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Abstract

One of the fundamental problems in rings of continuous functions is
to extract those spaces X for which C(X) determines X, that is to
investigate X and Y such that C(X) isomorphic with C(Y ) implies X
homeomorphic with Y . Later S. Banach and M. Stone proved inde-
pendently with slight variance, that if X is a compact Hausdorff space,
C(X) also determine X. Their works were maximally extended by E.
Hewitt who introduced realcompact spaces and later Melvin Henriksen
and Biswajit Mitra solved the problem for locally compact and nearly
realcompact spaces. In this paper we tried to develop a unified theory
of this problem to cover up all the works in the literature introducing
the notion P-compact spaces.
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1. Introduction

In this paper we tried to develop a unified theory of C(X) determining X
in the sense that under what general condition(s), C(X) is isomorphic with
C(Y ) implies that X is homeomorphic with Y . It is a very age-old and a
fundamental problem in the area of rings of continuous functions. M.H. Stone
and E. Čech independently proved that for any space X, there exists a Ty-
chonoff space Y such that C(X) is isomorphic with C(Y ). Thus they directed
us to investigate this problem within the class of Tychonoff spaces, we shall
therefore always stick ourselves within the class of Tychonoff spaces unless oth-
erwise mentioned. Banach and Stone independently proved with slight variance
that if X is a compact and Hausdorff space, then C(X) determines X. In the
year 1948, E. Hewitt inroduced realcompact spaces and proved that within
the class of realcompact spaces, C(X) determines X [4, Theorem 8.3]. His
theory is in some sense maximal as because he had shown that for any space
X, C(X) is isomorphic with C(υX) [4, Theorem 8.8(a)], where υX is the
Hewitt-realcompactification of X. This result particularly highlights that we
can never extend “C(X) determining X”-type problem for those spaces which
are the generalizations of realcompactness. More precisely, suppose P be a
topological property such that every realcompact space satisfies that property
and we call a space to be P -space if X satisfies the property P . Now Hewitt’s
above result suggests that it is never possible to investigate “C(X) determines
X”-type problem for P -spaces only, because if X is a P -space which is not
realcompact then its υX, being always realcompact, is also a P -space and also
C(X) is isomorphic with C(υX) but X is not homeomorphic to υX. So we
need to impose additional restriction(s) on the P -space to study above type of
problem. That is why, in the year 2005, Henriksen and Mitra proved that if
X is locally compact and nearly realcompact, then C(X) determines X, where
nearly realcompact space is the generalization of realcompactness, introduced
by E. K. van Douwen and R. L. Blair in [1]. In the year 1987 [10], Redlin and
Watson, brought the isomorphism theorem of Banach and Stone and that of
Hewitt into a common platform by introducing A-compact space for an inter-
mediate subring A(X) of C(X) and proved that if X is A-compact and Y is
B-compact and A(X) is isomorphic with B(Y ), then X is homeomorphic with
Y . If A and B are C∗, then Banach-Stone theorem follows and in case, A and
B are C, then Hewitt’s theorem follows.

In this paper, we develop a common theory which includes all the develop-
ments so far. By an intermediate subring of C(X), we always mean that it
lies in between C∗(X) and C(X) . We usually denote these rings by A(X),
B(X) etc. We here mainly concern about the subsets of the family of all max-
imal ideals MA(X) (or simply MA) of intermediate subring A(X) of C(X).
If PA ⊆MA, accordingly we have defined PA-compact and locally-PA [Defini-
tion 3.1]. In general, for a subset P of MA, P-maximal ideal is not algebraic
[Remark 3.4] and P-compact, locally-P are not topological in the sense given
in remark 3.14. So we have introduced concept of algebraic set [Definition
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3.3] among the subsets of MA . As for example, MA is itself an algebraic
set. However, there are also many examples of non-trivial algebraic sets. We
defined a relation, called conjugate, between subsets of MA(X) and MB(Y )
when A(X) is isomorphic with B(Y ). In general, a subset ofMA(X) may not
have a conjugate inMB(Y ) [Remark 3.2], however, if the subset ofMA(X) is
algebraic, then it always have unique conjugate in MB(Y ), which is also alge-
braic [Theorem 3.7]. Therefore we denote all the conjugates of an algebraic set
P by the same symbol P itself and proved that P-compact and locally-P are
topological property [Theorem 3.15, 3.17]. We finally proved that if P be an
algebraic set in A(X) and A(X) is isomorphic with B(Y ) and further X and Y
both are locally-P and P-compact, then X is homeomorphic with Y [Theorem
3.19]. This result unifies all the above mentioned isomorphism theorems on
suitable choices of algebraic sets.

