
Departamento de Sistemas Informáticos y Computación

Valencian Research Institute for Artificial Intelligence

PhD Thesis

Analysis Techniques
for Software Maintenance

Author:
Sergio Pérez Rubio

Supervisor:
Josep Silva Galiana

April 2023

Analysis Techniques
for Software Maintenance

Sergio Pérez Rubio

Supervisor
Josep Silva Galiana Universitat Politècnica de València

Reviewers
Demis Ballis Università degli Studi di Udine

Miguel Gómez-Zamalloa Gil Universidad Complutense de Madrid
Konstantinos Sagonas Uppsala University

Examiners
Demis Ballis Università degli Studi di Udine

Adrián Riesco Rodríguez Universidad Complutense de Madrid
Germán Vidal Oriola Universidad Politécnica de Valencia

iii

“If you set your goals ridiculously high and it’s a failure, you will fail above
everyone else’s success.”

James Cameron

v

Abstract
We live in a society where digitalisation is present in our everyday life.

We wake up with the alarm of our mobile phone, book our meetings in our
digital calendar, save all our media in the cloud storage, and spend time in
social networks almost daily. Every one of these tasks is run over a software
system that ensures its correct functionality. This massive digitalisation has
made software development to shoot up in the last years. During the lifetime of
software systems, the maintenance process entails a waste of billions of dollars
every year. The cause of this waste is the occurrence of bugs or errors undetected
during the software production, which result in a malfunction of the system.
For this reason, error detection and localisation techniques, such as testing,
verification, or debugging, are a key factor to ensure software quality.

Although many different techniques are used for the debugging, testing, and
verification of software systems, this thesis focus on only some of them. In
particular, this thesis presents improvements in the program slicing technique
(debugging field), a new approach for regression testing (testing field), and a
new implementation of the design-by-contract verification model for the Erlang
programming language (verification field).

The improvements proposed for the program slicing technique include sev-
eral enhancements applicable to different scenarios: (i) improvements in the
representation and slicing of object-oriented programs, (ii) enhancements in the
representation and slicing of (possibly recursive) complex data structures (ob-
jects, arrays, lists, tuples, records, etc.), (iii) a new graph model based on a
fine-grained representation of programs that augments the expressivity of the
graph and provides more accurate slicing results, and (iv) a new technique to
compute minimal slices for a program given a set of specific program inputs.

On the other side, the new approach for regression testing is called point
of interest testing, and it introduces the possibility of automatically comparing
the behaviour of any arbitrary point in the code given two versions of the same
software system.

Finally, the thesis presents a new implementation of the design-by-contract
verification model for the Erlang programming language, where new types of
contracts are explained in detail for both the sequential and concurrent parts
of Erlang.

All the analyses presented here have been formally defined and their cor-
rectness have been proved, ensuring that the results will have the reliability
degree needed for real-life systems. Another contribution of this thesis is the
implementation of two program slicers for two different programming languages
(Java and Erlang), a tool to perform point of interest testing for the Erlang
programming language, and a system to run design-by-contract verification in
Erlang. It is worth mentioning that all the tools implemented in this thesis
are open source and publicly available, so they can be used or extended by any
interested researcher.

vii

Resumen
Vivimos en una sociedad donde la digitalización está presente en nuestro día
a día. Nos despertamos con la alarma de nuestro teléfono móvil, apuntamos
nuestras reuniones en nuestro calendario digital, guardamos nuestros archivos
en el almacenamiento en la nube, y entramos a las redes sociales prácticamente
a diario. Cada una de estas acciones se ejecuta sobre un sistema software que
asegura su correcto funcionamiento. Esta digitalización masiva ha hecho que el
desarrollo de software se dispare en los últimos años. Durante el ciclo de vida
de un sistema software, la etapa de mantenimiento supone un gasto de billones
de dólares anuales. La razón detrás de este gasto es la aparición de bugs o
errores que no fueron detectados durante la fase de producción del software, y
que se traducen en un mal funcionamiento del sistema. Por este motivo, las
técnicas de detección y localización de errores como el testeo, la verificación o
la depuración son un factor clave para asegurar la calidad del software.

Aunque son muchas las técnicas que se utilizan para la depuración, testeo
y verificación de sistemas software, esta tesis se centra solo en algunas de e-
llas. En concreto, esta tesis presenta mejoras en la técnica de fragmentación de
programas (depuración), una nueva metodología para hacer testeo de regresión
(testeo) y una nueva implementación del modelo de verificación de diseño-por-
contrato para el lenguaje de programación Erlang (verificación).

Las mejoras propuestas para la técnica de fragmentación de programas in-
cluyen diversas propuestas aplicables a diferentes escenarios: (i) mejoras en la
representación y fragmentación de programas orientados a objetos, (ii) mejoras
en la representación y fragmentación de estructuras de datos complejas (objetos,
vectores, listas, tuplas, registros, etc.), (iii) un nuevo modelo de grafo basado
en una representación más detallada de programas, aumentando la expresividad
del grafo y generando fragmentos de código más precisos como resultado, y (iv)
una nueva técnica para calcular fragmentos mínimos de un programa dado un
conjunto específico de posibles valores de entrada.

Por otro lado, la nueva metodología para hacer testeo de regresión se de-
nomina testeo de punto de interés, e introduce la posibilidad de comparar au-
tomáticamente el comportamiento de un punto cualquiera del código dadas dos
versiones del mismo sistema software.

Por último, la tesis contiene la nueva implementación del modelo de ve-
rificación de programas diseño-por-contrato para el lenguaje de programación
Erlang, donde se explican en detalle los nuevos tipos de contratos diseñados
para las partes secuencial y concurrente de Erlang.

Todos los análisis presentados en esta tesis han sido formalmente definidos
y su corrección ha sido probada, asegurando de esta manera que los resultados
tendrán el grado de fiabilidad necesario para ser aplicados a sistemas reales.

Otra contribución de esta tesis es la implementación de dos herramientas
de fragmentación de programas para dos lenguajes de programación diferentes
(Java y Erlang), una herramienta para realizar testeo de punto de interés para
el lenguaje de programación Erlang y un sistema para ejecutar verificación de
diseño-por-contrato en Erlang. Es de destacar que todas las herramientas im-
plementadas a lo largo del desarrollo de esta tesis son herramientas de código

viii

abierto y públicamente accesibles, de manera que pueden ser usadas o extendi-
das por cualquier investigador interesado en este area.

ix

Resum
Vivim en una societat on la digitalització està present al nostre dia a dia. Ens
alcem amb l’alarma del nostre telèfon mòbil, apuntem les nostres reunions al
nostre calendari digital, guardem els nostres arxius al emmagatzematge al núvol,
i entrem a las xarxes socials pràcticament a diari. Cadascuna d’aquestes ac-
cions s’executa sobre un sistema programari que assegura el seu correcte fun-
cionament. Aquesta digitalizació massiva ha fet que el desenvolupament de
programari es dispare en els últims anys. Durant el cicle de vida de un sistema
programari, l’etapa de manteniment suposa una despesa de bilions de dòlars
anuals. La raó darrere d’aquesta despesa és l’aparició de bugs o errors que no
van ser detectats durant la fase de producció del programari, i que es traduïxen
en un mal funcionament del sistema Per este motiu, les tècniques de detecció
i localització d’errors com el testeig, la verificació o la depuració són un factor
clau per a assegurar la qualitat del programari.

Encara que són moltes les tècniques utilitzades per a la depuració, testeig i
verificació de sistemes programari, esta tesi es centra només en algunes d’elles.
En concret, esta tesi presenta millores en la tècnica de fragmentació de pro-
grames (depuració), una nova metodologia per a fer testeig de regressió (testeig)
i una nova implementació del model de verificació de disseny-per-contracte per
al llenguatge de programació Erlang (verificació).

Les millores proposades per a la tècnica de fragmentació de programes in-
clouen diverses propostes aplicables a diferents escenaris: (i) millores en la
representació i fragmentació de programes orientats a objectes, (ii) millores en
la representació i fragmentació d’estructures de dades complexes (objectes, vec-
tors, llistes, tuples, registres, etc.), (iii) un nou model de graf basat en una
representació més detallada de programes, augmentant l’expressivitat del graf i
generant fragments de codi més precisos com a resultat, i (iv) una nova tècnica
per a calcular fragments mínims d’un programa donat un conjunt específic de
possibles valors d’entrada.

D’altra banda, la nova metodologia per a fer testeig de regressió es denomina
testeig de punt d’interés, i introduïx la possibilitat de comparar automàticament
el comportament d’un punt qualsevol del codi donades dos versions del mateix
sistema programari.

Finalment, la tesi conté la nova implementació del model de verificació de
programes disseny-per-contracte per al llenguatge de programació Erlang, on
s’expliquen en detall els nous tipus de contractes dissenyats per a les parts
seqüencial i concurrent d’Erlang.

Totes les anàlisis presentades en aquesta tesi han sigut formalment definides i
la seua correcció ha sigut provada, assegurant d’aquesta manera que els resultats
tindran el grau de fiabilitat necessari per a ser aplicats a sistemes reals.

Una altra contribució d’aquesta tesi és la implementació de dos ferramentes
de fragmentació de programes per a dos llenguatges de programació diferents
(Java i Erlang), una ferramenta per a realitzar testeig the punt d’interés per
al llenguatge de programació Erlang i un sistema per a executar verificació de
disseny-per-contracte a Erlang. Cal destacar que totes les ferramentes imple-
mentades al llarg del desenvolupament d’aquesta tesi són ferramentes de codi

x

obert i públicament accessibles, de manera que poden ser usades o esteses per
qualsevol investigador interessat en el tema.

xi

Agradecimientos

Cuando terminé la carrera de informática tomé una decisión: decidí que quería
convertirme en profesor de instituto ya que la docencia siempre me había gus-
tado. Lamentablemente, no lo conseguí, aunque elegir ese camino me llevó a
conocer a grandes personas que a día de hoy son muy importantes en mi vida.
Tras esa etapa, mientras me replanteaba mis objetivos, una amiga me dijo que
un profesor ofertaba un contrato de trabajo en la UPV. Pensé que sería una
buena idea seguir cerca del mundo académico y presenté mi currículum. Ese
profesor era Germán Vidal, director del grupo MiST de la UPV, la persona que
me introdujo en el mundo de la investigación y a quien tengo que agradecer que
me colocara en la línea de salida de esta gran etapa de mi vida. Gracias Germán
por el voto de confianza que me diste y por toda tu ayuda durante estos años.

Durante el largo periodo que ha sido la realización de mi doctorado, mucha
gente se ha mantenido a mi lado de manera incondicional. De hecho, algunas de
estas personas lo llevan haciendo durante mucho más tiempo, y son las personas
a las que más tengo que agradecer. A mi hermano mayor Vicente, gracias por
ser siempre un modelo de referencia y hacer que me esforzara al máximo por
seguirte el ritmo. Y por encima de todo, muchas gracias a mis padres, que me
lo han dado todo sin pedir nada a cambio, que nunca han cuestionado ninguna
de las decisiones que he tomado y que siempre me han levantado de mis caídas
y empujado a seguir luchando por lo que quería. Solo puedo daros las gracias,
deciros que os quiero muchísimo y, que espero que podáis sentiros tan orgullosos
de ser mis padres como me siento yo de ser vuestro hijo.

Muchas son las personas con las que he compartido experiencias y que me
han mostrado su apoyo desde que comencé mi doctorado, pero hay una persona
que ha sido un faro encendido las 24 horas del día (sobretodo por las noches)
y con quien he contraído una deuda que me será imposible pagar, mi direc-
tor Josep Silva (también conocido como Yoshi). Yoshi, solo tengo palabras de
agradecimiento que dedicarte. Gracias por enseñarme el mundo de la inves-
tigación, gracias por toda tu paciencia al resolver mis dudas sobre conceptos
(muchas veces triviales) que no lograba entender, gracias por guiarme siempre
hacia la dirección correcta, gracias por darme a elegir incontables veces en qué
quería trabajar, gracias por tu actitud positiva sobre cualquier adversidad que
hemos tenido, gracias por criticar siempre mi trabajo de manera constructiva,
pero sobretodo gracias por haberme hecho sentir durante todo este tiempo no
como un “currela” o un “becario”, sino como un igual y un amigo. Ha sido un
placer compartir cada día de trabajo durante todos estos años contigo.

Me gustaría también agradecer al resto de los profesores de los grupos ELP
y MiST, todos ellos grandes docentes e investigadores que siempre han puesto
todo de su parte para ayudarme ante cualquier necesidad. Gracias a todos por
vuestros viajes y sus consecuentes dulces. Me gustaría agradecer especialmente

xii

a Santiago por ser siempre una fuente de conocimiento investigador y admin-
istrativo que tanto me ha ayudado, y a Alicia y Marisa por todos sus consejos
y ayuda durante mi incursión al mundo docente, que sin duda fue una de mis
mejores experiencias doctorales. Muchas gracias también a mis compañeros
doctorandos y doctores del pasado, presente y futuro del ELP y MiST: Nando,
Julia, Javier, Lidia, Ángel, Raúl, Víctor, Cristina y Julián, mucho ánimo a
todos, espero y deseo que alcancéis vuestras metas en un futuro próximo.

No quisiera olvidarme de aquellas personas fuera de la UPV con las que
he trabajado y que me han aceptado en sus “casas” con una hospitalidad in-
descriptible. Muchas gracias al profesor Marco Comini de la Università degli
Studi di Udine, que compartió su tiempo y su conocimiento sobre verificación
e interpretación abstracta conmigo durante 3 meses. Muchas gracias también a
Lars-Åke, Julio, Clara, Ángel, Nacho y Luís por hacerme sentir como en casa
durante mi breve estancia en la Universidad Politécnica de Madrid y por todo
lo que me enseñasteis en tan poco tiempo. Gracias también a los revisores y
tribunal de la tesis doctoral: Demis, Miguel, Kostis, Adrián y German, cuyos
comentarios constructivos han mejorado mucho la calidad de esta tesis.

Cuando pasas tantas horas en un laboratorio durante tantos años con las
mismas personas, hay vínculos que se crean sin que tan siquiera te des cuenta.
Este ha sido el caso con todos y cada uno de mis compañeros de laboratorio, a
los cuales quiero hacer una mención especial. David, la tenacidad y el trabajo
duro, que me ha enseñado a buscar los puntos débiles de mis ideas y resolverlos
para defenderlas con más fuerza. Adrián, la implicación y la ambición por
alcanzar los sueños, que me ha demostrado que comprometerse y seguir tu
camino con convicción te llevará a alcanzar el éxito. Tama, la pausa, la crítica
y el pensamiento divergente, que me ha mostrado cómo se mantiene la calma
en situaciones adversas, cómo analizar las soluciones para identificar los errores
y cómo plantear propuestas alternativas, muchas veces explotando estas ideas
para resolver otros problemas que podrían estar relacionados. Carlos, el talento
y el hambre de conocimiento, que siempre tiene (y si no la tiene, mañana la
tendrá) una solución a un problema que tú no consigues resolver por muchas
vueltas que le des. No pierdas esa actitud, porque es lo que te hace único. Y por
último, Damián, un “intruso” del ELP con alma de becario del MiST. Damián
me ha enseñado lo que es la fuerza de voluntad, el cómo todo depende de cuánto
estás dispuesto a invertir, porque querer es poder. Damián es el compañero con
el que más tiempo he compartido laboratorio, incluso hemos compartido piso
los tres meses de estancia en Udine, y no me equivoco si digo que en estos años
en los que hemos “sufrido” juntos me llevo de aquí no un compañero, sino un
amigo para toda la vida. Espero sinceramente que los “Scaquing Games” que
iniciamos todos juntos no terminen aquí, sino que se conviertan en una pretexto
para seguir compartiendo momentos en un futuro.

Por último, pero no por ello menos importante, quiero agradecer a todos
mis amigos, que han aguantado mis quejas sobre trabajar en la investigación
durante nuestras conversaciones de bar todos estos años. Especialmente me
gustaría agradecer a Amanda, por acompañarme durante el tramo final de esta
etapa de mi vida, que cierra un capítulo que para nosotros no es más que el
prólogo de nuestra historia.

xiii

Contents

Abstract v

Resumen vii

Resum ix

I Introduction 1

1 Preamble 3
1.1 Motivation . 3
1.2 Analysis Techniques . 5
1.3 Contributions and Main Goals 10
1.4 Structure of this thesis . 13

II Program Slicing 17

2 Preliminary Definitions and Notation 19
2.1 Program Slicing with System Dependence Graphs 22
2.2 Program Slicing Algorithm . 24
2.3 Program Slicing of Object-Oriented Programs 26
2.4 Language-Independent Program Slicing:

Observation-Based Slicing . 29

3 Flow Dependence for Java Object-Oriented Programs 31
3.1 Limitations of the JSysDG . 31
3.2 A novel definition of flow dependence 33
3.3 Implementation . 47
3.4 Experimental Results . 50
3.5 Related Work . 53

4 Field-Sensitive Slicing with Constrained Graphs 57
4.1 The CE-PDG . 59
4.2 Dealing with recursive data structures 62
4.3 Slicing the CE-PDG . 63
4.4 The CE-SDG . 80

4.4.1 Summary edges and grammar productions 81
4.4.2 Summary constraints for unknown source code functions 85
4.4.3 Dealing with recursion 86
4.4.4 Slicing the CE-SDG . 87

xiv

4.5 Implementation . 88
4.6 Experimental Results . 89
4.7 Related Work . 93

5 Overcoming SDG Limits: The Expression Dependence Graph 95
5.1 Representation problems of the SDG 95
5.2 From ASTs to EDGs . 100
5.3 Slicing the EDG . 113
5.4 Solving SDG limitations . 114
5.5 Implementation . 117
5.6 Empirical evaluation . 120
5.7 Related Work . 122

6 Quasi-Minimal Slicing to Compare Program Slicers 127
6.1 Using ASTs to Improve Granularity 129
6.2 A Method to Produce Quasi-Minimal Slices 130

6.2.1 Phase 1: Combining static program slicers 131
6.2.2 Phase 2: Increasing precision via an AST-adapted ORBS

algorithm . 132
6.3 Implementation . 136

6.3.1 Phase 1: Slicerl and e-Knife 136
6.3.2 Phase 2: CutEr, Cover, and SecEr 137

6.4 Experimental Evaluation and Results 138
6.4.1 Phase 1: Behaviour of Slicerl and e-Knife 138
6.4.2 Phase 2: Behaviour of ORBS and CutEr 138
6.4.3 Empirical evaluation . 140
6.4.4 A suite of minimal slices 143

6.5 Related Work . 145

III Testing & Verification 147

7 Preliminary Definitions and Notation 149
7.1 Analysis tools for Erlang . 149

7.1.1 Type inference in Erlang: TypEr 149
7.1.2 Property-based testing in Erlang: PropEr 150
7.1.3 Concolic testing in Erlang: CutEr 150

7.2 Design by contract . 151

8 Software Evolution Control in Erlang 153
8.1 A novel approach to Automatic Regression Testing: Point of In-

terest Testing . 155
8.2 Traced information in POI testing 158

8.2.1 Possible POI testing configurations 160
8.3 POI testing adapted to Erlang 161

8.3.1 Initial ITC generation 161
8.3.2 Recording the traces of the point of interest 163
8.3.3 Extraction of additional trace information 168

xv

8.3.4 Test case generation using ITC mutation 173
8.4 POI testing with multiple POIs 174

8.4.1 Code transformation with multiple POIs 174
8.4.2 Differences in trace equality 175

8.5 POI testing in concurrent environments 177
8.6 Implementation . 178
8.7 Experimental Evaluation . 181
8.8 Related Work . 183

9 Design-by-contract verification in Erlang 187
9.1 Contracts in Erlang . 188

9.1.1 Contracts for sequential Erlang 188
9.1.2 Contracts for concurrent Erlang 194

9.2 Implementation . 200
9.2.1 Architecture . 201
9.2.2 Instrumentation . 203

9.3 Related Work . 205

IV Developed Tools 207

10 Developed Tools and User Guides 209
10.1 JavaSlicer . 209

10.1.1 Installation and first steps 209
10.1.2 Use case . 212

10.2 e-Knife (a CE-EDG Slicer for Erlang) 213
10.2.1 Installation and first steps 214
10.2.2 Use case . 216

10.3 SecEr . 218
10.3.1 Installation and first steps 218
10.3.2 Use cases . 225

10.4 EDBC . 233
10.4.1 Installation and first steps 234
10.4.2 Use cases . 236

V Conclusions and Future Research 241

11 Conclusions 243

12 Future Lines of Research 249
12.1 Program Slicing . 249
12.2 Testing and Verification . 251

Bibliography 253

xvi

VI Appendices 271

A Scientific Contributions 273
A.1 Conference papers . 273
A.2 Journal Publications . 274
A.3 List of derived artifacts . 274

xvii

List of Figures

1.1 Spiral representation of the software lifecycle 4
1.2 Example of program slicing . 6
1.3 Dimensions of program slicing 7

2.1 Example of incomplete and minimal slices w.r.t. ⟨6, n⟩ 21
2.2 Program extracted from [85], its associated SDG, and the slice

for ⟨6, i⟩, represented with grey nodes 24
2.3 Fragment of Java code of a polymorphic call and JSysDG rep-

resentation for method call a.f() 28
2.4 JSysDG of call g(a) in line 20 of the code in Figure 2.3a 29

3.1 Java program, JSysDG of lines 11 and 13, and slice w.r.t. ⟨13, a1⟩ 32
3.2 JSysDG slice and expected slice of the code in Figure 3.1a w.r.t.

