ml and 106-214 ml for women and men respectively for the LV 

[13]. 

 Myocardium volume: the volume of the myocardium. Measured at end-

diastole. Usually only measured for the LV. Needed to derive the ventricle 

mass. 

 Stroke volume (SV): the blood volume pumped by the ventricle in one 

heartbeat. The normal resting value for stroke volume is approximately 70 

ml/beat [12].   

𝑆𝑉 (𝑚𝑙) = 𝐸𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 − 𝐸𝑛𝑑 𝑠𝑖𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒 Equation 2.1 

 

 Cardiac output (CO): the volume of blood pumped by the ventricle in one 

minute. An average healthy adult has on average 75 beats/min, so in the 

same conditions the cardiac output will be 5250 ml/min [12]. 

𝐶𝑂 (𝑚𝑙/𝑚𝑖𝑛) = 𝑆𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × ℎ𝑒𝑎𝑟𝑡 𝑟𝑎𝑡𝑒 Equation 2.2 

 

 Ejection fraction (EF): the percentage of blood pumped by the ventricle 

from the volume of blood when the ventricle is filled in one beat. The 

normal value is around 60% (normal range 57-77%) [13, 14]. 

𝐸𝐹 (%) =
𝑠𝑡𝑟𝑜𝑘𝑒 𝑣𝑜𝑙𝑢𝑚𝑒 × 100

𝑒𝑛𝑑 𝑑𝑖𝑎𝑠𝑡𝑜𝑙𝑖𝑐 𝑣𝑜𝑙𝑢𝑚𝑒
 Equation 2.3 

 

 Volume index (VI): a normalized measurement of the volumes. Applicable 

to end-systolic, end-diastolic and stroke volumes. The volume values vary 

depending on body size, so this measure normalizes the volume taking into 

account the body surface area (BSA). There are several formulations 

proposed to express BSA [15], but the the Mosteller formula [16] presented 

in Equation 2.4 is one of the most extended ones. 
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𝐵𝑆𝐴 (𝑚2) = √ℎ𝑒𝑖𝑔ℎ𝑡(𝑐𝑚) 𝑤𝑒𝑖𝑔ℎ𝑡(𝑘𝑔) 3600⁄  Equation 2.4 

𝑉𝐼 (𝑚𝑙/𝑚2) =
𝑉𝑜𝑙𝑢𝑚𝑒

𝐵𝑆𝐴 
 Equation 2.5 

 

 Wall thickening (WThg): the thickening of the myocardium during wall 

motion, between end-diastole (WThED) and end-systole (WThES). In regional 

analysis, a segment with wall thickening < 2mm is considered affected [17]. 

𝑊𝑇ℎ (𝑚𝑚) = 𝑊𝑇ℎ𝐸𝑆 − 𝑊𝑇ℎ𝐸𝐷 Equation 2.6 

 

 Ventricle mass: the ventricle mass (also referred to as myocardium mass), 

computed by multiplying the myocardium volume by the myocardium 

density, which normally assumed to be 1.055 g/ml in clinical analysis [18-

20], although some recent works have discussed that slightly higher values 

might be more precise [21]. Ventricle mass is usually only measured for the 

LV. Normal values for LV mass are 56-140 g and 92-176 g for women and 

men respectively [13]. The normalized mass by BSA have normal values 

ranging 41-85 g/m2 and 49-85 g/m2 [13]. 

Out of all these measurements, the EF is overall the most informative and important one 

as it is a relative index of the contractility power of the LV. In order to measure all these 

parameters with great fidelity and obtain a robust diagnosis CMRI is usually employed 

due to its high imaging resolution capabilities, allowing for direct measurement of all 

these biomarkers. 

2.3. Magnetic Resonance Imaging 

2.3.1. Physical principles 

Spin is a property described by quantum mechanics that is present in subatomic 

particles [22, 23] and is defined by the presence of an uneven number of neutrons and/or 

protons. This creates a magnetic moment that when in presence of a strong magnetic 

field, can be altered by radiofrequency signals whose oscillation frequency matches that 

of the nuclei in a process known as resonance [22, 23]. This phenomenon is called 

magnetic resonance. 
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Within the human body the most abundant atom is hydrogen (1H) due to its 

abundant presence in water. The spin orientation of the protons is randomly distributed 

within the body, but when in presence of a strong magnetic field (B0), they get the same 

orientation as the magnetic field and start precessing around it at a specific frequency 

(Figure 2.4). 

 

Figure 2.4 Modification of the spin orientation under the influence of a magnetic field. In their natural 

state the orientations are randomly distributed. When applying a magnetic field, the orientations will 

align to that of the magnetic field, some pointing to the same direction and others in the opposite, 

creating a net magnetization vector. Image modified [24]. 

 

The moments, although aligned with the magnetic field, do not share the same 

direction. In this situation, the sum of all the spins creates a net magnetization vector M0. 

This vector is the MR signal and its strength depends on the number of spins aligned to 

the magnetic field, which in turn depends on the strength of this magnetic field. 

The magnetic moment can then be excited with a radiofrequency (RF) pulse that 

will change its orientation in a specific angle (Figure 2.5). After this excitation the spins 

lose the energy received by the RF pulse in a process known as relaxation. In this process 

M0 will return to its original orientation and is during this process that the information 

that will form the images is acquired. 

The are two types of relaxation: longitudinal and transversal. Longitudinal 

relaxation is the recovery of the longitudinal magnetization direction of M0. Transversal 

relaxation is the loss of the magnetization in the Mxy plane. Longitudinal relaxation is 
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defined by the time it takes to recover 63% of the equilibrium state, this time is referred 

to as T1. The transverse relaxation is defined by the time it takes the magnetization on 

the Mxy plane to lose 37% of its value after the excitation [25]. T1 and T2 vary across 

different tissues within the body, as they are dependent on its chemical composition. The 

information provided by these times is what is ultimately captured by the MRI systems 

in order to generate the final images. 

 

 

Figure 2.5 Magnetization vector flipping. a) In the equilibrium state the magnetization vector is aligned 

with the magnetic field, in this state the M0 only has a component in the z-axis.  b) Applying a RF pulse 

will change the vector’s direction with a certain angle (flip angle), at this point M0 is defined by 

components in x and y axis depending on the flip angle. The vector then starts to recover its equilibrium 

state while precessing around the z-axis, the energy loss in this process can be captured as information 

to reconstruct MRI images. c) Applying a 90° RF pulse makes the vector lie in the xy plane, losing its 

z-component entirely. d) A refocusing pulse is a 180° RF pulse usually applied at some point when the 

magnetization vector is recovering after a previous pulse, which allows to instantaneously flip the 

transverse component. e) An inversion pulse is a 180° RF pulse to the magnetization vector in its 

equilibrium state, which flips the longitudinal component of the vector [26]. 

2.3.2. The MRI technology 

The MRI system is a scanner machine that uses the physical properties of MR 

to acquire data to generate images from the inner body. An MRI system has three key 

elements: 
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 Magnet: produces the magnetic field B0. It is characterized by the strength 

of the magnetic field generated, which is measured in Tesla units (T). 

Generally, the stronger the magnetic field, the higher the contrast and 

resolution of the images produced. Most MRI machines employ 1.5T in the 

clinical setting. 3T scanners were initially restricted to research settings, but 

nowadays they are more available and employed in the clinical practice 

[27]. MRI with stronger magnetic fields exists, reaching up to 7T [28, 29] 

and 10.5T [30], but are limited to highly restricted experimental contexts. 

There is also additional research focusing on developing MRI with even 

higher magnetic fields [31]. 

 RF coils: in charge of emitting RF pulses to excite the magnetized particles 

(emitter coils) and receiving the signals produced by the magnetic 

relaxation (receiving coils). As the MR signals are very weak, a strong 

shielding is needed to avoid any kind of electromagnetic interference that 

could affect the signals. 

 Gradient coils: they introduce spatial variations of the magnetic field along 

the scanner (gradient magnetic field). This allows for the excitation of 

specific regions within the scanner. Stronger gradients allow the detection 

of smaller features within the body, thus improving the spatial resolution of 

the final images. Three gradient coils are used in order to produce the 

gradient magnetic field in each spatial direction. 

Besides its main components, MRI acquisitions are also characterized by a 

number of different parameters that mainly define the RF Pulse sequences. These are 

temporal sequences that define a succession of RF pulses that allows for the generation 

of different image contrast. As different tissues have different T1 and T2 relaxation times 

depending on its inner chemical characteristic, specific pulse sequences can be employed 

to produce relaxation signal that are more predominant on its T1 (T1-weighted image 

contrast) or T2 components (T2-weighted image contrast) in order to differentiate more 

some tissue properties than others. The most important sequences are grouped in either 

of two categories: spin-echo and gradient-echo [24, 25]: 

 Spin-echo (SE): SE pulse sequences were one of the earliest developed and 

is still widely employed. The pulse sequence timing can be adjusted to give 

T1-weighted, T2-weighted images and proton-density images. The main 

variables in SE sequences are the repetition time (TR) and the echo time 
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(TE). All spin echo sequences include a slice selective 90-degree pulse 

followed by one or more 180 degree refocusing pulse. 

 Gradient-echo (GRE): These are a widely used alternative to SE 

sequences. They differ from them in that they employ gradient fields to 

generate transverse magnetization and flip angles lower than 90 degrees. 

These additional variables allow for a greater versatility in the sequence 

design, and this allows GRE pulses to reduce acquisition times of the 

signals. 

2.3.3. Cardiac MRI principles 

Cardiac MRI (CMRI) includes all MRI acquisition methods to generate images 

of the heart to visualize its anatomy and functionality. Compared to other cases, CMRI 

has the added difficulty that the heart beat moves the tissue relative spatial location in a 

matter of milliseconds, thus the acquisition speed of the data needs to be fast enough to 

capture it. Increasing acquisition speed implies reducing spatial resolution and/or losing 

signal-to-noise ratio [32, 33], depriving of valuable anatomical information with it. To 

solve this problem image acquisition is usually done retrospectively by coupling and 

synchronizing the data acquisition with an electrocardiography (ECG) signal of the 

patient [26, 34, 35]. This method requires that the acquisition is taken in several cardiac 

cycles and normally in breath-hold conditions, as the lung movement also alter the 

heart’s motion. The resulting image can either be a stationary image of the heart at a 

specific time point (still imaging) or a dynamic image where several time steps of the 

cardiac cycle are obtained to reproduce the cardiac motion (cine imaging) [26]. Still 

acquisitions are employed to view specific anatomical elements with greater detail (such 

as coronary arteries) and the images produced by these sequences are generally “black 

blood” images [26], meaning the intensity of pixels of blood is set to lower values. In 

contrast cine imaging are employed to evaluate general cardiac function as well as 

overall anatomic features. Cine acquisitions give the best overall view on the heart’s 

condition in the clinical setting, as a great number of parameters of the cardiac state 

depend on the analysis of its motion. As this work is related to the use of cine 

acquisitions, the following descriptions will focus on them. 

There are multiple acquisition protocols in cine CMRI, most of them are based 

in the SSFP sequence (steady-state free precession), which is a variation of the gradient-

echo sequence [26, 36, 37]. These sequences may have different configuration settings 

depending on the vendor and the MRI machine. Some common ones are “TrueFisp” for 
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Siemens, “balanced FFE” for Philips, or “FIESTA” for General Electrics. Cine CMRI 

produce images weighted in both T1 and T2. Specifically, they are generated from the 

ratio between T2 and T1. The resulting images have both high spatial and temporal 

resolution (in the order of tens of milliseconds). They present great contrast between the 

blood pool within the chambers (viewed as white) and the myocardium (viewed as 

black). As blood has a brighter signal in these images they are also referred to as “bright 

blood”. The final generated image is a stack of slices (or a single slice) of the heart at 

different time points or “frames” resulting in a dynamic image that can display the 

motion of the heart with great quality.  

The images can be acquired from different cardiac anatomical planes. These 

planes are defined from its orientation to the left ventricle’s longer axis, which is the line 

that connects the apex to the mitral valve [38]. Thus there are a total of three main 

imaging planes (Figure 2.6), each giving different spatial information.  

 

 

Figure 2.6 Different cardiac planes and their correspondence in cardiac imaging visualization in cine 

CMRI (bright blood images). Image adapted from [38, 39]. 
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Out of these planes, the short-axis one allows for the view of both right and left 

ventricles at the same time, this gives a great view of the myocardium contractility along 

the heart’s insides. This plane allows to obtain a great number of functional and structural 

parameters, and as such is the most employed one to analyze the heart condition as a 

whole. The image types employed in this work are short-axis cine CMRI. 

2.3.4. Short-axis cine CMRI 

Short-axis cine CMRI gives the most overall information regarding the heart’s 

function. It allows the dynamic visualization of the right and left ventricles in the same 

image plane, making them easier to analyze compared to other cardiac imaging planes 

[40]. The final acquisition consists of a dynamic set of volumetric stacks or frames of 

the heart comprising the cardiac cycle. This volumetric stack can either contain a specific 

region of the heart (sometimes comprising only one slice per frame), or a complete view 

of it. The cardiac image regions are the apical region (close to the apex), mid region and 

basal region. Within the acquisition some slice that fall outside the heart region may also 

me be present. Figure 2.7 shows the main regions that are usually imaged, and Figure 

2.8 shows a set of different time frames for the same slice including the end-systole (ES) 

and the end-diastole (ED). 

 

 

Figure 2.7 Example of slices from a full short-axis CMR. The main regions are present, following the 

order left to right and up to down: slices outside of the heart (first image), apical slice (second image), 

mid region slices (third to sixth images) and basal slice (seventh image). 
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Figure 2.8 Different frames corresponding to the same slice in a short-axis CMRI acquisition. The 

dynamic contraction of the endocardium is clearly visible. End-systolic and end-diastolic frames of the 

sequence are indicated. 

 

The short-axis imaging plane allows for the visualization of certain important 

cardiac elements with great detail. Mainly: LV and RV myocardium and blood pools and 

the papillary muscles. The LV and RV cavities appears in the image as bright. The 

myocardium appears as a dark layer surrounding the LV (as a thick layer) and RV (slim 

layer). The papillary muscles appear as dark stains within the ventricle chambers. Figure 

2.9 shows a mid-region slice with all these elements.  
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Figure 2.9 Zoom on the cardiac region of a short-axis CMRI image. The image corresponds to a mid-

slice of the heart. The different key regions of interest are indicated [41].
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Chapter 3.                        

Image processing with   

deep learning 
 

 

 

 

3.1. Introduction to deep learning 

Deep learning (DL) is a subfield of machine learning that has gained an 

explosive popularity and growth in recent years. The algorithms employed in deep 

learning are artificial neural networks (ANN), whose design is based on how the human 

brain learns and recognizes information. 

 Some of the main reasons on the popularity of deep learning are the high quality 

on the results offered compared to other ML algorithms and their capacity to work as 

feature extractors. In most ML systems a previous and meticulous feature extraction 

process is required to get meaningful inputs from the data to feed the algorithms. This is 

not the case for ANN, where they can learn to extract important features from the data 

by themselves as well as to solve the problem handed to them when enough data is 

available [42]. At the same time, even as powerful as they are, ANN will normally 

require larger amounts of data to reach their optimum performance (Fig 3.1). 

 One of the fields that has been greatly impacted by DL is image processing and 

computer vision. Images are a composition of data values with a spatial relation among 

them called pixels (or voxels in the case of 3D). This includes the medical imaging field 

where great contribution has been made.  

 This chapter briefly covers the advances and important milestones in the DL 

field, the main components of ANN, their principles of operation and their application 

to image analysis and to the medical image field. 
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Figure 3.1 Summary graph of the overall differences on performance and data required for classic 

machine learning and deep learning algorithms. Classic machine learning performance scales with data 

but its limited by its power capabilities, determining a maximum possible performance. Deep learning 

may require larger amounts of data to reach high levels of performance, but it is less limited by plateau 

limits compared to classic machine learning algorithms, which allows for creation of extremely 

powerful models once enough data is available [43]. 

3.2. Artificial neural networks 

As previously stated, ANN are based on biological NN. This type of algorithmic 

design was first described in 1943 when the first artificial neuron (AN) based on a basic 

computational model of a biological neuron was proposed [44]. Since then, a lot of 

developments have been done in the evolution of ANN. The current design of the 

majority of AN is based on the perceptron [45]. This first computational model of a 

neuron applied a linear operation to all the inputs to the neuron through several learnable 

weights, plus a learnable bias that will remain independent to the inputs. These weights 

represent the connection and are analogous to the biological synapses. This weighted 

sum is then transformed with some non-linear function (activation function). The 

original perceptron applied a step function to obtain binary outputs, but many others have 

been developed and proposed for different tasks, with different pros and cons. The basic 

structure of the perceptron is presented in Figure 3.2, and Figure 3.3 displays some 

common activation functions employed nowadays. 
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Figure 3.2 Graphic representation of a basic perceptron. The different inputs are each multiplied by a 

weight and summed. The weighted sum then goes through an activation function (step function) to 

produce the output [46]. 

 

 

Figure 3.3 Examples of activation functions used in artificial neural networks. Sigmoid is usually 

employed in the final layer to produce an output between 0 and 1 to represent a probability. Tanh is 

similar to sigmoid, but its output range extends to negative values. ReLU and its many variants are 

mostly used in hidden layers [47]. 

 

 The basic artificial neuron can solve simple tasks, but it is insufficient to solve 

complex problems, reaching its limit at solving the XOR logical operation [48], although 

recently it has been proposed that some oscillatory activation functions seem to be 

capable of tackling this limit [49]. To improve performance, multiple neurons are stacked 

together in what is called a “hidden layer” where each neuron generates an output, this 
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are often referred to as fully connected layers (FCL). Additionally, multiple layers can 

be stacked together to generate a full neural network usually known as fully connected 

neural network (FCNN). These are also referred to as multilayer perceptrons (MLP), 

even though their units might not be strictly perceptrons (they may not use the original 

step function as activation) [50]. Figure 3.4 shows a schematic of a fully connected 

neural network. 

 

 

Figure 3.4 Example of a simple artificial neural network. The input layer includes all the inputs, the 

hidden layer takes the input layer and produces the outputs that are given to the output layer. Many 

configurations are possible, with multiple hidden layers that have different number of neurons. Image 

modified [51]. 

 

These ANN are already capable of solving many regression and classification 

tasks, however even though all these algorithms have been around for many decades, 

they did not catch the attention of the scientific community due to many problems. 

Among them shined the problems in defining an efficient way to train these models. 

These changed with the introduction of the backpropagation algorithm [52], a method 

first described in 1972 [53], but implemented efficiently to train ANN in 1987 [54]. This 

algorithm is the foundation of ANN training even today. It works by propagating the 



3.2. Artificial neural networks 

 

 

error from the latest layers backwards throughout the network and assigns a 

corresponding associated error to every learnable weight. However, even with the 

addition of this learning method and other important contributions like more efficient 

activation functions such as ReLU [55], ANN were still difficult to optimize, mainly due 

to the high computational resources they required, and were still not widely employed 

until the 2010s when an exponential growth in computational power was made available 

with the development of cheap and efficient graphical processing units (GPU). This 

historical pattern can be viewed by exploring the number of publications related to the 

field. A search in PubMed (which is focused on biomedical science and technology) with 

the keywords “artificial neural network” shows that until 1990 there are barely any 

publications on the topic. From that point onwards the interest grows at a very slow and 

linear pace. This tendency changes dramatically to an exponential growth around 2017 

and continues today. A graphic of this trend can be viewed in Figure 3.5. 

 

 

Figure 3.5 Number of publications listed in PubMed (https://pubmed.ncbi.nlm.nih.gov/) obtained after 

searching the keywords “artificial neural network”. Before 1990 there was barely any publication 

available. In the following decades an increasing linear tendency is visible, reaching 1000 publications 

in 2017. In the following years (up to 2021) the increase is exponential.  

https://pubmed.ncbi.nlm.nih.gov/
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3.3. Convolutional neural networks 

Convolutional neural networks (CNN) are a specialized type of neural network 

specially designed to process images. The neurons from the visual cortex of the brain 

have a reduced receptive field, meaning that a neuron can only process a certain region 

that is captivated by the eyes [56, 57]. By overlapping the receptive field of several 

neurons the full image can be analyzed by the visual cortex.  