2. Preliminaries

We use most of the preliminary ideas, symbols and terminologies from the
classic monograph of Leonard Gillman and Meyer Jerison, Rings of Continuous
Functions [4]. For any f ∈ C(X) or C∗(X), Z(f) = {x ∈ X : f(x) = 0}, is
called zero set of f and the complement of zero set is called cozero set or cozero
part of f , denoted as cozf . For f ∈ C(X), the set clX(X\Z(f)) is known as
the support of f . If h is a homomorphism from C(X) or C∗(X) into C(Y ),
then the image of a bounded function on X is a bounded function on Y under
h. A space is called pseudocompact if C(X) = C∗(X). A maximal ideal M
in C(X) is called real maximal if C(X)/M is isomorphic with R, otherwise is
called hyper-real. A maximal ideal M is called fixed if there exists x ∈ X such
that f(x) = 0, for all f ∈M , usually denoted as Mx. Every fixed maximal ideal
is real. However converse may not be true. A space is realcompact if every real
maximal ideal in C(X) is fixed. B. Mitra and S.K. Acharyya introduced the
ring χ(X) in their paper [8]. χ(X) is the smallest subring of C(X) containing
C∗(X) and CH(X), where CH(X) = {f ∈ C(X)|clX(X\Z(f)) is hard in X}.
A subset H of X is hard in X if it is closed in X ∪ clβX(υX\X).

They proved the following theorem

Theorem 2.1 ([8], Theorem 3.4). A space X is nearly pseudocompact if and
only if χ(X) = C∗(X).

In the same paper [8], Mitra and Acharyya defined hard pseudocompact
spaces. A space is said to be hard pseudocompact if C(X) = χ(X). Then
it is evident, hard pseudocompactness and nearly pseudocompactness together
imply pseudocompactness of a space X and vice versa. Later Ghosh and Mitra
in [3] worked in detail over hard pseudocompact spaces and their properties.

Henriksen and Mitra introduced Strongly real maximal ideal (in brief SRM
ideal) in [5]. A maximal ideal M of C(X) is called SRM ideal if there exists
g /∈ M such that fg ∈ C∗(X) for all f ∈ C(X). There is, in general, no
connection between real maximal ideal and SRM ideal. In fact not all fixed
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maximal ideal is SRM. If X is locally compact, all fixed maximal ideals are
SRM. However SRM ideals help to characterize nearly realcompact spaces

Theorem 2.2 ([5], Theorem 2.9). A space X is nearly realcompact if and only
if every SRM ideal is fixed.

In C(X), more generally in commutative ring with 1, if M(X) is the col-
lection of all maximal ideal of C(X), naturally topologized with hull-kernel
topology, then M(X) with this topology is called structure space of C(X). In
this structure space {Vf : f ∈ C(X)}, where Vf = {M ∈ M(X) : f ∈ M},
forms a base for closed sets and the structure space turns out to be compact
T1 space. In general structure space of a commutative ring with 1 may not
be Hausdorff but the structure space of C(X) or any intermediate subrings of
C(X), turns out to be Hausdorff.

Redlin and Watson in [10] discussed different properties of intermediate sub-
rings of C(X), almost similar to that of C(X). As for instance, any interme-
diate subring A(X) of C(X) is a lattice ordered ring. Any maximal ideal M
of A(X) is absolutely convex. A(X)/M is a totally ordered field containing R
as a totally ordered subfield. For each x ∈ X, MA

x = {f ∈ A(X) : f(x) = 0}
is precisely the collection of fixed maximal ideals of A(X). A maximal ideal of
A(X) is real if A(X)/M is isomorphic with R. Every fixed maximal ideal of
A(X) is real. Redlin and Watson in [10] defined a space to be A-compact if
every real maximal ideal of A(X) is fixed and proved the following theorem

Theorem 2.3 ([10], Theorem 7). Let X be A-compact and Y be B-compact.
If A(X) is isomorphic with B(Y ), then X is homeomorphic with Y .