⟨13, a1⟩ . 33
3.3 Input and output scopes in a method call 36
3.4 Representation for explicit data members accesses 36
3.5 Flow dependence in presence of primitive and object variables . 37
3.6 CFG and eCFG nodes corresponding to statement A a1 = new

A(1,2) . 38
3.7 Code with data member redefinition (left) and its JSysDG with

object-flow (right) . 40
3.8 JSysDG of the program in Figure 4.1 and slice w.r.t. ⟨13, a⟩ . . 45
3.9 JavaSlicer architecture and communication between modules and

classes . 48
3.10 Relationship between the size and time required to compute a

slice (logarithmic scale) . 52

4.1 Slicing composite data structures (slicing criterion underlined
and blue, minimal slice in black) 58

4.2 Slicing Erlang tuples (slicing criterion underlined and blue, slice
in black) . 58

4.3 CE-PDG of the code in Figure 4.2 61
4.4 Grammars defining allowed constraints (p ∈ {H, T} and i ∈ Z) 64
4.5 Erlang function, associated CE-PDG, and slice step by step . . 66
4.6 Slicing looped data dependences in the CE-PDG (slicing crite-

rion underlined and blue, sliced code in gray) 70
4.7 CE-PDG of Figure 4.6d. The increasing loop is represented in

solid bold red . 71
4.8 Pushdown automaton to recognize infinitely increasing loops . . 72
4.9 CE-PDG of Figure 4.6a . 73

xviii

4.10 PDA trace for the loop of Figure 4.6a 73
4.11 CE-PDG of Figure 4.6b . 74
4.12 CE-PDG of Figure 4.6c . 74
4.13 The interprocedural CE-SDG 80
4.14 Allowed constraints when building summary edges (p ∈ {H, T}

and i ∈ Z) . 81
4.15 LR(0) automaton to represent a grammar constraint 85
4.16 Erlang program with an call to an unknown function 85
4.17 Infinite derivation in a LR(0) automaton 86
4.18 e-Knife architecture after adding constraints and the new slic-

ing algorithms . 90

5.1 Extract inner assignments . 96
5.2 Unnecessary evaluation . 96
5.3 try-catch structures . 97
5.4 for loop . 98
5.5 List comprehension . 98
5.6 Two consecutive statements of a program and AST with value

and flow dependences . 102
5.7 Example of if-then-else structure in Erlang 103
5.8 ASTs for statement x = y = 20; 103
5.9 ASTs of Figure 5.8 labelled with control flow and value edges . 104
5.10 L-AST transformation for y = 20 105
5.11 Control and declaration edges generated by Algorithm 5.2 . . . 111
5.12 An interprocedural version of the code in Figure 5.2 112
5.13 An EDG for the code in Figure 5.12 112
5.14 An EDG for the code in Problem 5.1 and slice w.r.t. ⟨5, b⟩. . . 114
5.15 An EDG for the code in Problem 5.2 and slice w.r.t. ⟨3, y⟩ . . . 115
5.16 An EDG for the code in Problem 5.3 and slice w.r.t. ⟨6, b⟩ . . . 116
5.17 An EDG for the code in Problem 5.4 and slice w.r.t. ⟨3, x⟩ . . . 116
5.18 An EDG for the code in Problem 5.5 and slice w.r.t. ⟨1, X⟩ . . 117
5.19 e-Knife architecture and communication between modules . . 118

6.1 Program with a possible slice and a minimal slice w.r.t. ⟨7, x⟩ . 127
6.2 Erlang program and its minimal slice w.r.t ⟨10, B⟩ 130
6.3 A method to produce quasi-minimal slices 131
6.4 Slicing criterion mapper . 132

7.1 Java program that makes use contracts of DBC approach . . . 152

8.1 Two versions of a simple Erlang program with good and erro-
neous refactorings . 155

8.2 Type analysis phase . 156
8.3 Test case generation phase . 157
8.4 Comparison phase . 157
8.5 Comparison function structure 158
8.6 Example of a function providing a customised error message . . 160
8.7 TECF which returns different error types 160

xix

8.8 Code to be transformed and AST associated to the pattern
matching in line 2 . 164

8.9 Sets of environment variables and variables being bound in each
expression of the AST in Figure 8.8 164

8.10 Instrumentation rules for tracing 167
8.11 Function pfv . 168
8.12 Application of rule LEFT_PM to the POI in line 2 of Figure 8.8 . 168
8.13 Elements of our proposed call tracer enhancement in Erlang . . 169
8.14 Transformation rules to obtain the stack trace 171
8.15 Stack tracer . 172
8.16 Test generation function . 173
8.17 A simple client-server model 178
8.18 SecEr modules and the communicate between them to perform

POI testing . 179

9.1 Precondition Contract . 189
9.2 Postcondition Contract . 190
9.3 Decrease Argument Contract 191
9.4 Execution-time Contract . 191
9.5 Purity Contract . 192
9.6 spec contract-violation report 193
9.7 Contracts for function find/2 annotated in Dafny and Erlang 193
9.8 EDoc for the annotated function find/2. 194
9.9 handle_call/2 for selective receive 197
9.10 cpre/3 for selective receive . 198
9.11 Readers-writers request handlers 199
9.12 Readers-writers invariant definition 199
9.13 Failing invariant report . 200
9.14 Readers-writers cpre/3 definition 200
9.15 Architecture of EDBC classified by functionality 201

10.1 Java program to be sliced . 211
10.2 Slice for the slicing criterion ⟨11, sum⟩ of the Java code in Fig-

ure 10.1 . 212
10.3 Three classes used in the use case Example2 213
10.4 Slice w.r.t. ⟨8, b1 ⟩ of the code in Figure 10.3 213
10.5 Erlang program to be sliced . 216
10.6 Slice for the slicing criterion ⟨6, Sum⟩ of the Erlang code in

Figure 10.5 . 216
10.7 Program called bench14.erl of the interprocedural Bencher

suite for Erlang . 217
10.8 Slice w.r.t. ⟨14, Z ⟩ obtained after running e-Knife for the code

in Figure 10.7 . 218
10.9 Two different versions of a program to compute happy numbers

in Erlang . 220
10.10 Configuration file to test happy modules 221
10.11 SecEr command format . 221

xx

10.12 SecEr command to compare the happy number programs of Fig-
ure 10.9 . 223

10.13 Result of calling SecEr with the configuration file defined in
Figure 10.10 . 224

10.14 Example of SecEr error message when an unexpected behaviour
is found . 225

10.15 Align columns program versions 226
10.16 Align columns configuration file 227
10.17 SecEr report for the function call in line 14 as POI 228
10.18 SecEr reports UB from call to prepare_line in line 14 as POI 229
10.19 SecEr reports UB from call to apply in lines 31/32 as POI . . . 230
10.20 Mergesort program versions . 230
10.21 Mergesort configuration file . 231
10.22 SecEr reports UB from call to merge in line 17 of Figure 10.20

as POI . 231
10.23 SecEr report when using case expression in line 22 of Figure 10.20

as POI . 232
10.24 hello_server.erl . 233
10.25 Configuration file of hello_server programs 233
10.26 SecEr reports discrepancies in the functions implementing the

requests . 234
10.27 Module simple with pre- and post-condition contracts 237
10.28 Contract violation returned from call simple:f(6) 237
10.29 Server of the problem of the selective receives in Section 9.1.2 of

Chapter 9 . 238
10.30 Test for the problem presented with the sel_recv server of Fig-

ure 10.29 . 238
10.31 Result of running sel_recv_test:test() 239

xxi

List of Tables

3.1 The ordered sequence DEFos and the USE set of some of the
statements in the main method of Figure 3.1a. 35

3.2 Summary of experimental results, comparing the slices of re2j
produced by the JSysDG (A) and JavaSlicer (B). 51

4.1 Processing edges’ stacks. x and y are positions (int or H/T).
∅ and ∗ are empty and asterisk constraints, respectively. S is a
stack, ⊥ the empty stack. 65

4.2 Processing edges’ stacks in the summary construction phase. x
and y are positions (int or H/T). ∅, ∗, and g are empty, asterisk,
and grammar constraints, respectively. S is a stack, ⊥ the empty
stack. 82

4.3 Summary of experimental results, comparing the PDG (without
constraints) to the CE-PDG (with constraints). 91

4.4 Summary of experimental results, comparing the SDG (without
constraints) to the CE-SDG (with constraints). 92

5.1 Results of the experimental evaluation comparing the SDG and
the EDG . 121

6.1 Comparison of the different iterations of ORBS 139
6.2 Empirical evaluation of the method instantiated for Erlang . . . 142
6.3 Empirical evaluation and comparison of Slicerl and e-Knife . . . 143

8.1 Experimental evaluation of three SecEr configurations with a
timeout of 15 seconds . 181

xxiii

List of Acronyms

ClDG Class Dependence Graph
CE-EDG Constrained-Edges Expression Dependence Graph
CE-PDG Constrained-Edges Program Dependence Graph
CE-SDG Constrained-Edges System Dependence Graph
CFG Control Flow Graph
DBC Design-By-Contract
EDG Expression Dependence Graph
ITC Input of a Test Case
JSysDG Java System Dependence Graph
OO Object Oriented
POI Point Of Interest
PDG Program Dependence Graph
QM Quasi-Minimal
SDG System Dependence Graph
SSLDG Sub-Statement Level Dependence Graph
TECF Trace Element Comparison Function
VEF Value-Extractor Function

1

Part I

Introduction

3

Chapter 1

Preamble

1.1 Motivation
At the present time, the world around us is increasingly becoming a techno-
logical environment in order to make our lives more comfortable where most
devices work thanks to some kind of software system. This is one of the reasons
behind the continuous increasing of the production of software, whose market
has significantly raised for the last years. Each time a new technological idea
comes out of the blue, a journey to develop a software product to cover the
expectations begins. When a software project starts, all eyes are usually fo-
cused on the specifications and design of the system requirements to transfer
the human knowledge to the upcoming system, together with the decision of
many other critical factors for software production like estimation of developing
times, distinction of critical parts, or selection of the most appropriate develop-
ing technologies, among many others.

At the beginning of the software development cycle, the maintenance phase
is commonly seen as a far away issue or a non-prior task. Unfortunately, this
mindset could not be more wrong. The study published in [102] shows that the
Cost of Poor Software Quality (CPSQ) in the USA in 2020 resulted in a cost of
$2.08 trillion. Particularly, $520 billions were dedicated to software maintenance
of legacy systems (i.e., outdated computing software that is still in use). Other
studies also state that software maintenance takes approximately between 60-
80% of the system and programming resources [73]. This fact is completely
captured by the words of the computer science engineer Dan Salomon:

“Sometimes it pays to stay in bed on Monday, rather than spending
the rest of the week debugging Monday’s code.”

These words clearly show how a fragment of code written as part of a system
in a couple of hours can result in long testing and debugging sessions in order
to properly integrate it to a complex system. The reason of the incredible cost
of software maintenance is that programmers, regardless their level of program-
ming skill, most probably will introduce bugs in their programs, usually hidden
under complex combination of events that imply different interactions between
components that rarely occur in practice. Programmers cannot consider all pos-
sible interactions in the programs they write, and those that are unconsidered
usually produce a malfunction of some parts of the software system. Further-
more, even if the programmer was able to appropriately account for all program

4 Chapter 1. Preamble

Planning Risk Analysis

DevelopmentMaintenance

Figure 1.1: Spiral representation of the software lifecycle

interactions, it does not prevent a misbehaviour to appear in the future due to
the evolution of the system requirements.

Software maintenance is one of the main phases of the spiral software life
cycle introduced in [22], represented in Figure 1.1. As the figure shows, the
continuous evolution of software implies new analysis and development phases
that lead to a new maintenance phase. Although Figure 1.1 shows development
and maintenance as two differentiated phases, they are strictly linked in practice
and sometimes it is difficult to trace where the line between these two phases
is. In fact, the initial testing stages are considered inside software development,
while program debugging sessions taken after unveiling any system malfunction
are usually considered maintenance. Maintenance includes a set of verification
and evaluation processes code must pass, together with the process of code
refactoring and, in this phase, code is tested, verified, and then debugged if any
error is detected.

The maintenance phase implies different testing methods [141]: unit testing
to test software components, functional testing to test system requirements,
security testing to test data protection, stress testing to test the system perfor-
mance and support in an extreme level of load, and regression testing to test if
the integration of new components has introduced any misbehaviour over the
already integrated components. Apart from testing, other software verification
processes are also used during maintenance to evaluate the reliability of systems
like model checking [40, 161] or abstract interpretation [44, 140]. On the other
hand, when bugs are detected by testing or verification methods, debugging
sessions are run in programming environments with different debugging tools,
like trace debuggers to stop the program and analyse the state in user-selected
points, letting to execute the program step by step and helping the programmer
to trace the source of the error. Some other debugging techniques like abstract
debugging [23], or algorithmic debugging [178] can also be used to trace the
error, or even static analysis techniques that analyse the dependencies between
program statements like program slicing [204] can be handy to remove from the
equation parts of the code that surely are not implicated in the error.

1.2. Analysis Techniques 5

Maintenance is one of the most important phases of the software lifecycle
that includes all kinds of analyses and verifications over the developed system.
In general, maintenance is considered as an activity that extends the lifetime of
a system and grants user needs. Software maintenance has been researched for
more than 40 years, continuously enriching the topic with new classifications
and typologies of maintenance types. The first and the most influential typology
of maintenance types was proposed by Swanson in [189], and classifies software
maintenance activities into three different types:

• corrective maintenance, performed as a consequence of fault location,

• adaptative maintenance, done as a result of changes in the system require-
ments, and

• perfective maintenance, carried out in order to enhance maintainability,
improve performance, or remove inefficiencies.

Swanson’s typology was later used and interpreted by many researchers. For
instance, Chapin et al. [31] proposed a refined classification with twelve types
of software maintenance activities suggesting that different software organi-
sations can use different types of software maintenance. The standard ISO
14764:2006 [90] divided maintenance in four categories: corrective, adaptive,
perfective, and preventive. Despite the classification we study, corrective main-
tenance is commonly the one that attracts the most attention, since it intends
to fix discovered problems and brings software to an operational state for end
users, acquiring a high priority over other types of work [11].

Along this thesis, we resolve problems of some analysis techniques used in
two of the aforementioned maintenance types: program slicing, linked to cor-
rective maintenance, and regression testing and design-by-contract verification,
both linked to corrective and perfective maintenance.

1.2 Analysis Techniques
Debugging and testing are considered two of the main pillars of software main-
tenance. These two processes are linked into an iterative model where new
developed code is first tested by a set of testing methods (unit testing, func-
tional testing, performance testing...), and then debugged if any misbehaviour
is detected. Afterwards, once debugging locates and corrects any error, the
software is re-tested, repeating this cycle until no more errors are found. For
this reason, testing and debugging techniques are of great importance in the
software evolution process.

Although the techniques used as part of the debugging and testing processes
are diverse, in this thesis we particularly focus on three of them: program slicing
(used in the debugging phase to ease the location of program errors), regres-
sion testing (part of the software integration process of the testing phase), and
design-by-contract verification (used during the development phase to verify the
correct working of new added software and detect unsupported system execu-
tions).

6 Chapter 1. Preamble

Program Slicing

Program slicing [179, 195] is a technique for program analysis and transforma-
tion that answers the following question: “What program statements potentially
affect the value of a variable v at a program point p?”. The set of statements
given as the answer to this question is called the program slice, while the point
of interest itself (⟨p, v⟩) is known as the slicing criterion [147]. In order to
obtain the program slice, the program is decomposed by analysing data and
control flow between the parts of the program. The technique was initially pro-
posed by Mark Weiser [204] in the context of program debugging of imperative
programs. Weiser’s initial proposal was to isolate the program statements that
may contain a bug to ease the bug location. Since its definition, program slicing
has been proved useful in many disciplines such as software maintenance [74],
debugging [49], code obfuscation [131], or program specialisation [145], among
others.

Let us illustrate the technique by using an example extracted from [195].

Example 1.1. Figure 1.2a shows a simple program that reads a positive integer
number n and then computes the sum and the product of the first n natural num-
bers. Figure 1.2b shows the slice with respect to the slicing criterion ⟨11, prod⟩
(in underlined blue). As shown in the figure, the slice (in black) only contains
the statements that actively contribute to the computation of variable prod, ig-
noring all the statements implied in the computation of the variable sum (in
grey). This notation to represent slices (underlined blue to represent the slicing
criterion, black to represent slice, and grey to represent the removed code) will
be used along the whole thesis.

1 read(n);
2 i = 1;
3 sum = 0;
4 prod = 1;
5 while (i <= n) {
6 sum = sum + i;
7 prod = prod * i;
8 i = i + 1;
9 }

10 write(sum);
11 write(prod);

(a) An example program

read(n);
i = 1;
sum = 0;
prod = 1;
while (i <= n) {

sum = sum + i;
prod = prod * i;
i = i + 1;

}
write(sum);
write(prod);

(b) A slice for the program w.r.t.
⟨11, prod⟩

Figure 1.2: Example of program slicing

Since program slicing was defined, two different kinds of approaches have
been used to compute program slices. The first one was proposed by Weiser
in its seminal paper, and it is an approach based on data-flow equations. In
this approach, slices are obtained by computing consecutive sets of relevant
variables for each node of the Control Flow Graph (CFG) [5]. The process
initially includes directly relevant statements for each node in the CFG using

1.2. Analysis Techniques 7

SB SF

DB DF static ➞ dynamic

backward ➞ forward

Static Backward Slicing (SB)
Static Forward Slicing (SF)
Dynamic Backward Slicing (DB)
Dynamic Forward Slicing (DF)

Figure 1.3: Dimensions of program slicing

flow dependencies and the indirectly relevant dependencies (variables of control
predicates, e.g., variables at if and while conditions). The process starts from
the slicing criterion and repeats until it reaches a fix point (the last iteration does
not add any relevant statement to the slice). On the other hand, the most used
slicing method is to compute program slices via a graph reachability problem, a
method proposed by Ottenstein and Ottenstein in [147]. In this approach, the
program is transformed into a set of Program Dependence Graphs (PDGs) [56],
one graph per program routine (i.e., function, procedure, method...). A PDG is
a directed graph where nodes represent program statements and edges represent
different kinds of dependences between them. After constructing the PDG, the
program slice is computed by traversing all possible edges on the graph starting
from the node that represents the slicing criterion.

Weiser’s proposal was the seed of a large amount of different approaches to
compute program slices. Slicing techniques can be classified according to many
different indicators ([179]) but, in general, they can be grouped according to
two main dimensions: the existence of input information, and the direction of
the slice.

• Input information. According to this dimension, a slicing technique is
considered as static or dynamic. In static slicing the slice is computed
without having any information about the input of the program, thus,
considering every possible program execution. On the other hand, in
dynamic slicing it is computed with respect to the execution trace given
by a particular input.

• Direction. According to this dimension, a slicing technique is considered
as backward or forward. In backward slicing the slice contains all those
statements that influence the values computed at the slicing criterion.
On the contrary, in forward slicing the slice contains all those statements
which may be influenced by the value of the slicing criterion.

Figure 1.3 graphically shows the possibility of combining these two slicing di-
mensions, classifying the slicing techniques in four different groups. The original
program slicing method described by Weiser was static-backward so it would be
contained in the bottom left corner of the figure. Along this thesis, we describe

8 Chapter 1. Preamble

various slicing approaches related to several programming paradigms and that
solve different slicing problems. All the program slicing techniques proposed in
this thesis are designed for static-backward slicing.

Regression Testing

Regression testing [162, 185, 210] is a validation technique performed when
changes are made to an existing program. According to IEEE, regression testing
is “Selective retesting of a system or component to verify that modifications have
not caused unintended effects and that the system or components still complies
with its specified requirements” [86]. The purpose of regression testing is to check
whether the changes performed to some part of the code have not introduced
any misbehaviour to the program, and the new code interacts properly with the
previously existing code. The common practices of reusing parts of a software
project and the use of iterative development strategies increase the need for
effective mechanisms for regression testing. Studies indicate that more than
50% of the software maintenance cost is related to testing, being 80% of the
testing cost invested in regression testing [38].

Regression testing is performed between two different versions of the code
in order to verify that code changes do not interfere with the previous code.
Common methods of applying regression testing include the rerun of previously
evaluated tests and checking that the behaviour of the program is preserved
and no previously solved errors re-emerge. If regression testing exposes any
problem, the code must be inspected to check whether the problems are non-
detected scenarios of the previous version of the code or they appear due to the
changes introduced into the program. Regression testing is a key factor in the
software life cycle and is required when:

• The program requirements change and the code is modified accordingly,

• New functionalities are added to the program,

• A bug already existing in a program version is located and fixed, or

• Program changes are introduced in order to improve the performance of
some algorithms.

Regression testing requires the existence of a set of tests that run a large
amount of program execution paths, testing most of the possible scenarios and
detecting misbehaviours in any of them. The generation and maintenance of
these test cases is frequently a complex task because many factors need to be
considered:

• Test case selection. It is hard to assess the impact of changes on existing
code making a good selection.

• Test case design. When and who should take responsibility of building
the regression tests? Some approaches make programmers responsible for
writing these tests while developing software.

1.2. Analysis Techniques 9

• Automatisation of regression testing. While the application of automat-
ing regression testing incurs into problems like the prioritisation of some
test cases over others or the automatic generation of new test cases when
changes in the program specification are detected, the use of manual test-
ing is time and resource consuming. Therefore, it is difficult to find a
balance between both approaches.

• Test results. How test results are presented and analysed is a key factor.
In many cases test reports are inconsistent and often there is no time to
do a deep analysis of the results.

• Test suite maintenance. Much of the regression testing is redundant with
respect to test coverage. In most cases, there is a lack of good tools for
documenting traceability between test cases and requirements.

• Test frequency. The lapse of time between regression testing sessions is
also difficult to establish. It is commonly good to have a process with a
flexible scope for weekly regression tests, although in some cases the size
of the regression suite may be a considerably time-consuming task.

Studies show that there is a lack of time and resources for regression testing
in practice [50], and a general good practice is to plan for as much test time
as development time even when the project is delayed. Some industrial surveys
of the application of regression testing have been undertaken [30, 173, 174],
concluding that test automation is a key improvement issue [174] and test case
selection for continuous regression testing is a hard task. In these surveys, no
systematic approach for test case selection was used by the companies but they
commonly rely on the developers expertise and judgment instead [173].

Design-by-contract software verification

During the software development process, a set of debugging and testing tools
are usually used to find errors before the final software deployment. However,
there are still some errors that can escape from the analysis of these tools.
These uncontrolled errors can appear even when the program is being used by
the final user. In most cases, these errors have their source in a knowledge that
programmers had when they were writing the code, e.g., that the result of a
function must be greater than the first parameter. Unfortunately, programming
languages rarely provide a method to input this information.

Design-by-contract (DBC) is a software correctness methodology that makes
the use of this information possible. DBC follows the principle that interfaces
which communicate different modules in a software system should follow a set of
precise specifications, as it happens in contracts between humans or companies.
The contracts must cover mutual obligations (preconditions), benefits (postcon-
ditions), and consistency constraints (invariants). Together, these properties are
known as assertions, and they are directly supported in some design and pro-
gramming languages. One of the principles of DBC is that any software element
that has a fundamental constraint should state it explicitly, as part of a mech-
anism present in the language. Additionally, assertions are a key component of

10 Chapter 1. Preamble

the software documentation, so their specification entails the presence of this
information into the documentation automatically generated from the code.

subsubsectionProgramming languages used
The techniques proposed in this thesis are heterogeneous and sometimes

they are only applicable to a specific programming paradigm. For this reason,
our proposals use different programming languages according to the problem
they are trying to solve. The two programming paradigms we deal with are the
object-oriented paradigm and the functional paradigm, represented by the Java
and Erlang programming languages, respectively. We briefly describe the main
features of both languages hereunder:

• Java [12] is a high-level, general-purpose, concurrent, class-based, object-
oriented programming language. Java is intended to let the WORA (Write
Once, Run Anywhere) philosophy, meaning that compiled Java code can
run in any platform that gives support to Java without recompiling it.
Java programs are compiled to an intermediate program representation
called Java bytecode, that can be run on any Java virtual machine re-
gardless of the underlying computer architecture. The Java language
is strongly typed, thus, its specification clearly differentiates between
compile-time errors and runtime errors. At runtime, Java provides dy-
namic capabilities (such as reflection and runtime code modification) that
are typically not available in traditional compiled languages. As of 2021
[148], Java was one of the most popular programming languages selected
by developers (34.51% of developers write Java code in their programs),
particularly for client-server web applications.

• Erlang [201] is a concurrent, functional programming language based on
the actor model [79]. This language has many distinguishing features
like concurrency via asynchronous message passing or hot code swapping,
which make it especially appropriate to build massively scalable soft real-
time systems with requirements on high availability. The sequential subset
of Erlang is a functional language, with strict evaluation, single assign-
ment, and dynamic typing. The term Erlang is used interchangeably with
Erlang/OTP, or Open Telecom Platform (OTP), which consists of the
Erlang runtime system, several ready-to-use components mainly written
in Erlang, and a set of design principles for Erlang programs.