These mechanisms inspired the design of CNN which employ convolutional and 

pooling layers as their most important components. They work differently to typical fully 

connected neural networks. The key concept is that in convolutional layers each neuron 

only has access to a limited number of features to analyze, instead of the full set of input 

features. This allows to learn spatial patterns between features as long as they have a 

spatial relationship between them. The weights in this case are composing a filter that 

scans all the input feature map and is shared among all the neurons in the layer, allowing 

to learn spatial patterns that are independent of the location. Each one of these filters also 

has a number of kernels (or channels) that expand the processing dimension to that of 

the channels of the input (for example, an RGB image will be processed using filters 

with 3 kernels, each for each channel within the input). This operation is most like that 

of classical convolutions where a sliding kernel applies the operations throughout the 

signal. Actually, the convolution layers defined in most CNN apply the cross-correlation 

operation, which is equivalent to a convolution but without flipping the kernel [58]. See 

Figure 3.6 for an example on how convolutional layers work. 

By connecting several convolutional layers, a bigger receptive field can be 

successively reached by deeper neurons. This, in summary, means that the first 

convolutional layers usually learn small and low-level features, while deeper layers will 

be able to learn the aggregated patterns that compose more contextual information within 

the image. This can be expanded more by adding pooling layers. These are simply layers 

that compress the resulting feature maps into smaller ones, making the next 

convolutional layers gain higher receptive fields. The most employed pooling layers are 

the maxpooling layers (which collapses a local region to the maximum value within it), 

however others also exist like average pooling. Maxpooling is the usual choice since it 

allows to capture regions which contained big activations and maintain that level of 

activation when compressing the feature map, while operations like the average could 

dilute high intensity features if the surrounding has low intensities. However, the final 

choice will entirely depend on the objective. Figure 3.7 shows a schematic on how 

pooling layers operate. 
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Figure 3.6 Example of a 2D convolutional layer applied on a 3-channel input. The convolution layer 

consists of 2 filters (w0 and w1) whose 3rd dimension (number of kernels) corresponds to the number 

of the input’s channels. Each of the filters produces one output channel, in this example the filter w0 

and w1 generate the output O first and second channel respectively. Image captured from the demo 

available at https://cs231n.github.io/convolutional-networks/. 

 

 

Figure 3.7 Max and average pooling operations. The pooling operation reduces the number of features 

in the inputs according to the pooling size. Max pooling produces the maximum of the captured values 

within the kernel while average pooling produces their mean [59]. 

 

https://cs231n.github.io/convolutional-networks/


Chapter 3. Image processing with   deep learning 

 

 

50 

The mechanisms of operation described allow convolutional layers to generate 

more abstract and complex features the more the image is compressed along the network. 

CNN demonstrated its potential after the AlexNet convolutional network significantly 

outperformed all the rival algorithms at the annual ImageNet competition in 2012 [60, 

61]. After this, CNN have kept receiving more attention in the image processing 

community, including the medical imaging field. This also encompasses cardiac 

imaging.  

These type of neural networks are useful to solve a diverse number of image 

problems. They can be used for image classification, where usually after the 

convolutional layers the features are passed to a fully connected layer that will use these 

extracted features to infer the classification. A similar design can also be employed to 

tackle regression problems, where the objective might be to obtain a value from the 

image, for example to calculate a specific biomarker value from a medical image.  

An additional key application of CNN is segmentation, which aims to classify 

each pixel within the image in a class. Segmentation is one of the main topics within the 

image processing field, and thus is one of the main applications for which CNN are 

employed. In the case of segmentation, the neural network is a fully convolutional neural 

network (FCN). As the final output is also an image representing the different labels, this 

type of networks normally only employ convolutional and pooling layers, and thus their 

name. Segmentation neural networks have been continuously evolving since the first 

FCN was described [62] and is one of the most employed architecture types in the 

medical imaging community, largely due to the fact that most medical imaging analysis 

involves segmentation in some manner. 

Additionally, more complex CNN can be exploited for harder tasks, including 

image to image translation [63, 64], image enhancing [65, 66], or synthetic image 

generation [67, 68]. It is also important to note that CNN can also be employed to process 

1D data as long as the input variables have some positional relation between them, for 

example in time series data. These are usually treated with recurrent neural networks (a 

type of neural network specialized in temporal analysis) with the famous LSTM (long 

short term memory) [69] or GRU (gate recurrent unit) [70] layers. However, it has been 

demonstrated that 1D convolutional neural networks can be exploited for these tasks as 

well [71, 72]. 

In more recent years a novel type of architecture different from convolutional 

neural networks has emerged as a competitive substitute, showing even state of the art 

results and even surpassing CNN in some tasks. These are the transformers [73], a type 
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of architecture that was originally designed for natural language processing, in whose 

field they have proven to be extremely superior to the previously used recurrent layers. 

The transformer has also been adapted to be used for image tasks. These are generally 

known as vision transformers [74], and they have shown a great capacity at treating 

images, albeit with some limitations, like having more difficulties in implementation 

with large image sizes and tasks related to dense predictions (like segmentations) [75]. 

Overall the transformers base architecture focuses on the use of positional encodings and 

the multi-head attention, a novel way to introduce an efficient global attention 

mechanism [73]. Although in recent years vision transformers have been extensively 

employed and studied as a way to surpass convolutional based architectures, the best 

architectures still employed some kind of hybrid design that incorporate operations 

innate to CNN [75, 76]. Very recently it was demonstrated that CNN could also be 

improved by using some of the features that characterize transformers and that CNN can 

still outperform state of the art vision transformers with the appropriate architecture and 

training designs [75]. 

3.4. Considerations in medical imaging  

The medical imaging processing field is one that has seen great development in 

recent years thanks in part to the growth of ANN, and specially CNN. However, the 

training schedules for DL needs specific considerations that may not be required in 

regular image problems. This section covers some important factors that need special 

attention when applying DL model to medical imaging. 

3.4.1. Signal intensity 

Depending on the image acquisition scanner and protocol the intensity values of 

the signal displayed in the image may vary. Some imaging modalities like Computed 

tomography (CT) employ universal scales (Hounsfield units in the case of CT). 

However, even in this situation different machines may provide slight differences 

depending on the acquisition specifications [77]. This is more evident in the case of MRI 

where every different acquisition protocol and/or machine may provide very different 

signal value ranges.  

Neural networks, like any other ML algorithm perform better when its variable 

inputs are normalized. This applies for the pixel value distributions within the images as 

well. Very different ranges may hurt the algorithm performance by a great margin. 
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Additionally, many initialization schemes assign random values to the learnable 

parameters within certain distributions that are often gravitating around low values close 

to zero [78]. This also means that inputs with low value ranges will probably allow the 

network to learn faster. For these reasons, intensity normalization is required before 

feeding the images to the CNN. There exist numerous intensity normalization methods 

[79]. Their appropriateness will depend on the nature of the images. Some important 

examples are: 

 Min-max normalization: it modifies the range of values within the 

image to the range 0-1. Easy to interpret but is sensitive to outliers. 

Only suitable when working with images that come from the same 

source. 

 Z-score normalization: it modifies the distribution of values within 

the image, so it has a zero mean and one standard deviation. This 

method is robust against outliers but the final range will be less 

interpretable. Suitable when working with images from different 

sources. 

 Clip normalization: these methods clip and set the lower and upper 

values that pass a certain threshold at some specific level. Usually 

defined by some low and high percentile of the distribution. After this 

it is common to apply min-max normalization or Z-score 

normalization. Using min-max normalization in this setting yields a 

range of values between 0 and 1 and provides robustness against 

outliers thanks to the clipping. 

 Histogram equalization: this type of technique is not focused in the 

intensity values themselves, but in the histogram of the image. By 

equalizing the histogram, the result is an improvement in the contrast 

of the image [80]. 

3.4.2. Resolution 

An important feature of medical images is the resolution they present. 

Resolution corresponds to the amount of space that each pixel (or voxel) occupies within 

the real world in every coordinate axis and is defined by the spacing value (distance in 

mm from the center of one pixel/voxel to the adjacent ones for each direction). As 

medical images are normally 2D or 3D they will have either 2 or 3 spacing values. 

Dynamic 4D images also exists, in these cases the fourth spacing value should 
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correspond to the time between images (note that for dynamic images with only one 

plane per frame the third value will correspond to the time axis, as they will be saved as 

3D images). 

 

 

Figure 3.8 Representation of the pixel spacing within a 2D matrix. Different axis may have different 

spacing, usually indicated in mm. The spacing corresponds to the distance in the real world between 

the centers of adjacent pixels/voxels [81]. 

 

Different acquisitions may have different spacing values. This can also impact 

the performance of the algorithms, as they are not being fed with consistent voxel 

information. Additionally, it has also been described that using anisotropic spacing 

usually yield worse results [82], so whenever possible the spatial resolution difference 

along each axis should be as close to zero as possible. For these reason standardizing the 

resolution of the images employed will usually make the CNN perform better. Doing 

this may require resampling the images of the dataset, the resampling should be made 

into a resolution space suited for the images employed and will depend completely on 

the nature of the problem. 
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3.4.3. Matrix size 

The matrix size of the image is also an important factor. Although CNN do not 

strictly need to be designed to work with specific image sizes, from a practical 

perspective, most problems require the images to have a constant one, in classification 

tasks usually the final feature map is fed to a fully connected layer, which require a 

specific dimension, which in turn depends on the original size of the image. Another 

situation is segmentation, where the images are downsampled with pooling operations 

and the final segmentation size is recovered to match that of the original image, this can 

only be done when the input images have a set size. Still, there are advanced layers that 

can be used to transform feature maps or vectors into constant sized vectors [83]. 

Intelligent conditional padding and cropping could also be applied in the case of fully 

convolutional neural networks, so there are still some design methods that can tackle the 

size limitation as well. 

The matrix size of the image along its resolution determines the whole spatial 

field of view (FOV) captured within the image, which is another factor whose variability 

can have an impact in training CNN. As both factors are related, resolution and size 

normalization are done sequentially. First the image is resampled to get the desired 

resolution and then the image is resized without modifying the pixel/voxel resolution. 

This can be achieved with padding or cropping methods. Cropping involves the erasure 

of image borders to reduce its size. Padding involves adding values along the borders to 

increase the size. Padding can be accomplished in several ways, including extending the 

border value, mirror the image border or set a constant value, zero-padding being the 

particular case where the padded values are zero. Padding is a commonly performed 

technique, however it should be used with caution, as very big paddings can lead to worse 

performance [84]. 

Finally, it is also noteworthy that CNN normally requires large amounts of 

memory for training. In this setting image size is a crucial factor in memory management 

and it may limit several things, including the network size (determining its potential 

fitting capabilities) and the batch size (the number of samples used to train the network 

per iteration). Normally bigger networks can solve harder tasks [85] and moderate to big 

batch sizes can improve both performance and training speed [86, 87]. Since 3D medical 

images are pretty common compared to other image domains, they are often large and 

this needs to be meticulously addressed in order to get satisfactory results out of the 

neural networks. 
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When the image size is too big for the hardware available a common approach 

is to use patch-based analysis. This is basically the application of the model to certain 

chunks of the image that can fit in memory and is common for segmentation problems. 

This process, however should be used with caution, as the FOV changes when taking 

only a portion of the image, and it should still keep enough spatial information for the 

CNN to obtain meaningful information. As an example, in short-axis CMRI images, if 

one applies patch-based analysis for some heart-related segmentation task, the patches 

should be big enough to capture as much of the heart region as possible in order to keep 

the most important information. When this is also a limitation, strategies that allow 

overlapping patches can still lead to improved results [82]. Figure 3.9 exemplifies the 

concept of patch-based analysis. 

 

 

Figure 3.9 Example of patch extraction from a whole short-axis CMRI slice. Applying patch-based 

analysis makes use of the extracted patches as inputs for the model, instead of employing the entire 

image. A patch element is defined with a specific size that can extract several sections to use as new 

inputs. The patch size should be big enough to capture important contextual information. In the case of 

short-axis CMRI the patch size should allow to get as much of the heart region as possible [41]. 

3.4.4. Overfitting  

Overfitting is a very well-known problem within machine learning. An 

overfitted model is one that has learned to do the task correctly with the training data, 
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but it is incapable of generalizing well with unseen data [88]. One can relate this to 

memorizing the training data without learning meaningful information. This process is 

normally due to either having a very limited dataset or a model that is so powerful that 

it is capable of modeling even noise within the data and fit it to the objective (or a 

combination of both conditions). 

As DL is a very powerful type of algorithm that employs thousands of hundreds, 

millions or even Billion parameters [89], it suffers from overfitting to a greater degree, 

and it is one of the main issues when training deep neural networks. At the same time, 

medical images are hard to obtain due to them being health-related information, and as 

such they are strictly protected by regulations. This constrain implies that most medical 

imaging dataset are not very big. Under those conditions, it is especially important to 

consider the overfitting problem and take countermeasures. There are several ways to 

address overfitting, these are known as regularization techniques. Some important 

regularization methods that involve the model itself are: 

 L1 and L2 regularization: these methods apply an additional term to 

the loss function during training. The term is a weighted sum of the 

value of the parameters within the model. This will force the parameter 

to get lower values which in turn will reduce the model’s power. This 

penalization may be applied to all or only a part of the model`s 

parameters. L1 applies the penalization on the absolute value of the 

parameters while L2 applies it to the squared values. L1 tends to 

suppress entirely some of the model’s parameters while L2 pushes the 

entirety of parameters to have close to zero values. 

 Activity regularization: activity regularization consists in applying an 

additional term to the loss function. In this case, the term is defined by 

the sum of the neuron’s values (the output of a neural network layer). 

This will enforce a reduction on the activations. This can be applied 

through L1 or L2 methods. However, in neural networks, it makes more 

sense to use L1 since this will suppress entirely some of the activations, 

which will give a more relative importance to the remaining ones and 

thus enforce the network to learn more compact and representative 

features. 

 Early stop: early stop is another classical method to avoid overfitting. 

In this case a small part of the training set is separated for validation 

(validation set). The quality of the model is evaluated on the validation 
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set after each epoch with the validation set and if it starts decreasing 

after some iterations, the training is halted, as this loss in quality is a 

common trait when overfitting start to happen [90, 91]. 

 Max-Norm normalization: this technique consists of applying a 

constraint to the weights associated to every neuron. This is done by 

clipping the weights after each training step if the L2 norm of the vector 

weights exceeds a previously specified value. 

 Batch normalization: batch normalization (BN) [92] normalizes the 

features after each layer using the values of different instances within 

the batches during training. It works similarly to Z-score normalization 

in the sense that it scales the activation features for them to have a zero 

mean and a standard deviation of 1 across instances. BN has some 

additional parameters to enable its application at inference times (where 

only a single instance may be used within the batch). In the case of 

CNN, the normalization happens for each feature channels across all 

available instances. Batch normalization is additionally helpful to 

improve convergence speed. 

 Dropout: dropout is an important method for regularizing neural 

networks. During training, a layer with dropout will “switch off” some 

of its neurons randomly based on an established probability. In practice, 

this makes the training work as a model averager, as only random 

portions work at each step. It can also be applied during inference, 

making the model a system for Bayesian inference [93]. In 

convolutional layers they are rarely employed compared to FCL. This 

is because switching random elements from the feature maps can 

impact the convolution’s ability to extract spatial patterns. To address 

this some other forms of dropout, exist. Dropblock for example applies 

the dropout in chunks within the feature map, thus suppressing entire 

small areas [94]. Another popular method is the spatial dropout which 

applies the dropout randomly to entire feature maps [95]. 

Apart from these, there exist more methods to limit ANN in their learning 

capabilities. Besides these regularization methods, treating the dataset itself in specific 

manners can also help leverage the overfitting problem as described in the following 

sections. 
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3.4.5. Dataset size and variability 

As stated at the beginning of the chapter, one of the advantages of neural 

networks, and more specifically convolutional neural networks, is their incredible 

performance capabilities. However, the counterpart of this is that they require large 

datasets that are a good representative of the problem’s real distribution. 

For training these algorithms it is recommended to employ as much data as 

possible, however this is an important limitation in medical imaging in various senses. 

First, access to the data is hard and legal requirements need to be addressed as they are 

medical information which is strictly confidential and protected by law. Second, even if 

one has access to a certain hospital database, the usual is to solve a very specific problem. 

If the problem involves targeting some specific diseases it is most probable that the final 

data available will be very unbalanced with respect to healthy subjects and/or other 

conditions. Lastly, most images saved in hospitals are not annotated to be employed to 

train machine learning systems. The labeling process (either segmentation, classification, 

or any other kind) will require a clinical expert doing it manually, such task may be hard 

and time consuming, with few people desiring to do this work. 

As explained, there are a lot of difficulties in applying ANN to medical images, 

however some public datasets still exist and access to other data sources is possible 

(although slow) provided that a legal course is taken. In general, the key factors to 

consider would be acquiring a dataset as large as possible and selecting the images 

meticulously so that the distribution of conditions present within them match that of the 

problem to avoid data imbalances. Additionally, these images will need to be labelled by 

experts to ensure quality matching that of knowledgeable clinical experts on the problem. 

When working with image datasets it is also important to consider the possible 

unbalance of categories to predict. The presence of imbalances can potentially lead any 

learning algorithm to be biased towards one of the categories. There are many ways to 

compensate this. Some of them are the use of weighted loss functions that compensate 

on the category’s imbalance, oversampling (increasing the number of cases of the 

underrepresented categories) and undersampling (removing cases from the 

overrepresented categories). Oversampling and undersampling should be used with 

cautions and meticulously, as with undersampling we are effectively removing valuable 

information and with oversampling we could induce overfitting by duplicating cases. In 

the case of oversampling, it is good idea to combine it with data augmentation techniques 

in order to modify the replicated images and help avoid overfitting. 
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3.4.6. Data augmentation 

As one of the main problems in medical imaging is the number of samples 

available, data augmentation plays a key role in the process of training CNN. Data 

augmentation in the image domain encompasses all the methods focused on creating 

artificial image instances to enlarge the dataset.  

Data augmentation is applied in a variety of ways, but the most usual is to apply 

transformations to the images available, including any type of affine transformation 

(which includes translations, rotations, shear and zoom), mirroring the image, adding 

certain types of noise, modifying the contrast, applying elastic deformations, etc. These 

transformations need to be applied in ways that modify the original image enough to 

make it considerable different from the source, but at the same time they should keep 

consistency with the source, especially in the case of medical images where normally the 

tissues and organs imaged have some natural shape that should not be lost in the process 

(for example in short-axis CMRI mirroring would reverse the relative location of the LV 

and RV with respect each other. An example of some transformations applied to short-

axis CMRI can be viewed in Figure 3.10. 

 

 

Figure 3.10 Examples of different image transformations that serve for data augmentation purposes. A 

single transformation may be applied but mixing different transformations will increase the variability 

of the new instances [41]. 
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Besides the referenced imaged transformations, there exists other novel 

techniques to address data augmentation. Generative neural networks are a type of ANN 

that can generate new synthetic data samples based on a previously seen dataset. This 

has been accomplished with great results with variational autoencoders (VAE) [96, 97], 

generative adversarial networks (GAN) [98] and diffusion model [99]. Some works have 

already demonstrated the potential of synthetic medical images to improve data 

augmentation [100]. 
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Chapter 4.                           

Materials 
 

 

 

 

4.1. Dataset 

For the experiments performed on this thesis the data employed consisted on 

short-axis cine CMRI sequences. The images were acquired from the Unidad de 

Resonancia Magnética (ASCIRES) del Hospital Clínic Universitari de València 

(València, Spain). All the patient’s whose images were used had previously given written 

consent to be used for the studies, which was approved by the hospital’s Medical Ethical 

Committee. All images were anonymized while acquiring them from the hospital’s 

PACS system. Images were in DICOM format, with .IMA extension. This is a special 

type of DICOM extension employed in some MRI scanners from the SIEMENS brand. 