3. Main results

We begin this section with the definition of PA-compactness. Let A(X) be
an intermediate subring of C(X) and MA be the family of all maximal ideals
in A(X). Let P be a subset of MA . A maximal ideal M is called P-maximal
ideal if M ∈ P, otherwise M is called non-PA-maximal ideal.

Definition 3.1. A space X is called PA-compact if every PA-maximal ideal is
fixed. A space X is called locally-PA if every fixed maximal ideal is PA-maximal
ideal.

For A(X) = C(X), we shall simply writeMA byM(X), PC-maximal ideal
by P-maximal, PC-compact by P-compact and locally-PA by locally-P. It is
clear that every compact space is P-compact. However, in future, we shall often
use P-maximal instead of PA-maximal ideal to avoid notational complexity.

Remark 3.2. Suppose A(X) and B(Y ) be two intermediate subrings of C(X)
and C(Y ) respectively. Let P ⊆ MA. If ψ be an isomorphism between A(X)
and B(Y ), then ψ-image of any P-maximal ideal is ψ∗(P)-maximal ideal, de-
fined in the next paragraph. But choice of ψ∗(P ) strictly depends on ψ. For
example, if we consider two homeomorphisms on [0, 1]: t → t and t → 1 − t,
then they induce two distinct isomorphisms ψ1 and ψ2 on C([0, 1]), defined as
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ψ1(f)(t) = f(f) and ψ2(f)(t) = f(1− t). Let P [a,b] = {Mx : a ≤ x ≤ b}. Then

ψ∗1(P [0, 12 ]) = P [0, 12 ], while ψ∗2(P [0, 12 ]) = P [ 12 ,1]. Thus P [0, 12 ]-maximal ideals are
preserved under the isomorphism ψ1, but not preserved under ψ2. So we can
conclude that P-maximal ideal, in general, may not be algebraic invariant. On
the other hand, if we take P to be the collection of all real maximal ideals in
C(X) and Q to be the collection of all real maximal ideals in C(Y ), then for
any isomorphism φ between C(X) and C(Y ), φ∗(P) = Q. In this case, we can
identify P with Q and conclude that P-maximal ideals are algebraic invariant.
In next few paragraphs, we developed an analogical concept in more general
set up to get hold of isomorphism theorems.

Let for any space X and Y , A(X) and B(Y ) be intermediate subrings of
C(X) and C(Y ) respectively. Let σ : A(X)→ B(Y ) be an isomorphism. Then
we can lift σ to σ∗ : P(M(A))→ P(M(B)) defined by σ∗(E) = {σ(M) : M ∈
E}. Let P ⊆ M(A) of A(X). Q ⊆ M(B) is said to be σ-conjugate of P in
B(Y ) if σ∗(P) = Q. Q is said to be conjugate of P in B(Y ) if Q is σ-conjugate
of P in B(Y ) for any isomorphism σ between A(X) and B(Y ). It is clear that
if Q is conjugate of P if and only if P is conjugate of Q. We shall, in future,
simply write conjugate of P without mentioning what B(Y ) is, in order to
mean that it is σ-conjugate of P in some B(Y ) for some space Y .

Definition 3.3. A subset P of MA is called algebraic in A(X) if for any
automorphism ψ of A(X), ψ∗(P ) = P .

Remark 3.4. It is immediate that P is algebraic in A(X) if and only if for any
two isomorphism π and µ from A(X) onto B(Y ), π∗(P) = µ∗(P). In general, a

subset ofMA may not have a conjugate as for instance, we may refer P [0, 12 ] in
the above remark 3.2 . But for algebraic sets, existence of conjugate is assured,
once you have an isomorphism from A(X) onto some B(Y ). So, in particular,
any algebraic set is conjugate to itself.

Theorem 3.5. P is algebraic in A(X) if and only if any σ-conjugate of P is
conjugate to P.