1.3 Contributions and Main Goals
The main goal of this thesis is to improve specific techniques that are used in
the maintenance process of the software development cycle. The techniques
described in this thesis are used during the development and bug detection/lo-
cation phases. These techniques are diverse, some working at a static level when
running a refactoring over the code or debugging a program after the detection
of a bug, and others at a dynamic level to detect the existence of program
errors or incorrect program states. The static analysis techniques are mainly
focused on the area of program slicing, dealing with some slicing limitations,

1.3. Contributions and Main Goals 11

while the dynamic analysis techniques are focused on software testing and ver-
ification, concretely in the areas of regression testing and design-by-contract
runtime verification.

Program slicing
Most program slicing techniques have the PDG in their basis, but the orig-
inal definition of the PDG is not able to handle all the features that most
modern programming languages offer. Therefore, numerous extensions and en-
hancements of the PDG have been proposed to represent different programming
features such as arbitrary control-flow [65, 109], exception handling [6, 64, 93],
interprocedural behaviour [17, 41], or concurrency [36, 104] among others. In
the program slicing area, new proposals are frequently presented as an evolu-
tion of a previously existing program representation that lacks the expressive-
ness needed to manage a particular program feature. Very often, the program
representation used as a basis is the PDG; and it is augmented (and commonly
renamed) to provide a new representation that deals with the new program fea-
ture. Consequently, when further research over the same topic is done, the base
representation used changes from the PDG to the last existing representation.
Then, when researchers detect unexpected scenarios that cannot be solved by
the representation, a new one is proposed, causing the last representation to
evolve. In this thesis we deal with different program slicing scenarios, alterna-
tively using the PDG or a PDG-derived program representation as the base of
our proposals. The choice of the representation used in each case is conscien-
tiously done by selecting the most suitable representation for the approach we
propose in each case. The program slicing scenarios we deal with along this
thesis are the following:

• Program slicing of object-oriented programs. We augment the ex-
pressivity of a previous graph representation used to deal with object-
oriented programs, the JSysDG ([202]). In this research, we replace the
current definition of flow dependence with three more accurate definitions:
the standard definition of flow dependence for primitive variables and an-
other pair of new definitions for object variables that we call object-flow
dependence and object-reference dependence. The inclusion of the depen-
dences derived from these definitions allows any object variable of the
program to be selected as the slicing criterion, including in the slice the
necessary statements to compute its whole value (the value of its memory
reference and the value of all its data members) and to obtain complete
slices.

• Fine-grained program slicing. The main objective of this research is
to formally define a new graph representation with a greater granularity
level than the PDG, the expression dependence graph (EDG). The granu-
larity solves in a natural way some representation problems of the PDG,
like the split of the PDG representation introduced for for loops, or the
representation of multiple variable definitions in the same statement. The
main contribution is the formal definition of the EDG, and the proof that

12 Chapter 1. Preamble

it is a generalisation of the PDG. This definition includes several new
ideas that gave rise to different contributions:

– The identification and formal definition of a new intra-statement
dependence called value-dependence.

– The formal definition of declaration dependence, which accounts for
the declaration-definition relationship, besides the definition-use re-
lationship (flow dependence).

– The introduction of a new expression-result structure to represent
expressions. It allows us to distinguish between an expression and
its result (e.g., as the slicing criterion).

• Program slicing of composite data structures. We design a new
proposal to deal with the representation and slicing of composite data
structures. The method is applicable to any composite data structure. In
this proposal (i) we expand the PDG representation for those statements
that represent data structures, (ii) we label the PDG edges with structural
information about the data structures, and, finally, (iii) the labels are used
at slicing time to limit the slicing traversal, generating more accurate
program slices.

• Testing of program slicers. Since the computation of a minimal slice
is undecidable, we introduce a methodology to compute quasi-minimal
slices, which are minimal slices w.r.t. a finite set of inputs. These pro-
grams and their quasi-minimal slices are used afterwards to measure the
quality of a program slicer by executing it against them and comparing
the produced output and the previously computed slice. The process
to obtain quasi-minimal slices makes use of the observation-based slicing
technique (further explained later in Section 2.4). The main contributions
of this part are:

– A method to compute quasi-minimal slices.
– An adaptation of observation-based slicing (ORBS) to work with

abstract syntax trees (ASTs). This maximises precision, allowing us
to slice at the level of literals.

– A generalisation of ORBS. The algorithm of ORBS is not well defined
for all cases. This problem was identified and solved in our approach.

– A suite of benchmarks with challenging program slicing problems
together with their quasi-minimal slices. The suite includes a tool
that can be used to evaluate a program slicer against the suite.

Finally, we have implemented different slicing tools that incorporate the four
described proposals, which are also contributions for the slicing community.
These implementations are done for different programming languages and more
information about the tools and how to use them can be found in Chapter 10.

1.4. Structure of this thesis 13

Testing and verification
In the area of testing and verification, our contributions are mainly focused on
two main topics:

• Point-of-interest testing. We introduce the ability to specify points
of interest (POI) in the context of testing to compare the behaviour of
different program versions. POI testing generates a set of possible calls
to a given function and it compares that the POIs of the different code
versions generate the same sequences of values for each execution.
The main contributions of this part are:

– A methodology to compare the sequence of values generated for two
arbitrary points in two different program versions.

– A technique to automatically generate a set of input values for a
particular program function that maximises branch coverage.

– A set of program transformation rules that modify an Erlang pro-
gram to extract the value of an arbitrary point of the program as a
side-effect of the execution.

– A tool called SecEr that implements the POI testing approach for
Erlang.

• Design-by-contract verification in Erlang. We implement the first li-
brary that implements design-by-contract approaches in Erlang, the EDBC
(Erlang Design-By-Contract) library. The library includes two different
kinds of contracts: a set of contracts directed to every Erlang program
(pre-condition contracts, post-condition contracts...), and another set of
contracts specifically designed for concurrent programming (contracts as-
sociated to some Erlang behaviours, like the gen_server behaviour).

1.4 Structure of this thesis
This PhD thesis is divided into four main parts: Introduction, Program Slicing,
Testing & Verification, Developed Tools, and Conclusions and Future Research.

1. The Introduction part only contains Chapter 1. It explains the main moti-
vation of this thesis and provides an introductory description of the anal-
ysis techniques discussed during the thesis. Specifically in the sections
dedicated to program slicing, regression testing, and design-by-contract
verification. Finally, the chapter classifies and describes the main contri-
butions done for each one of the previously mentioned areas, and describes
the structure of the thesis.

2. The Program Slicing part is divided into five different chapters:

• Chapter 2 introduces the basics of program slicing. This chapter
describes how the System Dependence Graph (SDG) is built from
the source code and how the standard program slicing algorithm

14 Chapter 1. Preamble

obtains the slice by traversing it. Additionally, the chapter describes
some key concepts of program slicing of object-oriented programs
and alternative slicing techniques.

• Our new proposal for slicing object-oriented programs is explained
in Chapter 3, where we point out some lacks of the current object-
oriented program representation, the Java System Dependence Graph
(JSysDG) when it is used to represent the dependences of object vari-
ables. In this chapter, we make an alternative and complementary
proposal to accurately represent the dependences of object variables
in object-oriented programs with its corresponding implementation
and experimental evaluation. Most of the content of this chapter has
been extracted from the article in [66], where some extra examples
and extensions have been added.

• Chapter 4 presents two new program representation models for field-
sensitive slicing, the Constrained-Edge Program Dependence Graph
(CE-PDG) for intraprocedural slicing, and the Constrained-Edge
System Dependence Graph (CE-SDG) for interprocedural slicing.
The chapter details how to compute the CE-PDG from the PDG,
how to join CE-PDGs to build the CE-SDG, and how to adapt the
slicing algorithm to slice both graphs. Part of the content introduced
in the chapter (the CE-PDG part) has been extracted from [61] while
the CE-SDG part is original from this thesis.

• In Chapter 5, we propose a new fine-grained graph representation
for programs, the Expression Dependence Graph (EDG), built from
the AST of the program, where each literal of the source code is
represented as a node of the graph. This chapter further elaborates
the idea proposed in [63], introducing a set of situations where the
SDG generates inaccurate slice, accurately slicing them with the use
of the EDG.

• Finally, Chapter 6 proposes a method to compare program slicers
with a benchmark suite based on quasi-minimal slices. The chapter
presents the notion of quasi-minimal slice and it describes a method-
ology to compute them and to use them to compare the performance
of different program slicers. Most of the content of this chapter has
been extracted from [152].

3. The Testing and Verification part is divided into three different chapters:

• Since the programming language analysed by the following chapters
is Erlang, Chapter 7 shows the utility of different analysis tools for
Erlang used in the following chapters in Section 7.1. Additionally,
an overall description of the design-by-contract methodology is also
provided by Section 7.2.

• Chapter 8 describes a methodology to generate and execute a set
of test cases to perform regression of an arbitrary program point in
Erlang programs called Point Of Interest (POI) testing. The chapter

1.4. Structure of this thesis 15

describes the internals of POI testing, illustrating the required pro-
gram transformations to extract traces and runtime information, its
applicability in programs with concurrency, and the implementation
and evaluation of a tool to run POI testing in Erlang. The content of
this chapter summarises the research line of POI testing, published
in [87, 89, 153].

• Chapter 9 presents the implemented approach to apply design-by-
contract verification in Erlang programs. In this chapter we describe
each implemented contract and its associated syntax providing exam-
ples of how to use both sequential and concurrent available contracts
in practice. Most of the material of this chapter has been extracted
from [60], where some extra content about implementation details
has been also included.

4. The Developed Tools part, composed by Chapter 10, details the function-
ality of all the implemented tools mentioned along this thesis. Each section
of this chapter describes some features of each tool: installation require-
ments, installation process/commands, possible configurations, command
line tool execution, and report analysis. Additionally, each tool section
also includes some use cases with screenshots to guide the user in her first
steps.

5. With respect to the Conclusions and future work part, it develops the
conclusions of the thesis in Chapter 11 and the open lines of research that
can be further explored in Chapter 12.

17

Part II

Program Slicing

19

Chapter 2

Preliminary Definitions and
Notation

This chapter introduces the reader to the world of program slicing. Along
the chapter we show the basics of program slicing, together with the graph
representations and slicing variations used in different programming languages
and paradigms. We show how the graph representation of the program is built,
together with the evolution of this representation to deal with some program
features like polymorphism and field representation in object-oriented programs,
access to complex data structures such as lists or tuples in functional languages,
and even some language-independent program slicing techniques that generate
program slices by running the program with a set of test cases. We start with
the formal definition of program slice, used as the base of all our research work.

Definition 2.1 (Program Slice [18]). For statement s and variable v, the slice
of program P with respect to the slicing criterion ⟨s, v⟩ includes only those
statements of P needed to capture the behavior of v at s.

An intuitive definition for “capture the behavior” is given in the definition
of executable slice.

Definition 2.2 (Executable Program Slice [18]). For statement s and variable
v, the slice S of program P with respect to the slicing criterion ⟨s, v⟩ is any
executable program with the following properties:

1. S can be obtained by deleting zero or more statements from P .

2. If P halts on input I, then the value of v at statement s each time s is
executed in P is the same in P and S. If P fails to terminate normally,
s may be executed more times in S than in P , but P and S compute the
same values each time s is executed in P .

As indicated in Definition 2.2, a code is an executable program slice if the
sequence of values generated in the slicing criterion when executing the original
program is a prefix of the sequence of values generated when executing the slice.
When the sequence of values generated by the code computed by a program
slicer does not fulfil the prefix property, it is not considered a slice, and is
commonly denoted as “incomplete slice” (see Example 2.1). Thus, the terms
program slice and complete program slice are indeed synonyms.

20 Chapter 2. Preliminary Definitions and Notation

Definition 2.3 (Sequence of values). Let P be a program, C an slicing criterion
of P , and I a possible input for P . seq(P, C, I) represents the sequence of values
the slicing criterion C is evaluated to during the execution of P with I.

It is important to remark that we use the standard definition of slice, which
excludes non-terminating and non-deterministic programs. Another important
property is that we want our slices to be executable, so that the execution of
the slice for any given input must evaluate the slicing criterion as many times
(or more) as the original code, and the sequence of values the slicing criterion
is evaluated to when executing the original code must be equal to (or a prefix
of) the sequence obtained at the slice. Formally,

Definition 2.4 (Static executable program slice (based on [18] and [20])). A
static executable program slice S of program P with respect to a slicing criterion
C is any executable program with the following properties:

1. S can be obtained by deleting code from P (denoted S ⊆ P).

2. For all input I, seq(P, C, I) is a prefix of seq(S, C, I).

As stated in Definition 2.2, a slice can be obtained by deleting zero state-
ments from a program, so there must be an indicator to measure the quality
of a program slice which must evaluate if a computed slice is valuable for its
purpose or not. There is one indicator used along the literature that measure
the quality of a computed program slice: A program slice is considered to be
correct when all the statements included on it are strictly necessary to recreate
the behaviour of the slicing criterion. Since a program slice is computed by
deleting zero or more statements from a program, a program can contain many
different slices for the same slicing criterion. From here on, given a program P
and a slicing criterion C for P , we use the domain SlicesP

C to denote the finite
set containing all possible slices of P with respect to C.

Definition 2.5 (Minimal slice). A minimal slice of program P with respect to
a slicing criterion C is any S ∈ SlicesP

C such that ∄S ′ ∈ SlicesP
C ∧ S ′ ⊂ S.

This definition states that a minimal slice is always a correct slice because
none of its statements can be removed maintaining the original program be-
haviour for the slicing criterion C (see Example 2.1). Therefore, the terms
minimal slice and correct slice can be used interchangeably. Note that a min-
imal slice, according to this definition, is not necessarily unique and is not
necessarily a slice with the smallest number of statements (see, e.g., [48]).

Example 2.1 (Incomplete and minimal slices). Consider the program in Fig-
ure 2.1a which prints the odd numbers from 5 to 0 and computes their sum-
mation. Consider also two different slices computed w.r.t. ⟨6, n⟩, with their
associated execution traces for the slicing criterion. The slice in Figure 2.1b re-
moves from the program the statement 8, necessary to replicate the same values
for variable n, generating a slice that violates the prefix property mentioned in
Definition 2.2, and required to be a slice. We say that the slice in Figure 2.1b
is an “incomplete slice”. On the other hand, the slice in Figure 2.1c contains

Chapter 2. Preliminary Definitions and Notation 21

1 int i = 0;
2 int n = 5;
3 int s = 0;
4 while(i < 5){
5 if (odd(n))
6 write(n);
7 s += n;
8 n--;
9 i++;

10 }
11 write(s);

SEQ: 5, 3, 1

(a) Original program

int i = 0;
int n = 5;
int s = 0;
while(i < 5){

if (odd(n))
write(n);

s += n;
n––;
i++;

}
write(s);

SEQ: 5, 5, 5, 5, 5

(b) Incomplete slice

int i = 0;
int n = 5;
int s = 0;
while(i < 5){

if (odd(n))
write(n);

s += n;
n--;
i++;

}
write(s);

SEQ: 5, 3, 1

(c) Minimal/Correct slice

Figure 2.1: Example of incomplete and minimal
slices w.r.t. ⟨6, n⟩

all the statements required to compute, for variable n, the same values that the
original program. Furthermore, if any of the statements in the slice was re-
moved, the new computed sequence of values would differ from the original and
the code would no longer be a slice. We say that the slice in Figure 2.1c is a
minimal (or correct) slice.

The computation of program slices is not a trivial process. Along the lit-
erature, two main approaches are proposed to compute program slices: the
approach based on data flow equations, and the one based on graph reachabil-
ity problems [195]. In the data flow equations approach, the slice is computed
in an iterative process, by computing sets of relevant variables in the CFG.
These sets are classified into directly relevant variables (variables defined in a
CFG node and later referenced in another CFG node) and indirectly relevant
variables (those variables used in predicates that may affect the execution of a
CFG node). When a CFG node is included in the slice, its variable sets are com-
puted, including the CFG nodes that contain these variables in the slice. The
process repeats until a fixpoint is reached, obtaining the desired program slice.
On the other hand, graph reachability approaches represent the whole program
as a graph, which includes a set of dependences between program statements
computed from the CFG. Then, an algorithm traverses the graph starting from
the slicing criterion, including in the slice all the graph reachable nodes. All
the contributions of this thesis have been done using the graph reachability pro-
gram slicing approach, including enhancements to the graph representation of
programs and adapting slicing algorithms to work with them. The rest of the
chapter describes how the SDG is built from the source code and how the stan-
dard program slicing algorithm obtains the slice by traversing it in Sections 2.1
and 2.2. Then, Section 2.3 shows how the SDG is improved to the JSysDG to
represent object-oriented programs and Section 2.4 describes another language-
independent slicing method, observation-based slicing, later used in one of the
proposed techniques.

22 Chapter 2. Preliminary Definitions and Notation

2.1 Program Slicing with System Dependence
Graphs

Since it was defined in 1988 by Horwitz et al. [83], the System Dependence
Graph (SDG) is at the basis of most program slicing techniques. The SDG is
defined from the CFG. We explain it through its incremental evolution:

CFG → PDG → SDG

CFG. The starting graph to build a SDG is the CFG [5]. The CFG is a
graph that represents all possible execution paths of a routine (function/proce-
dure/method...). In the CFG each statement is represented with a node, and
two nodes are connected if there exists a possible control flow between these
statements. Additionally, two nodes, Enter and Exit, are added as the initial
and final nodes of the method execution respectively. Formally,

Definition 2.6 (Control Flow Graph (based on [5])). Given a method M , which
contains a set of statements R, the control flow graph of M is a directed graph
G = (N, E), where N = R ∪ {Enter, Exit} and E is a set of edges of the form
e = (n, m) |n, m ∈ N where the statement represented by m may be executed
immediately after the statement represented by n.

Each CFG node includes information about the variables defined and used in
the statement it represents. This information is stored in two different sets
associated to each CFG node: the DEF set (for defined variables) and the USE
set (for used variables).
PDG. The first program representation used to define program dependences
for program slicing was the Program Dependence Graph (PDG), defined by
Ferrante et al. in [56]. The PDG defines each program method as an individual
graph, where nodes represent statements, and edges connect statements with
dependence arcs. These dependences are the control dependence and the flow
dependence, and they are defined hereunder.

Definition 2.7 (Control dependence). Let G be a CFG. Let n and m be nodes
in G. A node n is post-dominated by a node m in G if every directed path from
n to the Exit node passes through m. Node m is control dependent on node n
if and only if m post-dominates one but not all of n’s CFG successors.

Definition 2.8 (Flow Dependence). A node m is flow dependent on a preceding
node n if:

(i) n defines a variable v,

(ii) m uses v, and

(iii) there exists a control-flow path from n to m where v is not defined.

The PDG of a procedure is a graph G = (N, E) where N is the set of nodes
of the CFG without the Exit node, and E is a set of edges that represent control
and flow dependences. Formally,

2.1. Program Slicing with System Dependence Graphs 23

Definition 2.9 (Program dependence graph). Given a method M and its as-
sociated CFG G = (N, E), the PDG of M is a directed graph G′ = (N ′, E ′),
where N ′ = N \ {Exit} and E ′ = Ec ∪ Ef , being Ec and Ef the set of edges
computed by definitions 2.7 and 2.8 over G, respectively.

SDG. A program usually contains a set of procedures connected by procedure
calls. For this reason, in order to connect all the procedures of a program in a
single graph, the SDG was defined [85]. A SDG is compositionally constructed
by connecting the PDGs of program procedures to model parameter passing
between procedure calls and procedure definitions. The SDG represents each
parameter of a procedure with a formal-in node, and a formal-out node for each
entry parameter that may be modified inside the procedure. Analogously, each
procedure call is augmented with an actual-in node for each argument of the
call, and an actual-out node for each argument that may be modified inside
the procedure. The SDG connects procedure calls with procedure definitions
representing parameter passing by means of parameter edges: parameter-in
edges connect actual-in with formal-in nodes and parameter-out edges connect
formal-out with actual-out nodes. Additionally, a call edge is generated to
connect the call node to the Enter procedure node. Finally, a new kind of edge
called summary edge is added to the SDG to describe the relationship between
defined and used arguments in method calls. A summary edge connects an
actual-in node and an actual-out node if the value related to the actual-in
node is used to calculate the value defined in the actual-out node. All this
representation can be seen in the example shown in Figure 2.2, where parameter-
in and parameter-out edges are called input and output edges respectively, name
that we will use from here on.

Definition 2.10 (System dependence graph). Given a program P , composed of
a set of methods M = {m0...mn} and their associated PDGs—each method mi

has a PDGi = ⟨N i, Ei
c, Ei

d⟩. The SDG of P is a graph G = ⟨N, Ec, Ed, Ecall, Ein,
Eout, Esum⟩ where:

1. N = ⋃n
i=0 N i (from now on, we will consider n, m ∈ N)

2. Ec = ⋃n
i=0 Ei

c

3. Ed = ⋃n
i=0 Ei

d

4. (n, m) ∈ Ecall if and only if n is a statement that contains a call and m
is an “Enter” node of the method called by n. (n, m) is a call edge.

5. (n, m) ∈ Ein if and only if n is an actual-in node of a call node c, m
is a formal-in node of an “Enter” node e, and (c, e) ∈ Ecall. (n, m) is a
parameter-in edge.

6. (n, m) ∈ Eout if and only if n is a formal-out node of an “Enter” node e,
m is an actual-out node of a call node c, and (c, e) ∈ Ecall. (n, m) is a
parameter-out edge.

24 Chapter 2. Preliminary Definitions and Notation

7. (n, m) ∈ Esum if and only if n, m are actual-in and actual-out nodes of
a call node c, respectively, n′, m′ are formal-in and formal-out nodes of a
“Enter” node e, respectively, (c, e) ∈ Ecall, and there is a path from n′ to
m′. (n, m) is a summary edge.

1 main() {
2 sum = 0;
3 i = 1;
4 while (i < 11) {
5 sum = add(sum, i);
6 i = increment(i);
7 }
8 write(sum);
9 }

10 add(a,b) {
11 return a + b;
12 }

13 increment(x) {
14 return add(x,1);
15 }

i = 1 sum=0

ENTER
main

while (i < 11) write(sum)

sum = add(sum,i) i = increment(i)

CALL add

sum

CALL
increment

i

ENTER
add

i

a b return a + b

ENTER
increment

x return
add(x,1)

CALL add

1x

Control Edge

Flow Edge

Call/Input Edge

Output Edge

Summary Edge

1st Phase Slicing Alg.

2nd Phase Slicing Alg.

Slicing Criterion

Figure 2.2: Program extracted from [85], its associated SDG,
and the slice for ⟨6, i⟩, represented with grey nodes

2.2 Program Slicing Algorithm
The program slicing algorithm to compute program slices by traversing the
SDG proposed by Horwitz et al. in [85] is illustrated in Algorithm 2.1. In
Algorithm 2.1, the computation of the slice in the SDG (function MarkN-
odesOfSlice) is divided into two phases (lines 2 and 3). Both phases traverse
all the control and flow edges backwards to reach all possible nodes based on
these dependences, but each phase ignores a specific kind of edges (parameter
EdgeTypes in function MarkReachingNodes) with a particular purpose:

• Phase 1 identifies nodes that can reach the slicing criterion, and are either
in the same method as the slicing criterion itself (M), or in a method that
directly or transitively calls M . Since output edges are not traversed (call
in line 2), phase 1 does not include in the slice the methods called by M .

• Phase 2 locates nodes that can reach the slicing criterion from methods
called by M or from methods called by methods that transitively call M .
Since call and input edges are not traversed in this phase (call in line 3),
phase 2 only includes in the slice the slicing criterion context that calls
this methods, ignoring all possible calls along the program. This fact
makes the algorithm proposed by Horwitz et al. to be aware of the calling
contexts, also known as being context-sensitive.