The images are comprised of 4D stack of cine short-axis acquisitions with the 

image FOV focused on the LV and RV. The dataset comprised a total of 399 image 

volumes from 399 different subjects. The demographic distribution was of 272 men and 

127 women, with age 64.51 ± 12.35 years (63.28 ± 11.97 years for men, 67.42 ± 12.75 

years for women) (mean ± standard deviation). There were both healthy cases and 

cardiac patients. A diversity of pathologies was found within the dataset, the most 

predominant being myocardial fibrosis, necrosis, ischemia and LV systolic dysfunction 

(ejection fraction lower than normal and/or regional wall motion abnormalities). Healthy 

patients were defined as those without risk factors or previous conditions, normal ECG 

readings and normal cardiac MRI parameters. The pathology distribution of the patients 

is summarized in table 4.1. 
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Table 4.1 Diagnostic classification for all cases available in the dataset collected. 

Categories Number of 

cases 

Normal cases, no pathology 48 

Presence of necrosis 14 

Presence of fibrosis 12 

Presence of ischemia 10 

Functional affection of LV (ejection fraction lower than normal and/or affected 

segmental contractility) 

23 

Functional affection of RV (ejection fraction lower than normal and/or affected 

segmental contractility) 

2 

Functional affection of LV and RV 137 

Functional affection of LV and presence of fibrosis/necrosis/ischemia 45 

Functional affection of RV and presence of fibrosis/necrosis/ischemia 4 

Functional affection of RV and LV and presence of fibrosis/necrosis/ischemia 95 

Other cases that do not fall in any other category 9 

 

Imaging was performed in every case under breath-hold conditions using a 1.5T 

MRI scanner (Sonata Magnetom, Siemens, Erlangen, Germany). Image characteristics 

were obtained by analyzing the files metadata contained on the DICOM headers. The 

general specifications of the acquisition protocol were: flip angle: between 49 and 58 

degrees (with the vast majority having 58°); repetition time: between 51.66 and 56.80 

ms; echo time: between 1.25 to 1.34 (with the vast majority being at 1.25). The image 

in-plane resolution varied among the cases, ranging from 0.57 × 0.57 mm2 to 1.09 × 1.09 

mm2. The slice resolution was constant with a slice thickness of 7 mm and a spacing 

between slices of 3 mm. Image matrix sizes varied from 144 × 144 to 256 × 256, being 

the latter the most common size. The number of slices was variable as well, with a range 

from 8 to 14.  The number of temporal frames and the spatial resolution in each sequence 

was not constant in the dataset, the vast majority had 35 frames (366 cases, 92% of the 

dataset) with a constant temporal resolution of 0.023 s. The remaining cases had a 

number of frames between 14 to 25 frames with a temporal resolution between 0.062 

and 0.078 depending on the case. 
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The images had been labeled by 2 expert cardiologists with more than 15 years 

of experience. The labels consisted of painted contours of the RV (endocardium, leaving 

inside the blood pool chamber) and LV (endocardium and epicardium, leaving inside 

both the myocardium and the blood pool chamber) on the ED frames. For the ES frames 

label information differed in that the epicardium contour was not included, leaving only 

the LV and RV blood pool chambers. These contours represent the segmentation 

boundaries of the different regions of interest at both maximum relaxation and 

contraction and were generated semi-automatically with the help of the software 

Syngo.via version SYNGO MR A30 4VA30A from SIEMENS (https://www.siemens-

healthineers.com/es/magnetic-resonance-imaging/advanced-imaging-

applications/syngo-via). The segmentation’s information was coded within the files as 

DICOM overlays, which could be accessed through the processing of the “overlay data” 

header (header value |6000, 3000|). After thoroughly exploring the dataset, it was found 

that 2 out of the 399 did not have segmentation data for the ES. These cases were still 

employed in the experiments described in chapter 5, but were discarded for the ones in 

chapter 6 and 7. The removed cases corresponded to the category of “Functional 

affection of LV and RV” from the men’s group. A sample view of both ES and ED with 

the available segmentation of one case from the dataset is presented in Figure 4.1. 

https://www.siemens-healthineers.com/es/magnetic-resonance-imaging/advanced-imaging-applications/syngo-via
https://www.siemens-healthineers.com/es/magnetic-resonance-imaging/advanced-imaging-applications/syngo-via
https://www.siemens-healthineers.com/es/magnetic-resonance-imaging/advanced-imaging-applications/syngo-via
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Figure 4.1 Case example of the used dataset. A single mid regional slice from both the end-diastole 

and end-systole is presented. Above, the original images, below the segmentations available overlapped 

with the images. For the End-systolic frames no myocardium label was available. Segmentation colors: 

red for right ventricle cavity, yellow for left ventricle myocardium and blue for left ventricle cavity. 

4.2. Hardware 

4.2.1. Context 

Before describing the hardware employed, it is important to understand the 

industrial and technological context under which most ANN, and more specifically CNN 

fall. Specialized hardware is required to train convolutional neural networks. More 

concretely, they require one or several powerful GPUs to train them in reasonable time 

frames [101, 102]. The GPU is the key component to train an ANN, as they are specially 

designed to parallelize multiple basic computations, making them suitable to train these 

incredibly big models. The remaining components within the computer can have a 
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significant impact on the general training performance too, creating bottlenecks to the 

GPU calculations, so a decent amount of RAM memory and a powerful enough CPU are 

recommended as well.  

Additionally, nowadays most of DL libraries for development only function 

properly with the GPU brands from Nvidia Corporation (Santa Clara, California, U.S) 

so most developments are limited to using this brand. Nvidia offers different GPU series, 

mainly the GeForce series, the Quadro series and the Tesla series. The GeForce series 

are more focused on the gaming industry, with the best price/quality relation. The Quadro 

series was developed for the 3D design industry and are usually more stable than the 

GeForce, but are considerably more expensive, mainly due to a more dedicated support 

in their driver’s software, although their technical hardware specifications do not differ 

significantly from the GeForce series. Finally, the Tesla series are the most powerful and 

expensive, these GPUs are designed for high-computing scientific problems, being deep 

learning one of the main fields they are used for. All these series can be efficiently 

employed for deep learning acceleration. 

In recent years Google LLC (1600 Amphitheatre Parkway, Mountain View, 

California, U.S.) has also developed the so called TPUs (tensor processing units), which 

are a very specialized type of hardware similar to the GPUs but originally designed to 

work with deep leaning. Up to today these machines are normally only available for 

cloud computing. 

With respect to DL software packages, the two currently dominant frameworks 

are Google’s own development library TensorFlow (www.tensorflow.org) and Pytorch 

(https://pytorch.org/), the latter being developed and maintained by Meta's AI Research 

lab (Astor Place, New York City, New York, US). Both are mainly employed in Python 

programming language, although they are available in others like C++, JAVA or R. 

4.2.2. Experimental equipment 

For all the experiments the same computer was employed. The most important 

components of the computer are: 

 CPU: Intel® Core™ i9-9900K (3.6 GHZ). Full specifications at: 

https://www.intel.es/content/www/es/es/products/sku/186605/intel-

core-i99900k-processor-16m-cache-up-to-5-00-

ghz/specifications.html. 

 RAM: 64 GB of DDRM4 

file:///C:/Users/User/Desktop/phd/definitiva/www.tensorflow.org
https://pytorch.org/
https://www.intel.es/content/www/es/es/products/sku/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz/specifications.html
https://www.intel.es/content/www/es/es/products/sku/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz/specifications.html
https://www.intel.es/content/www/es/es/products/sku/186605/intel-core-i99900k-processor-16m-cache-up-to-5-00-ghz/specifications.html
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 Operating system: Windows 10 Pro 

 GPU: Nvidia GeForce RTX 2080 Ti (11 GB of VRAM GDDR6). Full 

specifications at: https://www.techpowerup.com/gpu-specs/geforce-

rtx-2080-ti.c3305. 

As stated in the previous section the GPU is the most important component, in 

this case the model RTX 2080 Ti has both great computational power and a more than 

decent amount of memory. This GPU was one of the best models before the 3000 series 

was launched in 2020. However, it is still limited by the amount of memory offered, so 

very big models, or big images can still be problematic if one desired to employ 

moderate-to-big batch sizes. In the following chapters the training setting’s limitations 

described came specifically from this feature. 

4.3. Software 

4.3.1. General setting 

The computer’s operating system installed was Windows 10 Pro. For all the 

experiments the programming language employed was Python 3.7.6. The package 

manager employed was conda (https://anaconda.org/anaconda/conda), installed 

through the anaconda distributions (https://www.anaconda.com/). The choice for 

anaconda was due to easier installation of some required software for GPU-acceleration. 

Employing conda avoids manual installation of several software components as the 

manager can install those for the user. For scripting the IDE PyCharm 

(https://www.jetbrains.com/es-es/pycharm/) was chosen due to its easy use, variety of 

useful tool and flexibility.  

Regarding the medical image file formats, the original source was all in DICOM 

with .IMA extension. All the images and their respective segmentations were converted 

to the NIfTI format (https://nifti.nimh.nih.gov/) which employs the .nii extension. The 

conversion was done to make the whole processing and management of the images 

easier, as in DICOM every slice within the acquisition is saved in a different file, while 

in NIfTI all the data is saved in a single file. 

  

https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
https://anaconda.org/anaconda/conda
https://www.anaconda.com/
https://www.jetbrains.com/es-es/pycharm/
https://nifti.nimh.nih.gov/
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4.3.2. Deep learning software 

Design, implementation, training and inference processes with ANN were 

programmed using TensorFlow 2.1 (www.tensorflow.org, Google Brain, Mountain 

View, CA) using its Keras API. It should be mentioned that at the time of these 

experiments there existed two TensorFlow libraries, one to work with CPU and another 

for GPU-acceleration (TensorFlow-GPU). The latter one was used. 

To enable the use of the TensorFlow library additional software requires 

installation. The software versions required depends on the library version and the GPU 

model. The package manager conda is capable of installing these packages 

automatically. The two most important ones are CUDA and cuDNN, both developed and 

maintained by Nvidia. CUDA (https://developer.nvidia.com/cuda-zone) is a software 

toolkit for GPU computations that allow to interface with the GPU hardware, on the 

other hand cuDNN (https://developer.nvidia.com/cudnn) is a library developed by 

Nvidia that includes several required functions for the use of GPU-accelerated ANN. 

4.3.3. Miscellaneous 

Besides all the software already described, other software and Python libraries 

were used during this thesis. 

The main Python libraries used to preprocess, organize and visualize the data 

were: 

 Numpy (https://numpy.org/): library used to manage and operate the 

image and data arrays. 

 Sci-kit image (https://scikit-image.org/): library with several image 

processing functions. Used for several preprocessing and image 

transformation steps. 

 Pydicom (https://pydicom.github.io/): library used to manage DICOM 

files, used for metadata analysis and to extract the overlayed 

segmentations. 

 SimpleITK (https://simpleitk.org/): library used for general medical 

image managing and processing. Used for managing and converting the 

images from DICOM to NIfTI and for resampling operations. 

 Matplotlib (https://matplotlib.org/): library employed for quick 

visualization of data within Python. Used for image inspection within 

the python environment. 

file:///C:/Users/User/Desktop/phd/definitiva/www.tensorflow.org
https://developer.nvidia.com/cuda-zone
https://developer.nvidia.com/cudnn
https://numpy.org/
https://scikit-image.org/
https://pydicom.github.io/
https://simpleitk.org/
https://matplotlib.org/
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Besides the Python related software, for visualization of the medical images the 

visualizer software ITK-snap (http://www.itksnap.org/pmwiki/pmwiki.php) was chosen. 

This software allows to use several medical image formats, including DICOM and NIfTI. 

This visualizer was used to explore the full 4D CMRI and their segmentations. A view 

example of its interface with a short-axis CMRI along its segmentation is presented in 

Figure 4.2. 

 

 

Figure 4.2 Visualization of short-axis CMRI acquisition within ITK-snap visualizer. The visualizer 

allows to inspect voxel values, navigate through the different temporal frames, and overlap the 

segmentation data among other available functions. 

 

http://www.itksnap.org/pmwiki/pmwiki.php
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Chapter 5.                 

Automatic semantic 

segmentation 
 

 

 

This chapter is based on a conference paper published in the context of this 

thesis [124]. The paper is available at: https://doi.org/10.1109/BIBE50027.2020.00177. 

5.1. Introduction and motivation 

Semantic segmentation is the task of classifying every pixel (or voxel) within 

an image into a specific category. This is a usual step in most medical image processing 

problems. Segmentation allows for the delimitation of specific regions of interest that 

can then be analyzed to generate radiological biomarkers. As such, it is a very important 

task and also the main bottleneck for a complete radiographic analysis due to the high 

time it can take to do manually. 

In the context of short-axis cine CMRI it is necessary to segment various regions 

of the heart in order to characterize it. Additionally, the segmentation in these 

acquisitions must be obtained at least at two time frames: end-diastole (ED) and end-

systole (ES). This is required in order to derive some of the major cardiac function 

biomarkers (see chapter 2, section 2.2.2) from which the ejection fraction is probably the 

most informative one. Obtaining the LV ejection fraction requires to measure the volume 

occupied by the LV blood pool chamber in both ED and ES. 

Besides the Ejection fraction there are other parameters of interest, which in turn 

may require specific segmented regions at a specific contraction step or the full 

segmentation at both ES and ED. In general, in the clinical practice the main biomarkers 

only require the segmentation of the LV and RV inner blood pool at both ES and ED and 

the LV myocardium at ED. However, it should be mentioned that depending on the 

patient’s condition the diagnosis may require additional segmentations. As a 

representative example, it is common to label the papillary muscles alongside the blood 

https://doi.org/10.1109/BIBE50027.2020.00177
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pool chamber as just one label, however in order to be more accurate the segmentation 

would require to separate these in two different labels. This is also the case if the 

diagnosis is focused in the papillary muscles as well. Figure 5.1 shows an example of 

both the usual segmentation for short-axis CMRI analysis and how it should be in order 

to obtain a full and more accurate analysis. 

 

 

Figure 5.1 Example of typical segmentation and full segmentation on the main regions of interest in a 

short-axis CMRI slice. The typical approach used in research and on the clinical context is to only 

segment the ventricle’s cavities (including the papillary muscles) and the left ventricle myocardium. In 

the full segmentation approach, the papillary muscles of the left ventricle are segmented as a different 

label and the right ventricle myocardium is also segmented [41]. 

 

This chapter covers the experiments done in this problem setting. Since both ES 

and ED are very similar in the image plane and only the ED had all the three main 

region’s manual segmentations, the experiments mainly focused on the ED frames. The 

experiments involved designing different CNN architectures and see their performance 

at solving this task. More specifically the task was to check how well a new 

implementation design of the famous 2D U-net [103] could compare against a classical 

3D version of it. Additionally, the same CNN that had been trained only on ED frames 

were tested against ES frames in order to check how well they captured the inner abstract 

information within the images. 
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5.2. Related work and state of the art 

5.2.1. Convolutional neural networks for semantic segmentation 

Semantic segmentation is one of the main tasks for which CNN are employed. 

As such there has been many works describing different architectures to tackle 

segmentation problems. Within them, probably the most influential one has been the U-

net [103], especially in the biomedical imaging sector. Noteworthy at the moment of 

writing this thesis the original paper has more than 48000 citations (provided by google 

scholar metrics).  

It is important to mention that there exist other architectures besides the U-net, 

some examples are the original FCN [62], Dilatednets [104], the different DeepLab 

versions (1, 2, 3 and 3+) [105] or the Mask-R-CNN [106] to mention some. All these 

different CNN are based on different paradigms but all of them have demonstrated to be 

capable of solving segmentation tasks. FCN for example was the first proposed CNN to 

tackle the problem of segmentation [62], being the first one, it has been largely surpassed 

by more advanced architectures. Dilatednet is a type of architecture that makes extensive 

use of dilated convolutions to improve context aggregation in each consecutive layer 

[104]. The Deeplab architectures are an improvement of the FCN and among their main 

features is the use of dilated convolutions and multiscale processing [105]. On the other 

hand, Mask-R-CNN is a special type of segmentation CNN where it employs a previous 

object detection architecture, the R-CNN [106] and then applies the segmentation layers 

on the detected objects. Mask-R-CNN actually tackles the problem of instance 

segmentation where the objective is not only to segment different objects, but also to 

differentiate between different examples of the same object category [107]. This allows 

to distinguish different objects that pertain to the same category that may overlap within 

the image. This type of problem is not that common within the medical image field 

compared to other image-related fields (i.e vehicle segmentation on traffic images or 

pedestrian instance segmentation). 

As previously stated the original U-net has become the most popular fully 

convolutional neural network for medical imaging segmentation. The great majority of 

segmentation problems are tackled with this architecture or with variations of it, 

however, the architecture’s core remains in all these variations. All U-net-like 

architectures are based on an encoder-decoder architecture. In the encoder the image 

passes through different convolution layers and pooling layers to reduce the feature maps 
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size and increase the field of view. After reaching the bottleneck, the feature maps are 

upsampled, normally by means of transposed convolution layers (also called up-

convolutions) [108] followed by more convolutional layers. The U-net also includes 

skip-connections that passes the information from layers of the encoder to the layers in 

the decoder, allowing to recover information that could have been lost. Figure 5.2 shows 

a schematic of the basic U-net design. 

 

 

Figure 5.2 Schematic of the general architecture of the U-net. In the first part the input is passed 

thorough different convolutional and pooling layers until reaching the lower bottleneck. Then the 

input’s size is recovered employing up-convolution operations, several convolutional layers are also 

applied during this process. Additionally, skip connections pass feature maps from the downsampling 

path to the upsampling path to recover spatial information that could have been lost. The skip 

connections are usually applied via concatenation, but other operation like summation can also be 

applied. 

 

During the years many variations of the U-net that improved its performance 

have been described. Some notorious ones are: the 3D U-net [109] which uses the same 

idea but making use of 3D convolutional layers; the V-net [110] whose most important 

changes were introducing the use of residual functions [111] in each convolutional layer 

and the addition of strided convolutions instead of pooling operations; attention U-net 

[112] which makes use of attention modules that help the network focus on the regions 
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of interest [113, 114]. These are only some of the many variations of the U-net that exist. 

However, a recent study [82] demonstrated that overall the original U-net architecture 

with some simple changes, which conforms the nn-Unet (no new Unet), can in fact 

outperform most complex versions of it and other segmentation architectures in a great 

number of medical imaging segmentation problems. This study also focused its attention 

in how a good preprocessing of the medical images is a key factor at determining the 

quality of the results and the authors designed an automated pipeline that applied this 

preprocessing based on general rules. They additionally gave importance to the use of 

3D convolutions when processing 3D images and the use of patch-based analysis. This 

is in fact an important milestone in U-net research, as even though some of their 

proclaims were well known to improve performance (i.e., intensity normalization 

schemes, sufficient field of view, standardized resolution, etc.), they effectively 

demonstrated them employing a simple version of the U-net (3D or 2D) in very different 

medical image modalities and segmentation tasks. 

5.2.2.  Previous research in short-axis cine CMRI segmentation 

There have been many works involving the use of CNN for short-axis cine 

CMRI segmentation in recent years. There are some works which specifically focused 

on a certain tissue to segment, while others target the usual three key regions: LV and 

RV cavities and LV myocardium. In general, the LV cavity has presented the higher 

quality scores in the majority of works, while the LV myocardium is usually the region 

with worst quality results. Additionally, ED frames seem to obtain better results 

compared to ES, except for the myocardium which in some cases has the quality 

tendency reversed. The explanation for these is easy, first the LV has the more stable 

shape, being it a round element, and second in the ED the LV and RV are bigger and 

present a less deformed shape, so they are probably easier to correctly segment by CNN, 

this also applies for the LV myocardium, whose space within the image plane is bigger 

in ES relative to the LV cavity compared to ED, thus making sense that better results are 

obtained in ES for this region. 

  In order to apply segmentation neural networks to this task the usual approach 

is to train a neural network for the ED segmentation and another one for the ES 

segmentation, however exceptions to this methodology exists. It should also be 

considered that different works have measured their algorithm’s performance with 

different metrics. These include derived volume estimations, relative volume errors and 

segmentation overlap quality scores. However, most of the works use the Dice 
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coefficient (DC) [115] to measure the segmentation overlap quality, being it a typical 

quality measure in medical image segmentation problems. 