Proof. Let Q = σ∗(P). Let h be any isomorphism between A(X) and B(Y ).
Then σ−1 ◦ h is an automorphism on A(X). So (σ−1 ◦ h)∗(P) = P. We shall
show that h∗(P) = Q. Let T ∈ h∗(P). There exists S ∈ P, such that T = h(S).
So σ−1(T ) ∈ P. So T ∈ σ∗(P). Hence h∗(P) ⊆ σ∗(P). Interchanging h and σ
we get the opposite inequality. Thus h∗(P) = Q.

The converse part trivially follows by taking σ to be the identity map. �

Corollary 3.6. Suppose A(X) is isomorphic with B(Y ) and P is an algebraic
set in A(X). Then a maximal ideal is P-maximal ideal if and only if its image
is Q-maximal ideal, where Q is conjugate of P.

Theorem 3.7. If P be an algebraic set in A(X) and whenever A(X) is iso-
morphic with B(Y ), for any space Y , then there exists a unique subset Q of
M(B), which is conjugate of P and is also algebraic in B(Y ).
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Proof. Uniqueness directly follows from the definition. Suppose π be an iso-
morphism between A(X) and B(Y ). From the above theorem 3.5, it follows
that Q = π∗(P) is the conjugate of P. It is enough to show that Q is algebraic
in B(Y ). Then for any automorphism σ of B(Y ), π−1 ◦ σ ◦ π is an automor-
phism of A(X). Let M ∈ Q. There exists N in P, such that π(N) = M .
Now π−1 ◦ σ ◦ π(N) ∈ P. That is π−1 ◦ σ(M) ∈ P. So, σ(M) ∈ π∗(P ) = Q.
That is why, σ∗(Q) ⊆ Q. For the converse, let T ∈ Q. Then, there exists
S ∈ P such that T = π(S). As P is algebraic, there exists M ∈ P such that
S = π−1 ◦σ ◦π(M). Then T = π ◦π−1 ◦σ ◦π(M) = σ(π(M)). Now π(M) ∈ Q.
Hence T ∈ σ∗(Q). Thus Q ⊆ σ∗(Q). So Q = σ∗(Q), for any automorphism σ
on A(X) �

Note 3.8. If P is algebraic in A(X), then we will keep the same symbol P for
its conjugate because of its uniqueness.

We hereby construct few examples of algebraic sets of maximal ideals in
C(X).

Example 3.9.

(1) If P is the collection of all maximal ideals of C(X). Then P is trivially
an algebraic set. Then every maximal ideal is P-maximal ideal and
hence P-compact spaces are precisely the compact spaces.

(2) If P is the collection of all maximal ideal of C(X) such that C(X)/M
is isomorphic with the field of reals. Then again P is an algebraic set.
Then we know that a maximal ideal is P-maximal ideal if and only
if it is real maximal ideal introduced by Hewitt in [7] and P-compact
spaces are precisely realcompact spaces [7].

(3) If P is the collection of all maximal ideal M satisfying the following
condition: there exists f outside M such that fg ∈ C∗(X) for all
g ∈ C(X). This kind of maximal ideal is called SRM ideal [5, Theorem
2.12]. Then P is also algebraic. The reason is as follows: suppose ψ be
an automorphism of C(X). Let M be an SRM ideal. There exists f
outside M such that fg ∈ C∗(X) for all g ∈ C(X). Then ψ(f) is not in
ψ(M). Let h ∈ C(X), there exists unique g ∈ C(X) such that ψ(g) =
h. Now fg ∈ C∗(X). By [4, Theorem 1.7], ψ(fg) ∈ C∗(X). That
is, ψ(f).ψ(g) = ψ(f)h ∈ C∗(X), for h ∈ C(X). Thus ψ(M) is also
an SRM ideal. Thus ψ∗(P) ⊆ P. As ψ−1 is also an automorphism of
C(X), the other side of the inequality trivially follows. So ψ∗(P) = P,
for any automorphism ψ of A(X). Thus P-compact spaces are precisely
the nearly realcompact spaces [5, Theorem 2.9].

We now topologizeM(A) with the hull-kernel topology with {Af |f ∈ A(X)}
as its base for closed sets in M(A), where Af = {M ∈ M(A)| f ∈ M} and
consider the subspace P ofM(A). The base for closed sets in P is of the form
Af ∩ P : f ∈ A(X).