2.2. Program Slicing Algorithm 25

The graph traversal process is performed with function MarkReachingN-
odes. This function receives a graph G, a set of nodes N that must be in the
slice, and the set of edge types ignored during the traversal EdgeTypes. The
function uses an auxiliary work list (WorkList) to store the nodes in N (line 6).
For each node, the function extracts all its incoming edges and traverses those
which type is not in EdgeTypes (lines 8-11). If the edge can be traversed, its
source node is included to the slice and also to the work list, to be later pro-
cessed (lines 12-14). This process repeats until no more nodes are added to the
work list.

Algorithm 2.1 Program Slicing Algorithm defined by Horwitz et al. in [85]
Input: The SDG G and the slicing criterion node nsc.
Output: The set of nodes that compose the slice S.
Initialization: S0 = {nsc}.

1: function MarkNodesOfSlice(G, nsc)
// Phase 1: Ignore Output edges

2: S1 ← MarkReachingNodes(G, S0, {Output})
// Phase 2: Ignore Call and Input edges

3: S ← MarkReachingNodes(G, S1, {Call, Input})
4: return S

5: function MarkReachingNodes(G, N, EdgeTypes)
6: WorkList ← N
7: while WorkList ̸= ∅ do
8: select some n ∈WorkList
9: WorkList ←WorkList \ {n}

10: for all edge ∈ getIncomingEdges(n) do
11: if edgeType ̸∈ EdgeTypes then
12: m← getSourceNode(edge)
13: N ← N ∪m
14: WorkList ←WorkList ∪m
15: return N

Figure 2.2 shows a program, its associated SDG, and the interprocedural
slicing (marked with grey nodes) for the slicing criterion ⟨6, i⟩ (marked in un-
derlined bold inside a bold node). The graph traversal performed by the slicing
algorithm in each phase would be the following:
Phase 1 :

i = increment(i)

summary←−−−−−− i control←−−−− CALL increment

control←−−−− while (i < 11)
{ control←−−−− ENTER main

flow←−−− i=1

26 Chapter 2. Preliminary Definitions and Notation

Phase 2 :

i = increment(i) output←−−−− return add(x,1)

summary←−−−−−− 1
summary←−−−−−− x

flow←−−− x
control←−−−− ENTER increment

output←−−−− return a + b

control←−−−− ENTER add
flow←−−− a
flow←−−− b

where arrows represent the graph edges, which connect program statements;
and their labels represent the type of the edge. Note that we use braces with
a collection of edges when more than one edge can be traversed, thus, creating
parallel paths. In Phase 1, output edges are ignored and, thus, only some nodes
inside the main function are included in the slice. In Phase 2, the traversal
reaches the increment and add functions (traversing the output edges). More-
over, since in Phase 2 call and input edges are ignored, the traversal never
reaches the call to function add performed inside the main function.

2.3 Program Slicing of Object-Oriented Pro-
grams

Many approaches have been proposed to enhance the SDG and make it suit-
able to represent object-oriented (OO) programs (most of these approaches are
explained in the survey [136]). To deal with OO programs, the SDG needs
to provide an accurate representation for their main features: polymorphism,
dynamic binding, and inheritance.

One of the latest and more accurate representation for Java OO programs,
is the one proposed by Walkinshaw et al. [202], the Java System Dependence
Graph (JSysDG). The JSysDG is made by a composition of different graphs for
methods, classes, interfaces, and packages, obtaining a more accurate program
representation. The JSysDG allows the representation of abstract classes which
are not necessarily interfaces, and it distinguishes data members (the fields of
an object) in objects passed as parameters in method calls. Nowadays, the
JSysDG is arguably the best representation for Java OO programs and we use
it as a reference point in this thesis.

In order to clarify the differences between the SDG and the JSysDG, we
explain the JSysDG enhancements introduced to correctly represent some OO
features such as inheritance, dynamic binding, and polymorphism. We explain
it through its incremental evolution:

SDG → ClDG → JSysDG

ClDG. With the SDG as its base, the Class Dependence Graph (ClDG) [112]
augments the SDG representation to consider OO programs. The ClDG presents
a representation for polymorphism, dynamic binding, and inheritance in the
C++ programming language. Unfortunately, the representation is not accurate
enough and presents some limitations. For example, it is not possible to differ-
entiate data members of different objects in method calls. Liang and Harrold

2.3. Program Slicing of Object-Oriented Programs 27

[118] improved this representation allowing them to distinguish data members
in parameter objects and upgrading the accuracy of graph-based operations as
a result. As some features differ among OO languages, the ClDG is not able
to represent some features of the Java programming language. Hence, other
approaches focused on Java have been proposed. The approach proposed by
Kovács et al. in [101] or the one proposed by Zhao in [215] enable the rep-
resentation of Java particular features such as interfaces, packages, and single
inheritance. All these ClDG approaches define a class entry node for each class,
connected to the procedure Enter nodes of all its procedures by class member-
ship edges, and to all its data members by data membership edges. Additionally,
inheritance is represented with a class dependence edge from the base class to
the derived classes.

Definition 2.11 (Class dependence graph). Given a program P , composed by
a set of classes Cl = {cl0...cln} that contain a set of methods and a list of data
members DM cli and the SDG associated to P , G = ⟨N, E⟩; the ClDG of P is
a graph G′ = ⟨N ′, E, Ecm, Edm, Ecd⟩ where:

1. N ′ = N ∪ Cl ∪ ⋃n
i=0 DM cli

2. (n, m) ∈ Ecm if and only if n ∈ Cl and m is an “Enter” node of a method
defined inside class n. (n, m) is a class membership edge.

3. (n, m) ∈ Edm if and only if n ∈ Cl and m ∈ DMn. (n, m) is a data
membership edge.

4. (n, m) ∈ Ecd if and only if n, m ∈ Cl and m is a derived class of n. (n, m)
is a class dependence edge.

JSysDG. Taking profit of some features during the evolution of the ClDG,
Walkinshaw et al. [202] proposed the JSysDG. This graph augments the ClDG
with a process to represent polymorphic calls and dynamic binding in Java OO
programs. There are two particular scenarios that are worth mentioning in the
JSysDG representation.

1. A polymorphic object is the caller of a method, and the called
method needs to be selected at runtime. An example of this sce-
nario can be seen in the code of Figure 2.3a, which represents a Java
program with two classes, A and B, with an inheritance relationship and
a class Main with a main method that creates an object of either A or B
dynamic type depending on a random generated number. In line 19, the
method that would be executed in the call a.f() can only be determined
at runtime, thus, the static representation of the program needs to de-
fine both possibilities. In this scenario, the JSysDG represents the caller
(object variable a) and its defined and used data members in a tree repre-
sentation for all the possible dynamic types and connects each type with
its corresponding method definition. An example of this representation is
shown in Figure 2.3b.

28 Chapter 2. Preliminary Definitions and Notation

1 class A{
2 public int x, y;
3 public A (int a, int b) { x = a; y = b; }
4 public int getX() { return x; }
5 public int getY() { return y; }
6 public void f() { x = x + 1; }
7 }
8 class B extends A{
9 public B (int a, int b){ super(a,b); }

10 public void f() { x = x + 2; }
11 }

12 class Main{
13 public static void main(String[] args){
14 A a;
15 if (Math.random() > 0.5)
16 a = new A(1);
17 else
18 a = new B(2);
19 a.f();
20 g(a);
21 }
22 public void g(A a){
23 System.out.println(a.getX() + a.getY());
24 }
25 }

(a) Java program with polymorphic calls

call
a.f()

function
f

x_in x_out

x = x + 1

class A class B

function
f

x_in x_out

x = x + 2

a

A.f B.f

x_in x_inx_out x_out

Control Edge

Flow Edge

Call/Input Edge

Output Edge

Summary Edge

(b) JSysDG of call a.f() in line 19

Figure 2.3: Fragment of Java code of a polymorphic call and
JSysDG representation for method call a.f()

2. A method call contains a polymorphic object as a call parameter.
This scenario happens in line 20 of Figure 2.3a. The call to method g
receives a polymorphic object (variable a) as a parameter. In this scenario
the JSysDG representation follows the proposal introduced by Liang and
Harrold in [118], where the object parameter has a tree representation
for each class, unfolding all its data members in both method call and
definition. An example of this representation for the call g(a) can be
seen in Figure 2.4. In the proposed representation, only data members
of the tree representation are linked, in order to accurately select a data
member if it is used by method g.

Apart from the augmented ClDG, the JSysDG also uses two other graphs
to account for interfaces and packages. The first graph is the Interface Depen-
dence Graph (InDG), which represents each interface of the program with an
interface entry node. This node is connected to every abstract method defined
inside the interface. Each abstract method contains in turn a set of parameter
nodes, which represent its input parameters. Then, every abstract method and
its parameters are connected with an implement abstract method edge to every
instance of the method. Finally, if a class implements an interface, an imple-
ments interface edge from the interface node to the class node is added to the
graph.

The second graph is the Package Dependence Graph (PaDG). In this graph,
a package entry node is defined for each package of the program. This node is
connected to every class and interface inside the package with a package member

2.4. Language-Independent Program Slicing:
Observation-Based Slicing 29

call
g(a)

function
g(a)

x y

BA

yx

a

x y

BA

yx

a System.out.println(…)

Control Edge

Call/Input Edge

Figure 2.4: JSysDG of call g(a) in line 20 of the code in
Figure 2.3a

edge. This graph, which includes all the previous graphs, represents the Java
program as a whole, establishing dependences at package level.

2.4 Language-Independent Program Slicing:
Observation-Based Slicing

Although all the approaches explained until now were based on program depen-
dence graphs, there are other slicing approaches that do not consider program
dependences or program representations to compute slices. This is the case of
observation-based slicing (ORBS) [20]. ORBS is a technique that iteratively
removes lines from a program, and checks whether the observable behaviour
of the slicing criterion is the desired one. This is checked for a particular set
of test cases. If the observable behaviour is the expected one, then the line is
effectively removed. Then, the system can try again with a different line until
no more lines can be removed. When the system has finished with one line at a
time, it can repeat the process removing two lines at each iteration, and so on.
Since the removal of lines is based on the behaviour of the program execution,
this strategy requires a good defined set of test cases that covers all possible
executions to be effective.

In this section we formalise some key definitions that must be used when
dealing with program slicing using ORBS. Since ORBS makes use of program
execution to compute the slice it can be considered as a dynamic technique. In
this case, the concept of slicing criterion must be augmented to the concept of
dynamic slicing criterion.

Definition 2.12 (Dynamic slicing criterion). Let P be a program. A dynamic
slicing criterion of P is a tuple ⟨C, I⟩ such that C is a slicing criterion and I
is an input for P .

A dynamic slicing criterion also includes extra information: the input of the
program. In the slice, the behaviour of the slicing criterion when executing the

30 Chapter 2. Preliminary Definitions and Notation

program with this input information must remain. To consider if the behaviour
is preserved or not, the process must monitor the sequence of values (Defini-
tion 2.3) computed for the slicing criterion during the program execution. The
dynamic requirements of ORBS and the definition of the dynamic slicing cri-
teria make the slices computed by ORBS to be dynamic executable program
slices.

Definition 2.13 (Dynamic executable program slice). A dynamic executable
program slice S of a program P on a dynamic slicing criterion ⟨C, I⟩ is any
executable program that fulfils the two properties of Definition 2.2 for P with
respect to C and for a set of possible inputs I:

1. S can be obtained by deleting zero or more statements from P .

2. If P halts on input I, then the value computed for C each time it is
executed in P is the same in P and S. If P fails to terminate normally1,
C may be executed more times in S than in P , but P and S compute the
same values each time C is executed in P .

These terms and definitions are valuable to understand ORBS and its dy-
namic context, and will be used in future chapters.

1We consider that a program does not terminate normally when an uncontrolled exception
is raised during runtime and the program’s execution is abruptly interrupted.

31

Chapter 3

Flow Dependence for Java
Object-Oriented Programs

The JSysDG (Chapter 2, Section 2.3) is an accurate representation that provides
precise slices and allows for differentiating whether data members of different
objects are required or not in a slice. In this chapter, we show that, despite
being one of the most accurate approaches for OO programs, some scenarios
exist where the produced slices are not complete (Section 3.1). Therefore, it
is not a problem related to precision (the slices contain more code than they
need), but a problem related to completeness (the slices contain less code than
they need), which means that some code that can affect the slicing criterion is
not included in the slice. In particular, when an object variable is selected as
the slicing criterion, under certain circumstances, only some of its required data
members (not all of them) are included as part of the slice. The cause of this
lack of completeness is the current definition of flow dependence. The classic
flow dependence definition was thought for variables that are atomically defined
or used in a program statement, but has never been reconsidered to deal with
object variables, which can be partially defined or used (by defining or using
only one of its data members) in a statement. This representation error was
inherited by later program representations derived from the JSysDG, such as
the Sub-Statement Level Dependence Graph (SSLDG)[128].

This chapter presents an approach to solve the expressiveness limitation by
extending the JSysDG. We augment the JSysDG by replacing the current def-
inition of flow dependence with two more accurate definitions: a definition of
flow dependence for primitive type variables, and the creation of two new defi-
nitions related to flow dependence for object variables: object-flow dependence
and object-reference dependence (Section 3.2). Finally, we show the implemen-
tation and experimental evaluation of our proposal in a program slicer called
JavaSlicer (Sections 3.3 and 3.4).

3.1 Limitations of the JSysDG
According to the definition of program slice (see Definition 2.1), there is nothing
that prevents an object type variable to be considered as the slicing criterion.
Moreover, if we select an object variable as the slicing criterion, one could expect
for the slice to include all the statements that might affect the value of any of
its data members. Nevertheless, as we have seen in Figure 2.3b, when an object

32 Chapter 3. Flow Dependence for Java Object-Oriented Programs

variable is the caller of a method call, only the used and defined data members
of the object have a representation in the unfolding tree as argument-in and
argument-out nodes respectively. Additionally, we have seen that all the flow
dependences between object definitions and uses in method calls are propagated
through their data members, never connecting the node that represents the
object variable itself.

When we put all this knowledge together, we can easily find a specific sce-
nario where the slice obtained by the JSysDG is not complete when selecting
some object variables as the slicing criterion.

Example 3.1. Consider the code snippet in Figure 3.1a. This code contains a
program with two classes: class A and class Main. Additionally, class Main con-
tains a method main that instantiates object variable a1 of type A. The scenario
where the JSysDG is incomplete is given at the main method of Figure 3.1a,
concretely in lines 11 and 13. Line 11 creates the object variable a1 of type A
instantiating its data members x and y with a call to A’s constructor. Then,
line 13 modifies only the value of its data member x. At this point, after the
method call a1.setX(), the whole definition of the object is divided into two dif-
ferent statements, but there is no flow dependence between them, because method
call a1.setX() does not require any data member of object variable a1 to define
data member x. The described situation is represented in Figure 3.1b.

1 class A {
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 }

9 class Main {
10 public static void main(String[] args) {
11 A a1 = new A(1,2);
12 a1.y = a1.y + 5;
13 a1.setX(3);
14 A a2 = a1;
15 }
16 }

(a) Java program

call new
A()

function
main

a11 2

x y

call
a1.setX()

A.setX

x_out

3

constructor
A

a_in x_outb_in y_out

x = a y = b

function
setX

a_in x_out

x = a

Class Main

Class A

a1

Call/Input Edge

Output Edge

Summary Edge

Control Edge

Flow Edge

Slicing Criterion

(b) JSysDG representing lines 11 and 13 in
method main, and slice w.r.t. ⟨13, a1⟩

Figure 3.1: Java program, JSysDG of lines 11 and 13, and
slice w.r.t. ⟨13, a1⟩

Figure 3.1b represents with grey nodes the slice produced by the JSysDG
with respect to ⟨13, a1⟩. This slicing criterion is marked in the JSysDG with
bold nodes. Note that, when the slicing criterion is an object variable, then all
the data members are marked as the slicing criterion as well. Thus, the slicing
criterion is formed from the control dependence subtree of node a1. The trans-
lation of the slice calculated over the JSysDG to code results in the code shown

3.2. A novel definition of flow dependence 33

in Figure 3.2a. Contrarily to the expected slice, which is the one in Figure 3.2b,
the slicing traversal of the JSysDG ends without reaching the declaration of a1,
the constructor call A(1,2), and data member y in class A. This counterexample
reinforces the claim that flow dependences of object variables need to be better
defined to correctly use them as slicing criteria.

1 class A {
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 }

9 class Main {
10 public static void main(String[] args) {
11 A a1 = new A(1,2);
12 a1.y = a1.y + 5;
13 a1.setX(3);
14 A a2 = a1;
15 }
16 }

(a) JSysDG slice

1 class A {
2 public int x,y;
3 public A (int a, int b) {
4 x = a;
5 y = b;
6 }
7 public void setX(int a) { x = a; }
8 }

9 class Main {
10 public static void main(String[] args) {
11 A a1 = new A(1,2);
12 a1.y = a1.y + 5;
13 a1.setX(3);
14 A a2 = a1;
15 }
16 }

(b) Expected slice

Figure 3.2: JSysDG slice and expected slice of the code in
Figure 3.1a w.r.t. ⟨13, a1⟩

3.2 A novel definition of flow dependence
A more accurate description for definition and use sets of object variables is
necessary in order to extend the notion of flow dependence (see Definition 2.8)
for objects due to the different natures of primitives and object variables.

In Java, program variables can be of two different types. On the one hand,
we have primitive type variables, which are atomic (e.g., int i = 42). These
variables are always defined and used atomically, i.e., every time a primitive
variable is defined in the program, the new value of the variable replaces the
previous one, and the previous value cannot be further accessed. On the other
hand, there are object type variables, which are compositionally formed by
a collection of data members. Each data member, in turn, can be a primitive
type variable, or another object type variable. Unlike primitive variables, object
variables are not completely replaced every time they are defined. Since they
are formed from a collection of data members, a statement may modify just
some of them. As a result, the definition of all the data members of an object
variable may be split into different statements. Hence, object variables can be
defined in two different ways:

Definition 3.1 (Total definition). An object variable v that points to a memory
location m1 is totally defined in a program statement s if the execution of s
makes v to point to m2, and m1 ̸= m2 (v points to a different object).

Total definitions appear in two different scenarios:

34 Chapter 3. Flow Dependence for Java Object-Oriented Programs

1. An assignment of an object variable with a constructor call.
This happens, e.g., in A a1 = new A(1,2) (see line 11 of Figure 3.1a),
where a1 is totally defined. Constructor methods always define1 all the
data members of the variable and never use them. Hence, the DEF set
(see DEF and USE sets of the CFG in Section 2.1) for this statement
(DEF(#11)) includes the object variable itself and all its data members.
The order in which all these definitions occur is crucial for the definition
of flow dependence. For this reason, we transform the DEF set into an
ordered sequence called DEF os where all data members are defined first,
and the object variable is defined at the end, e.g., the ordered sequence of
definitions in the mentioned statement is DEF os(#11) = [a1.x, a1.y,
a1]. In this scenario, USE(#11) = ∅ since no variable is used.

2. An alias assignment between two object variables that point
to different objects. This happens, e.g., in A a2 = a1 (see line 14 of
Figure 3.1a), where a2 is totally defined2. As in the previous scenario, the
DEF set is transformed into an ordered sequence where data members are
defined first, and the object variable is defined at the end. In contrast,
USE(#14) remains as a set of uses, and contains the object variable of
the right-hand side of the assignment ({a1}).

Definition 3.2 (Partial definition). An object variable v is partially defined
in a program statement s if v points to the same object o before and after the
execution of s, and s defines at least one data member of o.

Partial definitions occur when a statement modifies at least one data member
of an object variable, but not the object it points to. Partial definitions appear
in two different scenarios:

3. A method call that defines a data member of the caller. This
happens, e.g., in a1.setX(3) (see line 13 of Figure 3.1a). Method calls
may partially define object variables through method calls by defining
some or all its the data members. In this scenario, the DEF set is also
transformed to an ordered sequence which, as it happened in total defini-
tions, includes all the data members defined inside the method followed
by the object variable itself. On the other hand, the USE set includes all
the data members used inside the method together with the caller object
itself, whose reference is needed to make the call.

4. An assignment of an object variable’s data member. This hap-
pens, e.g., in a1.y = a1.y + 5 (see line 12 of Figure 3.1a). This scenario
behaves in a similar way that the previous one. The DEF set is also trans-
formed into an ordered sequence that contains an element for defined data
members (a1.y in this case) followed by the object variable itself (a1). The
USE set contains the data members (a1.y) and the object variables used
(a1).

1This definition can be explicit or implicit, because Java initializes all data members by
default.

2This type of total definitions include also assignments with the form A a = f(); where
an object variable is defined through the return of a method call.

3.2. A novel definition of flow dependence 35

Example 3.2. Table 3.1 provides an example of DEF and USE sets for the
main method of the program in Figure 3.1a. In this table there are examples of
the described scenarios. Definitions and uses appear in the order described in
the previous scenarios.

Scenario Statement DEFos USE
1 A a1 = new A(1,2); [a1.x, a1.y, a1] ∅
4 a1.y = a1.y + 5; [a1.y, a1] {a1.y, a1}
3 a1.setX(3); [a1.x, a1] {a1}
2 A a2 = a1; [a2.x, a2.y, a2] {a1}

Table 3.1: The ordered sequence DEFos and the USE set of
some of the statements in the main method of Figure 3.1a.

This new method to annotate definitions and uses of object variables in
program statements is of fundamental importance for the redefinition of flow
dependence. Moreover, it comes with an important advantage over the previous
formulation: It allows us to differentiate the specific moment in which a data
member and an object is defined or used and, thus, it allows us to slice a
program with respect to a specific instant in the computation (for instance, we
can slice a.setX(3) with respect to the value of a ‘before’ or ‘after’ the method
invocation). To incorporate this feature to the JSysDG, we have enhanced the
graph representation for object variables at the scope of a method call. On
the one hand, we provide an object tree for the scope to represent its value
before the call (scope_in). The root of this tree represents the use of the object
variable, and the tree contains the data members used inside the function call.
On the other hand, if the object is modified during the method invocation, we
provide another object tree that represents its value after the call (scope_out).
The root of this second tree represents the definition of the object variable after
the execution of the method and it contains the data members defined inside
the call. For instance, considering the method call a.setX(3), the resulting
JSysDG would be the one shown in Figure 3.3.

New representation for explicit data member accesses
Direct definitions or uses of public data members outside their defining classes
is an uncommon programming practice and is usually considered unsafe. Until
now, most program representations approaches (including the JSysDG) do not
provide any specific representation for this programming mechanism. Instead,
it has traditionally been a common practice to replace direct accesses to public
data members by the corresponding set and get method calls in a pre-processing
step before building the graph [118]. In this case our approach is in line with the
one proposed in SSLDG: the unfolding of the objects being directly defined/used
in the corresponding statements. In our case, a tree representation is given for
each defined/used object and data member in the statement making the direct
access, in the same way it is done when they are defined/used through method
calls. Additionally, when the definition of a data member depends on a data

36 Chapter 3. Flow Dependence for Java Object-Oriented Programs

call
a1.setX(3)

A.setX

x_out

3 a1_outa1_in

A.setX

// Class A
7 public void setX(int a) { x = a; }

// Class Main
12 public static void main(String[] args){
15 a1.setX(3);
17 }

Control Edge

Summary Edge

Figure 3.3: Input and output scopes in a method call

member used in the same statement, a flow edge between both data members
represents the corresponding intra-statement flow dependence.