In the work of [84] the authors tested the performance of a basic U-net 

architecture under different training configurations targeting only the LV in both systole 

and diastole in 2D images. They tried various pre-processing methods like intensity 

normalization on the images, applying an initial region of interest (ROI) and zero-

padding. Data augmentation was also applied to test its benefits. They obtained very 

accurate results with DC around 0.95 for both systole and diastole. Their major 

conclusions were that the use of weighted loss functions was necessary to obtain high-

quality results, that using data augmentation and applying intensity normalization allows 

for better segmentations and that an excessive zero-padding worsens the network 

performance. 

Another work aimed to segment the LV and RV cavities and the LV 

endocardium using a novel neural network which they named Rianet [116]. This network 

was a typical U-net that incorporated specialized attention blocks. The attention blocks 

incorporated only information of the higher and lower resolution in the contracting path, 

and the result was then passed through the skip connection. This was a different approach 

to the original attention mechanism where the attention map was produced by 

incorporating both information from the contracting and expanding paths. This 

architecture consisted of two sub-network that followed the described structure. The first 

one was trained to detect the region of interest within the image and then crop it. Then, 

the cropped image was again used as input for the second network to obtain the final 

segmentation. They obtained average DC of 0.94 for the LV cavity, 0.92 for the RV 

cavity and 0.91 for the LV myocardium. 

An uncommon and interesting approach was taken in [117]. In this work the 

authors implemented a U-net with recurrent layers to segment the LV cavity. Recurrent 

neural networks (RNN) are well known for time series analysis. The most employed 

layers in RNN are the LSTM [69] and the GRU [70]. These have been described and 

extensively employed to process time-related series. In the referenced work they use a 

GRU layer at the bottleneck of the U-net. In this context the function of the recurrent 

layer was not to find temporal relationships, but spatial relationships that were correlated 

between adjacent slices in the short axis volume, propagating the information throughout 

all the slices for segmenting the whole stack. They reported DC results of 0.90 and 0.93 

for two different datasets. 
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The nn-Unet was also employed in the ACDC challenge dataset [118] 

(https://acdc.creatis.insa-lyon.fr/description/index.html), whose aim is to segment the 

main cardiac regions in short-axis cine CMRI. The dataset includes a total of 100 cases 

for training and 50 for the testing. The dataset, although relatively small is varied, with 

2 different scanner acquisitions (of 1.5 and 3T both from Siemens brand), resolutions 

varying from 1.37 to 1.68 mm2/pixel, slice thickness of either 5 or 8 mm, and a number 

of frames per acquisition ranging from 28 to 40. The full details are in the challenge’s 

website. At the moment of writing this thesis the nnU-net has reported the highest score 

on the 50 evaluated cases, with DC of: LV of 0.967 (ED) and 0.928 (ES), RV of 0.946 

(ED) and 0.904 (ES), myocardium of 0.896 (ED) and 0.919 (ES). These results had a 

considerable quality and it should be kept in mind that the nn-Unet uses an automatic 

pipeline to determine its best training configuration based on a relatively basic U-net 

architecture. 

All the previous works described were done employing specific datasets, 

however more recent works have also been done in order to apply segmentation with 

CNN with different datasets coming from different centers and machine sources in order 

to solve the task in a more general setting that could be extended to any image acquisition 

source.  

In the work described in [119] they employed a 2D U-net and trained it in three 

different settings: with images from the same center and same manufacturer scanner, 

with images from different centers but from the same manufacturer machine (multicenter 

setting) and with images from different centers and different manufacturers (multivendor 

and multicenter setting). To evaluate the performance, they tested each trained U-net on 

a dataset coming from a different vendor and center than those used for training. In this 

case the target was the endocardium and epicardium contours of the LV. They showed 

that when employing more variable data that came from different settings the 

segmentations improved. The network trained with a multivendor and multicenter setting 

achieved the best results with average DC of 0.88, 0.95 and 0.93 for the apical, mid and 

basal regions of the endocardium respectively, and 0.91, 0.96 and 0.94 for the same 

region in the epicardium. All the data underwent a preprocessing that include intensity 

normalization to set all intensity values within the same range, image cropping in order 

to ensure that only the central region remained, and resampling the images to a fixed 

resolution of 2×2 mm and a fixed image size of 128×128. This study furtherly 

demonstrated that including data from different sources could make a network for 

segmentation more generalizable to other acquisition sources. 

https://acdc.creatis.insa-lyon.fr/description/index.html
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In another work [120] the researchers proposed a data normalization pipeline 

that incorporated data augmentation to train a 2D U-net with a large dataset coming from 

a single vendor and center and then tested it with another dataset that came from different 

vendors and centers. The pipeline included resampling the image xy plane to a specific 

resolution of 1.25 × 1.25 mm without modifying the slice thickness. Intensity 

normalization was applied to that all the images so they had a mean intensity of 0 and a 

standard deviation of 1 (Z-score normalization). The data augmentation applied 

incorporated rotations, flipping operations and zooming effects to artificially increase 

the heart size. Last, all images were cropped to set the size to a constant range of 256 × 

256 pixels. The cropping operation was randomly applied during training but for the test 

set they applied the crop only in the central region where the heart is usually present 

within the images. Employing this pipeline to standardize the training resulted in a 

network that reached average DC around 0.9 for the LV cavity, 0.82 for the LV 

myocardium and 0.82 for the RV cavity. This showed that standardization on a single 

center and source machine dataset could result in an efficient neural network for 

segmentation in datasets coming from different sources, although the quality still falls 

short when compared to the results obtained when the network is only applied to the 

same source machine it was trained on or when multicenter and multivendor training sets 

are employed. 

It is clear that the majority of segmentation works focus their target in the LV 

and sometimes in the RV and LV myocardium, however there are other regions that 

might be of interest, mainly the RV myocardium and the papillary muscles. Even with 

the lack of works targeting these regions there exist some research addressing the 

importance of the papillary muscles in certain pathologies [121, 122]. Convolutional 

neural networks have been applied to segment these muscles as well, but to our 

knowledge only in one work [123]. In this work they achieved a mean DC of 0.72, 0,79 

and 0.82 for different cardiac pathologies. Overall there is a considerable lack of work 

on this specific problem.  

5.3. Material and Methods 

5.3.1. Data  

For the experiments the ED frames of the dataset were employed for training the 

models and both the ED and ES frames were used for testing. From the 399 available 

images, 99 (25%) were used for testing and the remaining 300 were used for training. 
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The 99 cases of the test set were both from the same acquisitions for the ED and ES 

evaluation, however only 98 cases were used for the ES due to missing labels in one 

case. Additionally, for training the 300 remaining cases were split in training (260 cases, 

65%) and validation sets (40 cases, 10%). The splitting also considered the disease 

distribution, so every dataset had roughly the same proportion of categories. All the 

splitting was done randomly. 

All the images employed were preprocessed before the experiments. The images 

were first resampled using bi-linear interpolation to an in-plane resolution to 1×1 mm 

and the image size was set to a constant of 176×176 pixels. For the image resizing 

cropping and zero-padding the borders was applied when necessary in order to get the 

desired size. The third axis was left untouched in both size and resolution. These 

preprocessing did not affect the presence of the heart within the images, as it was always 

present in the central region of the image plane. The same procedure was applied to the 

labeled images, with the exception of the interpolation technique, which was substituted 

with nearest-neighbor. Intensity normalization was also applied, in this case as all 

acquisitions came from the same scanner a min-max normalization scheme was applied 

to the entire volumetric image. 

Since the original segmentations only included the tissue’s borders, they were 

modified to represent volumetric segmentations. Specifically, for the ED the integer 

values 1, 2 and 3 were assigned to the LV inner chamber, LV myocardium and RV inner 

chamber respectively. For the ES cases used, labels of 1 and 2 were assigned to the LV 

and RV inner chamber. 

5.3.2. Models Architectures  

Two different convolutional neural networks were designed and implemented. 

The two were based on the U-net architecture, one being a classical 3D type and the 

other having a new and novel design. 

 The first one was a 3D U-net that incorporated 3×3×3 convolutions with ReLU 

activation functions and batch normalization (BN) in each layer. The number of 

downsampling and upsampling steps was 4 using maxpooling for downsampling and 

transposed convolutions for the upsampling. Due to the lower resolution in the third axis, 

the downsampling was only applied in the image plane, leaving the third axis size 

constant through the different layers. This 3D U-net used as input image patches of size 

176×176×3, meaning it could process three full slices each time. The final layer used a 
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softmax activation function to produce a total of 4 channels, 1 for the background and 

the remaining three for the different regions. The model had a total of 87.51 million 

parameters, which occupied 1.03 GB of memory space. The architecture is visually 

presented in detail with the specific number of feature channels per layer in Figure 5.3. 

 

 

Figure 5.3 3D U-net architecture employed for the experiments. The architecture is equivalent to a 

vanilla U-net with minor modifications to adapt to the input’s nature, like not applying the pooling 

operations in the 3rd dimension. The final layer uses the softmax activation to produce 4 different 

channels, each corresponding to the three different labels plus the background. 

 

The second architecture is a combination of a 2D U-net with pyramid scene 

parsing modules (PSP) as in the PSPnet [125], which we called PSPU-net. These 

module’s design allows the model to analyze inputs at different scales in parallel to better 

incorporate more contextual information. The PSPU-net was designed to work with 

patches of 3D slices, but all convolution layers were of size 3×3×1. In this way the design 

allows to process the same quantity of information as the 3D U-net but only processes it 

in 2D, effectively making this a 2D model. Every convolution layer is likewise followed 

by ReLU activation functions and batch normalization. The downsampling and 

upsampling layers are the same as in the 3D U-net, only applying the operations in the 

slice plane. The PSP modules are incorporated in the skip connections allowing to 

process each feature map stack at different scales in parallel on top of just downsampling 

them. The PSP module design is as depicted in Figure 5.4. The figure represents the 

modules at the highest level, lower levels have the same overall design but at every lower 
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level the number of paths is reduced, eliminating the highest sampling rate path from the 

previous PSP module. Additionally, the number of filters is duplicated with respect to 

the previous PSP module. As an example, Fig 5.4 represent the 4-path PSP module 

(highest level), the 3-path PSP module of the next level will suppress the ×16 

downsampling path and the remaining paths will have their number of channels 

duplicated. The same pattern is followed in successive modules. 

 

 

Figure 5.4 Overview of the PSP module with 4 paths employed in the PSPU-net used in the 

experiments. The inputs are processed in parallel at different sizes and the concatenated together to 

apply the last convolution layers. Following PSP modules (3, 2 and 1 paths) are equivalent but with the 

elimination of the higher downsampling path from the previous PSP block and doubling the number of 

channels of the retained paths.  

 

An additional difference from the 3D U-net was that the number of feature maps 

throughout all the network is halved compared to the latter. The output is the same as in 

the 3D U-net. These implementation of the proposed PSPU-net had a total of 30.83 

million parameters and occupied 362 MB. The whole PSPU-net architecture employed 

is presented in detail in Figure 5.5. 
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Figure 5.5 Overview of the PSPU-net architecture employed for the experiments. The 2D convolutions 

are implemented as 3D convolutions and the skip connections are characterized by applying the PSP 

modules before passing the feature maps to the upsampling layer. The final layer uses the softmax 

activation to produce 4 different channels, each corresponding to the three different labels plus the 

background.  

5.3.3. Training schedule 

Both, the 3D U-net and PSPU-net described were trained with the same 

configurations. They were trained for 50 epochs employing the training and validations 

datasets. Some testing was done in order to find the best values for the main 

hyperparameters to tune. More specifically the best configurations for both included the 

use of a learning rate of 0.001 with a batch size of 3. The optimizer employed was 

ADAM [126]. We note that these settings are similar to those used in other works for 

similar segmentation tasks [84, 116, 127]. 

The loss function used was the generalized Dice loss (GDL) [128]. This loss 

uses the generalized Dice score (GDS) [129] which assigns a weight based on the relative 

space occupied by each region. However, for this task we assigned specific values to the 

weights: 0.1 for the background and 0.3 for the different tissues. With this, it was 

intended for the networks to give the same importance to each region during the training 

process with the sole exception of the background (whose weight was set to a reasonable 

lower value). 
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Finally, the size of the training dataset was increased with data augmentation 

techniques to help avoid overfitting. The original size of the training dataset was of 2045 

volumes of 3 slices extracted from the 260 full volume, while the validation consisted of 

319 inputs extracted from the 40 full volumes. The extraction was performed by 

obtaining windows of three slices with overlap (step size of 1). The training dataset 

number was increased to a total of 8340 inputs. The additional 6295 inputs were 

generated by randomly selecting the inputs and applying a series of random 

transformations. In the random selection of the input to transform, the same input was 

only allowed to be selected up to 4 times. The transformation applied consisted of a 

random rotation between -30 and 30 degrees, a random zoom factor between 0 and 0.1 

in the image center and a random shear between -20 and 20 degrees. These 

transformations were applied to all the 3 slices of each input in the slice plane, while the 

third axis was left untouched. The final images were automatically cropped to retain the 

original size if the transformation increased it (which could happen with the rotations). 

5.3.4. Segmentation Evaluation 

Two different types of measurement were done in order to evaluate the quality 

of the segmentations in the test set. This was done in both the ES and ED frames. 

The first type of measurement was the level of overlap between the predicted 

segmentations and the manual segmentations. For this the Dice coefficient was employed 

for each different region. Additionally, the global Dice coefficient was also measured in 

order to get an average metric of the whole segmentation as well. 

The second type of evaluation was the direct comparison of volume values 

derived from the automatic and manual segmentations. More specifically the relative 

absolute error was used. These measurements might be more precise in order to check 

the real performance that the models would have in the real world, as these are the final 

metrics that are used for the clinical assessment. 

5.4. Results 

5.4.1. Training performance 

There were some differences in the training of both neural networks. The 3D U-

net took 27 hours to complete the training, while the PSPU-net took 20 hours. Both the 
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training and validation losses were tracked through each epoch, as depicted in Figure 

5.6. It is noticeable that both neural networks seem to reach similar loss values 

throughout all epochs. Additionally, in both cases, the validation loss reaches a limit at 

a very early epoch (epoch 4 out of 50) and stays approximately still during the remaining 

ones. This indicates that even though the training loss keeps decreasing there does not 

seem to be any noticeable overfitting and the optimal generalization status of the models 

was reached very fast. 

 

 

Figure 5.6 Graphic curves of the training and validation losses of the architectures over the entire 

training process (50 epochs). Overall both models had similar loss curves but the PSPU-net seemed to 

have less fluctuation in both the training and validation losses. 

 

There is a noticeable pattern in the loss values. Even if both networks follow the 

same trend, it can be seen that the 3D U-net has bigger fluctuations than the PSPU-net, 

this is seen in both the training and validation losses, as the PSPU-net line tends to be in 

the middle of the 3D U-net fluctuations. This fluctuation difference is not big in absolute 

terms, but it may indicate that the training of the PSPU-net was slightly more stable. 
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5.4.2. Segmentation quality 

Both neural networks were tested against the test set of ED (99 cases) and ES 

(98 cases). The ES testing was applied in order to check how well the neural networks 

could segment the same objects at different contraction steps. Basically, this also allows 

to check how well the models can work when working with images of similar nature but 

with notably different characteristics. The segmentation was evaluated on the entire 

image, meaning that the segmentation had to be reconstructed from the different 

segmented patches before calculating the quality (Figure 5.7 represent this process). The 

segmentation quality was measured using the Dice coefficient, table 5.1 show the results 

of the DC for each region and the average. 

 

 

Figure 5.7 Reconstruction process from segmented patches. For each new image, the 3-slice stacks are 

extracted and passed independently over the neural networks to produce the segmentation on the stacks. 

The final segmented image is recovered by concatenating the stacks.  
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Table 5.1 Dice coefficient measurements on the test set for both ES and ED frames in the two trained 

models. Median and standard deviation of the DC distributions. 

Model and evaluated 

frame 

Whole 

segmentation 

LV     

cavity 

RV     

cavity 

LV 

myocardium 

3D U-net (ED) 0.907±0.028 0.956±0.021 0.904±0.042 0.875±0.039 

PSPU-net (ED) 0.910±0.026 0.955±0.021 0.905±0.036 0.875±0.037 

3D U-net (ES) 0.826±0.060 0.881±0.073 0.781±0.080 - 

PSPU-net (ES) 0.848±0.053 0.896±0.053 0.798±0.070 - 

 

At ED both networks showed similar high quality segmentations. Overall it 

seems that the PSPU-net is slightly superior, with slightly higher median DC and lower 

standard deviations. Still both achieved very satisfactory results with median DC of 0.95 

for the LV cavity, 0.90 for the RV cavity and 0.87 for the myocardium. Figure 5.8 shows 

an example with some segmented slices for the ED. 

 

 

Figure 5.8 Example of obtained segmentation results. Visually, the results for both the 3D U-net and 

the PSPU-net show very similar results to that of the manual segmentations, with slight and mostly 

unappreciable differences. 

 



5.4. Results 

 

 

For the ES test cases the results were more different between the two models. In 

this case the superiority of the PSPU-net is more clear in both the median and standard 

deviation of the DC. In this cases the LV chamber still has a considerably high DC value 

(0.896 and 0.881 for PSPU-net and 3D U-net respectively), but the decrease in the RV 

cavity is more notable (although close, neither reached a median DCS of 0.8).  

The times required for automatically segment each case were on average 0.91 

seconds and 1.11 seconds for the PSPU-net and the 3D U-net respectively employing the 

available hardware. These times include the segmentation of the different patches and 

the posterior reconstruction. These are the average times for segmenting one case each 

time (for each case the batch size at inference was equivalent to the number of patches 

that encompassed the whole volume).  

5.4.3. Volumetric estimation quality 

Besides the segmentation quality it is also important to check the derived 

volume values in order to get a better estimation on the quality of results. The volume 

values are the ones that are used in the end to compute the important biomarkers, so the 

final target is to get a good approximation to the real ones. Table 5.2 show the relative 

absolute error derived from the manual and the automatic segmentations for both the ED 

and ES volumes. 

 

Table 5.2 Relative absolute error distributions obtained by the models in the test sets. The values 

indicate median and standard deviation 

Model (evaluated frame) LV cavity RV cavity LV myocardium 

3D U-net (ED) 0.025±0.032 0.058±0.070 0.048±0.049 

PSPU-net (ED) 0.026±0.033 0.051±0.047 0.039±0.051 

3D U-net (ES) 0.115±0.121 0.258±0.221 - 

PSPU-net (ES) 0.084±0.118 0.234±0.196 - 

 

For the ED the tendency is similar as in the segmentation quality, with slightly 

better results for the PSPU-net, however the differences in this case are more notable. 

Still in both cases the median relative error is very low for all regions, with the highest 

being 0.051 (PSPU-net) and 0.058 (3D U-net) for the RV cavity, followed by the 
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myocardium with 0.039 (PSPU-net) and 0.048 (3D U-net) and with the lower errors 

being those of the LV cavity with values of 0.026 (PSPU-net) and 0.025 (3D U-net). 

In the case of the ES important error values were obtained. In the case of the 3D 

U-net the median absolute relative error resulted in 0.258 and 0.115 for the RV and LV 

cavities respectively. The PSPU-net obtained values of 0.234 and 0.084 for the same 

respective regions. As with the ED but to a greater degree, the PSPU-net resulted with 

notably better results in the derived volume values. 

5.5. Discussion 

The task of segmentation in short-axis CMRI is one of the most extended ones 

for this type of image, mainly because it is the most time-consuming task if performed 

manually or semi-automatically. There have been many works that achieved good 

quality results. By analyzing some of the major works and the results obtained with the 

implemented models some insights can be achieved for this problem. 

We will first address the fact that the results obtained demonstrate that the 

PSPU-net has considerably better performance than a vanilla 3D U-net for short-axis 

cine CMRI segmentation. For images where both models were trained on ED both 

achieved very satisfactory and high-quality results, with slightly better results for the 

PSPU-net. However, when tested against images of similar nature to the training set but 

with different key features in the targeted regions (contracting state against relaxed state) 

the PSPU-net obtained considerably better results than the 3D U-net. This is an indicative 

that the PSP modules are capable of extracting additional abstract information that makes 

the model more robust to altered states of the targeted regions. Additionally, the PSPU-

net’s field of view is limited to 2D, compared to the 3D U-net that can make use of an 

additional axis with more information available. This further proves the previous 

statement, however this conclusion should be taken with caution, being this true for 

short-axis cine CMRI there could be other types of images where the 2D plane does not 

have enough information for the PSPU-net to outperform a 3D U-net. It must be 

considered that the type of images we are employing usually contain enough information 

in each slice to correctly segment it, so a different result could be obtained under different 

image types. Still, it seems clear that the PSP blocks improve the generalization 

capability of the model, so in a situation like the hypothesized one could probably be 

solved when extending the use of PSP modules to 3D. Last, it should be considered that 

in the case of the PSPU-net the errors obtained for the LV cavity in ES were low enough 
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to be of practical use, although the quality would certainly improve if the model had been 

trained to specifically target the ES frames. 