Lemma 3.10. If ψ is an isomorphism between A(X) and B(Y ) and P ⊆M(A)
then P is homeomorphic with ψ∗P.
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Proof. Let ψ : A(X) → B(Y ) be the isomorphism. Define φ : P → ψ∗P by
φ(M) = ψ(M). Therefore φ is clearly well-defined. φ is evidently one-one and
onto. Now we have to show that φ is closed and continuous. Here Bf ∩ ψ∗P
is a basic closed set in ψ∗P and φ−1(Bf ∩ ψ∗P) = φ−1(Bf ) ∩ φ−1(ψ∗P) =
Aψ−1(f) ∩ P, which is a basic closed set in P. Again φ(Af ∩ P) = Bψ(f) ∩ P.
Hence φ is closed and continuous. Therefore P and ψ∗P are homeomorphic. �

Corollary 3.11. Let P be an algebraic set in A(X). If A(X) is isomorphic
with B(Y ), then P and its conjugate are homeomorphic.

For P ⊆M(A), let NPA
(X) be the set of all those points x in X for which

MA
x is not PA-maximal ideal. Then X is locally-PA if and only if NPA

(X) = ∅.
For A(X) = C(X), we denote NPA

(X) = NP(X). For example if P is the class
of all real maximal ideals of C(X) , then X is locally-P. If we take P to be
family of all SRM ideal in C(X), then X may not be locally-P as the fixed
maximal ideals corresponding to the points in J ∩ X, if non-empty, where
J = clβX(βX\υX) are not SRM ideal [5, Theorem 2.6].

Lemma 3.12. If X is PA-compact then X\NPA
(X) and P are homeomorphic.

Proof. LetX be PA-compact, for P ⊆M(A). Then P = {MA
x |x ∈ X\NPA

(X)}.
Now define σ : X\NPA

(X) → P by σ(x) = MA
x . Then σ is bijective. Let

y ∈ σ−1(Af ∩ P) ⇔ σ(y) ∈ Af ∩ P ⇔ MA
y ∈ Af ∩ P ⇔ MA

y ∈ Af and

MA
y ∈ P ⇔ f ∈ MA

y and y /∈ NPA
(X) ⇔ f(y) = 0 and y /∈ NPA

(X) ⇔ y ∈
Z(f) and y /∈ NPA

(X)⇔ y ∈ Z(f) ∩ (X\NPA
(X)). Therefore σ−1(Af ∩ P) =

Z(f) ∩ (X\NPA
(X)). Also σ(Z(f) ∩ (X\NPA

(X))) = Af ∩ P. Hence σ is a
homeomorphism i.e X\NPA

(X) and P are homeomorphic. �

Hence the following theorem is immediate.

Theorem 3.13. Let ψ : A(X)→ B(Y ) be an isomorphism and P ⊆M(A). If
X is PA-compact and Y is ψ∗PB-compact, then X\NPA

(X) is homeomorphic
with Y \NPB

(Y ).

Proof. As X\NPA
(X) is homeomorphic with P and P is homeomorphic with

ψ∗(P). Further as, Y is ψ∗PB-compact, ψ∗(P ) is homeomorphic with Y \NPB
(Y ),

by transitivity, X\NPA
(X) and Y \NPB

(Y ) �

Remark 3.14. One thing is to be noted from the previous theorem 3.13, that
to assume Y to be ψ∗(P)-compact, we need explicit information about the
isomorphism ψ. It might be possible that for some isomorphism φ, X being
φ-compact and Y without being φ∗(P)-compact, is homeomorphic with X. Let
us consider an example in support of it. Let ω1 = [0, ω1) denotes the space
of 1st uncountable ordinal. Each continuous function in C(ω1) is eventually
constant, in the sense that for each f ∈ C(ω1), there exists an unique α < ω1

such that f(x) = f(α),∀x ≥ α. Define ψ : C(ω1)→ C(ω1) by
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ψ(f)(x) =


f(α), if x = 0

f(x), if 0 < x < α+ 1

f(0), if α < x < ω1

(3.1)