Example 3.3. Consider the data member assignment in line 12 of Figure 3.1a.
In the assignment, data member y of object variable a1 is both used and defined.
The representation of this assignment is shown in Figure 3.4. Since the same
object is both used and defined, we represent the node with two different object
trees: one corresponding to the value of the data member y of the right-hand
side of the assignment (a1_in), and another one corresponding to the value of
the data member y of the left-hand side of the assignment (a1_out). Finally,
since the previous value of a1.y is used to compute the new value of a1.y, a
flow edge is added to represent this dependence.

a1.y = a1.y + 5

y_out

a1_outa1_in

y_in

Control Edge Flow Edge

Figure 3.4: Representation for explicit data members accesses

3.2. A novel definition of flow dependence 37

Flow dependences for object variables
In Java, as it happens in most programming languages, a variable cannot be
used without being previously defined. The definition of a primitive variable
is always total, but the definition of an object variable can be partial. This
poses new difficulties in the computation of the usual flow dependence. In fact,
the standard definition (see Definition 2.8) is insufficient. Let us illustrate the
problem with a simple example.

Example 3.4. Consider the code in Figure 3.5a, where primitive variable x is
defined twice and then used. According to Definition 2.8, x in line 4 depends on
x in line 3, but x in line 4 does not depend on x in line 2.

1 (...)
2 int x = 5; // def x
3 x = 1; // def x
4 y = x; // use x

(a) Def-use with primitive variables.

1 (...)
2 A a = new A(); // def a
3 a.setX(1); // def a
4 a.y = 2; // def a
5 b = a; // use a

(b) Def-use with object variables.

Figure 3.5: Flow dependence in presence of primitive and ob-
ject variables

If we consider, however, the code in Figure 3.5b, we have an analogous
situation: a is defined twice and then used. Therefore, according to the standard
definition of flow dependence, a in line 5 flow depends on a in line 4 (which is
correct), but a in line 5 does not depend on a in line 3 (which is clearly wrong).

The rationale why Definition 2.8 does not work with object variables is
because they can be partially defined, while primitive variables are always totally
defined. This is also the problem of the JSysDG: it uses the standard definition
of flow dependence (Definition 2.8) with object variables. The solution is to
extend the definition of flow dependence to account for objects. Interestingly,
this extension allows for novel situations. For instance, in Figure 3.5b, a in line 5
depends on a in line 3 (even though it is redefined in line 4), but also, a (partial)
definition can depend on another definition. In particular, a in line 4, which is
a (partial) definition, depends on a in line 3, which is another definition.

With all these ideas, we identify (and formally define) two new dependences
that complement the classical flow dependence with a specific treatment for
object variables (it does not apply to primitive variables, which continue using
the classic flow dependence definition (Definition 2.8)). We call these new de-
pendences object-flow dependence and object-reference dependence. The former
can be formally defined with an extended CFG.

Definition 3.3 (Extended Control-Flow Graph). Given a CFG G = (N, A),
its extended version eCFG is a graph G′ with the same nodes and edges as
G with one exception: every node n ∈ N that defines an object variable and
contains m > 1 variable definitions (DEF os(n) = [v1, v2 . . . vm]) is replaced by a
sequence of nodes (n1, ..., nm, connected by edges) where each variable definition
is represented by one single node.

38 Chapter 3. Flow Dependence for Java Object-Oriented Programs

The eCFG is useful to explicitly represent the order in which a sequence
of operations happen inside a single statement. These operations cannot be
distinguished in a CFG because all of them are represented with one single node,
while they can be distinguished in the eCFG because they are represented by a
sequence of nodes.

Example 3.5. Consider the assignment A a1 = new A(1,2) in line 11 of Fig-
ure 4.1. This assignment contains a total definition of variable a1 and its CFG
node together with its sequence of definitions and uses are shown in Figure 3.6a.
Note that the sequence of definitions appear in the order described by scenario 1
for total definitions. Since the node contains three different definitions, the node
must be split into different nodes in the corresponding eCFG. Figure 3.6b shows
how the initial CFG node is split into three different nodes (one per variable
definition) which are sequentially connected to form the corresponding eCFG
representation.

a1 = call new A(1,2)
DEFos(n)=[a1.x,a1.y, a1]

CFG/eCFG Edge

n

(a) CFG node

a1 = call new A(1,2)
DEFos(n1)=[a1.x]

a1 = call new A(1,2)
DEFos(n2)=[a1.y]

a1 = call new A(1,2)
DEFos(n3)=[a1]

n1

n2

n3

(b) eCFG nodes

Figure 3.6: CFG and eCFG nodes corresponding to statement
A a1 = new A(1,2)

We can now formally define object-flow dependence.

Definition 3.4 (Object-Flow Dependence). Let m and n be nodes in an eCFG.
n is object-flow dependent on m if:

(i)#1 n defines an object o,
(ii) m uses the object o, and

(iii) there exists a control-flow path from n to m where object o is not redefined.

or
(i)#2 n defines a data member x of an object o,

(ii) m defines object o3, and
(iii) there exists a control-flow path from n to m where data member x of o is

not redefined.
3I.e., in the eCFG, DEFos(m) = [v], where v is an object variable that points to object o.

3.2. A novel definition of flow dependence 39

The first set of conditions corresponds to the classic definition of flow de-
pendence, the use-definition dependence, which also applies to object variables,
even if the definition is partial. The second one considers a definition-definition
dependence, produced by partial definitions. This flow dependence considers
the case when the slicing criterion is an object variable, and it depends on
all the complementary partial definitions that, together, produce the complete
value of that variable.

Object-flow dependence represents all situations in which the values of the
data members of an object are propagated. In particular, it is able to identify
multiple partial definitions of an object and properly connect all of them to
produce the whole value of an object. But object-flow dependence does not
consider the object reference of objects. Unlike primitive variables, object vari-
ables have a pointer to a memory position where a specific object is stored.
This pointer is updated every time a total definition of an object variable is
executed (see Definition 3.1). Example 3.6 shows a scenario where object-flow
dependence is insufficient to include the reference of an object in a slice.
Example 3.6. Consider the code in Figure 3.7, where an object c1 of class C
(which has one single data member x) is totally defined in line 2. Then, line 3
redefines data member x (even though its unique data member is redefined, the
object reference remains unchanged). Finally, line 4 contains a use of variable
c1. All object-flow dependences in this code are represented in the graph of
the figure labelled with #1 and #2. These object-flow dependences are the ones
generated by the first (#1) and second (#2) sets of conditions in Definition 3.4,
respectively.

With these dependences, the slice computed for ⟨4, c1⟩ is shown with grey
nodes. Clearly, this slice is incomplete, because line 2 should be included in the
slice. The problem is that there is a missing dependence between c1_out in line
3 and c1 in line 2. The missing part is the object reference of c1, which is
defined in line 2. The rationale is the following: even though all data members
of c1_out are defined in line 3, the object reference of c1_out is not. Therefore,
c1_out in line 3 must depend on the code that defines its object reference (line
2).

To account for these missing dependences, we define a new type of depen-
dence called object-reference dependence that complements object-flow depen-
dence. It connects objects with their object reference. Formally,
Definition 3.5 (Object-Reference Dependence). Let G be a CFG. Let m and
n be nodes in G. n is object-reference dependent on m if m totally defines an
object o, n partially defines object o, and there exists a control-flow path from
m to n where object o is not totally redefined.

Object-flow and object-reference dependences are the key elements to solve
the incompleteness problem of the JSysDG. The completeness of both depen-
dences with respect to any combination of DEF/USE statements is an important
result that we formulate and prove hereunder.

Before proving the completeness of object-flow dependences, in order to ease
the proof by reducing the number of possible scenarios, we enunciate and prove
the following lemma:

40 Chapter 3. Flow Dependence for Java Object-Oriented Programs

1 (...)
2 C c1 = new C(0);
3 c1.setX(1);
4 C c2 = c1;

C c2 = c1

ENTRY

#2

call new
C(0)

0 c1

x

call
c1.setX(1)

C.setX

x_out

1 c1_out

#2

#1

Control Edge

Object-Flow Edge

Summary Edge

#1
c1_in

C.setX

Slicing Criterion

Figure 3.7: Code with data member redefinition (left) and its
JSysDG with object-flow (right)

Lemma 3.1. Let s be a statement in a program P . Let v be an object variable
totally defined at s that points to object o. The value of v at s is not object-flow
dependent on any previous statement s′.

Proof. According to Definition 3.1 (see also the scenarios 1 and 2 of Section 3.2),
a statement s that totally defines an object variable also defines all its data
members. In Definition 3.4, a statement s can be object-flow dependent on
another statement s′ iff: (i) s uses an object o, or (ii) s defines an object o and
there is a data member x of o not defined between s′ and s. Since s is a definition
of o and also defines all o’s data members, neither (i) nor (ii) are fulfilled and,
thus, s cannot be object-flow dependent on any previous statement.

Now, we can formally enunciate and prove the theorem.

Theorem 3.1 (Object-Flow Completeness). Let s1; s2; . . . sn; be a sequence of
statements. Let x be an object variable or a data member of an object variable
defined at s1. If the value of an object o at sn data depends on the execution of
s1, then there is a transitive object-flow dependence between s1 and sn.

Proof. First of all, according to Lemma 3.1, when sn is a total definition the the-
orem is trivially proved because sn defines the value of o and its data members
and no object-flow path can end at sn. With respect to the rest of possibilities,
we divide the proof in three different scenarios:

1. o is defined at s1 and not redefined in s2 . . . sn−1.

(a) If sn uses object o and x = o, i.e., object variable x points to object
o, the claim follows trivially by case #1 of Definition 3.4.

(b) If sn partially defines object o and x is a data member of o not defined
at sn the claim follows trivially by case #2 of Definition 3.4.

3.2. A novel definition of flow dependence 41

(c) If sn uses object o and x is a data member of o, then s1 also defines o
according to scenario 3 associated to partial definitions in Section 3.2.
Thus, the claim follows by the object-flow path formed by cases 1a
and 1b.

(d) If sn partially defines object o and x = o there exists an object-flow
path from s1 to sn iff s1 also defines a data member of o not defined
in sn, which makes this case equivalent to case 1b.

2. o is not defined at s1.
If s1 defines x where x ̸= o or x is a data member of a different object p,
object-flow dependence cannot be applied, because in both cases #1 and
#2 of Definition 3.4 it is mandatory for both statements to operate over
the same object. Hence, there cannot be an object-flow path between s1
and sn.

3. x is redefined in s2 . . . sn−1.
In this case, we can assume that x = o or x is a data member of object o
because in any other case we will find ourselves in case 2. We can prove
the claim for n = 3 (s1; s2; s3;) because it does not matter the number of
transitive dependences. The proof is the same for each transitive step. We
can analyse all cases separately. We use the following notation: si(A, B)
with A = D to denote that x is defined at si and with A = U to denote
that x is used at si; and with B = O to denote that x is an object variable
that points to object o at si and with B = DM to denote that x is a data
member of object o at si. Since s1 and s2 perform the same definition
over x they must share the same notation in all cases. This fact leaves 8
possible scenarios:

(a) s1(D, O); s2(D, O); s3(D, O);
(b) s1(D, DM); s2(D, DM); s3(D, O);

Scenarios 3a and 3b are trivially proved because s3 is a total definition of
object o and total definitions does not depend on any previous statement
according to Lemma 3.1. Hence, s3 cannot be object-flow dependent on a
previous statement s1.

(c) s1(D, O); s2(D, O); s3(U, O);
(d) s1(D, O); s2(D, O); s3(D, DM);

In scenario 3c, s3 is trivially object-flow dependent on s2 (case #1 of
Definition 3.4) while in scenario 3d s3 is object-flow dependent on s2 if
s2 defines a data member of o different from the one defined at s3 (case
#2 of Definition 3.4). In both scenarios there is not direct object-flow
dependence between s1 and s3 because the redefinition of x in s2 prevents
it. Additionally, there cannot be a transitive dependence either because
s2 cannot be object-flow dependent on s1 due to Lemma 3.1.

(e) s1(D, DM); s2(D, DM); s3(U, O);

42 Chapter 3. Flow Dependence for Java Object-Oriented Programs

(f) s1(D, DM); s2(D, DM); s3(D, DM);

To proof scenarios 3e and 3f it is important to remember that when a
statement si defines a data member of an object o, it also defines o (see
scenario 3 associated to partial definitions in Section 3.2). In scenario 3e,
s3 is object-flow dependent on s2 because it is the last existent definition
of object o (case #1 of Definition 3.4). In scenario 3f, s3 is object-flow
dependent on s2 if s2 defines a data member of o different from the one
defined at s3 (case #2 of Definition 3.4). In scenarios 3e and 3f, due to
the existence of s2, s3 cannot be directly dependent on s1 according to
Definition 3.4. In turn, in both scenarios s2 is object-flow dependent on
any previous statement that defines a different data member of o (case
#2 of Definition 3.4). Since s1 and s2 define the same data member x s2
is not object-flow dependent on s1 and there is no transitive object-flow
path between s1 and s3.

(g) s1(D, O); s2(D, O); s3(U, DM);
(h) s1(D, DM); s2(D, DM); s3(U, DM);

Considering scenarios 3g and 3h, note that the theorem considers “the
value of an object o” at s3. In these two cases, s3 uses a data member of
an object o. If the data member of o is itself an object, these scenarios
would be equivalent to scenarios 3c and 3e respectively. Finally, if the
data member o is a primitive, this case would be out of the scope of the
proof. In this case, there would not be a path to the last definition of this
data member formed by object-flow edges, but for flow edges.

On the other hand, we enunciate and prove Lemma 3.2, which will be used
to ease the proof the completeness of object-reference dependences by reducing
the number of possible scenarios.

Lemma 3.2. Let s be a statement in a program P . Let v be an object variable
totally defined at s that points to object o. The reference of v at s is not object-
reference dependent on any previous statement s′.

Proof. According to Definition 3.5, a statement s is object-reference dependent
on another statement s′ if s partially defines an object variable v. Since s totally
defines v, s also defines v’s reference (see Definition 3.1) and the condition is not
fulfilled. Thus, s cannot be the target of any object-reference dependence.

After proving Lemma 3.2, we can now formally define and prove the com-
pleteness of object-reference dependences.

Theorem 3.2 (Object-Reference Completeness). Let s1; s2; . . . sn; be a sequence
of statements. Let x be an object variable totally defined at s1. If the reference
of an object variable v at sn depends on the total definition of s1, then there is
a path formed by object-flow and/or object-reference edge between s1 and sn.

3.2. A novel definition of flow dependence 43

Proof. First of all, according to Lemmas 3.1 and 3.2, when sn is a total definition
the theorem is trivially proved because sn cannot be the target of any object-
flow or object-reference dependence. With respect to the rest of possibilities,
we divide the proof into three different scenarios:

1. x is defined at s1 and not redefined in s2 . . . sn−1.

(a) If sn uses object variable v and x = v the claim follows trivially by
the object-flow edge generated by case #1 of Definition 3.4.

(b) If sn partially defines object variable v and x = v the claim follows
trivially by Definition 3.5.

2. v is not defined at s1.
If s1 defines x where x ̸= v, object-flow and object-reference dependences
cannot be applied, because in both Definitions 3.4 and 3.5 it is mandatory
for both statements to operate over the same object. Hence, there cannot
be a path formed by object-flow and/or object-reference edges between s1
and sn.

3. x is redefined in s2 . . . sn−1.
In this case, we can assume that x = v because in any other case we will
find ourselves in case 2. We can prove the claim for n = 3 (s1; s2; s3;) be-
cause it does not matter the number of transitive dependences. The proof
is the same for each transitive step. We can analyse all cases separately.
We use the following notation: si(A) with A = DT to denote that x is
totally defined at si, with A = DP to denote that x is partially defined at
si, with A = U to denote that x is used at si, and with A = ∗ to denote
that A can be either DT , DP or U . There are several possible scenarios:

(a) s1(∗); s2(∗); s3(DT);

Scenario 3a represents the set of cases where s3 totally defines variable
v. These scenarios are trivially proved by Lemma 3.2, since s3 cannot be
object-referent dependent on any previous statement.

(b) s1(DP); s2(∗); s3(∗);

Scenario 3b illustrate the set of cases where s1 partially defines x. Note
that this scenario is not contemplated by the theorem because “x is totally
defined at s1” is a condition described in the theorem that this scenario
does not contemplate.

(c) s1(DT); s2(DT); s3(U);
(d) s1(DT); s2(DT); s3(DP);

In scenarios 3c and 3d, s3 is trivially object-flow dependent on s2 by
cases #1 and #2 of Definition 3.4, respectively. In both scenarios there
is neither direct object-flow, nor object-reference dependence between s1

44 Chapter 3. Flow Dependence for Java Object-Oriented Programs

and s3 because the total definition of x in s2 prevents it. Additionally,
there cannot be a transitive dependence because s2 cannot be object-flow
nor object-reference dependent on s1 due to Lemmas 3.1 and 3.2.

(e) s1(DT); s2(DP); s3(U);

In scenario 3e, s3 is trivially object-flow dependent on s2 according to
case #1 of Definition 3.4. Additionally, since s2 partially defines an object
variable that is totally defined in s1, s2 is object-reference dependent on s1
according to Definition 3.5. Therefore, in this scenario, there is a transitive
path formed by object-flow and object-reference edges that connect the
use of an object variable to its last total definition in s1.

(f) s1(DT); s2(DP); s3(DP);

Finally, in scenario 3f, s3 may be object-flow dependent on s2 according to
case #2 of Definition 3.4 if they define different data members of the same
object. Either way, both s3 and s2 are always object-reference dependent
on s1 for being partial definitions of an object variable totally defined at
s1. Consequently, there is at least one path from the last total definition
in s1 to the later partial definition in s3 formed by an object-reference
edge.

The final JSysDG that includes our new dependences is shown in the follow-
ing example. With object-reference dependence it solves the problem explained
in Example 3.6.

Example 3.7. Consider again the code in Figure 3.1a. Figure 3.8 shows its
associated JSysDG. The upper part of the figure corresponds to the representa-
tion of class Main, where we can see how object dependences are also defined
over the tree structure of method calls. Although object dependences add edges
between object variables, the original definition of flow dependence is still ap-
plied to primitive variables. This happens in the call a1.f(10), where data
member y of the constructor call is linked to the argument-in node y_in. We
can see that the object-reference edge is needed to connect the object variable
a1 after the call a1.setX(3) with the construction of this object in call new
A(1,2). This JSysDG extended with object dependences can properly slice the
graph from any slicing criterion. For instance, the slice computed for the slicing
criterion ⟨13, a⟩ in Figure 3.1a would be the expected slice, i.e., the code in black
in Figure 3.2b.

Slicing the graph with Object-Flow Dependence

The JSysDG slicing algorithm is the standard one proposed by Horwitz et al.
[85]. It computes slices in two phases: (i) traverse the graph backwards from the
slicing criterion collecting all nodes reached using any edge except output edges,
(ii) traverse the graph backwards from any node in the slice collecting all nodes

3.2. A novel definition of flow dependence 45

A a2 = a1

method
main()

call new
A(1,2)

1 2 a1

yx

call
a1.setX(3)

A.setX

x_out

3 a1_out

a1.y = a1.y + 5

y_in

a1_in a1_out

constructor
A(a,b)

a_in x_outb_in y_out

x = a y = b

method
setX(a)

a_in x_out

x = a

Class A

Class Main

Control Edge
Flow Edge

Object-Flow EdgeSummary Edge

1st Phase Slicing Alg. 2nd Phase Slicing Alg.

Slicing Criterion

A.setX

a1_in

Object-Reference Edge

Call/Input Edge
Output Edge

y_out

Figure 3.8: JSysDG of the program in Figure 4.1 and slice
w.r.t. ⟨13, a⟩

reached using any edge except call and input edges. The overall process has a
linear time complexity. This algorithm can be used with our graph, producing
the same precision as with the JSysDG. However, this algorithm does not take
advantage of the new object-flow dependences, producing a loss of precision.
The standard algorithm would include in the slice all the data members of an
object variable even if we are only interested in one of them. For instance, in
Figure 3.8, if we consider the node y inside the method call new A(1, 2), the
algorithm would unnecessarily include in the slice data member x and its value
1 (due to edge a1 #2←− x).

The problem can be solved by limiting the traversal of the object-flow edges
in certain cases. When the traversal reaches a node n, an incoming object-flow
edge can only be traversed if one of the following three conditions is true:

1. n has been reached via an object-flow edge

2. n is the slicing criterion

3. n is a predicate

Condition 1 ensures that the traversal of object-flow edges is still transitive.
Conditions 2 and 3 provide a starting point to traverse object-flow edges. When
the slicing criterion is an object variable (Condition 2), we need to traverse all
object-flow edges to include in the slice the value of all its data members. On
the other hand, in Condition 3, when the traversal reaches a predicate (e.g., the

46 Chapter 3. Flow Dependence for Java Object-Oriented Programs

condition of an if or a while statement) we need to follow object-flow edges
to include the data members used by its condition in order to keep the slice
complete. The restriction imposed to the traversal of object-flow edges increases
the precision of the algorithm in the presence of object variables, while keeping
its linear time complexity. Algorithm 3.1 includes all these conditions in the
original slicing algorithm proposed in [85], making it suitable to traverse the
JSysDG after adding object-flow dependences.

Algorithm 3.1 Slicing Algorithm for the JSysDG with Object-Flow Depen-
dence
Input: A JSysDG G and the slicing criterion node nsc.
Output: The set of nodes that compose the slice S of G w.r.t. nsc.
Initialization: S0 ← {⟨nsc, none⟩}.

1: function MarkNodesOfSlice(G, nsc)
2: S1 ← MarkReachingNodes(G, S0, nsc, {Output}) ▷ Phase 1
3: S2 ← MarkReachingNodes(G, S1, nsc, {Call, Input}) ▷ Phase 2
4: S ← {n | ⟨n, edgeType⟩ ∈ S2}
5: return S

6: function MarkReachingNodes(G, N, nsc, EdgeTypes) ▷ Change (A)
7: WorkList ← N
8: while WorkList ̸= ∅ do
9: select some ⟨n, lastEdgeType⟩ ∈WorkList ▷ Change (B)

10: WorkList ←WorkList \ ⟨n, lastEdgeType⟩
11: for all edge ∈ getIncomingEdges(n) do
12: if edgeType ∈ EdgeTypes then
13: continue
14: m← getSourceNode(edge)
15: if edgeType = ObjectFlow then
16: if lastEdgeType ̸= ObjectFlow ∧ n ̸= nsc ∧ ¬isPredicate(m) then
17: continue
18: N ← N ∪ ⟨m, edgeType⟩
19: WorkList ←WorkList ∪ ⟨m, edgeType⟩
20: return N

Algorithm 3.1 illustrates the slicing process by including a couple of relevant
changes to Horwitz’s algorithm. The first one (A) is that the slicing criterion
nsc is now used as a parameter of function MarkReachingNodes, since this
function needs to identify in Line 16 whether the current node is the slicing
criterion (to check Condition 2). Additionally, (B) the WorkList in function
MarkReachingNodes contains now tuples of two elements (see Line 9) in-
stead of a single element, storing also the information about the type of the last
traversed edge (to check Condition 1). The three aforementioned conditions
are checked in lines 15-17. If any of them holds then the current node is not
included in the slice.

3.3. Implementation 47

Example 3.8 shows how the application of Algorithm 3.1 solves the incom-
pleteness problem of the JSysDG presented in Section 3.1.