Besides the quality comparison, another important difference is the size of the 

models, the implemented 3D U-net is almost three times bigger than the PSPU-net used, 

which also results in faster training and inference speed and less memory consumption, 

making the PSPU-net described a more efficient one than the 3D U-net. 

Comparing the results obtained to other works there are some important 

findings. A key one is the difficulty in segmenting the different regions. In all previous 

analyzed works [84, 116-120, 123] the best segmentation quality was consistently 

achieved for the LV inner cavity, followed by the RV inner cavity and the myocardium, 

additionally the results tend to be noticeably better in ED frames compared to ES. The 

only exception to this is that for the ES the myocardium tends to have better quality 

results than the RV cavity and at the same time the myocardium also tends to be better 

segmented at ES. We could not test this with our dataset as myocardium segmentations 

in ES were not available, but this tendency is found both in the works described and in 

all the competition results found in the leaderboard of the ACDC challenge 

(https://acdc.creatis.insa-lyon.fr/description/results.html). These findings suggest that 

in order to obtain better segmentations more focus should be given to harder regions. 

This could be achieved by giving bigger weights to harder regions in the loss functions 

employed. This, however, should be tested meticulously, as doing so could easily worsen 

the result of the better segmented regions as well. Training different models to only target 

one region each could also result in better segmentations, since the model will give all 

its attention to a single target. But this would inevitably come at the expense of requiring 

different models for different regions at inference time. 

Another expected finding is that CNN that have been trained to segment a 

specific frame will not perform as well on other frames, we have tested this by comparing 

the results on ES to the ones of the ED where the models were trained on. This was in 

principle expected, as neural networks are known to obtain worse results in images that 

differ from the ones they have been trained on, however it is important to mention it, as 

it is intrinsic to the task. The typical approaches to this are to either use both ES and ED 

frames on the same model or use different models on different frames. Additionally, one 

could also apply data augmentation methods to deform one type of frame in order to 

make it look like another. There are some inconveniences to these methods. On one hand, 

unless we have a very large dataset, mixing the two types of image will probably result 

in worse results than only training against one type of image. On the other hand, requiring 

https://acdc.creatis.insa-lyon.fr/description/results.html
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different models per frame is by itself a handicap. Consider that in the clinical setting 

one would also need to determine which are the ES and ED frames. Solving this via 

segmentation would require to train several models that can predict the segmentation at 

different time points, and then compare the volumes in order to select the correct ones. 

Although this is an approach that has been described [130] it is very impractical due to 

large number of labeled data required in any setting. 

Finally, we would like to discuss the fact that not all works focus on segmenting 

the same regions, but some insights can also be extracted. Overall, the LV inner cavity 

is the most targeted region, which is expected, as the LV ejection fraction is the main 

diagnostic parameter used in to characterize the heart’s contractility state. The RV and 

the myocardium seem to follow in the same degree of importance, however, we note that 

although the myocardium is also targeted at ES in some works, in our case it was only 

measured at ED, suggesting that this measurement is only required at more specific 

scenarios. Indeed, having the myocardium segmented at ED is sufficient to extract the 

ventricle mass and only the ES would be needed if wall thickening wants to be measured. 

We will additionally mention the papillary muscles, as there are works that have address 

this segmentation problem [123], but it is clear that this task is far less extended in the 

research community, probably due to the lower number of performed clinical analysis 

that may require this compared to segmenting other regions. 

5.6. Conclusions 

This chapter covered the introduction of a new type of CNN that combines the 

U-net and PSPnet architectures resulting in the PSPU-net. The results obtained in this 

study indicate that the use of PSP modules can result in better segmentations when using 

2D models even against 3D models. This is true for short-axis CMRI, where the 

implemented PSPU-net have been demonstrated to obtain high quality results and 

outperform a classical 3D U-net for the ED frame, with which they were trained. On top 

of that, the training was slightly more stable for the PSPU-net. 

Additionally, the PSPU-net further outperformed the 3D U-net against ES 

frames that the models had not been trained with. This determines that the incorporated 

PSP modules helped the model learn more global and generalizable features from the 

images that made it more robust against image outliers cases, such as very different heart 

contraction states. 



5.6. Conclusions 

 

 

Overall, it can be concluded that combining PSP modules with U-nets can result 

in more efficient models that can extract more robust features from the images in order 

to obtain high-quality segmentations. This has been proven on short-axis cine CMRI 

images, with results good enough to be employed in the clinical setting, offering minimal 

errors in the volumetric estimations. 
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Chapter 6.            

Automatic biomarker 

estimation and 

explainability 
 

 

 

This chapter is based on a journal paper published in the context of this thesis 

[163]. The document is available at: https://doi.org/10.1016/j.cmpb.2021.106275. 

6.1. Introduction and Motivation 

Besides segmentation, classification and object detection, CNN can also be 

employed for regression problems. In our context, this is the automatic estimation of 

biomarker values from the images. This approach has been applied in the medical image 

field as well. The usual procedure to make use of CAD systems, as described in chapter 

1, is to use an automatic system first to detect/segment the region from which the 

biomarkers will then be derived. In the case of short-axis cine CMRI these are mostly 

volume values and metrics derived from them. However, training a model to directly 

target the automatic computation of these biomarkers without segmenting a region can 

suppress some steps in the usual pipeline employed in most CAD systems. This allows 

for the CAD to directly offer the biomarkers without needing to obtain a segmentation 

nor applying post-processing for the biomarker estimation. 

The regression task in the clinical context may have and additional benefit. 

Although manual segmentation is required to train a model for segmentation, in the case 

of regression one would only need the previously measured biomarkers. Medical images 

with segmentation dataset are not common within healthcare systems, however, there 

are plenty of recorded measured values available [131]. Furthermore, even if some kind 

of ROI was manually measured in order to obtain the desired value, it is not that usual 

https://doi.org/10.1016/j.cmpb.2021.106275


Chapter 6. Automatic biomarker estimation and explainability 

 

 

92 

to save these ROIs as usable information routinely, making this type of data scarcer. This 

is also true in CMRI in general, and makes directly targeting the biomarker values 

through regression an attractive approach to employ CNN for medical image analysis. 

This, however has a very important negative point. A CAD system that only 

produces the final desired measurements is difficult to trust in a context as delicate as 

medical diagnosis. Even when a specialist only sees the biomarkers values measured by 

a radiologist, they are trustful because they were generated by another clinical expert that 

knows the actual procedure to make measurements. In the case AI in general (and more 

particularly in the deep learning field) the models are often viewed as “black boxes” that 

are complex enough to find patterns within the data in order to produce their estimations, 

even if we cannot understand the inner process by which a specific model predicted some 

result. Black boxes are certainly undesirable in the medical context, as important 

diagnostic and treatment decisions need justification. In order to address this situation 

there is a whole branch of research that focuses on trying to understand the mechanism 

by which these models reach their predictions. This is called “Explainable AI” (XAI), or 

alternatively “Interpretable AI” and it has produced some notable results, but it’s still a 

relatively new field and sill a lot of ongoing research is being done in the field. 

More specifically XAI involves two different sub-problems: explainability and 

interpretability. These two concepts are often used interchangeably but are not exactly 

the same. Interpretability can be defined as the degree to which humans can understand 

the cause of a result or a decision, which directly involves understanding how all the 

model’s parameters affect the inputs [132]. Explainability, on the other hand, refers to 

the capacity to understand how a model operates in order to obtain its predictions (its 

overall inner mechanism of operation with the input features). These two concepts can 

overlap some times, but to put it with a simple example we can view that a decision tree 

or linear regression are both highly interpretable and explainable models, as we can 

easily describe how the algorithm operates and also know exactly how an input is 

affected and predict beforehand looking at the model the exact result an input will 

produce. Neural networks, with their great complexity have very low interpretability (the 

smaller CNN usually having in the order of millions of parameters), although 

explainability can still be achieved with the correct design and techniques.  

Segmentation neural networks, although still having the same issues, generate a 

segmentation of the region used to compute the biomarkers, so for the experts, 

understanding that the final biomarker was obtained from a region they can check is 

sufficient to be sure that the results are reliable. In this sense, although a segmentation 



6.2. Related work and state of the art 

 

 

model might not be interpretable nor explainable, the final result by itself can explain 

from where the final computed biomarkers come from, which are the ones actually used 

for the diagnosis. With this in mind, this chapter covers the design and implementation 

of an explainable CNN that is trained only with LV volumes at ED to directly estimate 

them from the ED frames, but simultaneously, at inference time, its design offers 

explainability by producing an indirect segmentation of the region it based its 

calculations from. To produce the segmentation from a regression model, weak-

supervised learning techniques were studied and employed. Weak-supervision is another 

important field within AI that tries to predict additional information from much more 

simple labels. The proposed approach mixes the concepts of weak-supervision and 

explainability, offering a way to train a CNN using only the biomarker value to obtain 

the segmentation of the target region. With this, two different objectives can be 

established regarding the LV in short-axis cine CMRI: producing high-quality 

explainable regression models, and training segmentation models without the need of 

manual segmentation labels, requiring only the final measurements for training. 

6.2. Related work and state of the art 

6.2.1. Regression convolutional neural networks 

Convolutional neural networks employed for regression are not that common 

compared to the more widespread problem of classification. However, there have been 

some work on it, typically to make a model predict some spatial feature of the image, 

like rotations or geometric locations [133, 134]. One important consideration for these 

tasks is that usually the models have a lot more difficulties at converging at a good 

solution, so the scale of the dataset required can be considerably large for these problems. 

This is easily explained by the fact that a regression task within the image context is a 

very complex problem. In this case, the model needs first to analyze the image and find 

within it which features characterize the target value (if they are present within the image 

at all), then it will need to learn to map the located image features to the correct value. 

This is far more complex than any type of classification or localization task, where the 

second step is not applied. 

The typical architecture for regression task is basically the same as for 

classification except for the final activation function: first several convolutional and 

pooling layer extract the spatial features from the images and then the resulting features 

are converted into a vector and passed to a fully connected neural network that at its final 
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neuron uses an activation function that can map the result to the range of values of the 

regression task, usually a linear function, although others like ReLU (if only positive 

values are allowed) or sigmoid (if the range is between 0 and 1) could also be employed 

depending on the context. Additionally, these models are trained with different loss 

functions. Typical loss functions for regression tasks are the root mean squared error 

(RMSE), mean absolute error (MAE) or relative mean absolute error (RMAE) 

In the medical image field, the regression task refers to the direct estimation of 

specific biomarkers from the images [131]. This is an approach that has been taken for 

different problems. To name some example we can mention age prediction from T1 MRI 

brain scans [135], estimation of bone mineral density and of lung percentage of 

emphysema [136], morphometric parameters of the corneal endothelium (cell density, 

cell size variation, and hexagonality) in corneal endothelium microscopy images [137], 

or Agatston score obtained from chest CT scans of the heart [138].  

For the specific case of short-axis cine CMRI LV volume estimation via 

regression with neural networks there are very few works compared to the segmentation 

task.  In [139] the authors presented a regression CNN for LV volume estimation that 

was employed in both ED and ES frames in a large image dataset of 1140 subjects (Data 

Science Bowl Cardiac Challenge Data). The network consisted of 5 convolutional layers 

followed with 3 fully connected layers. Another approach proposed in [140] using the 

same dataset added important pre-processing steps to the images in order to crop a ROI 

containing only the LV and then fed this data to a regression CNN with 13 convolutional 

layers followed by 3 fully connected layers. 

6.2.2. Explainability in convolutional neural networks 

Explainability has been one of the main focus in the deep learning research field. 

This has been even more important in image-related tasks. Many techniques have been 

developed to allow for explainable models, but the vast majority aims to produce some 

type of saliency map for the input image. A saliency map in the computer vision domain 

refers to an image heatmap that highlights the pixels of the image that the human vision 

first pays attention to. In the context of CNN these heat maps would give information 

regarding the spatial regions within an input image that the model is giving more 

importance to obtain its final outputs. 

There are multiple techniques that allow the obtention of heatmaps intended for 

visual explainability. Some of the most famous ones are CAM (class activation mapping) 
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[141], Grad-CAM (gradient-weighted class activation mapping) [142], Guided Grad-

CAM [142] or smoothGrad [143]. These are techniques that are applied at inference, 

after the model has been trained (sometimes they are also called post-hoc attention 

mechanisms). On the other hand, trainable attention mechanisms (or simply attention 

mechanisms) [111, 113] may provide heat maps as an intrinsic feature of the model.  

Besides these, there are other methods like Lime (local interpretable model-agnostic 

explanations) [144] or SHAP (SHapley Additive exPlanations) [145] which provide 

information on the input’s features relative importance and can be used for different 

model types, including those related to imaging, although they are not as popular as 

CAM-based or attention-based approaches for visual tasks. Figure 6.1 shows an example 

of a heat map produced by Grad-CAM on a medical image task. 

 

 

Figure 6.1 Example of visual explainability. Explainability methods often make use of heat-maps 

generated from the model’s inner activations. In this example the Grad-CAM method is applied to a 

model for tumor classification on T1 and T2 brain MRI images to produce a heatmap that gives the 

region whose features were more important for the final output. Image modified [146]. 

 

As visual explainability can offer a way to help understand the model’s focus 

on the image, these techniques have been applied in medical imaging as well [147]. Some 

topics where they have been applied are brain MRI imaging for Alzheimer disease [148] 

and brain tumor [146], breast MRI imaging for estrogen receptor classifying estrogen 

receptor status [149], or chest X-ray imaging for COVID-19 detection [150]. The overall 

application of these techniques was to help at finding the patterns within the images that 

the trained models employed to produce their predictions. 
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6.2.3. Weak-supervised learning  

Weak-supervised learning refers to a branch of machine learning techniques that 

focus on using limited label information to train models that can produce complete labels 

[151, 152]. This allows to train a model to predict some type of label that is difficult to 

obtain employing weak but inexpensive label types that may include the target 

information in an indirect way. In computer vision this can arise in several ways. One 

typical example of the application of weak-supervision would be locating and/or 

segmenting objects within an image with only the information about the object’s 

presence within it available for training (for example with some classification label).  

Healthcare data-related tasks and medical imaging in particular are one of the 

principal fields where weak-supervision can prove to be especially useful, mainly due to 

the need of medical experts to label the data, which can be very expensive and a hard 

task to accomplish. As such, there have been some medical imaging applications that 

used these methodologies [153]. Some examples of applications where good results have 

been reported are: prediction of values of pectoralis muscle area (PMA), subcutaneous 

fat area (SFA) and liver mass area in single slice computed tomography (CT), and 

Agatston score estimated from non-contrast thoracic CT images (CAC) without training 

for the specific target [131]; covid-19 infected region segmentation using single points 

[154] or segmentation of different organs like spleen or pancreas using extreme points 

from the organ’s contour [155].  

For medical imaging the most important application of weak-supervised 

learning is to generate segmentations of a certain region of interest when only other 

indirect information is available. This type of task has been tested on different types of 

images using different characteristics to train with, like whole image classification labels 

[156, 157], seed points of the region to segment [154, 156], regions of interest as 

bounding boxes [158-160], or points around the contour of the region to segment [155, 

161]. 

6.3. Material and Methods 

6.3.1. Data 

For the experiments described in this chapter, 397 cases of the available dataset 

were employed. The experiments were limited to the ED frame, so only the volumetric 

images corresponding to this time point were used. The volumetric values of the LV at 
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ED (in ml units) derived from the manual segmentations were employed for training and 

testing phases. The LV segmentation was only used for testing. 

The dataset was randomly split in training, validation and test sets. All groups 

included the same percentage of cases for each different pathological description (as 

described in chapter 4, section 4.1). The training set included 259 cases (65%), the 

validation set 40 cases (10%) and the test set 98 cases. (25%). 

All the images employed were preprocessed before the experiments. The images 

were first resampled using bi-linear interpolation to an in-plane resolution of 2×2 mm 

and the image size was set to 88×88 pixels. For the resizing, cropping and zero-padding 

was applied when necessary. The third axis was left untouched in both resolution and 

size. This downsampling was applied to reduce the number of features (represented by 

each voxel) for the network to process. These preprocessing did not affect the presence 

of the heart within the images, as it was always present in the central region of the image 

plane (see Figure 6.2). The same procedure was applied to the segmentation images, with 

the exception of the interpolation technique, which was substituted with nearest-

neighbor. The z-axis was not modified in any manner. Finally, the images were 

normalized to make the pixel values range from 0 to 1 using min-max normalization. 

 

 

Figure 6.2 Visual differences between the original image and the downsampled one used for the 

experiments. Many high-frequency details are lost during the downsampling process but the main 

regions are still clearly differentiated. 
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6.3.2. Model architecture 

The approach taken in the architecture design is dramatically different from 

typical regression CNN, in this case the overall scheme is that of a 3D U-net [109] with 

notable modifications followed by a scanning module that uses the 3D U-net output to 

extract the final volume estimation. 

The 3D U-net design is a general 3D U-net that uses as inputs images of size 

88×88×n. Here, n represent the number of slices of the image and can be variable, so the 

network can process images with different number of slices. This was done in order to 

avoid resampling the slice axis that had lower resolution and for which our dataset had 

sizes ranging between 8 to 14. All levels include two 3D convolutional layer of size 

3×3×3 followed with a ReLU activation function. Additionally, all layers included batch 

normalization. The features maps sizes are reduced within the network with maxpooling 

operations of size 2×2×1 in order to halve the image plane while keeping the number of 

slices constant. 

The up-sampling path is composed of up-convolutions of size 2×2×1 to which 

the resulting feature maps are concatenated to the downsampling path feature maps 

through the skip connections as in any typical U-net. Strong regularization is applied to 

the “bottleneck” layer output (that is the layer just before starting the up-sampling). This 

is done by means of L1 activity regularization in order to force the network to learn only 

a small subset of important features at the more abstract level, this will allow the network 

to highlight important spatial regions while setting to 0 those less significant. The last 

layer consists of a 1×1×1 convolutional layer with a sigmoid activation function. L1 

activity regularization is also applied to the output feature map to force the network to 

generate a segmentation as close as possible to the LV region (by means of setting to 0 

non-relevant regions and to 1 the relevant ones). This last output is the class activation 

map (CAM) that gives the probability that a certain voxel is part of the target region 

[162], which in this case is the LV. This CAM output, although related in its conceptual 

idea and terminology, is not to be confused with the CAM technique (class activation 

mapping) referenced in section 6.2.2. See Figure 6.3 for a representative example of a 

CAM output of the trained model. 
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Figure 6.3 Example of the CAM produced by the trained model on different slices. It is clearly visible 

how the left ventricle region matches that of the high activity of the CAM. Additionally, the model’s 

design allows for the generation of CAMs whose left ventricle region have near 1 probability values, 

while maintaining the background to near 0 values. 

 

The output CAM of this 3D U-net should represent the LV region. In order to 

achieve this an additional module is coupled at the end. This module scans the CAM in 

order to extract two key characteristics: a diameter feature of the object and the volume 

within it. Both of this will be used as targets to define the loss functions. The volume 

captures the actual volume to estimate, and the diameter will be used to compute an 

estimation of the π value. The reason for estimating π is to force the learning process to 

base its volume prediction from a circular object, as the LV has an overall round shape. 

In order to compute the volume, the scanning module first applies a non-

trainable convolution with a single kernel filled with ones of size 25×25×1. This size is 

big enough to ensure the LV is always captured within it. After this an additional 

88×88×1 maxpooling operation is applied. This pooling will capture the biggest size of 

any object that could fit within the previous convolutional layer kernel for each slice and 

subsequently produce a single value per slice that will correspond to the area occupied 

at each slice (in number of pixels). These areas are then summed together and the result 

is multiplied by the image resolution per voxel converted to ml, obtaining an estimation 

of the volume. 