Then ψ is an isomorphism. Let P = {M0}. Then ψ∗(P) = {Mω1}, where,
Mω1 = {f ∈ C(ω1) : there exists an unique γ < ω1 such that f(x) = 0,∀x ≥ γ},
which is not fixed in C(ω1). According to our terminology, ω1 is P-compact but
not ψ∗(P)-compact. Even though, ω1 is trivially homeomorphic with ω1. So
it is clear that P-compact and ψ∗P-compact are not topologically same. If we
take P to be the family of all fixed maximal ideal in C(ω1), then ω1 is locally-
P but ω1 is not locally-ψ∗P as M0 /∈ ψ∗(P). So, locally-P and locally-ψ∗(P)
are also not topologically same. In remark 3.2, we saw that P-maximal ideals
may not be algebraic invariant. On the other side, the original isomorphism
problem does not care about the nature of isomorphism. It says that if C(X) is
isomorphic with C(Y ), then under what restrictions on X and Y makes X to be
homeomorphic with Y . No information about this isomorphism is mandatory.
So all these logical conflicts can be easily managed if we consider P to be an
algebraic set. The following two theorem depict the importance of algebraic
sets.

Theorem 3.15. Let P be algebraic in A(X). Suppose X is homeomorphic with
Y . Then there exists an intermediate subring B(Y ) of C(Y ) such that A(X) is
isomorphic with B(Y ). Then X is P-compact if and only if Y is Q-compact,
where Q is the conjugate of P in B(Y )

Note 3.16. The above theorem tells that P-compact and Q-compact are topo-
logically same, where Q is the conjugate of P. This fact again justifies our
agreement in note 3.8, that is, we can use same symbol P for the conjugate of
P . Then it follows that P-compact is a topological property.

Proof. Let P be an algebraic set inMA(X). Suppose X is homeomorphic with
Y . Let σ be the homeomorphism. ψσ : C(X) → C(Y ) defined by ψσ(f) =
f ◦ σ−1 is an isomorphism. Then σ(A(X)) is an intermediate subring of C(Y ),
denoted as B(Y ) as follows from [4, Theorem 1.18] and A(X) is isomorphic
with B(Y ). By theorem 3.7, let Q be the unique conjugate of P in B(Y ).
Let M be a Q-maximal ideal in B(Y ), then there exists a unique P-maximal
ideal N ∈ A(X) such that ψσ(N) = M as by definition of the algebraic set,
ψ∗σ(P) = Q. Since X is P-compact, N = NA

x for some x ∈ X. Let f ∈MB
σ(x).

Then f(σ(x)) = 0. Now there exists a g ∈ A(X), such that ψσ(g) = f , that
is, g ◦ σ−1 = f . This follows that f ◦ σ is in A(X). Thus f ◦ σ ∈ NA

x . So,
ψσ(f ◦ σ) ∈M . But ψσ(f ◦ σ) = f ◦ σ ◦ σ−1 = f . So f ∈M . Thus Mσ(x) ⊆M
and due to maximality, M = MB

σ(x). Hence every Q-maximal ideal in B(Y ) is

fixed. So Y is Q-compact.
Converse part is the replicate of the above proof just by interchanging P

and Q as by theorem 3.7, conjugate of an algebraic set is also algebraic.
�
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In the statement of the next theorem we now justifiably keep the same
symbol for an algebraic set and its conjugate and the theorem says that locally-
P is also a topological property. More explicitly, in the following statement
when we say that X is locally- P if and only if Y is locally- P, then the P
attached with Y is actually the conjugate of P attached with X. But instead
of using different symbols, we use the same symbol.

Theorem 3.17. Let P be an algebraic set in A(X). Suppose X is homeomor-
phic with Y . Then X is locally-P if and only if Y is locally-P.

Proof. As X is homeomorphic with Y , by the proof of the above theorem, this
homeomorphism induces a canonical isomorphism between C(X) and C(Y )
which on restriction over A(X), makes A(X) isomorphic with B(Y ). Let MB

y

be a fixed maximal ideal in B(Y ). Let g ∈ A(X), such that g ∈ ψ−1(MB
y ).

Then g ◦ σ−1 ∈ MB
y . That is, g(σ−1(y)) = 0. Thus g ∈ MA

σ−1 . Again due

to maximality, it follows that ψ−1(MB
y ) = MA

σ−1 , that is, a fixed maximal

ideal in A(X). As X is locally-P and P is algebraic, MB
y ∈ P. Hence Y is

locally-P. �

We hereby restate the theorem 3.13, for algebraic set.