Example 3.8. The graph in Figure 3.8 represents the JSysDG of the code in
Figure 3.1a augmented with object-flow and object-reference dependences. It
shows the slice computed with respect to the object variable a1 in line 13 after
the method call a1.setX() (the slicing criterion node is marked with a bold line
in the graph). To clearly show the two traversal phases of the algorithm, the
slice is divided into two sets of nodes. The nodes marked in light grey are added
to the slice during Phase 1. On the other hand, the dark grey nodes are the
nodes added to the slice during Phase 2. The slice code is exactly the expected
slice shown in Figure 3.2b. It is worth mentioning that the change proposed to
Horwitz et al.’s algorithm has a direct impact on the slice’s precision.

Note that the traversal algorithm improves its accuracy by preventing the x
data member of object variable a1 in method call new A(1,2) to be included
in the slice. This happens because x can only be reached from a1 (through an
object-flow edge) and this edge can only be traversed from another object-flow
edge, according to Condition 1 of the slicing algorithm. Even though a1 can be
reached from two object-flow edges, none of them belong to the slice, thus x is
never included in the slice.

3.3 Implementation
The proposals described in this chapter have been implemented in a program
slicer called JavaSlicer. JavaSlicer is a program slicer for Java implemented
in Java that uses the JSysDG as the base graph. Additionally, the slicer in-
cludes the representation of object-oriented programs described in Chapter 3,
which implies the representation of object-flow and object-reference depen-
dences. The slicer allows us to select object variables in an OO program as
the slicing criterion, obtaining an accurate slice as a result, which includes
the value of all the object data members and also the reference of the object
variable itself. The JavaSlicer project is composed of 2 different main mod-
ules: sdg-cli and sdg-core. The sdg-cli module contains the presentation layer
of the tool and is responsible of the reception and management of the input
arguments given by the user, as well as providing the user with the resulting
slice. On the other hand, sdg-core represents the logical layer, dealing with
the whole graph representation and generating the resulting slice. The project
is divided in 101 Java classes, distributed into 21 different packages, which
include more than 7600 lines of code. The source code is publicly available
at https://github.com/mistupv/JavaSlicer and a limited online version to
test the tool can be found at https://mist.dsic.upv.es/JavaSlicer/demo.

Figure 3.9 illustrates an overall idea about the communication between the
modules and classes in JavaSlicer. The figure shows the most relevant classes of
both slicer modules and how they communicate in order to compute a slice from
a Java program. In the figure, we differentiate two main modules in the im-
plementation (represented with rounded squares): the module that implements
the presentation layer of the slicer (sdg-cli) and the module that specifies the

https://github.com/mistupv/JavaSlicer
https://mist.dsic.upv.es/JavaSlicer/demo

48 Chapter 3. Flow Dependence for Java Object-Oriented Programs

logical layer of the slicer (sdg-core). Additionally, in Figure 3.9, solid squares
represent Java classes inside these modules, solid arrows represent calls between
classes (sometimes between different modules), and dashed arrows represent the
input/output resources of the slicer. Finally, dashed squares represent external
Java modules called during the slicing process.

The implementation contains more than 100 classes but, to keep the rep-
resentation readable and simple, Figure 3.9 only shows the communication be-
tween the 12 most relevant classes to make an overall description of the whole
process. Each one of the represented classes and their main functionality is the
following:

Java
Program

graphs

Slicer

ASTUtils

DynamicTypeResolverSummaryEdgeAnalyzer

JSysDGSlicing
Algorithm

Java
Slice

Method Call
Input/Output Resource

sdg-cli

JavaParser

ClassGraph

CallGraph

sdg-core

JSysCFG

JSysDG

JSysPDG

External Module
Slice

JSysDGCall
Connector

Figure 3.9: JavaSlicer architecture and communication be-
tween modules and classes

• Slicer. This class orchestrates the whole slicing process. It receives
the input given by the user, configures and runs JavaParser to extract
the AST of the input Java project, build its JSysDG, runs the slicing
algorithm over the generated graph with the selected slicing criterion,
and finally transforms the obtained slice back to code. In this class, the
resources generated by each subprocess are given to the next one in order
to compute the final slice.

• ASTUtils. This class contains a collection of functions that make the
communication between the rest of classes and JavaParser easier. These
functions extract a set of features and relationships that are contained
inside the JavaParser complex structure.

• JSysDG. This class manages the construction process of the JSysDG. The
class receives the JavaParser information of all classes and processes all
their elements. It is worth to mention that, although different graphs are
built during the process, the nodes that represent each statement of the
code are shared by them, i.e., the nodes that represent program statement
are only generated once. The construction of the JSysDG is performed in
6 steps:

3.3. Implementation 49

1. The class graph of the whole project is computed.
2. The CFGs of every method in the code are built.
3. The call graph is computed.
4. Each PDG is computed by using their previously generated CFG.

These computation includes all the new proposed dependences: object-
flow and object-reference.

5. Interprocedural edges are generated by connecting method calls to
all their potentially called (polymorphism) method declarations.

6. Summary edges are computed for the result and every redefined ar-
gument inside a method declaration.

• ClassGraph. The ClassGraph class builds and represents the class graph
of the project. Each class node inside this graph contains a set of children
nodes that represent data members or method declarations inside the
class. Additionally, the class graph represents the pair of classes related
by any type of inheritance relationship.

• JSysCFG. This class traverses the whole structure of the AST provided by
JavaParser for all methods. It builds a CFG for every program method,
which contains a CFG node per statement. Additionally, it adds the defi-
nition and use sets of variables in each node and creates control flow edges
between the generated statements, representing all the possible execution
paths.

• CallGraph. This class builds and represents the call graph of the analysed
Java project. In this graph, each node representing a method call is linked
with a call edge to all the potentially called definitions. Polymorphism is
a key factor in this graph. All the possible dynamic types of the scope of
each method call need to be computed to perform a complete static rep-
resentation of the program. This dynamic type computation is performed
by the DynamicTypeResolver class.

• DynamicTypeResolver. This class extracts, by traversing the class graph,
the set of possible dynamic types of an object variable in a particular
program statement.

• JSysPDG. This class, builds the PDG of each method declaration by using
its associated CFG. To this aim, it applies the corresponding algorithms to
compute the control, flow, object-flow, and object-reference dependences.
Additionally, this class also analyses method calls to extract the associ-
ated definitions and uses contained in each method declaration. Finally,
this class unfolds those objects in scopes and arguments into their corre-
sponding tree representations, leaving the PDG ready for interprocedural
connection.

• JSysDGCallConnector. This class uses the call graph to interprocedu-
rally connect all the arguments in method calls with their corresponding
parameters in method declarations. This connection is also extended to

50 Chapter 3. Flow Dependence for Java Object-Oriented Programs

those nodes that represent objects, connecting the corresponding trees in
both method calls and method declarations.

• SummaryEdgeAnalyzer. The SummaryEdgeAnalyzer class applies Algo-
rithm 3.1 intraprocedurally in every method, computing the formal-in de-
pendences for each formal-out of the method, and generating the so-called
summary edges.

• JsysDGSlicingAlgorithm. This class implements Algorithm 3.1 and runs
it for a given slicing criterion, obtaining as a result the set of JSysDG nodes
that conform the program slice.

• Slice. This class contains the set of nodes that represent the slice, and
is the class responsible for transforming these set of nodes into the cor-
responding Java code by successive calls to the functions in JavaParser
libraries.

These 12 classes are just the top of the iceberg, where the main processes to
compute the program slice are performed. The other 89 classes of the project
are used to fulfil necessary implementation processes like: the process to extract
argument-in-parameter-in assignments into new nodes when building PDGs, all
the classes used to generate the inner structure of the graph with all the different
types of nodes and edges, or all the classes used to visit the whole JavaParser
structure needed to build the CFG. The project source code together with a set
of example programs can be found in the public git repository of the JavaSlicer
tool:

https://github.com/mistupv/JavaSlicer

3.4 Experimental Results
In this section we compare our implementation, which include object-flow and
object-reference dependences, with the original JSysDG. We have compared
both graph implementations by measuring the graph generation time, the slicing
time, and the size of the slice, comparing the results obtained by both slicer
executions.

All the algorithms and ideas described in this paper have been implemented
in a prototype slicer for Java programs called JavaSlicer, and has been released
as libre software4.

To compare the performance difference between the JSysDG and JavaSlicer,
we used the publicly available Java library re2j, a library developed by Google
to work with regular expressions in Java. In particular, we used the most recent
release of this library (version 1.65). re2j is a project with 8100 lines of code,
distributed in 19 different Java files. In order to evaluate the techniques pro-
posed throughout this work, we used both the JSysDG and JavaSlicer to build
and slice the whole re2j library. Then, to make the comparison meaningful, we

4Available at https://github.com/mistupv/JavaSlicer
5Available at https://github.com/google/re2j/releases/tag/re2j-1.6

https://github.com/mistupv/JavaSlicer
https://github.com/mistupv/JavaSlicer
https://github.com/google/re2j/releases/tag/re2j-1.6

3.4. Experimental Results 51

Size Range SCs Slice Time (A) Slice Time (B) Slower Size (A) Size (B) Improv.
[0, 100) 49 0.076± 0.001ms 0.927± 0.018ms 48.876 9.10 39.59 693.74%
[100, 1000) 95 130.98± 1.823ms 217.315± 2.874ms 0.782 608.69 738.68 23.19%
[1000, 1400) 122 622.67± 10.833ms 1164.423± 13.093ms 0.857 1284.66 1664.99 29.32%
[1400, 1800) 146 881.09± 13.101ms 1584.023± 12.429ms 0.779 1535.62 1948.16 26.77%
[1800, ∞) 31 1603.05± 11.769ms 2943.965± 15.702ms 0.842 1994.42 2522.74 26.73%
[0, ∞) 443 602.13± 9.078ms 1095.440± 12.039ms 6.126 1130.99 1439.91 100.47%

Build times JSysDG: 10.85± 0.09s JavaSlicer: 13.35± 0.07s (23% slower)

Table 3.2: Summary of experimental results, comparing the
slices of re2j produced by the JSysDG (A) and JavaSlicer (B).

selected as slicing criteria all the object variables (root node of the object tree
representations) that are directly connected to a return statement6. The result
of this selection is a total of 443 different slicing criteria located over the 19
Java files.

All experiments were done on an Intel Core i5-7600 processor with 16 GB
RAM (DDR4 at 2400MT/s) under a Linux OS with kernel version 5.18.1.
The experiment was run with the OpenJDK Java Virtual Machine (version
11.0.15+10). During the execution of the experiment, all processes and services
except for the program slicer and the shell it was launched from were completely
stopped to prevent interferences in the CPU performance.

The methodology used to measure the performance of both slicers was the
following: each time measurement (the graph generation or a specific slice)
was repeated 101 times, and the first iteration was always discarded (to avoid
influence of dynamically loading libraries to physical memory, data persisting
in the disk cache, etc.). Finally, we computed the average with error margins
(with 99% confidence) with the remaining 100 values.

The results of the experiments performed are summarised in Table 3.27. In
it, the slicing criteria are grouped according to the size of the JSysDG slice
(in nodes). This is due to the strong influence the size of the slice has on the
time required to compute it and on the relative sizes of slices produced by both
graphs. The columns of Table 3.2 are described as follows:

• Size Range: the sizes of the JSysDG slices (in nodes) that are contained
in each row.

• SCs: the number of slicing criteria contained in a particular range.

• Slice Time (A/B): the average time required to slice the corresponding
JSysDG (A) and JavaSlicer (B).

• Slower: how much slower is JavaSlicer in comparison to the JSysDG. It
is computed as (TimeB − TimeA)/TimeA.

6Note that, to compare the performance of both models, selecting an object variable during
the slicing traversal is preferable. Any slicing criterion that does not include object variables
would produce two identical slices from both graphs, as the two representations are identical
except for object-flow and object-reference.

7The full dataset produced by the slicer execution is publicly available at https://mist.
dsic.upv.es/git/program-slicing/SDG/-/snippets/9.

https://mist.dsic.upv.es/git/program-slicing/SDG/-/snippets/9
https://mist.dsic.upv.es/git/program-slicing/SDG/-/snippets/9

52 Chapter 3. Flow Dependence for Java Object-Oriented Programs

1 10 100 1000 10000
0,001

0,01

0,1

1

10

100

1000

10000

Size of the slice (nodes)

T
im

e
to

 c
om

pu
te

 t
he

 s
lic

e
(m

s)

Figure 3.10: Relationship between the size and time required
to compute a slice (logarithmic scale)

• Size (A/B): the average number of nodes in the JSysDG (A) and JavaSlicer
(B) slices.

• Improv. (improvement): the average increase in size of the JavaSlicer
slice compared to the JSysDG slice. It is computed as (SizeB−SizeA)/SizeA.

To interpret the results, we first need to focus on the usage of the SDG.
Typically, a graph will be built once and sliced multiple times, and thus its
creation can be (and often is) much more costly than its traversal. Regarding
complexity, creation is polynomial and traversal is linear. Our results are as
expected: creating the graph is between one and four orders of magnitude
more time-consuming (depending on the final slice’s size). Regarding the graph
creation, we can observe a 23% increase between the JSysDG and JavaSlicer,
which is attributable to the great number of object trees that are featured on
the graph. The graph itself consists of 42000 nodes, most of which represent
objects, their polymorphism or their members. Thus, computing object-flow
and object-reference edges represents a noticeable increase in time consumption.

If we turn our attention to the slicing portion of the results, we can see that
the slices can be classified into two distinct groups. The first group consists of
slices whose size is below 100 in the JSysDG tend to “blow up”, as the addition
of object-flow and object-reference adds a significant number of nodes to the
slice (relative to the size of the original slice). Thus, the relative columns of
the first row of results show a slicer that includes almost 700% more nodes
and takes about 50 times longer. Due to the small size of the resulting slices
and the short time it takes the JSysDG to compute them (0.08ms), a 50x
increase only manages to bring the average up to 0.9ms, which is negligible
in most applications of program slicing. This first group can be considered an
outlier, and it affects the averages of the table as a whole. The second group is
represented by the rest of the table (slices with sizes above 100 nodes), where
the results show that slices increase a 26.69% in average, with the cost being a
80% time increase. Throughout the table, time has increased linearly with slice
size, as can be seen in Figure 3.10. Whether the cost is worth the improvement
in completeness is up to the application of slicing. For example, in compiler

3.5. Related Work 53

optimisation, completeness is an important requirement for slicers; while for
dependency highlighting or light debugging, a faster but incomplete slice may
be more appropriate. Another important remark is that the slices produced
by JavaSlicer are always larger or equal to those generated by the JSysDG,
because the only difference between them is the addition of new dependences
in the JavaSlicer.

3.5 Related Work
In 1996, Larsen and Harrold [112] proposed the first graph representation able
to slice OO programs, the Class Dependence Graph (ClDG). Their approach
was the first to provide a way to represent inheritance, polymorphism, and
dynamic binding. The ClDG connected all the methods and data members of a
class in a single graph. Their proposal was later improved by other approaches
like those of Tonella et al. [196], or Liang and Harrold [118]. Although all these
proposals focused on OO programs, none of them noticed the difference between
total and partial definitions in object variables and their impact in flow/data
dependence.

When we review the literature looking for specific slicing approaches for
Java, we find interesting related papers. For instance, Hammer and Snelting
[75] defined a new object unfolding process for method calls in presence of re-
cursive data types, improving the results of the k-limiting approach proposed in
[118]. They defined an algorithm to completely unfold object variables without
unfolding the same object twice in the same object tree and without loosing
dependences based on point-to information. Kashima et al. [96] compared four
different backward slicing techniques for Java: static execute before (SBE),
based in the CFG; context-insensitive slicing (CIS), ignoring the call context;
hybrid model (HYB), where the slice is defined as the intersection of SBE and
CIS; and improved slicing (IMP), based on the Hammer and Snelting’s work
[75]. They compared their precision, scalability, and tradeoffs, determining IMP
as the more accurate but not applicable to large programs.

Other techniques focused on the representation of polymorphic objects in
Java. This is the case of the JSysDG [202] and the SSLDG [128], mentioned at
the beginning of this paper. Both graphs include a multiple-layer representation
that contemplates Java programs at different levels: package level, class level,
method level, and statement level. At statement level, both graphs use the
unfolding of object variables in method calls using a tree-like representation
for data members proposed in [118]. There are three main differences between
these two graphs: the first one in that the SSLDG includes a sub-statement
layer where object variables outside method calls are further split into their
data members, making the representation of direct accesses to object fields
explicit in the graph; the second one is that the SSLDG proposal enhances the
information of the slicing criterion when slicing polymorphic objects, using a
triplet as slicing criterion where the new element indicates the dynamic type
of the object being sliced to further reduce the computed slice; and the third
difference is the modification of the slicing algorithm to adapt its graph for
forward slicing.

54 Chapter 3. Flow Dependence for Java Object-Oriented Programs

Other works dealt with object-oriented programs in other programming lan-
guages like C++ or Python. In [150], Pani et al. present an algorithm for finding
dynamic slices for object oriented programs in presence of function overloading
on C++; and in [91], Jain and Poonia proposed a mixed static and dynamic
slicing for C++ OO programs, where they generate dynamic slices in a faster
and more accurate way by using object-oriented information in C++. These
works are centred on dynamic slicing, and they are not focused in the repre-
sentation of object variables, but in taking advantage of the information given
by the compiler to compute the slice. On the other hand, a program slicing
approach for Python is presented by Xu et al. in [209]. This work defines
the Python System Dependence Graph (PySDG), used to slice Python First-
Class objects. The PySDG takes all the first-class objects including functions,
methods, classes and modules into consideration, to construct the dependen-
cies between the definition and use statements of these first-class objects. In
this model, the authors also introduce a new kind of dependence (Entity De-
pendence), which describes the dependency relationship between the statement
which defines the entity object and the statement which calls the entity object.

There are also some other works mainly focused on modelling data depen-
dences for slicing in object-oriented programs. Chen and Xu [36] augmented
the PDG of each method with tags, used to distinguish the different defini-
tions and dependences inside a statement. The authors defined five different
sets: Def (s), Ref (s), Def (s, x), Dep_D(s, x), and Dep_R(s, x). These sets were
used to annotate data dependence edges with the program variables involved
in each data dependence. Despite the perspective is interesting, its purpose is
different to ours. It gives extra information to data dependences by annotating
them, limiting the graph traversal at slicing level when reaching a node looking
for just a particular variable. Contrarily, our approach focuses on establishing
a dependence between an object variable and the value of all its corresponding
data members in any program point. The work by Orso et al. [146] exhaustively
analyses data dependence in the presence of pointers. They considered two dif-
ferent aspects: the classification of definitions and uses, and the classification of
different kinds of paths in the CFG. In their work, they differentiate 24 kinds of
data dependence and allowed the possibility of slicing with respect to only some
of them including the considered dependences as part of the slicing criterion.
Unfortunately, their data dependence is more suitable for point-to analysis than
for the OO paradigm, as it is based on point-to relationships.

Our approach may seem similar to object slicing, introduced by Liang and
Harrold [118], or class slicing, defined by Chen and Xu in [37], but there are
some differences between their approaches and ours. In object slicing, the slic-
ing criterion is defined with a tuple ⟨v, p, o⟩ where v is a variable in a program
statement p, and o is an object variable of the program. Object slicing deter-
mines which statements of o’s class affect the slicing criterion through object
variable o. First, a standard slice is computed for the criterion ⟨v, p⟩. Then,
considering the computed slice, a new process isolates all method calls with o as
the caller object. Afterwards, method definitions corresponding to o’s detected
method calls are identified. Finally, o’s slice is computed by extracting from the
initial slice all the statements corresponding to those method definitions. Note

3.5. Related Work 55

that, in object slicing, the slicing criterion is not the object variable itself, but a
mechanism to reduce the statements included in the original slice. Our objective
is different: we are interested in considering the object variable o as the slicing
criterion, extracting from the whole program (not only from o’s class) the code
that affects its whole value (the value of all its data members) in a particular
statement. Class slicing [37] is similar to object slicing: it is also defined over a
slicing criterion ⟨v, p, c⟩, but this time, instead of a specific object o, a class c is
selected. Class slicing is restricted to a single class. It extracts any statement
in c that affects the slicing criterion ⟨v, p⟩ for every object instance of class c
that is part of the slice. This approach is a bit far from what we are interested
in, because it considers a set of objects, not a single one and, once again, it
focuses on a single class while we are interested in the whole program.

57

Chapter 4

Field-Sensitive Slicing with
Constrained Graphs

Although the PDG has been extended several times to represent features like
arbitrary control-flow [13, 65, 109]; exception handling [6, 64, 92, 93]; inter-
procedural behaviour [16, 17, 41, 110]; or concurrency [36, 104]; among others,
there is still a largely unaddressed problem that is a source of imprecision and
that affects all programming languages: the slicing of composite data structures.

In this chapter, we show that the granularity level of the program depen-
dence graph (PDG) to deal with composite data structures (tuples, lists, struc-
tures, objects, etc.) is inaccurate when slicing their inner elements, and we
present the Constrained-Edges PDG (CE-PDG) that addresses this accuracy
problem. The CE-PDG enhances the representation of composite data struc-
tures by decomposing statements into a set of nodes that represent the inner
elements of the structure. Additionally, the CE-PDG introduces a second ex-
tension, the inclusion and propagation of data constraints through the CE-PDG
edges, which allows for precisely slicing complex data structures. Both exten-
sions are conservative with respect to the PDG, in the sense that all slicing
criteria that can be specified in the PDG can be also specified in the CE-PDG,
and the slices produced with the CE-PDG are always smaller or equal to the
slices produced by the PDG.

Consider the four fragments of code with different data structures shown in
Figure 4.1. We are interested in the values computed at the slicing criterion
(the underlined variable in blue). The only part of the code that can affect
the slicing criterion (i.e., the minimal slice) is the part of the code in black.
Nevertheless, the slice computed with the PDG includes also the part in grey,
which should be sliced, in the four cases.

In some cases, it is possible to solve the situation with a program trans-
formation [18, 99, 100]. For instance, in Figures 4.1a and 4.1c we could apply
these transformations:

person = {"John",36}; → person.name = "John";
person.age = 36;

nums = {2,arg,27}; →
nums[0] = 2;
nums[1] = arg;
nums[2] = 27;

58 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

1 foo(){
2 struct data
3 {
4 string name;
5 int age;
6 };
7 data person = {"John",36};
8 int maxAge = person.age;
9 printf("\%i",maxAge});

10 }

(a) Records (C++)

1 enum Light {
2 Red = 0,
3 Yellow = 1,
4 Green = 2
5 }
6 void Main(){
7 Light pass = Light.Yellow
8 | Light.Green;
9 Console.WriteLine(pass);

10 }

(b) Enums (C#)

1 void foo(int arg){
2 int[] nums = {2,arg,27};
3 int x = nums[2];
4 System.out.println(x);
5 }

(c) Arrays (Java)

1 class Person:
2 def __init__(self, name, age):
3 self.name = name
4 self.age = age
5 p1 = Person("John", 36)
6 print(p1.age)

(d) Objects (Python)

Figure 4.1: Slicing composite data structures (slicing criterion
underlined and blue, minimal slice in black)

With these transformations, we can decompose each data structure into
its components avoiding the problem by using the qualified name person.age
or the indexed array nums[0] as the name of an independent variable [18].
This transformation is called atomization [163]. An alternative approach uses
the AST nodes as PDG nodes [180]. Unfortunately, despite solving several
problems, these approaches fail to resolve the most important problems such
as recursive (infinite) data types and the problem of pattern matching. For
this reason, we have selected Erlang as the target language: a programming
language that presents these two features. Erlang is a functional language that
implements pattern matching and often presents a heavy use of tuples and lists,
a (potentially infinite) recursive data type.