The diameter is computed using two different paths. The first applies an 88×1×1 

non-trainable convolution with a fixed kernel fixed of ones. The other applies the same 
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operation but with a kernel size of 1×88×1. These convolutions will estimate the 

diameter of the object within the image along vertical and horizontal directions. The 

results of both paths are then averaged at the slice level. With this, the model will be 

forced to compute the largest diameter of the objects present within the CAM. The 

estimated diameters are then used along the estimated areas to get a ratio that is used as 

an additional estimator of the π value (as round objects will get a close value to it). This 

section basically encompasses a circularity feature extractor, which is what ultimately 

allows the net to detect circular objects whose volume match that of the target, 

corresponding to the LV. Figure 6.4 and 6.5 shows the detailed architecture and scanning 

module designs. The whole model contained a total of 21.87 million parameters. 

 

 

 

Figure 6.4 Architecture of the model employed for the experiments. The general design is that of a 3D 

U-net that can process volumes of 88×88×n sizes, where n can be any integer number. At the end of 

the model a CAM is produced with a sigmoid activation function, which is then passed on the feature 

scanning module. 
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Figure 6.5 Scanning module design. The modules apply different sweeps to the CAM in order 

to derive two estimations: the volume of the biggest object present within the CAM and the π value 

estimated from it assuming it had a round shape.  

6.3.3. Training schedule 

The training comprised a total of 50 epochs using both the training and 

validation dataset. After some testing, optimum hyperparameter configuration was 

determined with a learning rate of 0.001 with ADAM optimizer and a batch size of 5. As 

each batch needs to contain tensors of the same shape but the network allows for a 

variable number of slices, the training dataset was organized accordingly so for each 

training iteration the batch contained samples with the same size. This was done by 

picking random samples for each specific size and creating a new batch in every iteration, 

after which the used samples were discarded for the following batches. Additionally, the 

training dataset was increase with data augmentation. Specifically, for each generated 

batch, a new one was created using the same procedure taking random samples from the 

training pool and applying the transformations to the images. The transformation scheme 

was defined by the application of a random rotation (between -30° and +30°), a random 

shear (between -20° and +20°), a random translation (between -15 and +15 pixels) and 

adding Gaussian noise (mean of 0.035 and standard deviation of 0.01) to the image. As 

the number of training samples could not exactly be divided by the batch size, at each 

epoch one case was always left out in both the raw batches and the batches with 

transformations. This was addressed by forcing that at the beginning of every epoch, the 

cases left out in the previous one were automatically selected to fill the first raw and 

transformation batches, while keeping the selection of remaining samples random. 

For training, a custom loss function was defined. This loss took into account the 

L1 activity regularization applied at the bottleneck and CAM output and the mean 

absolute errors of the estimation obtained for the volumes and π. Each of these 

parameters contribute to the loss in a different manner due to the difference in scale. L1 
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applies a penalty that is the summed absolute value of all the features present in the 

output feature map, so the scale can be very large considering the number of features in 

both the CAM and the bottleneck (easily in the order of thousands or more). The volume 

error, being calculated in ml can be in the order of hundreds in the cases with high errors. 

In contrast, the π estimation error is normally in the order of units. To compensate for 

this the final loss was the weighted sum of all these components: the π error was given a 

weight of 100, the L1 activity regularization components were applied a weight of 10-3 

and the volume error was applied a unitary weight value.  The specific values for the 

components contributions were chosen based on experimentation and observation of the 

training evolution. Only with these setting a good training evolution was accomplished, 

which indicates that in this setting an equilibrated contribution of the different 

parameters was required. The loss function equation is presented in Equation 6.1, where 

MAE (vol) and MAE (π) represent the mean absolute error for the estimated volume (in 

milliliters) and for the estimated π value respectively, L1(bn) and L1(CAM) represent 

the L1 activity regularization factors for the bottleneck feature map and CAM 

respectively 

𝐿𝑜𝑠𝑠 = 𝑀𝐴𝐸 (𝑣𝑜𝑙) + 100 × 𝑀𝐴𝐸(𝜋) + 10−3 × [𝐿1(𝑏𝑛) + 𝐿1(𝐶𝐴𝑀)] Equation 6.1 

6.3.4. Evaluation method 

The trained model was evaluated using the remaining 98 cases of the test set. 

Two different conditions were evaluated from the results. One was the error associated 

to the volume estimation, employing both the relative and absolute error (in ml), 

additionally correlation between the predicted and real values was computed. The second 

measurement involved measuring the degree of correctness of the CAM generated. For 

this the CAM was converted to a binary segmentation employing a minimum threshold 

of 0.9 and then selecting the biggest object within the image (which corresponds to the 

object whose volume was obtained by the scanning module), this second condition was 

necessary in some outlier cases, in which we found out that the CAM produced residual 

regions with high associated probabilities. One example of this situations is presented in 

Figure 6.6. The derived binary segmentation was compared against the manual 

segmentations using the Dice coefficient as quality measurement. 
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Figure 6.6 Example of a generated CAM that included a residual region with abnormally high 

probabilities. In rare occasions the model produced this additional small residual objects. These objects 

where not used in the final predicted volume thanks to the scanning module design, which only used 

the areas of the biggest object present. 

6.4. Results 

6.4.1. Training performance 

The model was trained for 50 epochs, which required 12 hours to complete. 

Figure 6.7 shows the training and validation loss evolution across epochs. The training 

loss continuously decreased, first with high speed and then with dramatically speed 

reduction starting around epoch 10. The validation loss showed a very erratic behavior 

in the first epochs, with very pronounced spikes and fluctuations, which indicates some 

inner difficulty in finding a correct generalizable solution during those epochs. However, 

after epoch 15 the trend changes dramatically: from epoch 15 to 20 it continuously 

decreases after a previous high spike, from that point onwards, the validation loss stays 

approximately still with minor fluctuations. This complex loss evolution might be an 

indicator that only around epoch 20 the model could find meaningful features relevant 

enough to avoid overfitting problems. 
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Figure 6.7 Training and validation loss curves registered during the model’s training. The model had a 

difficult time at finding a good and stable generalization setting as seen by the big fluctuations on the 

validation loss. The model was able to stabilize itself around epoch 20, from which no noticeable 

changes were observed in the validation loss. 

6.4.2. Volume estimation 

The absolute error of the predicted volumes by the model followed a distribution 

of 9.127 ± 18.888 ml (mean and standard deviation). The associated relative absolute 

error followed a mean and standard deviation of 8.50 ± 6.60 %. The correlation between 

the predicted and real volumes was R=0.95. The predicted volumes showed some 

tendency for underestimation of the real LV volumes. This trend appears more evident 

the bigger the LV. Fitting the results with a regression line obtained a model with a slope 

of 0.81 and bias of 19.41. These parameters are consistent with the high correlation and 

the slight underestimation observed. Figure 6.8 shows the scatterplot of the results along 

the regression line, where the underestimated volumes start to be more clear for LV 

volumes of 250 ml or more. 
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Figure 6.8 Cloud of point of the predicted volume values by the model against the real volumes of the 

left ventricle. The correlation obtained was very high (R=0.95), the regression curve had a slope of 0.81 

and a bias of 19.41 respectively. There is a clear tendency for the model to underestimate the left 

ventricle volumes to some degree. This tendency becomes more apparent for volumes higher than 250 

ml, where the error difference is notably bigger. 

 

The time required for the model for each prediction was on average 1.07 

seconds. The average was obtained by predicting the entire test set (98 samples) using a 

batch size of 1, which took 104.85 seconds to complete.  

6.4.3. Derived segmentation 

In order to offer a degree of both the explainability power of the model and the 

weak-supervised method employed to train the model, the masks derived from the CAM 

were compared against the manual segmentations using the Dice coefficient. 

Furthermore, a visual exploration was done in order to find any meaningful patterns. 

After exploring the images three important features were found. First, the 

segmentation mask tended to leave a portion of the most external LV region outside of 

the mask in the majority of slices.  Second, specifically for the more basal slices the mask 

tended to capture small regions outside of the LV.  And third, overall all slices were 
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segmented with a region area of similar shape and size and with its location correctly 

centered at the LV slice center. Figure 6.9 shows a representative example of the 

resulting masks compared to the manual ones and Fig 6.10 shows a 3D rendering of the 

same case done with ITK-snap comparing the 3D rendered mask of the prediction and 

the manually segmented one where these patterns are visually clear. 

 

 

Figure 6.9 Example of the final segmentation derived from the CAM generated by the model. The 

segmentation was obtained by applying a threshold of 0.9 and selecting only the biggest object present. 

The derived segmentation is a good match to the manual one, albeit with a slight suppression on the 

borders except for the apical slice, where the mask’s area is overestimated. In all cases the derived 

segmentation matched the left ventricle location.  
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Figure 6.10 Example of a 3D rendering of the manual and derived segmentations on ITK-snap. The 

manual segmentation is overall thicker than the prediction except for the lower region corresponding 

to the apical zone. Additionally, the predicted segmentation produced smoother renders compared to 

the manual segmentation due to the lower difference between the masks at adjacent slices. 

 

In general, the obtained segmentations tended to produce more “tube-like” 

shapes for the LV compared to the real shape, where it could be seen more as a deformed 

cone, with smaller slice areas towards the apical regions.  

Based on this visual exploration, a quick post-processing step was designed in 

order to check if these finding were truly consistent. We applied a dilation of size 5×5×1 

to all slices in order to increase the degree of overlap. This step significantly improved 

the results. The original segmentation obtained a Dice coefficient distribution of 0.720± 

0.053 and the post-processed masks of 0.791 ± 0.042 (mean and standard deviation). 

These high improvement matches the visual findings described and demonstrates that 

these are consistent throughout the predicted masks. 

6.5. Discussion 

This chapter describes an implementation of a neural network capable of 

estimating the LV volumes from the ED frames from short-axis cine CMRI and at the 

same time it can produce a segmentation of the region it based its final prediction from, 

thus offering a way to explain where the results came from. 
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If one checks the current literature regarding image-related task for the LV 

analysis in CMRI, the vast majority focuses on the segmentation problem. This approach 

usually achieves state of the art results, normally ranging from 0.9 to 0.96 Dice 

coefficient values (see chapter 5). More specifically the PSPU-net presented in chapter 

5 reaches a Dice score of 0.955 with a relative volumetric error of 0.026, which far 

surpasses the regression U-net results obtained. However, this method requires the 

previous task of manually segmenting the images and save this segmentation in a fitting 

way for use in deep learning applications, which is a hard, costly and time-consuming 

problem. In this sense, directly estimating the target volumes can be a more treatable 

problem in term of label data, as it is common practice in most clinical settings to save 

only the final output in the form of patient’s reports [131] (in our context, these would 

be the LV mass, volume, ejection fraction, etc.). This is furthered proved if we check 

one of the biggest public datasets available for LV volume estimation with more than 

1000 patients, where only the volumes are available to train the models (Data Science 

Bowl Cardiac Challenge Data, https://www.kaggle.com/c/second-annual-data-science-

bowl/data). Still, this methodology comes with the counterpart of requiring larger 

dataset, as regression models for image processing are much harder to train than their 

segmentation counterparts.  

There have been very few works directly trying to use CNN to estimate the LV 

volumes from the images. At the time of writing this thesis only two works were found, 

both employing the same dataset from the Data Science Bowl Cardiac Challenge 

containing a total of 1140 subjects.  In the work presented in [139] the authors reported 

correlation values of 0.95 and 0.92 for the ED and ES respectively using 337 cases as a 

test set. Additionally, the mean error reported was of 5.1 ml and 3.6 ml respectively 

[139]. In the other work described in [140] the published results were worse with a mean 

error of 15.83 ml (ED) and 9.82 ml (ES) using as test set a total of 440 cases. These 

works successfully trained CNN models to directly estimate the LV volumes from the 

images employing regression architectures, however, these models lacked any 

explainability capabilities in their design and no report regarding the use of explainable 

techniques to demonstrate that the models were actually using LV features was provided. 

Although the results offered were quite good, in a clinical context the predictions would 

have low trust by the expert clinicians, something that does not happen in segmentation 

models, were one could always check the segmentation quality. 

In contrast to these works, we focused on both problems, the direct estimation 

of the LV volume and a way to offer explainability of the results by producing a 

segmentation. The methodology proposed for both problems is notably different than the 

https://www.kaggle.com/c/second-annual-data-science-bowl/data
https://www.kaggle.com/c/second-annual-data-science-bowl/data
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usual procedure in much of the explainable AI techniques, where after training, some 

specialized techniques are applied to infer an explainable heat map that can then be 

converted to a segmentation. In this case the implemented model directly coupled both 

objectives as the training objective, as the final prediction comes directly from a previous 

generated CAM that serves as the heat map. This approach is overall the same as weak-

supervision. In weak-supervision the objective is to produce complex labels (like 

segmentations) from less informative ones. In this case the less informative labels would 

be the LV volumes from which a LV segmentation is desired. It can be seen that there is 

an important link between weak-supervised learning and explainable neural networks 

and that both worlds are very intertwined. The proposed model directly uses this link to 

solve two different possible problems: offering explainability from a regression model 

and offering a way to produce segmentation without the need of this type of labeling. As 

another important feature we additionally incorporated into the training schedule prior 

information in the form of the shape the object should have (circular). This actually 

helped the model considerably and is what ultimately led the model to target the 

circularity of the LV within the image. 

Even with the satisfactory results obtained by the network there are some 

important limitations. The predicted volumes are in general good, with small relative 

error, however there was a clear tendency for underestimation as seen in both the 

segmentation and predicted values, however the apical slices had a slight overestimation 

in the CAM. Probably these compensated to some extent the missing target regions. One 

possible solution to this could be to train the model to predict areas in each slice and 

separate the volume prediction in different area components to target. A simpler 

approach could also be to add some post-processing after the predicted CAM just before 

the scanning module. Based on the fact that applying dilations notably improved the Dice 

coefficient of the segmentation results. More analysis on the specific parameters that 

could define the morphological operations to optimize the results would be required, but 

it seems to be an appropriate approach based on our findings.  

Another difficulty was the training itself; section 6.4.1 clearly shows that the 

model initially had a hard time optimizing itself to a level that could generalize properly, 

indicating that training this model is hard, this could also be caused by the limited amount 

of images employed. As previously stated, the regression problem is a hard one that may 

require datasets in the order of thousands. Still, we could reach a 0.791 average Dice 

coefficient and a mean error value of 9.127 ml with excellent Pearson correlation (0.95) 

in the 98 cases of the test set. These results are comparable to the ones reported by the 

other works employing regression networks for LV volume estimation and show a good 
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match with the real values. This are promising results, however they still fall behind the 

state of the art results, specially from the neural networks that are trained to directly offer 

segmentations.  

Another limitation is that the model was only tested to target the volumes in ED 

frame, however, given the nature of the images it is expected that the same scheme could 

function as well for ES frames after some minor modifications. Probably, the main 

modification that would be required is the replacement of the area scanning 

convolutional layer within the scanning module. In this case the size employed was 

25×25×1, but considering the smaller size of the LV chamber at ES it could be argued 

that reducing its size would probably work better in that context. We also want to make 

note that the overall approach taken could probably be extended to other medical (and 

non-medical) imaging problems as well after applying the necessary changes depending 

on the context. 

Explainability itself is major concern within the deep learning field for those 

task that may require justification on the results. Neural networks in general work very 

much as black boxes were both interpretability and explainability is difficult if not 

impossible. Giving solutions to this view is important in a field such as radiology, where 

regression networks may be able to accurately predict some biomarker, but if they do not 

provide a way for the clinical expert to understand the reason for that prediction, they 

might as well be very difficult to trust [164, 165]. There are some works discussing how 

the way most of the explainability techniques work can´t actually give response to the 

demand of transparency for understanding these models [166]. This is based on the fact 

that methods that rely on heat maps do not actually give a reasoning on how the features 

are employed afterwards. There is some debate regarding these topics, but with the 

methodology described in this work even those suspicions are out of the question, as the 

scanning module introduced is a simple and deterministic set of operations that work on 

the CAM and thus this makes for both an interpretable (after the CAM prediction layer) 

and explainable model. We believe the approach and methodology taken, even with its 

possible limitations, will be adopted in the near future as the demand for transparent 

neural networks increases. This will be crucial in the clinical realm, (where delicate 

decision-making is done affecting people’s health) and is staring to be considered as a 

serious topic in the legal setting [167]. 
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6.6. Conclusions 

This chapter has covered the model design and training approach to directly 

estimate LV volumes from short-axis cine CMRI at ED and at the same time generate a 

segmentation that helps explain from where does this model compute the predicted 

volumes within the image. The model obtained good volume predictions close to the real 

one in the test set composed of 98 images. The derived mask obtained also showed a 

good match to that of the LV location within the image, which ensured that the neural 

network was targeting the correct region to derive its results. We believe the 

methodology described is important and can impact the way deep learning can be 

employed from a clinical perspective, since it helps to understand how these complex 

models offer their results and avoid the black box view of them to an important degree. 

The described method also helps broadening the options in research directions for weak-

supervised learning in order to expand the possibility to use more datasets where, even 

with less informative labeled data, could still be employed for the LV volume estimation 

and segmentation. 
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Chapter 7.                 

Automatic end-systole and 

end-diastole detection 
 

 

 

This chapter is based on a journal paper published in the context of this thesis 

[180]. The full document is available at: 

https://doi.org/10.1016/j.compmedimag.2022.102085. 

7.1. Introduction and Motivation 

The main information that permits the correct characterization of the heart state 

comes from analyzing the short-axis cine CMRI images at both End-systole and End-

diastole. When a segmentation of the regions of interests at both frames is available it is 

possible to extract the main functional biomarkers. However, before being able to 

segment these regions it is necessary to determine and select the frames of the ES and 

ED, as only those will be used. This is also true in the clinical setting, where normally 

this step requires manual or semiautomatic intervention to select the right frames to use. 

As discussed in chapter 5, the problem of segmentation in short-axis cine CMRI 

is well-studied and with many CNN-based reported solutions that can achieve state of 

the art results. However, the prior requirement of determining which are the frames to 

use is often overlooked in these studies. From a practical point of view this is 

understandable since segmentation is the main bottleneck, but in order to develop fully 

automatic CAD systems to help in the assessment of the heart the automatic detection of 

the ES and ED is a necessary step as well, which is required to speed up the clinical 

workflow. 

Detection of the ED and ES frames within an image sequence combines two 

types of data: image information (spatial domain) and the dynamic relationship of the 

images information (temporal domain). Within DL, temporal analysis has been 

https://doi.org/10.1016/j.compmedimag.2022.102085
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traditionally tackled with recurrent neural networks (RNN), which were specially 

designed to treat time-series data and has been employed for several task including 

forecasting problems or natural language processing (NLP). Additionally, transformers 

have been employed in recent years for the same type of tasks and have nowadays 

relegated RNN to a secondary stage in most time-related tasks due to the superiority of 

these new architectures.  

The usual approach would be to combine CNN with some of these specialized 

neural networks. However, instead of using these types of architectures to process the 

temporal information of the acquisition, in this chapter we cover the design and 

implementation of a fully convolutional neural network with the additional motivation 

to prove that convolutions are also well suited to treat this type of information in the 

context of event detection in dynamic medical imaging. All the designs described in this 

chapters were specifically developed for the detection of ES and ED in short-axis cine 

CMRI, but the overall design described could be used for any type of event detection 

problem in a series of dynamic images (video in general), so the application scope 

remains wide outside the cardiac imaging one. 

The overall work described in this chapter covers the design of a fully 

convolutional neural network capable of detecting the ED and ES frames in a short-axis 

stack of cine CMRI sequences with both an arbitrary number of frames and of slices per 

frame. The model makes use of convolutions with dilation rates (dilated convolutions) 

which have been used for different deep learning problems, most notably for 

segmentation [104, 105, 168]. Dilated convolutions are as any convolution but with the 

addition of having an enlarged field of view while keeping the same number of 

parameters. This is accomplished by introducing zeros between the weights, the size 

increase of the kernel is determined by a dilation rate which indicates the number of 

zeros introduced between the convolution weights (the rate is defined as the distance 

between adjacent weights). Figure 7.1 shows an example of the concept of dilation in 

convolutional layers. 
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Figure 7.1 Illustration comparing a normal convolution (dilation rate=1) with a kernel of size 3×3 with 

a dilated convolution with the same kernel (using a dilation rate of 2). Increasing the dilation rate is 

equivalent to introduce zeros (green squares) between adjacent elements of the kernel. The result is a 

convolution operation with the same number of parameters but with a bigger field of view [169]. 