Corollary 3.18. Let A(X) and B(Y ) are isomorphic and P is an algebraic set
in A(X). If X and Y are P-compact then X\NA

P (X) is homeomorphic with
Y \NB

P (Y ).

The following corollary is immediate.

Corollary 3.19. Let A(X) and B(Y ) are isomorphic and P is an algebraic
set in A(X). If X and Y are P-compact and locally-P then X and Y are
homeomorphic.

The next theorem is important to us and is direct consequence of theorem
3.18, as special case for A(X) = C(X) and B(Y ) = C(Y ).

Theorem 3.20. If X, Y are P-compact spaces for an algebraic set P and C(X)
is isomorphic with C(Y ) then X\NP(X) and Y \NP(Y ) are homeomorphic.

The following theorem establishes that if P is an algebraic set containing all
fixed maximal ideals, then if X is P-compact, C(X) determines X too.

Theorem 3.21. Let P be an algebraic set and C(X) is isomorphic with C(Y ).
If X and Y both are locally-P and P-compact, then X is homeomorphic with
Y .

Proof directly follows from the previous theorem 3.19.
Now we can easily deduce all the three results as mentioned in the beginning

of this paper as special case.
Banach-Stone theorem: As we have already observed that if we choose

P to be the collection of all maximal ideals of C(X), then P is an algebraic set.
Clearly X is locally-P. P-compact spaces are precisely the compact spaces.
So, if X is compact space, then C(X) determines X.
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E. Hewitt: If we take P to be the collection of all real maximal ideals.
Then P is an algebraic set and X is also locally -P. Then it follows that if X
is realcompact, then C(X) determines X too.

M. Henriksen and B. Mitra: If we choose P to be the collection of
SRM ideals, then P is an algebraic set. Then X is locally-P if and only X is
locally pseudocompact [[5], Theorem 2.8]. But if X nearly realcompact, then
X is locally-P if and only if X is locally compact [[5], Lemma 2.7] . Thus we
conclude that if X locally compact and nearly realcompact, then C(X) also
determines X.

We call, in general, a maximal ideal M of a commutative ring A with unity
is B-real maximal ideal, where B is a subring of A containing the unity of
A if M ∩ B is a maximal ideal of B. If A(X) and B(X) are intermediate
subrings of C(X) with A(X) being subring of B(X), then we call X to be
B − A-compact if every A-real maximal ideal of B is fixed. It is clear from
[[4], theorem 7.9(c)], that real maximal ideals are precisely C∗-real maximal
ideals of C(X) and C − C∗-compact is precisely realcompact space. For any
intermediate subring A(X) of C(X), real maximal ideal of A(X) is precisely
C∗(X)-real maximal ideal of A(X) by [[2], corollary 3.8]. So C∗ − A-compact
is precisely the A-compact spaces.

Redlin and Watson: If we take P to be the family of real maximal ideals of
A(X). Then P is an algebraic set. Clearly X is locally-P. If A(X) is isomorphic
with B(Y ), P-compactness of X and Y are respectively A-compactness of X
and B-compactness of Y . So, theorem 2.3 follows.

Now we shall try to build up another structurally similar example which
is different from previous examples. In [8] Mitra and Acharyya introduced
a subring of C(X) containing C∗(X), referred as χ(X) which is the smallest
subring of C(X) containing C∗(X) and CH(X). It is clear that if we choose P
to be the collection of χ-real maximal ideals of C(X), then P is an algebraic
set. X is trivially locally-P. Then we have the following result.

Theorem 3.22. If X and Y are χ-realcompact spaces, then C(X) isomorphic
with C(Y ) implies that X is homeomorphic with Y .

Since, in hard pseudocompact space, χ(X) = C(X), χ-real maximal ideals
are precisely all maximal ideals and therefore it is obvious that χ-realcompact
and hard pseudocompact implies compactness and on the other hand, if X is
nearly pseudocompact, χ(X) = C∗(X), χ-real maximal ideals are precisely real
maximal ideals and hence χ-realcompact and nearly pseudocompact implies
realcompactness.
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