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[7],A},
4 {[C],D} = Z.

(a) Original Program and PDG Slice

1 foo(X,Y) ->
2 {A,B} = {X,Y},
3 Z = {[7],A},
4 {[C],D} = Z.

(b) Minimal Slice

Figure 4.2: Slicing Erlang tuples (slicing criterion underlined
and blue, slice in black)

Example 4.1. Consider the fragment of Erlang code in Figure 4.2a, where
we are interested in the values computed at variable C (the slicing criterion is
⟨4, C⟩). The only part of the code that can affect the values at C (i.e., the minimal
slice) is coloured in black in Figure 4.2b. Nevertheless, the slice computed with

4.1. The CE-PDG 59

the PDG (shown in Figure 4.2a) contains the whole program. This is again a
potential source of more imprecisions outside this function because it wrongly
includes in the slice the parameters of function foo and, thus, in calls to foo
their arguments and the code in which they depend are also included.

The fundamental problem in this particular example is pattern matching: a
whole data structure (the tuple {[7],A}) has been collapsed to a variable (Z)
and then expanded again ({[C],D}). The traditional PDG represents that {C}
flow depends on Z, and in turn, Z flow depends on A. Because flow dependence
is transitive, slicing the PDG wrongly infers that C depends on A. This problem
becomes worse in presence of recursive data types. For instance, trees or objects
(consider a class A with a field of type A, which produces an infinite data type)
can prevent the slicer to know statically what part of the collapsed structure
is needed. An interesting discussion and example about this problem can be
found in [186, pp. 2–3].

We propose a general method that solves the problem of accurately repre-
senting and slicing composite data structures. The method is applicable to any
composite data structure (it produces the minimal slice for all the programs
in Figures 4.1 and 4.2). The key ideas are (i) to expand the PDG with new
nodes to precisely represent the subexpressions of the data structures, and (ii)
introducing the concept of constrained edges: we label the PDG edges with
structural information about the data structures, so that this information is
used at slicing time to know exactly what edges should be traversed. We call
the new resulting graph the CE-PDG (Section 4.1). Then, (iii) we provide a
new slicing algorithm that takes advantage of the labels in the edges, limiting
the traversal when necessary (because flow dependence is not transitive when
applied to complex structures), and obtaining more accurate slices in the pres-
ence of composite data structures (Section 4.3). After that, (iv) we show how
both model and algorithm can be adapted to the interprocedural part, defining
the Constrained-Edges SDG (CE-SDG), and accurately slicing complex struc-
tures passed between methods through function calls (Section 4.4). Finally, we
present an implementation of the model together with an experimental evalua-
tion in Sections 4.5 and 4.6.

4.1 The CE-PDG
The key idea of the CE-PDG is to expand all those PDG nodes where a com-
posite data structure is collapsed or expanded. This expansion augments the
PDG with a tree representation for composite data structures, similar to the
structure used to represent object parameters in OO languages (see Section 2.3
in Chapter 2). We describe how this structure is generated and we introduce
a new kind of dependence edge used to build this tree structure. For this,
we formally define the concepts of constraint and constrained edge; describing
the different types, and how they affect the graph traversal during the slicing
process.

Figure 4.2a shows that PDGs are not accurate enough to differentiate the
elements of composite structures. For instance, the whole statement in line 4 is

60 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

represented by a single node, so it is not possible to distinguish the data struc-
ture {A,B} nor its internal subexpressions. This can be solved by transforming
the PDG into a CE-PDG.

The CE-PDG is not a graph constructed from scratch, but a specialisation
of the PDG, i.e., it uses a PDG as the base graph and augments its expressivity
to accurately treat composite structures. The transformation from a PDG to a
CE-PDG is made following three sequential steps.

1. Composite data decomposition. The first step is the decomposition
of all nodes that contain composite data structures so that each compo-
nent is represented by an independent node. As in most Abstract Syntax
Trees (ASTs), we represent data structures with a tree-like representation
(similar to the one used in object-oriented programs to represent objects
in calls [118, 202]).
This process is recursive because it unfolds the composite structure by
levels, i.e., if a subelement is another composite structure, it is recursively
unfolded until the whole syntax structure is represented in the tree. In
contrast to the PDG nodes (which represent complete statements), the
nodes of this tree structure represent expressions. Therefore, we need a
new kind of edge to connect these intra-statement nodes. We call these
edges structural edges because they represent the syntactical structure.

Definition 4.1 (Structural Edge). Given a CE-PDG P = {N, E}, and
two CE-PDG nodes n, n′ ∈ N , there exists a structural edge n 99K n′ if
and only if:

• n contains a data structure for which n′ is a subexpression.
• ∀n, n′, n′′ ∈ N : n→ n′ ∧ n′ → n′′ ⇒ n ̸→ n′′.

Structural edges point to the components of a composite data structure,
composing the inner skeleton of its abstract syntax tree. More precisely,
each field in a data type is represented with a separate node that is con-
nected to the PDG node that contains the composite data structure. For
instance, the structural edges of the CE-PDG in Figure 4.3 represent the
tuples of the code in Figure 4.2. The second condition of the definition
enforces the tree structure as otherwise “transitive” edges could be es-
tablished. For example, without the second condition a structural edge
between {[C],D} = Z and C could exist.

2. Flow dependence identification. The second step is to identify the
flow dependences that arise from the decomposition of the data structure.
Clearly, the new nodes can be variables that flow-depend on other nodes,
so we need to identify the flow dependences that exist among the new
(intra-statement) nodes. They can be classified according to two different
scenarios: composite data structures being (i) defined and (ii) used. In
Figure 4.2 we have a definition (line 4), a use (line 3) and a definition
and use in the same node (line 2). The explicit definition of a whole

4.1. The CE-PDG 61

ENTER

Z = {[7],A} {[C],D} = Z

D

{1

[7] A

}1}0

7

]H

Control Edge
Flow Edge

*

* *

*

* *

*
**

X

*

{A,B} = {X,Y}

BA

{0
{1

*

Structural Edge

[]

*
]T

[C]

[H

*

[]

*
C

[T

Y

*

YX

*
}0

}1

*

{0

Figure 4.3: CE-PDG of the code in Figure 4.2

composite data structure (e.g., a tuple in the left-hand side of an assign-
ment, see line 4) always defines every element inside it, so the values of
all subelements depend on the structure that immediately contains them.
Hence, the subexpressions depend on the structure being defined (i.e.,
flow edges follow the same direction as structural edges. See {[C],D}=Z
in Figure 4.3). Conversely, the structure being used depends on its subex-
pressions (i.e., flow edges follow the opposite direction than structural
edges. See Z={[7],A} in Figure 4.3). Additionally, because the decom-
position of nodes augments the precision of the graph, all flow edges that
pointed to original PDG nodes that have been decomposed, now point
to the corresponding node in the new tree structure. An example of a
flow edge that has been moved due to the decomposition is the flow edge
between the new A nodes. In the original PDG, this flow edge linked the
nodes {A,B}={X,Y} and Z={[7],A}.

3. Edge labelling. The last step to obtain the CE-PDG is labelling the
edges with constraints that are used during the slicing phase. The idea
is that the slicing algorithm traverses the edges and collects the labels in
a stack that is used to decide what edges should be traversed and what
edges should be ignored. We call the new labelled edges constrained edges
because the labels act as constraints for the graph traversal.

Definition 4.2 (Constraint). A constraint C is a label defined as follows:

C ::= ∅ | ∗ | Tuple | List
Tuple ::= {int | }int

Pos ::= H | T

List ::= [Pos |]Pos

The meaning of each kind of constraint is the following:

• Empty Constraint (n
∅−→ n′). It specifies that an edge can always

be traversed by the slicing algorithm.
• Asterisk Constraint (n

∗−→ n′). It also indicates that an edge can
always be traversed; but it ignores all the collected restrictions so
far, meaning that the whole data structure is needed.

62 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

• Access Constraint (n
typeposition−−−−−−→ n′). It indicates that an element is

the position-th component of another data structure that is a tuple
if type=Tuple or a list if type=List. The type also indicates whether
the element is being defined ({, [) or used (},]).

For the sake of simplicity, and without loss of generality, we distinguish
between tuples and lists. The position in a tuple is indicated with an
integer, while the position in a list is indicated with head (H) or tail
(T). The case of objects, records, or any other structure can be trivially
included by just specifying the position with the name of the field. Arrays
where the position is a variable imply that any position of the array may be
accessed. Hence, arrays with variable indices are treated as {∗ constraints,
which would match a constraint }x for any x.
For instance, all edges in Figure 4.3 are labelled with constraints. Because
B is the second element being defined in the tuple {A,B}, the constraint
of the flow dependence edge that connects them is {1 . Also, because 7 is
the head in the list [7], the constraint of the flow dependence edge that
connects them is]H .
At this point, it can be seen that the constraints can accurately slice the
program in Figure 4.2. In the CE-PDG (Figure 4.3), the slicing criterion
(C) is the head of a list (indicated by the constraint [H), and this list is the
first element of a tuple. When traversing backward the flow dependences,
we do not want the whole Z, but the head of its first element (i.e., the
cumulated constraints [H{0). Then, when we reach the definition of Z, we
find two flow dependences ([7] and A). But looking at their constraints,
we exactly know that we want to traverse first }0 and then]H to reach
the 1. The slice computed in this way is composed of the grey nodes, and
it is exactly the minimal slice in Figure 4.2b.
All edges in the CE-PDG are labelled with different constraints:

• Structural and control edges are always labelled with asterisk con-
straints.

• Flow edges for definitions are labelled with opening ({,[) access con-
straints.

• Flow edges for uses are labelled with closing (},]) access constraints.
• The remaining flow edges are labelled with empty constraints.

The CE-PDG is a generalisation of the PDG because the PDG is a CE-
PDG where all edges are labelled with empty constraints (∅) which have no
effect over the graph traversal. The behaviour of access constraints and asterisk
constraints in the graph traversal is further detailed in the next sections.

4.2 Dealing with recursive data structures
In this section we show that our technique is not only an alternative to atomi-
sation but a fundamental improvement that solves an important problem that

4.3. Slicing the CE-PDG 63

cannot be solved with atomisation. Atomisation cannot handle recursive data
types such as lists, trees, linked lists (often implemented via a node that con-
tains a value and a reference to another node), etc. The fundamental problem
is that atomisation would need to infinitely unroll the recursive data type.

Example 4.2 (Recursive unfolding cannot be atomised). Consider the program
in Figure 4.6c, in which a recursive tuple x is unfolded in a loop. The inside
of the loop cannot be atomised, as the loop contains two instructions: b = x
and {x, a} = b. Atomisation would convert structures to multiple assignments.
However, the depth of x and thus b is unknown:

(1) b = x; x = b1; a = b2;
(2) b1 = x1; b2 = x2; x = b1; a = b2;
(3) b1 = x1; b2 = x2; x1 = b11; x2 = b12; a = b2;

A first step (1) is to split the pattern matching assignment into two separate
assignments for x and a. However, b1 and b2 are not defined, so we must split b’s
assignment. The result (2) still has undefined variables (x1 and x2). Defining
those would require splitting b1 (3), resulting in a situation analogous to the first
split, starting an infinite loop.

In contrast, the CE-PDG represents each field explicitly, performing the
unfolding process as many times as required during the slicing traversal and
thus, yielding to the correct slice.

4.3 Slicing the CE-PDG
The generation of new kinds of edges (structural edges) and the labelling in-
troduced into the edges of the PDG makes the standard slicing algorithm (see
Section 2.2 of Chapter 2) not suitable to compute program slices. The CE-
PDG requires the constraints to be specifically treated during the traversal to
calculate accurate program slices.

In order to represent the paths of the CE-PDG that can be traversed, we
use a grammar. The label of an edge can be seen as a terminal. Therefore,
by traversing the edges we build words. Unfortunately, not all edges can be
traversed in any order; paths are only realizable when the word induced by the
path belongs to a language for which the grammar is shown in Figure 4.4a. In
this grammar, S is the initial symbol, C, R, and O represent sequences that
contain closing, resolved, and opening constraints, respectively. ∅ and ∗ stand
for empty and asterisk constraints, respectively. The key point of this grammar
are resolved constraints. A resolved constraint is an opening constraint followed
by the complementary closing constraint (e.g., {2 followed by }2).

Taking this into account, the grammar recognises paths formed by any com-
bination of closing constraints followed by opening constraints. Any number of
resolved constraints can be placed along the path. Because empty constraints
(∅) can always be traversed, they do not have any impact on the allowed paths.
On the other hand, asterisk constraints (∗) do have an impact because they al-
ways ignore any constraints already collected. Therefore, after traversing an

64 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

S ::= CO
C ::= }iC |]pC | RC | ∅C | ∗ S | ϵ

R ::= {i R }i | [p R]p | ∅R | ϵ

O ::= {iO | [pO | RO | ∅O | ∗ S | ϵ

(a) Realisable paths grammar

S ′ ::= O′

O′ ::= {iO′ | [pO′ | ϵ

(b) Stack words

Figure 4.4: Grammars defining allowed constraints
(p ∈ {H, T} and i ∈ Z)

asterisk constraint, the new traversable paths are the same as if no constraint
was previously collected, hence they are followed by the initial symbol (S).

The semantic interpretation of the realisable paths grammar is the following:
closing constraints along the path (C) indicate that we are traversing a use of a
data structure. Opening constraints (O) indicate that we are only interested in
the definition of an inner part of a data structure. Finally, resolved constraints
(R) are associated to elements compressed into a variable and expanded again
in a later statement (see lines 3 and 4 of the code in Figure 4.2a). For instance,
consider variable A in the code of line 2 in Figure 4.2. Consider that we are
interested in the value of this A variable. In this case, A is being defined in this
line, so the value given to it cannot be inside the tuple being defined (the left-
hand side of the equality). For this reason, we need to go up in the structure,
until we exit from the structure where A is contained. Additionally, since A is
inside a particular position of the composite structure (position 0 inside the
tuple {A,B}), it can only receive a value of the same position in an analog
composite structure. This may happen in the same statement or in any other
previous one. For this reason, we metaphorically “open” a research process to
find the value of variable A, and indicate it with the corresponding structure
and position symbols ({0). When we reach the equality level, we notice that the
expression giving value to the whole data structure is an analog data structure
(the right-hand side of the equality, tuple {X,Y}). Thus, the expression that
gives value to variable A must be inside this data structure. The problem is
that this data structure includes more than one position. Fortunately, we are
actively looking for a specific position with an open research ({0), and we can
choose the element we are interested in between the possible ones (}0). We
choose the correct element, reaching the variable that defines A and “closing”
this specific research. As a result we reach a state where the pending research
have been “resolved” and we can now focus on another open research if any.
To sum up, with this point of view, each variable definition contained in a
composite structure is considered as the opening of a flow dependence research,
and each variable use inside an analogous structure as the closing of this flow
dependence research. Then, the every time a research is successfully closed we
say that the opened research has been resolved.

Example 4.3. Consider Figure 4.3 and the slicing criterion (C). To compute
the slice we trace a path from C to 1 formed by the following sequence of con-
straints: [H{0∅}0]H , which can be derived with the grammar in Figure 4.4a:

4.3. Slicing the CE-PDG 65

S
S→CO−−−−→ CO

C→ϵ−−→ O
O→RO−−−−→ RO

O→ϵ−−→ R
R→[HR]H−−−−−−→ [HR]H

R→{0R}0−−−−−→

[H{0R}0]H R→∅R−−−−→ [H{0∅R}0]H R→ϵ−−→ [H{0∅}0]H

The slicing algorithm uses a stack to store the words while it traverses the
CE-PDG. When a node is selected as the slicing criterion, the algorithm starts
from this node with an empty stack (⊥) and accumulates letters with each edge
traversed. During the traversal, an edge can be traversed only if the word formed
by collecting its symbol is accepted by Grammar 4.4a. Only opening constraints
impose a restriction on the symbols that can be pushed onto the stack: when
an opening constraint is on the top of the stack, the only closing constraint
accepted to build a realizable word is its complementary closing constraint.
Therefore, the only information necessary to determine whether an edge can be
traversed is the sequence of non-resolved opening constraints at the top of the
stack. They form the words that remain in the stack when a path is traversed
(Grammar 4.4b).

Input Stack Edge Constraint Output Stack
(1) S ∅ S
(2) S {x or [x S{x or S[x
(3) ⊥ }x or]x ⊥
(4) S{x or S[x }x or]x S
(5) S{x or S[x }y or]y error
(6) S ∗ ⊥

Table 4.1: Processing edges’ stacks. x and y are positions (int
or H/T). ∅ and ∗ are empty and asterisk constraints, respec-

tively. S is a stack, ⊥ the empty stack.

Table 4.1 shows how the stack is updated in all possible situations. The
constraints are collected or resolved depending on the last constraint added to
the word (the one at the top of the Input stack) and the new one to be treated
(column Edge Constraint). All cases shown in Table 4.1 can be summarised in
four different situations:

• Traverse constraint (cases 1 and 3): The edge is traversed without
modifying the stack.

• Collect constraint (case 2): The edge can be traversed by pushing the
edge’s constraint onto the stack.

• Resolve constraint (cases 4 and 5): There is an opening constraint
at the top of the stack and an edge with a closing constraint that matches
it (case 4), so the edge is traversed by popping the top of the stack; or
they do not match (case 5), so the edge is not traversed.

• Ignore constraints (case 6): Traversing the edge empties the stack.

Example 4.4. This example complements previous examples showing the use
of asterisk constraints, empty constraints, and opening (access) constraints that

66 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

are not resolved during the traversal. Consider the Erlang function and its asso-
ciated CE-PDG in Figure 4.5, where variable A in line 5 is the slicing criterion
and function foo is any boolean function (it can be ignored). Consider also the
table in Figure 4.5, where the backward traversal of the graph is shown step by
step (only the most relevant steps are shown). Each row represents the traversal
of one edge, except the initial row that represents the initial node (the slicing
criterion). In the table, column Step represents the number of the current step
during the traversal. Different alternative paths are shown with letters (a,b,c).
Column NodeReached represents the node reached after traversing the cur-
rent edge, EdgeType and EdgeConstraint represent the type and constraint
of the traversed edge, respectively; and Stack represents the stack computed
after traversing the edge.

ENTER Control Edges
Flow Edges

if (foo(X))YX = {V,W}

{A,_} = Y

A

A _

{0
{1

* *

*

* ***

1 bar(X={V,W},Y) ->
2 if (foo(X)) ->
3 {A,_} = Y
4 end,
5 A.

V W
}0

}1* *

Structural Edge

Step NodeReached EdgeType EdgeConstraint Stack
0 (5,A) - - ⊥
1 (3,A) flow ∅ ⊥
2 (3,{A,_} = Y) flow {0 {0
3a (1,Y) flow ∅ {0
4a (1,ENTER) control * ⊥
3b (2, if(foo(X))) control * ⊥
4b (1,X={V,W}) flow ∅ ⊥
5b (1,V) flow }0 ⊥
5c (1,W) flow }1 ⊥

Figure 4.5: Erlang function, associated CE-PDG, and slice
step by step

After reaching {A,_} = Y (step 2), the stack contains the opening constraint
{0, and there are two possible paths: (a) a flow path to the parameter variable Y
(step 3a), and (b) a control path to the if condition (step 3b). Let us focus on
the second path to show the necessity of asterisk constraints. When we traverse
the control edge, all the constraints stacked due to the traversal of previous
flow edges must be dropped from the stack (case 6 in Table 4.1). The reason is
simple: when we reach a statement by a control edge, we are no longer interested

4.3. Slicing the CE-PDG 67

in the value of the uses of variables that the traversal has accumulated in the
stack, but in the value of the variables used in this controller statement. The
fact is that keeping the previous stack constraints may result in erroneous slices.
For instance, consider a scenario where, if we do not empty the stack in step
3b, we would reach the X={V,W} statement with the stack {0, and the traversal
would only reach the first element of the tuple (V) traversing }0. Therefore, W
would be never included in the slice because it can only be reached traversing
the constraint }1 that does not match the constraint of the stack. In contrast,
emptying the stack in step 3b when traversing the control edge forces the slice
to correctly include both V and W . Note also that the constraint {0 collected in
step 2 is not entirely useless. It is still used in the flow path to Y (we only want
the first component of Y).

Algorithm 4.1 illustrates the process to slice the CE-PDG. It works similar
to the standard algorithm [169], traversing backwards all edges from the slicing
criterion and collecting nodes to form the final slice. The algorithm uses a work
list with the states that must be processed. A state represents the (backward)
traversal of an edge. It includes the node reached, the current stack, and the
sequence of already traversed edges (line 6). In every iteration the algorithm
processes one state. First, it collects all edges that target the current node
(function getIncomingEdges in line 7). If the previous traversed edge is
structural, we avoid traversing flow edges (lines 9–10) and only traverse struc-
tural or control dependence edges. The reason for this is that structural edges
are only traversed to collect the structure of a data type so that the final slice
is syntactically correct (for instance, to collect the tuple to which an element
belongs). Flow edges are not further traversed to avoid collecting irrelevant de-
pendences of the structural parent. Function processConstraint checks the
existence of a potential traversal loop (when the traversal reaches an already
traversed edge with a different stack) during the slicing phase and implements
Table 4.1 to produce the new stack generated by traversing the edge to the
next node (line 11). If the edge cannot be traversed according to Table 4.1
(newStack == error), then the reachable node is ignored (line 12). Other-
wise, the node is added to the work list together with the new stack (line 13).
Finally, the state is added to a list of processed states, used to avoid the mul-
tiple evaluation of the same state, and the current node is included in the slice
(lines 14–16).

Function processConstraint computes a new stack for all possible types
of constraint: First, it returns an empty stack for asterisk constraints (line 20),
Then, the condition in line 22 checks the existence of a loop (reaching an al-
ready traversed edge) during the slicing traversal. Function findLoop (line 23)
returns the shortest suffix of the sequence of traversed edges that form the
last loop, while function isIncreasingLoop (line 23), whose rationale is ex-
tensively explained in the next section, consequently empties the stack when
needed. If no dangerous loop is detected, the function returns the same stack
for empty constraints (line 24), or it processes access constraints following Ta-
ble 4.1 with function processAccess (line 25).

Let’s see how Algorithm 4.1 operates with the example code of Figure 4.2.

68 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

Algorithm 4.1 Intraprocedural slicing algorithm for CE-PDGs
Input: The slicing criterion node nsc.
Output: The set of nodes that compose the slice.