 

The motivation of using dilated convolutions comes from the paradigm shift that 

the wavenet introduced when obtaining a superior quality with 1D dilated convolutions 

over recurrent layers [71]. Although the wavenet was described for a completely 

different problem (audio generation), it still demonstrated that the use of dilated 

convolutions could be used to encode temporal information efficiently and surpass the 

different recurrent neural network layers usually employed to tackle temporal-related 

data. 

Finally, we introduce a novel way of training models for this type of task by 

employing a different loss function to the classical one used for classification. To do this 

we train the model under two different configurations, employing a weighted cross-

entropy loss and a weighted Dice loss, and compare the results of both. Cross-entropy 

loss is the usual choice for classification problems [170], and in this case the objective 

is to classify each frame in a sequence, with the additional limitation that only one frame 

can be ES and only one can be ED, the remaining being “background frames”. The idea 

behind using the Dice loss is the use of an overlap measurement that uses the entirety of 

frame predictions as a whole, which contrast with how cross entropy works where the 

loss is simply the average of the loss computed per frame.  
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7.2. Related work and state of the art 

There are some works that have addresses the problem of the automatic 

detection of the ED and ES problem in the context of echocardiography imaging [171-

175] and angiographic imaging [176]. However, for short-axis cine CMRI there is a 

considerable lack of work compared to the segmentation problem. At the time of this 

thesis writing, to the best of our knowledge only three works have been published 

addressing this task in some manner. In the work described in [177] the authors used the 

usual approach of first using convolutional layers to extract spatial features and then 

these were fed to LSTM layers to process the temporal information. In this case the 

acquisitions only included one slice per frame and the number of frames was constant 

with 25. In the remaining 2 works very different approaches were taken. In [130] they 

simply applied a segmentation CNN to segment the LV in all frames and then selected 

the ones with biggest and lowest volumes. In the case of [178] the authors used a similar 

approach by employing a CNN to first segment the LV and then use its center as a 

relative position parameter whose change was used to determine the ES and ED.  

Besides these, there have been some works making use of the temporal 

information of short-axis cine CMRI but not with the objective of detecting the ES and 

ED frames. For example, in the work described in [179] the authors developed a 

generative convolutional neural networks to model a probabilistic motion field that could 

be used for several tasks, like registration or motion modification on source images. In 

this work first spatial features were extracted from the different frames and then these 

were processed with a temporal convolutional layer, which basically consisted on several 

1D convolutions with different dilation rates that processes the temporal relation 

between the features. Although for a different image modality, in [176] a very similar 

approach for the detection of the ES and ED on coronary angiographies was applied, 

employing likewise convolution layer to process the temporal information. These works, 

although not focused in the same task, are still relevant, as they also made use of 

convolutions to process temporal information in similar medical imaging contexts. 

7.3. Material and Methods 

7.3.1. Data 

For the work described in the current chapter a total of 397 were employed. As 

the available segmentations had been applied to the previously manually selected frames, 
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the labeling of each frame as ED or ES was done by selecting the volumes that contained 

myocardium segmentations (present within the ED ones) and the volumes that contained 

all but the myocardium segmentation (not present within the ES ones).  

The dataset was randomly split in training, validation and test sets. All groups 

included the same percentage of cases for each different pathological description (as 

described in chapter 4, section 4.1). The training set included 259 cases (65%), the 

validation set 40 cases (10%) and the test set 98 cases. (25%).  

All the images employed were preprocessed before the experiments. The images 

were first resampled using bi-linear interpolation to an in-plane resolution to 1×1 mm 

and the image size was set to a constant of 176×176 pixels. For the image resizing 

cropping and zero-padding was applied when necessary in order to get the desired size. 

The third spatial axis and the temporal axis was left untouched in both size and 

resolution. These preprocessing did not affect the presence of the heart within the images, 

as it was always present in the central region of the image plane. The intensity values for 

every frame were also normalized to a range of 0 and 1 using min-max normalization. 

The labels employed consisted of hot-encoded vector for each case with the same length 

as the number of frames in the acquisition. Each element in the vector contained three 

values representing the labels ES, ED and background.  

The experiments performed had an inherent limitation, since the entire dynamic 

images were too big to be directly fed to a neural network with the available hardware 

due to the excessive memory consumption. To solve this, each 3D frame was 

transformed to a single 2D image, thus eliminating the third axis from the spatial 

dimensions. The original dataset consisted of 4D stack (3D+time), after the 

transformation the dataset consisted of 3D stack (2D+time). The transformation applied 

aimed at generating a single representative image of the contraction state at the frame. 

For this, a median projection was applied along the third spatial axis between the second 

and penultimate slice. The use of the median helped avoid possible outliers that could 

introduce some distortions in the final projection, and not using the first and last slices 

comes from the fact that some short-axis acquisitions can include regions outside the 

LV, and in the cases where it still includes the LV these slices will correspond to very 

extreme region in the apical and basal zones. Overall, the aim was to extract more 

information from the mid region, where the LV contraction is more predominantly 

visible. An example of the final median projection employed is presented in Figure 7.2. 
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Figure 7.2 Example of a median projection of short-axis CMRI acquisition. The end-systolic and end-

diastolic frames are indicated above the corresponding frame. Overall, the images are less clean and the 

different organs and tissues appear more deformed compared to real slices, but the contraction of both 

the LV and RV are easily visible, being it more clear in the LV.  

7.3.2. Model architecture 

The model consists of two different blocks: first a pure 2D convolutional block 

extracts the spatial features from each image frame, and second a spatio-temporal 

dilated-convolutional block process the temporal relationships between spatial regions 

of the output from the previous spatial convolutional block. 

The first block takes as inputs arrays of size 176 × 176 × n (n being the number 

of frames, which is a non-fixed value) and then applies two consecutive 2D convolutions 

with ReLU activation functions and max-pooling operation to halve the size of feature 

channels. Each convolution is always followed by a batch normalization layer. The 2D 

convolutions were implemented as 3D convolutions of size 3×3×1, which are equivalent 

to a 2D convolution. This scheme is repeated 4 times where at each level the number of 

channels is doubled and the size of them is halved. At the end of this block the result is 

a stack of channels of size 11×11 which are then collapsed to a single channel (using a 

1 ×1 ×1 convolution) resulting in an array of size 11×11×n×1 obtaining a single, heavily 

compressed feature map per frame. This output is then passed to the spatio-temporal 

block. There were two major causes for the decision of using 4 downsampling steps: the 

first is due to constrains in the image dimensions, as they could only be halved a total of 

4 times (additional downsampling would have required padding or cropping operations 
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within the model that we preferred to avoid) and the second and most important is that 

the relevant features are those corresponding to the heart, which occupies a great portion 

within the images, by reducing the size as much as possible we allow the next temporal 

block to have a bigger spatial field of view as well.  

The second section takes the array generated by the first block and passes it to 

different parallel paths that apply the temporal dilated convolutions. Each path applies a 

dilated convolution of different size in the temporal axis, specifically three kernels were 

employed (3×3×3, 3×3×5 and 3×3 ×7) in combination with three different dilation rates 

of 1, 2 and 4 applied in the temporal dimension. This results in a total of 9 paths where 

each sees 3×3 spatial features along different temporal fields of view. Specifically, the 

temporal field of view under these conditions spans from 3 to 25 frames, which allows 

the analysis of short, mid and long-term ranges. Each one of these paths applies a single 

convolution with ReLU activation function and a batch normalization layer and outputs 

a single channel. At the end all the paths’ outputs are concatenated along the original 

input of the spatio-temporal block (via a skip connection) and a final last 11 × 11 × 1 

convolution followed by a softmax activation function is applied to produce the final 

predictions. The softmax activation function outputs 3 values for each frame, each 

corresponding to the probability of said frame of being ES, ED or a background frame, 

with these probabilities always adding up to 1. The whole model design is presented in 

Fig 7.3. This architecture had a total of 4.7 million parameters and occupied 54 MB of 

space. 
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Figure 7.3 Architecture of the model employed. The first section applies 2D convolutional and pooling 

operations to extract spatial features from each frame. The next section consists of different dilated 

convolutional layers applied in parallel. The dilated convolutions are 3D convolutions where the third 

axis is modified with different sizes and dilation rates to enable a different temporal fields of view.  

7.3.3. Training schedule 

The model training lasted 100 epochs employing both the training and 

validations sets. The chosen optimizer was ADAM with a learning rate of 10-5. The batch 

size was limited to 2 for each iteration due to memory constraints. Since processing 

a batch of data requires all inputs to have the same dimensions, the batch generation 

was implemented so that no acquisitions with a different number of frames were 

grouped together, for these we simply divided the training set in different groups 

depending on its time dimension, then each batch was randomly generated by taking 

two samples from only a single group each time and making the used samples 

unavailable for the rest of the epoch. Since the number of samples used was not even, 

at the end of each epoch a random case was left out and in the next epoch it was 

automatically selected in the first batch generated. The remaining cases were always 

selected randomly. 
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Data augmentation was applied in the training set. The entire dataset size 

was increased 7-fold, going from the original 259 to 1813 cases. Each case was 

transformed 7 times with a random combination of the following: random rotations 

around the image center (between +20 and −20 degrees), random shear (between 10 

and −10 degrees) and random translations in both x and y axis (between 44 and −44 

pixels). The same geometric transformation was applied in all image frames of each 

sequence to ensure spatial consistency between frames. Additionally, a random 

temporal delay was added to each case. Since all acquisition encompassed a single 

cardiac cycle and these are repeated sequentially in real time, the delay was applied 

so that the frames that surpassed the dimension length were translated to the 

beginning of the sequence accordingly. With this each additional delayed sequence 

had a different location for both ES and ED and the first frame corresponded to a 

different point in the cardiac cycle. This temporal delay was applied by randomly 

displacing the entire sequence by a factor between 0% and 40% of the sequence 

length.  

7.3.4. Loss function 

The model was equally trained with the described schedule under two different 

settings regarding the loss function employed: in one case the weighted cross-entropy 

(WCE) was used and in the other a variation of the generalized Dice loss (GDL) was 

employed. 

The cross-entropy is a classical and popular loss function for classification tasks. 

It has been extensively employed for image classification, but also for dense predictions 

like segmentation [128]. In this case we trained the model using the weighted cross-

entropy assigning different weights for each frame prediction. Some testing was required 

to find a satisfactory setting to get acceptable results. In the end we found out that the 

ES and ED frame required extremely big weights compared to the other frames. 

Specifically, both the systolic and diastolic frames were assigned a weight of 100, while 

keeping a unitary weight to the remaining frame predictions. Equation 7.1 shows the 

formula for the weighted cross-entropy employed. In the formula NF is the number of 

frames, w is the weight applied, being 100 for the ES and ED and 1 form the remaining 

frames, NC is the number of classes (3 in our case: ES, ED and background frame), y is 

the hot encoded categorical vector for the frame (i.e. the target), with a value of 1 in the 
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associated category and 0 for the other two, and p is the predicted probability vector for 

the frame. 

𝑊𝐶𝐸 =  − ∑ 𝑤𝑖 ∑ 𝑦𝑖𝑐log (
𝑁𝐶

𝐶=1

𝑁𝐹

𝑖=1
𝑝𝑖𝑐) Equation 7.1 

 

The second loss function was a modified version of the generalized Dice loss 

[128]. The generalized Dice coefficient is employed for measuring a Dice coefficient 

value that weights the predicted segmentation in the cases of class imbalances [129] and 

has been used as a loss function for segmentation neural networks. The Dice loss has 

been speculated to be useful for time-related tasks due its capacity to target both 

sensibility and specificity [181] and has been successfully employed in natural language 

processing tasks [182]. Considering the problem of event detection, the Dice loss seems 

like a very good candidate, as we may consider that our problem is equivalent to the 

classification of vector elements, which in turn is the same as segmentation with the 

specific characteristic that we only have 1 dimension (the temporal dimension) as 

opposed to the usual 2 or 3 dimensions in image segmentation. A such, we may consider 

that the task to solve is equivalent to a segmentation problem in the 1D domain. The loss 

function employed is a specific weighted Dice loss (WDL) with predefined weights. The 

assigned weights were 0.45 for both the ES and ED categories and 0.1 for the background 

category. The formula for this weighted Dice loss is presented in Equation 7.2. In the 

formula all variables have an equivalent meaning as in Equation 7.1, with the exception 

of w, which represent the weight associated for each class (0.45 for systolic and diastolic 

classes and 0.1 for background). 

𝑊𝐷𝐿 =  1 − 2 ∑ 𝑤𝑐

∑ 𝑦𝑖𝑐𝑝𝑖𝑐
𝑁𝐹
𝑖=1

∑ 𝑦𝑖𝑐+𝑝𝑖𝑐
𝑁𝐹
𝑖=1

𝑁𝐶

𝐶=1
 Equation 7.2 

 

7.3.5. Prediction post-processing methods 

The described neural network produces a probability vector for each frame, 

where each of the three probabilities must add up to 1. However, between frames there 

is not a limitation on the output probabilities, meaning that in the end, the model could 

produce probability vectors where different frames could have similar high probabilities, 

so an additional post-processing was required to select only 2 frames for the ES and ED 

class.  
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Two different post-processing methods were applied and compared. In the first 

one we simply chose the frame which had the highest probability associated for ES and 

for ED (naïve method). The second one assumed that there could be adjacent frames with 

very high probabilities when around either ES or ED location (due to close frames being 

in very contracted or very relaxed states that could be similar to real ES and ED). To 

address this, this second method first applies a probability threshold to select only the 

frames with very high probabilities, and then the frame located at the center position of 

these frames is selected as either ES or ED. We refer to this method as “central method”. 

The chosen probability threshold was set to 90% (0.9 in the output vector). Figure 7.4 

shows a schematic on how the central method operates. 

 

 

Figure 7.4 Schematic of the central method for final frame classification. First, only the frames with a 

probability higher than 0.9 obtained by the model are selected, the frame is then chosen as the one 

located at the central location. 

7.3.6. Evaluation method 

To evaluate the quality of the final predictions we employed the frame 

difference error for both the ES and ED, which is the distance in number of frames from 

the selected frame to the real one. This quality metric has been used previously for the 

same task [177] and it is an intuitive measure of the result’s quality. Additionally, we 

introduce the relative frame difference error, which is the frame difference error divided 

by the length of the sequence. This error might be more appropriate for comparison of 

algorithms performance between different datasets where the number of frames can be 
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very different, allowing for a normalized value that can make experiments mores 

comparable. 

Both quality measurements were calculated for the predictions obtained with the 

98 cases of the test set in the four different setting: the combination of the two models 

(one trained with WCE and the other with WDL) with the two final frame classification 

methods (naïve and central method).  

7.4. Results 

7.4.1. Training performance 

Figure 7.5 shows the recorded training and validation losses for the two models 

trained with the different loss functions described, the WCE and WDL.  

For the model trained with the WCE loss, the training loss continually decreases 

in all epochs, reaching a plateau around epoch 60. The validation loss, in contrast, seems 

to be slightly unstable during the first 20 epochs with a lot of great fluctuations. From 

epoch 20 the validation loss stabilizes and remains approximately constant until the end, 

with no signs of overfitting.  

The model trained with the WDL shows a similar tendency in the training loss, 

but reaching the plateau much more quickly, around epoch 40 there does not seem to be 

any improvements. The validation loss follows a similar trend but with notably lower 

values than the training loss, and additionally around epoch 60 it starts a slight tendency 

to increase, which could indicate that the model is starting to slightly overfit. 

 



7.4. Results 

 

 

 

Figure 7.5 History records of the training and validation loss of the model trained with the weighted 

Dice loss and weighted cross-entropy loss. In both cases the plateau was reached during mid-training 

at early epochs. The weighted Dice loss (a) reached its training loss plateau around epoch 40, and from 

epoch 60 onwards the validation loss started to increase, indicating a slight overfitting. Similarly, the 

weighted cross-entropy loss (b) reached its training loss plateau around epoch 40, but not sign of 

overfitting is seen in the validation loss, additionally, early epochs show some big fluctuations in the 

validation loss indicating some initial difficulty at finding a good generalization trend. 

 

An interesting feature of the history training records is that in both cases the 

validation loss is lower than the training loss (more notably for the WDL case) and that 

the model reached their optimum status pretty early. The first situation could be due to 

the fact that the loss values are calculated as the average across batches at the end of each 

epoch. During training the model has many batches to try different evolution directions 

that sometimes make it get worse results but in the end it always ends with a similar set 

of weights to that of the optimum, which is indicated by the lower validation loss. This 

additionally could mean that the model has very little room to try enough modifications 

to improve itself without hurting performance. This links directly with the second 

tendency of reaching the plateau very early, probably due to the model being incapable 

of finding better weight modifications. All this is easily explained by the model’s inner 

design. As there are very few layers in the spatio-temporal analysis section, which was 

an inner limitation due to the limited amount of VRAM at our disposal and the large size 

of the input arrays. 

The whole training process took 22 h to complete with both loss functions, 

meaning that the choice of loss does not impact the calculations speed. The models 

selected for the final evaluation were chosen based on the validation loss, specifically 
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the selected model trained with the WCE was the one obtained after epoch 100 (due to 

lack of appreciable overfitting) and for the model trained with the WDL we selected the 

optimized one just after epoch 60, since from that point the network seem to lose quality. 

7.4.2. Frame detection 

The evaluated test included 95 cases with 35 frames, 2 cases with 25 frames and 

1 case with 22 frames. The results with the distribution of the frame difference error and 

its relative version are presented on Table 7.1. The best results are those offered by the 

model trained with the WDL and with the application of the central method for the final 

ED and ES selection. This setting achieves a perfect result for the ED detection (error of 

0) and very good result for the ES detection with an average frame difference of 1.24 

frames (relative error of 0.03). Additionally, it is worth mentioning that the great 

majority of cases (65%) had an error of 0 or 1, with the remaining cases having errors 

between 2 and 4 with a decreased number of cases for the bigger errors. There were not 

any noticeable differences between the cases with 35 frames and the other 3 cases, with 

errors of 1 frame in 2 cases and one case with a perfect result (error for the ES, as for the 

ED all cases were correctly detected). 

 

Table 7.1 Frame difference error for the model trained with different loss functions and with the 

different classification methods employed. Values correspond to mean and standard deviation. The 

relative error values are presented below in parenthesis. Bold letters indicate the best results achieved. 

 ES                    

(naïve method) 

ES               

(central method) 

ED               

(naïve method) 

ED            

(central method) 

              

WCE 

3.121 ± 3.500 

(0.090 ± 0.101) 

2.505 ± 2.249 

(0.072 ± 0.065) 

0.141 ± 0.619 

(0.005 ± 0.018) 

0.141 ± 0.619 

(0.005 ± 0.018) 

            

WDCL  

1.747 ± 1.849 

(0.051 ± 0.053) 

1.242 ± 1.45 

(0.036 ± 0.042) 

0 ± 0 

(0 ± 0) 

0 ± 0 

(0 ± 0) 

 

 The different setting combination did yield expected results. In all the 4 settings, 

the use of WDL during training resulted in a better model, and the same can be said for 

the central method, which achieved better results than the naïve method in all setting 

with the exception of the ED frame, where only the choice of loss function made a 

difference in the results. 



7.5. Discussion 

 

 

With respect to the inference speed, the average time required for processing a 

single case was 0.1 seconds using both the naïve and central method (the difference 

between using one or the other was negligible while employing vectorized 

programming). This inference refers to the average time required for processing batches 

of size 1 and includes the final prediction method step. 

7.5. Discussion 

We have described a methodology employing a fully convolutional neural 

network capable of detecting the ES and ED frames within a short-axis cine CMRI. The 

neural network is characterized by the use of dilated convolutions with different dilation 

rates in order to process temporal information and by being trained with the weighted 

Dice loss. 

Detection of both ES and ED points is a prior necessary step before any analysis 

can be made, however this problem has not been treated as extensively as the 

segmentation of the different regions on these frames (a lot of work has been done for 

left ventricular segmentation). This difference in focus within the research community 

can be easily explained because segmentation is a clearly more time-consuming problem 

compare to the ES and ED frame selection. Still, for any automatic CAD system that is 

to be developed for assessing the heart in CMRI this is still an important and hard task 

from the algorithm’s design point of view. Additionally, even if it does not take that 

much time compared to manual segmentation, the selection of the correct frames can still 

take some time depending on the user’s experience. In a radiological setting when lots 

of patients require fast diagnosis, saving this time can further improve the workflow of 

the clinical experts. 

To the best of our knowledge, we can only compare our work against three other 

previous works done in the matter. The model used in [177] employed the more 

widespread approach of combining a convolutional block with recurrent layers (LSTM 

modules) to process the temporal information. In this work the authors reached an 

average frame difference error of 0.38 and 0.44 for ED and ES respectively using a 4-

fold cross-validation methodology on a dataset comprising of single-slice sequences with 

a constant of 20 frames. The results are better for ES and worse for ED than our method, 

however it is noteworthy that the datasets employed are considerably different, with our 

acquisitions consisting of 3D volume frames with both a variable number of slices and 

of frames, with the vast majority having 35 frames, which in addition had to be 

transformed to lower quality image representations of the volume frames via the median 
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projection. One approach simply made use of a previous segmentation on the LV 

throughout all the frames, but no report in any type of quality measurement is provided 

[130]. In this case we can’t know how well their detection went, however it is clear that 

if the possibility of a high accurate segmentation is available, selecting the frames in this 

way is the most obvious method. However, we think this is a very impractical 

methodology, as this would require having lots of different segmented frames in order 

to properly train a model for full segmentation on the entire cine acquisition, and 

additionally the predictions should be applied in all the frames, making the automatic 

process slower. Lastly, in another work the authors employed a CNN to first segment the 

LV in much longer sequences of 1 slice [178]. The sequences in this case had a constant 

duration of 84 frames. The authors used the relative location of the center of the LV to 

determine the ES and ED. They use 10 cases with 10 different sequences, each covering 

different regions of the heart, to validate their method. They reported an accuracy of 

75%, which increased to 95% when only the mid regions were analyzed. In this case the 

way they analyzed the classification and the sequence’s nature is very different. 

The proposed model has more similarities with the model described in [177], 

where we use a similar overall design but instead of using LSTM layers we use different 

dilated convolutional paths to process the temporal information. LSTM and GRU layers 

are the most successful type of recurrent layers for time-series analysis [183], however 

they can be harder to train and more unstable compared to convolutional layers [184, 

185]. Besides, the use of dilated convolutions has already proven to be an efficient 

method for time-series analysis [71, 176, 179], being capable of retaining long-term 

information better than recurrent layers [71]. 

The described model used the weighted Dice loss in order to obtain better results 

than the more widespread weighted cross-entropy loss. The experiments clearly 

demonstrated that the use of the Dice coefficient is beneficial for training the model, and 

seeing how other works have obtained superior results as well with its use in the context 

of NLP [182], we speculate that it could also be used for any temporal classification task 

with improved results. Probably the main reason of the superiority of the Dice loss is due 

to it being computed at the label level, employing all temporal point at the same time, 

while other functions like cross-entropy computes the value for each frame and then 

applies an average. This is actually similar to segmentation problems, where the Dice 

loss has proven to be superior to cross-entropy as well [110] and our problem could very 

much be viewed as a segmentation task in 1 dimension. 



7.5. Discussion 

 

 

There are important limitations to consider in the model design. Mainly in the 

temporal convolutional blocks, where only 1 channel was obtained per convolution, 

resulting in a very shallow network. This limitation came from the memory constraint of 

using large tensors (size of 176 × 176 × 35 in the vast majority). An alternative approach 

could have been reducing the size of inputs in the spatial domain, for example with 

images of size 88 × 88, but considering that the images were already derived from the 

original images and were not a perfect representation of the spatial features of the real 

volume (median projected images), we preferred to maintain as much spatial information 

as possible. Additionally, considering the disentangled number of spatial and temporal 

features we can see how a lower number of kernels could extract enough information 

from the temporal dimension (the spatial domain has a total 30976 features represented 

by the number of pixels, whereas the temporal had at most 35 represented by the number 

of frames). This proved to be true considering the obtained results, but at the same time 

the loss history demonstrated that the model had some inner limitation that could not be 

surpassed at early epochs. Probably enlarging the number of kernels per convolution 

layer in the dilated convolution block could remove this limitation and reach even better 

results.  

 With all things considered, the errors obtained demonstrate that the model is 

very accurate. We introduced the relative frame difference error besides the standard 

frame difference as a better way to estimate the quality of the results and believe it could 

be used to better compare methods in future works. In our case, with our test set of 98 

cases we could achieve a relative frame difference error of 0.03 for the ES (and with 

65% of cases having a zero error results), meaning that on average the distance from the 

selected frame to the real one was 3% of the entire sequence length. For the ED the 

results were perfect in all cases. The error obtained for ES is small enough to not have a 

relevant clinical impact on the final estimated biomarkers, as very close frames yield 

very similar contraction states, which results in small differences in the final volume 

measurements in the worst case. 

There is another important finding in that for the ES the error was higher, which 

is also consistent with the results of others works [177]. The explanation for this is 

probably because of the shape the LV (which is the major contracting element) takes at 

ES and ED. At ED the LV is usually round, while at ES its shape is, while still round, 

more irregular and smaller. Additionally, the adjacent frames are notably more similar 

between them around the ES than at ED (check Figure 7.2 for visualize this clearly) 

which also contribute at its higher detection difficulty. 
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Another important point is that the real ES and ED varies depending on the 

region. These differences are not very big along the heart but for a perfect determination 

one would need to detect the real ES and ED for each available slice. We did not test 

this, as our data did not allow for it and because it is not usually done in the clinical 

context. Still, the described model could be used in such a context without problems, as 

it can take inputs of any slice, and for the extreme case of one slice the inputs would not 

be modified by the median operation applied at preprocessing. 

In conclusion, the results obtained are very promising. With higher computation 

resources an improved version could be easily designed and implemented. Finally, we 

want to further highlight that the proposed pipeline is suitable not only in the case of 

short-axis cine CMRI, but for any type of dynamic imaging in general, as the whole 

design was made with the vision of processing any type of input shape (variable number 

of slices and of number of frames). 

7.6. Conclusions 

This chapter has covered the design and implementation of a fully convolutional 

neural network capable of detecting the end-systolic and end-diastolic frames in short-

axis cine CMRI with high accuracy. The main elements that characterized the model 

were the use of dilated convolutions to process the temporal relationships between the 

frames and the use of the weighted Dice coefficient as a loss function to improve the 

final trained model in contrast to the classical cross-entropy loss. 

The design taken additionally demonstrated its potential considering the low 

number of parameters of the neural network, especially in its spatio-temporal section. 

Overall, the proposed model shows promising results that are good enough to be used in 

a clinical scenario, with perfect estimations for ED frames and very accurate matches for 

the ES frames. Additionally, the inner model designs and the proposed preprocessing 

pipeline allows it to work with sequences with a variable number of frames composed 

of volumes of any size, including single-slice sequences. 

There were important limitations for the design of this model, mainly due to the 

large size of inputs which limited its potential with a minimum depth implementation of 

the layers in the temporal analysis. However, even with these restrictions the neural 

network still proved to be able to get excellent result in the task at hand. With this in 

mind we believe that the overall design of this architecture and training profile could be 

employed for any type of time-series problems, widening its potential applications.  
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Chapter 8.                          

Final conclusions 
 

 

 

8.1. General overview 

In this project, the applications of convolutional neural networks for the design 

of automatic Computer-Aided-Diagnosis in cardiac MRI has been extensively studied 

and different novel implementations have been presented.  

A fully automatic CAD system is intended to process the medical images and 

provide different biomarkers of interest to the clinical expert without intervention. As 

such, several parts may conform the CAD system. The most usual way is to segment the 

region of interest from which to extract the different biomarkers. In this sense, CNN are 

very efficient for segmentation tasks. The PSPU-net described was capable of producing 

high quality segmentations of the short-axis cine CMRI images and proved to be superior 

to a heavier 3D U-net. 

Another approach that is sometimes employed in deep learning applications is 

the use of automatic classification or regression CNN models. CAD systems that make 

use of these models can benefit of an easier training scheme design if only the biomarker 

values are available for training, but it comes with the important cost of eliminating 

outputs that can help the clinical experts to correctly interpret the results. This does not 

happen when segmentations are available, as they serve this purpose. Is in this setting 

where explainable-AI is a must. The employment of weak-supervision methods can help 

provide direct full segmentations using the biomarkers available, and then use this 

segmentation to derive the biomarker. This approach is taken in this project, as it 

provides a better way to offer explainability compared to other explainable AI techniques 

that can only provide heat maps highlighting the most important regions but fail at 

providing a way to interpret how these highlighted features are then employed by the 

model to reach their prediction. The regression U-net proposed here allows to produce a 

segmentation that is guaranteed to be the one used to obtain the biomarkers with an easy-
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to-interpret scanning module. The model was not perfect due to the difficulty of training 

with these conditions with a limited dataset, but still could achieve very low errors in its 

predictions, and the derived segmentation had a good overall quality, always matching 

the region of the left ventricle which indicated a very good quality on the explainability 

power of the model. 

Depending on the problem at hand, a full CAD system may require additional 

image processing steps besides segmentation and biomarker computation. This is also 

true for the case of short-axis cine CMRI where the segmentations are required for two 

frames (end-systole and end-diastole) out of several available frames. An automatic 

CAD for cardiac assessment necessarily requires to detect these frames as a first step. 

Noteworthy, this is something that seems to not have caught the attention of the research 

community very much. In this work and additional model was designed with the 

exclusive use of convolutional layers that employed dilation rates for the temporal 

analysis and additionally a very effective way to train it with the use of the Dice loss is 

described. The model was heavily limited in its temporal processing capabilities due to 

the large memory consumption of the inputs, but still managed to get excellent results 

with the best settings, indicating that the overall design is the core of its functional 

performance and with more resources further improvement could be made by simply 

increasing the layer’s depth. 

The general overview of this work presents the main elements to consider to 

apply convolutional neural networks for developing a fully automatic CAD system for 

cardiac MRI assessment. The work focuses on the case of short-axis cine CMRI 

acquisitions analysis due to them being the more general and informative images 

employed in the clinical context, but additional biomarkers could be computed for other 

cardiac acquisition protocols using the same or slightly modified versions of the methods 

described. 

8.2. Limitations 

8.2.1. Dataset 

The dataset employed was limited but sufficiently large to study all the different 

deep learning methodologies applied. The cohort was specifically taken from patients 

that had been clinically assessed and whose images had been analyzed and labeled within 

the clinical diagnosis workflow.  



8.2. Limitations 

 

 

Still, as has been appointed multiple times, deep learning models shine the most 

the more data one can feed them. The number of required samples varies from problem 

to problem, overall harder problems will require larger datasets. As seen in the obtained 

results, the number of samples was enough to generate high quality results, with the 

notable exception of the regression U-net model which could achieve good results, but 

not as excellent as for segmentation or frame detection. This was expected since that task 

was in nature considerably harder than the others.  

Finally, it must be mentioned that the employed dataset was limited to a single 

machine acquisition, so increasing the dataset with images coming from different sources 

could also be determinant at being able to generalize the models defined for different 

scanners. 

8.2.2. Hardware 

All the described methods employed were mainly limited by the GPU employed. 

The GPU model RTX 2080 Ti that was used corresponded to one of the best from the 

GeForce series at the moment this thesis began. However, since then, newer and more 

powerful models have been launched. Mainly the 3000 series, with the RTX 3090 Ti (24 

GB of VRAM) staying at the top of the GeForce series with more than doubling the 

VRAM of the RTX 2080 Ti. At the moment of writing this thesis the 4000 series were 

announced and rapidly launched to the market. These come with even higher 

computational capabilities but are still equivalent to the 3000 series in terms of the 

available memory. 

Training the described models with a more powerful GPU like some of the 3000 

or 4000 series could also help in the results. Another option could be to add additional 

GPUs to work in parallel. The main bottleneck in this context is the available VRAM, as 

it will determine how big a model can be trained and the reachable batch size. Both 

factors can have a very important impact on the final predictive power of the trained 

model. This was especially true for the frame detection model, whose size had to be 

strongly limited due to the large size of the inputs, which also limited the batch size 

considerably. We believe this model could be further improved just by increasing the 

GPU capabilities. 

We only mentioned the Nvidia Geforce alternatives for GPU, since although 

they are expensive, they are still affordable for what they offer. However, if one is not 

restricted by monetary constrains, even more powerful models can be acquired like those 
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of the Nvidia high-end Tesla series, or use cloud computing with TPUs, albeit this will 

most probably incur in exponential increase in costs. 

8.3. Future lines of work 

8.3.1. Using additional datasets 

The approaches taken could be furtherly tested with additional dataset apart 

from the one we had access to. In this sense, we have recently found two relatively big 

public datasets that can be used as additional data sources. 

The first one is the ACDC challenge dataset (https://acdc.creatis.insa-

lyon.fr/description/index.html) which includes 100 cases for training and 50 for testing. 

The second is the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation 

(M&Ms) Challenge (https://www.ub.edu/mnms/) which includes 175 cases for training 

and 200 cases for testing. 

Both of these datasets include segmentation labels for the end-diastole and end-

systole and includes acquisition for different machine brands. Adding these to our own 

dataset could notably increase the number of cases and provided a more varied image 

pool with respect to scanners employed. 

8.3.2. New architectures and training designs 

One of the future lines of work for further development of this thesis results is 

to test variations of architectures and training designs. The reader should have noted that 

in all described models there were some common features. We briefly describe some 

possible alternatives as an initial start point for anyone interested in trying the models 

with some modifications. 

Regarding the training designs, all the described models employed ADAM 

optimizer for training, the use of batch normalization in each convolutional layer and the 

use of ReLU activation function. There are many different options that could have been 

chosen, but we stick with these mainly due to them being the most extensively employed 

ones in deep learning designs and we believed that to prove the quality of the presented 

architectures it made more sense to use the most used design features. One future line of 

work would to be to test the same models under different configuration conditions. We 

will mostly refer to options described in the convnext design [75] where as indicated by 

https://acdc.creatis.insa-lyon.fr/description/index.html
https://acdc.creatis.insa-lyon.fr/description/index.html
https://www.ub.edu/mnms/
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the authors can obtain state of the art results, surpassing some of the current trends 

employing vision transformers and more classical CNN implementations. We will 

mention some interesting ones that could be tested to replace the ones employed in this 

thesis: 

 Batch normalization alternatives: there are some works describing the use 

of other layer standardization procedures. Some examples could be instance 

normalization [186] or layer normalization [187]. These basically function 

similarly to batch normalization but calculate the inner statistics from each 

sample’s own features, thus having the advantage of being applicable for 

mini batches with just one sample. Additionally, there is evidence that 

proves that these methods could be superior to batch normalization in some 

contexts [73, 75, 82]. 

 ADAM optimizer alternatives: in general ADAM (adaptative moment 

estimation) is a very strong optimizer that usually leads to faster 

convergences compared to other optimizers, however for specific cases a 

classic optimizer like SGD (stochastic gradient descent) with momentum 

might be preferable as there is also evidence that SGD, even if slower, can 

result in better generalization [188]. To mention the one proposed in the 

convnext, we also have ADAMW which adds a weight decay factor in the 

form of L2 regularization [189], this optimizer is starting to get notable 

attention. 

 ReLU alternatives: there are many activation functions at disposal as 

described in chapter 3. However, we consider interesting the GELU 

(Gaussian Error Linear Unit) [190] which has been used in some notorious 

transformer architectures like GPT-3 [191] or BERT [192]. Additionally, 

the very recent GCU (growing cosine unit) is proclaimed to be superior to 

any variant of ReLU and capable of solving the XOR limitation in single 

artificial neurons [49]. 

With respect to the model’s architectures themselves there could be many 

different approaches. We describe some simple examples for the model presented in 

chapter 6 and 7.  

The U-net regression model presented could perhaps be modified in its scanning 

block to change the way the circular features are calculated, introducing some 

morphological operations. Additionally, other features from the object could be 

computed beforehand and used as additional targets (i.e: the average intensity within the 
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LV). Another interesting approach could be testing the same architecture to process only 

2D slices, considering the nature of the results, individual slice processing could be an 

interesting option in comparison to averaging the roundness properties through the slices. 

The ES/ED classification model could be improved with deeper layers. 

Alternatively, the entire temporal analysis block could be replaced by a transformer 

architecture, which are based on completely different paradigms from that of 

convolutional neural networks and are the current standard for time series analysis, 

having proven its power in very complex problems like NLP [89, 191] or protein 

structure prediction (one of the most complex challenges within biological science 

nowadays) [192]. Another interesting thing to try in the future is seeing if adding and 

additional block could suppress the necessity of the central method described for the 

final classification. Such a block could, for example, take the value prediction of each 

frame at the ES and ED classes, apply some 1D convolution on the vectors and again 

apply a softmax activation function. This would give for the entirety of the sequence a 

set of probabilities that would sum to 1 for all the frames, and if the model was able to 

learn some inner characteristics of the prediction distributions maybe simply applying 

the naïve method afterwards could obtain comparable results.  

All the described options are just examples and hypothesis that we intend to try 

in the future, but in any case, considering the wide variety of option within the deep 

learning field many others could be thought as well. 

8.3.3. Beginning-to-end CAD model training 

Another future line of work would be designing a model that directly couples 

the frame detection with the segmentation of the regions of interest (via either a 

segmentation CNN or a regression CNN with explainability capabilities). A 

straightforward approach would be to couple both models after training them separately 

but it would be more interesting to train a full beginning-to-end system that would 

represent the final CAD system itself. This would require feeding the entire image 

acquisition and probably use multiple loss functions to get optimum results, as the 

gradient would need to flow from the segmentation or predicted volumes obtained for 

the whole sequence passing through the initial frame classifier. 
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8.3.4. Generative models for synthetic image generation 

One of the most interesting lines to follow in the future is that of synthetic image 

generation, as it is one of the current main applications to computer vision but was left 

out of this work due to the very specific nature of its application and for time limitations. 

The main interest of trying generative models is for data augmentation purposes. Having 

a good enough model of this kind could allow to generate new instances along with labels 

on the fly, and additionally other generative techniques can alter an original image, for 

example to introduce a disease within an image of a healthy subject. All these 

characteristics could be very helpful in the radiology context, where bigger and more 

balanced dataset could be created. Furthermore, these additional images would not have 

any use or access constrains, as they would not come from real patients. 

There are many available generative deep learning models. To name some 

important ones we have variational autoencoders (VAE) which try to capture a 

distribution representation from which to sample new instances; generative adversarial 

networks (GAN) that uses a generator against a discriminator in order to produce high 

quality images until the discriminator cannot tell them apart from real samples; or 

diffusion models which use a Markov chain approach to iteratively reverse the addition 

of noise to images that have been extensively corrupted. 

8.3.5. Few-shot learning 

Another interesting line of work is the investigation of few-shot learning 

approaches. These are machine learning methods that aim to design training 

methodologies to enable models to learn from very few samples [193], reaching even the 

limit of using just one sample (one-shot learning). This could also be interesting in the 

medical imaging field, as data is usually scarce and hard to obtain, especially the label 

information. 

8.4. Conclusions 

This work describes several key applications of convolutional neural networks 

to Computer-Aided-Diagnosis systems in the context of cardiac MRI assessment. The 

project covers in several chapters the full image processing with convolutional neural 

networks pipeline that should be considered for this type of system. Several novel 

designs and implementations of deep learning methodologies and models have been 

described, including the topics of segmentation, explainable-AI, weak-supervised 



Chapter 8. Final conclusions 

 

 

138 

learning and event-detection. The models described obtained promising results that 

allow for the implementation of a fully convolutional neural network system for the 

assessment of the heart in cardiac MRI with high quality, enabling its use in real clinical 

context
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