1: function slicingAlgorithmIntra(nsc)
2: slice ← ∅; processed ← ∅
3: workList ← {⟨nsc,⊥, []⟩}
4: while workList ̸= ∅ do
5: select some state ∈ workList;
6: ⟨node, stack, traversedEdges⟩ ← state
7: for all edge ∈ getIncomingEdges(node) do
8: ⟨sourceNode, type, _⟩ ← edge
9: if getLastEdgeType(traversedEdges) = structural ∧ type = flow then

10: continue for all
11: newStack ← processConstraint(stack, edge)
12: if newStack ̸= error then
13: workList ← workList ∪ {⟨sourceNode, newStack, traversedEdges ++ edge⟩}
14: processed ← processed ∪ {state}
15: workList ← {(n, s, t) ∈ workList | (n, s, _) ̸∈ processed}
16: slice ← slice ∪ {node}
17: return slice

18: function processConstraint(stack, edge)
19: ⟨_, _, constraint⟩ ← edge
20: if constraint = AsteriskConstraint then return ⊥
21: else
22: if edge ∈ traversedEdges then
23: if isIncreasingLoop(findLoop(traversedEdges),edge) then return ⊥
24: if constraint = EmptyConstraint then return stack
25: else return processAccess(stack, constraint)

26: function processAccess(stack, constraint = ⟨op, position⟩)
27: if stack = ⊥ then
28: if op = { ∨op = [then return [constraint]
29: else return ⊥
30: lastConstraint ← top(stack)

31: if (op = } ∧ lastConstraint = ⟨{, position⟩)
∨ (op =] ∧ lastConstraint = ⟨[, position⟩) then

32: pop(stack)
33: else
34: if op = } ∨ op =] then return error
35: else push(constraint, stack)
36: return stack

4.3. Slicing the CE-PDG 69

Consider again function foo in the code of the figure, the selected slicing crite-
rion (⟨4, C⟩), and its CE-PDG, shown in Figure 4.3. The slicing process starts
from the node that represents the slicing criterion (the expanded representation
of the CE-PDG allows us to select C, the bold node, inside the tuple structure,
excluding the rest of the tuple elements). Algorithm 4.1 starts the traversal of
the graph with an empty stack (⊥). The evolution of the stack after traversing
each flow edge is the following:

⊥ [H−→ [H
{0−→ [H{0

∅−→ [H{0
}0−→ [H

]H−→ ⊥

Due to the limitations imposed by the grammar (and particularly by row 5 in
Table 4.1), node A is never included in the slice because the following transition
is not possible:

[H{0
}1−→ error

Note that the slicing algorithm will also traverse the structural edges reach-
ing the traversed nodes and generate new states in the worklist with empty
stacks due to the asterisk constraint, however, no flow dependence edge is tra-
versed after a structural edge and therefore despite the node Z={[7],A} being
encountered with an empty stack, the structural edge to A is not traversed.
As already noted, the resulting slice provided by Algorithm 4.1 is exactly the
minimal slice shown in Figure 4.2b.

Slicing flow dependence loops

In static slicing we rarely know the values of variables (they often depend on dy-
namic information), so we cannot know how many iterations will be performed
in a loop1 (see the programs in Figure 4.6, where the value of max is unknown).
For the sake of completeness, we must consider any number of iterations, thus
program loops are often seen as potentially infinite. Program loops produce
cycles in the PDG. Fortunately, the traversal of cycles in the PDG is not a
problem, since every node is only visited once. In contrast, the traversal of a
cycle in the CE-PDG could produce a situation in which the stack grows in-
finitely (see Figure 4.6c2), generating an infinite number of states. Fortunately,
not all cycles produce this problem:

To keep the discussion precise, we need to formally define when a cycle in
the CE-PDG is a loop.

Definition 4.3 (Loop). A cyclic flow dependence path P = n1
C1←− n2 . . .

Cn←− n1
is a loop if P can be traversed n > 1 times with an initial empty stack (⊥)
following the rules of Table 4.1.

1Note the careful wording in this section, where we distinguish between “program loops"
(while, for...), “cycles" (paths in the PDG that repeat a node), and “loops" (repeated se-
quence of nodes during the graph traversal).

2It is easier to see how the stack changes by reading the code backwards from the slicing
criterion.

70 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

1 read(max);
2 read(b);
3 x = init_tuple();
4 for(int i=0; i>max; i++){
5 a = {x,i};
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(a) Decreasing stack size

1 read(max);
2 x = init_tuple();
3 for(int i=0; i>max; i++){
4 {a,b} = x;
5 x = {a+i,b+i};
6 }
7 {c,d} = x;
8 print(c);

(b) Same stack size

1 read(max);
2 x = init_tuple();
3 for(int i=0; i>max; i++){
4 b = x;
5 {x,a} = b;
6 }
7 {c,d} = x;
8 print(c);

(c) Increasing stack size

1 read(max);
2 x = init_tuple();
3 for(int i=0; i>max; i++){
4 {e,d} = x;
5 {a,b} = d;
6 x = {a,b};
7 }
8 {c,d} = x;
9 print(c);

(d) Increasing stack size

Figure 4.6: Slicing looped data dependences in the CE-PDG
(slicing criterion underlined and blue, sliced code in gray)

There exist three kinds of loops:

1. Loops that decrease the size of the stack in each iteration (Figure 4.6a)
can only produce a finite number of states because the stack will eventu-
ally become empty. Such loops can be traversed collecting the elements
specified by the stack, without a loss of precision.

Definition 4.4 (Decreasing loop). A loop L is a decreasing loop if the
number of closing constraints along L is greater than the number of open-
ing constraints.

2. Loops that repeat the same stack over and over after the first iteration
(Figure 4.6b) are also not a problem because traversing the loop multiple
times does not generate new states. Again, they can be traversed as many
times as required by the stack, without a loss of precision.

Definition 4.5 (Balanced loop). A loop L is a balanced loop if the num-
ber of closing and openings constraints along L is the same.

3. Loops that increase the size of the stack in each iteration (Figure 4.6c)
could produce an infinite number of states because the stack grows in-
finitely. However, not all increasing loops are dangerous. It is important
to remark that not all cycles formed from more opening constraints than
closing constraints are increasing loops. They may not even be loops (see

4.3. Slicing the CE-PDG 71

Definition 4.3). Cycles that are not loops are not dangerous because the
cycle’s edges constraints prevent us to traverse them infinitely. One il-
lustrative example is the code in Figure 4.6d (see also its CE-PDG in
Figure 4.7) where we have the flow dependence cycle:

(6, x) }0←− (6, a) ∅←− (5, a) {0←− (5, d) ∅←− (4, d) {1←− (4, x) ∅←− (6, x)

But this is not a loop because no matter with what stack we enter the
cycle, when {1 is pushed on the stack, the cycle cannot be entered again
due to the constraint }0 that does not match the top of the stack. In
contrast, in the same code there exist a loop (highlighted in solid bold
red) that can infinitely increase the stack with {1 in each iteration:

(6, x) }1←− (6, b) ∅←− (5, b) {1←− (5, d) ∅←− (4, d) {1←− (4, x) ∅←− (6, x)

We formally define a special kind of loop which is the only potentially
dangerous: increasing loop.

Definition 4.6 (Increasing loop). A loop L is an increasing loop if the
number of opening constraints along L is greater than the number of clos-
ing constraints.

Entry

x = init_tuple() i = 0

x = {a,b}

{c,d} = x

c d

a b
Control Edges
Flow Edges

Structural Edges

read(max) i < max print(c)

{a,b} = d

a b

i++

Flow Loop Edges

{e,d} = x

e d

{0 {1{0 {1

{0 {1

}0 }1

Figure 4.7: CE-PDG of Figure 4.6d. The increasing loop is
represented in solid bold red

As we have seen, detection of increasing loops is not a trivial problem due to
those flow cycles that are not loops. The pushdown automaton (PDA) of Fig-
ure 4.8 formalises (and detects) those loops that can grow the stack infinitely.
The input of this automaton is the sequence of constraints that form a depen-
dence loop. The PDA contains two states and two different stacks (closing stack
and opening stack). Initial state 0 represents the case where all opening con-
straints of the sequence are balanced by the corresponding closing constraint.
When a closing constraint is reached, the PDA pushes the constraint into the

72 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

closing stack (pushc). When an opening constraint is processed, the PDA moves
to state 1. Final state 1 represents the case where an opening constraint has
been processed but not balanced yet. The transition to state 1 pushes the
opening constraint into the opening stack pusho. In state 1, when a closing con-
straint that matches a previous opening constraint (condition Mo) is processed,
we pop the opening constraint from the stack (popo). If the popped element
of the opening stack is the last element of the stack (condition Eo), the PDA
returns to state 0. Finally, if a path is accepted by this automaton, the path
forms an increasing loop if and only if the inverted stack Sc is a prefix of So and
they are not equal.

0

start

1

}i,]i
pushc(i)

{i, [i
pusho(i)

}i,]i
popo()

Mo ∧ Eo

{i, [i
pusho(i)

}i,]i
popo()

Mo ∧ ¬Eo

∅ ∅

Mo ≡ top(So) = i Eo ≡ len(So) = 1

Figure 4.8: Pushdown automaton to recognize infinitely in-
creasing loops

Note that * constraints do not appear in the PDA because they cannot
appear in an increasing loop (an * constraint empties the stack and thus the
same state would be repeated).

To properly understand how Algorithm 4.1 detects and solves loops, we show
examples with each one of the situation given by flow loops of Figure 4.6.

Example 4.5 (Decreasing loop of Figure 4.6a). Consider the code in Fig-
ure 4.6a and the slicing criterion ⟨8, c⟩. If we traverse the CE-PDG of the
program, shown in Figure 4.9, backwards from (8, c) we find the following se-
quence of constraints

(8, c) {0←− (8, x) ∅←− (6, x) }0←− (6, a) ∅←− (5, a) }0←− (5, x) ∅←− (6, x) }0←− (6, a)
repeated←−−−−

state
STOP

with the following stack state for each step:

⊥ {0←−−−
c8←x8

{0
∅←−−−−

x8←x6
{0

}0←−−−−
x6←a6

⊥ ∅←−−−−
a6←a5

⊥ }0←−−−−
a5←x5

⊥ ∅←−−−−
x5←x6

⊥ }0←−−−−
x6←a6

⊥

In this sequence, the edge (6, x) }0←− (6, a) is traversed twice with two dif-
ferent stacks ({0 ̸= ⊥). For this reason, the sequence of constraints of the loop

4.3. Slicing the CE-PDG 73

Entry

x = init_tuple() i = 0

x = {a,b}

{c,d} = x

c d

a b
Control Edges
Flow Edges

Structural Edges

read(max) read(b) i < max print(c)

a = {x,i}

x i

i++

Flow Loop Edges

{0 {1

}0 }1 }0 }1

Figure 4.9: CE-PDG of Figure 4.6a

(}0,∅, }0,∅) must be processed by the PDA of Figure 4.8 detecting whether the
loop is an increasing loop or not. The trace of the PDA is shown in Figure 4.10.

state = 0
So = ⊥
Sc = ⊥

state = 0
So = ⊥
Sc = 0

state = 0
So = ⊥
Sc = 0

state = 0
So = ⊥
Sc = 0, 0

state = 0
So = ⊥
Sc = 0, 0

}0 ∅ }0 ∅

Figure 4.10: PDA trace for the loop of Figure 4.6a

As the final state is not an accepting state, the analysis by the PDA confirms
that this is not an increasing loop, and the slicing traversal continues normally.
The second time we traverse the edge (6, x) }0←− (6, a), we reach node (6, a) with
a repeated stack (⊥) and the continuous loop traversal stops.

As can be seen, after the first iteration, the stack becomes empty, and the
next iterations do not modify the stack. When the stack is empty, no restrictions
exist in the graph traversal, and thus all edges are traversed. Therefore, at the
end, all edges in the for-loop would be traversed. This is not a loss of precision,
but a property of the data structure. Observe that (5, i) and (6, b) do actually
influence the slicing criterion.

Example 4.6 (Balanced loop of Figure 4.6b). Consider the code in Figure 4.6b,
its CE-PDG shown in Figure 4.11, and the slicing criterion ⟨7, c⟩. We only
consider the path that, from the slicing criterion, reaches the balanced loop and
stays in it (marked in solid bold red in Figure 4.11). There are other exits in
the loop that are not traversed in this example for simplicity.

The traversal would be as follows:

(7, c) {0←− (7, x) ∅←− (5, x) }0←− (5, a + i) ∅←− (4, a) {0←− (4, x) ∅←− (5, x)
repeated←−−−−

state
STOP

74 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

Entry

x = init_tuple() i = 0

x = {a+i,b+i}

{c,d} = x

c d

a+i b+i
Control Edges
Flow Edges

Structural Edges

read(max) i < max print(c)

{a,b} = x

a b

i++

Flow Loop Edges

{0 {1 }0 }1

{0 {1

Figure 4.11: CE-PDG of Figure 4.6b

and this would be the state of the stack in each step:

⊥ {0←−−−
c7←x7

{0
∅←−−−−

x7←x5
{0

}0←−−−−
x5←a5

⊥ ∅←−−−−
a5←a4

⊥ {0←−−−−
a4←x4

{0
∅←−−−−

x4←x5
{0

Once (5, x) is reached again, the stack is the same ({0), so the edge (5, x) }0←−
(5, a+1) is never traversed more than once, and thus the slicing algorithm never
even detects a loop, as its detection mechanism relies on traversing the same
edge twice.

Example 4.7 (Increasing loop of Figure 4.6c). Consider the code in Figure 4.6c,
its CE-PDG in Figure 4.12 and the slicing criterion ⟨7, c⟩. The CE-PDG of
this code contains an increasing loop highlighted in solid bold red in Figure 4.12.

Entry

x = init_tuple() i = 0

b = x

{c,d} = x

c d

Control Edges
Flow Edges

Structural Edges

read(max) i < max print(c)

{x,a} = b

x a

i++

Flow Loop Edges

{0 {1

{0 {1

Figure 4.12: CE-PDG of Figure 4.6c

4.3. Slicing the CE-PDG 75

The following is the trace from the slicing criterion to the detection of the
loop:

(8, c) ∅←− (7, c) {0←− (7, x) ∅←− (5, x) {0←− (5, b) ∅←− (4, b = x) ∅←− (5, x) {0←− . . .

the stack has the following values throughout the trace:

⊥ ∅←−−−
c8←c7

⊥ {0←−−−
c7←x7

{0
∅←−−−−

x7←x5
{0

{0←−−−
x5←b5

{0{0
∅←−−−−−

b5←b4x4
{0{0

∅←−−−−−
b4x4←x5

{0{0
{0←−−−

x5←b5

The edge (5, x) {0←− (5, b) has been traversed twice, as the stack with which
(5, x) was reached in the first pass is different from the one in the second pass
({0 ̸= {0{0). Because an edge has been traversed twice, the PDA must be de-
ployed, to check if this loop is an increasing loop.

The word to be fed into the automata is: {0∅∅; and the sequence of states
would be:

state = 0
So = ⊥
Sc = ⊥

state = 1
So = 0
Sc = ⊥

state = 1
So = 0
Sc = ⊥

state = 1
So = 0
Sc = ⊥

{0 ∅ ∅

As the final state is an accepting state, the closing stack is a prefix of the
opening stack, and So ̸= reverse(Sc), the analysis by the PDA confirms that
this is an increasing loop. Therefore, the slicing algorithm empties the stack
immediately, and proceeds to visit (5, b) with an empty stack. This is denoted
by c ⇝ ∗ (emptying the stack mimics the effect of traversing an ∗ constraint,
which is the action performed instead of processing c, the constraint from the
edge). The path from the slicing criterion would be:

(8, c) ∅←− (7, c) {0←− (7, x) ∅←− (5, x) {0←− (5, b) ∅←− (4, b = x) ∅←− (5, x)
{0←− (5, b) ∅←− (4, b = x) ∅←− (5, x)
{0←− (5, b)

and the stack follows this trace:

⊥ ∅←−−−
c8←c7

⊥ {0←−−−
c7←x7

{0
∅←−−−−

x7←x5
{0

{0←−−−
x5←b5

{0{0
∅←−−−−−

b5←b4x4
{0{0

∅←−−−−−
b4x4←x5

{0{0

{0⇝∗←−−−
x5←b5

⊥ ∅←−−−−−
b5←b4x4

⊥ ∅←−−−−−
b4x4←x5

⊥
{0⇝∗←−−−

x5←b5
⊥ repeated←−−−−

state
STOP

When the loop has been found, the traversal continues, and once the traversal
reaches node (5, b) for a third time, it stops, as two of the three stacks that
reached it are the same ({0{0; ⊥; ⊥). Finally, the traversal through the loop
stops.

76 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

Only increasing loops can produce non-termination. For this reason, Algo-
rithm 4.1 detects loops (Line 22) and checks whether they are increasing with
function isIncreasingLoop (Line 23). This function uses the PDA of Fig-
ure 4.8 to determine whether the loop is increasing. If it is increasing the stack
is emptied, i.e., the traversal continues unconstrained. Since the traversal al-
lows the traversal of the same edge several times when the stack is different,
termination of the whole slicing process must be proved. Theorem 4.1 ensures
termination of the whole slicing process.

To prove the theorem, we need to prove some properties of a loop that are
needed. These properties are captured by the following lemmas.

Lemma 4.1. Let L be a non-increasing loop and S be a stack. The traversal
of L with S is terminating.

Proof. Non-increasing loops can be decreasing loops (Definition 4.4) or balanced
loops (Definition 4.5). We prove each case separately.

Decreasing loops. First of all, for any initial stack, a first traversal of all the
edges of L must be possible to explore this scenario. Otherwise, there
cannot be a traversal loop due to unmatched constraints. Moreover, ac-
cording to Definition 4.4 the path of L contains more closing constraints
than opening constraints. When slicing the graph, and before iterating
into a decreasing loop, there are two stack possibilities: the empty stack or
a stack with a sequence of opening constraints at the top (see Figure 4.4b):

Empty stack (⊥). Since the constraint in L can be in any order, we
need to consider two different scenarios:

• There is no suffix of L where the number of opening constraint is
greater than the number of closing constraints (e.g., {0{0}0}0}0).
Since L is a decreasing loop, in this scenario we can summarise L
as a sequence of n closing constraints. In this case, according to
case 3 of Table 4.1, pushing any number j of closing constraint
to an empty stack results in the empty stack.

⊥ }i,∀i∈1..j−−−−−→
∗
⊥ and ⊥]i,∀i∈1..j−−−−→

∗
⊥

Then, the same node is reached twice with the same stack (⊥)
and a second traversal is not processed as indicated by line 15
in Algorithm 4.1.

• There is a suffix of L where the number of opening constraints is
greater than the number of closing constraints (e.g., }0}0{0{0}0).
In this scenario there are always closing constraints that are con-
sumed by the initial empty stack (⊥) according to case 3 of Ta-
ble 4.1. On the other hand, the final part of L pushes more
opening constraints than closing constraints and the stack cal-
culated after the first traversal of the loop is not empty. As L is
a decreasing loop, all the constraints pushed in the first traversal
are consumed at the beginning of the second traversal. Finally,

4.3. Slicing the CE-PDG 77

the final part of L generates the same sequence of positive con-
straints at finishing the second traversal. Therefore, as the same
nodes is reached twice with the same stack, the traversal stops.

⊥ L−→ S
L−→
∗

S

Stack with a sequence of opening constraints (CO1 . . . COn). Cases
4 and 5 of Table 4.1 represent the two possibilities that can occur
when pushing a closing constraint to a non-empty stack: the closing
constraint balances the opening constraint at the top of the stack or
it fails.

• According to case 5, if the closing constraint does not balance
the opening constraint at the top of the stack, the traversal is
aborted by an error. Hence, the traversal is finite.

. . . {i
}j ,∀i ̸=j−−−−→ error and . . . [i

]j ,∀i ̸=j−−−−→ error

• On the contrary, case 4 shows that if the closing constraint bal-
ances the opening constraint at the top of the stack, the con-
straint is popped and the traversal continues. Since the number
of elements of the stack is finite (an infinite stack would have
been forever growing in an increasing loop), popping each open-
ing constraint on the top of the stack with a closing constraint
of the loop sequence will result in an empty stack at some point
of the traversal. Note that this point of the traversal is not
necessarily after traversing the whole loop L, but can be after
traversing any intermediate edge of the loop. As the processing
of any decreasing loop L with an empty stack (⊥) has already
been proved terminating, then we can state that the traversal is
finite.

{1. . . {n
L−→

m
S

L−→
∗

S

Balanced loops. With the same reasoning as in the decreasing loops, we dif-
ferentiate two scenarios according to the initial form of the stack:

Empty stack (⊥). Since the constraint in L can be in any order, we
need to consider the same two scenarios we did before:

• There is no suffix of L where the number of opening constraint is
greater than the number of closing constraints (e.g., {0{0}0}0).
Since L is a balanced loop, in this scenario we can summarise
L as an empty sequence of constraints. The result of iterating
into a balanced loop of this type is the same stack, since each
iteration of the loop itself balances the opening constraints with
their complementary closing constraints. Hence, the initial node
of the graph will be reached twice with the same stack, and the
traversal will be stopped as indicated by line 15 in Algorithm 4.1.

⊥ ∅−→
∗
⊥

78 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

• There is a suffix of L where the number of opening constraints is
greater than the number of closing constraints (e.g., }0}0{0{0).
In this scenario there are always closing constraints that are
consumed by the initial empty stack (⊥) according to case 3
of Table 4.1. On the other hand, the final part of L pushes
more opening constraints than closing constraints and the stack
calculated after the first traversal of the loop is not empty. As L
is a balanced loop, all the constraints pushed in the first traversal
are consumed at the beginning of the second traversal. Finally,
the final part of L generates the same stack when the traversal
of L finishes. Therefore, as the same node is reached twice with
the same stack, the traversal stops.

⊥ L−→ S
L−→
∗

S

Stack with a sequence of opening constraints (CO1 . . . COn). Cases
4 and 5 of Table 4.1 represent the two possibilities that can occur
when pushing a closing constraint to a non-empty stack: the closing
constraint balances the opening constraint at the top of the stack or
it fails.

• According to case 5, if the closing constraint does not balance
the opening constraint at the top of the stack, the traversal is
aborted by an error. Hence, the traversal is finite.

. . . {i
}j ,∀i ̸=j−−−−→ error and . . . [i

]j ,∀i ̸=j−−−−→ error

• On the contrary, case 4 shows that if the closing constraint bal-
ances the opening constraint at the top of the stack, the con-
straint is popped and the traversal continues. Since the number
of opening and closing constraints in L is the same, if any con-
straint from the stack is consumed by the initial closing con-
straints it will be restored later by the corresponding open-
ing constraint contained in L. Then, the stack obtained after
traversing L will be the same. As a result, since the same node
is reached twice with the same stack, the traversal finishes.

{1. . . {n
L−→
∗
{1. . . {n

Finally, note that if we consume every opening constraint during
the traversal of the closing constraints at the beginning of L, we
will find ourselves in the previous scenario where the stack was
empty and, thus, the traversal finishes too.

Lemma 4.2. Given a CE-PDG increasing loop L. There exists a stack S for
which it is possible to infinitely traverse L with S.

4.3. Slicing the CE-PDG 79

Proof. Following the same reasoning that we did in some particular decreasing
loops, each iteration of an increasing loop can be summarised as a sequence
of opening constraints of the form {1. . . {n independently of the sequence of
constraints. Case 2 of Table 4.1 shows that opening constraints can always be
traversed independently of the top of the stack. For this reason, the loop can
be infinitely traversed generating an infinite stack.

S
{i−→
∗

S ++ {1. . . {n{1. . . {n. . .

Lemma 4.3. Given a CE-PDG increasing loop L, a stack S that allows Algo-
rithm 4.1 to iterate at least once into it, and a loop L′ which corresponds to L
but replacing any access constraint by an asterisk constraint, then L′ is not an
increasing loop and it is not possible to infinitely traverse L′ with S.

Proof. According to Definition 4.6, a cyclic flow dependence path is an increas-
ing loop if the sequence of constraints generated by traversing it belongs to the
language induced by the PDA in Figure 4.8. The PDA cannot reach the final
state if an asterisk constraint exist in L, thus, it cannot be an increasing loop.
Moreover, the traversal of an asterisk constraint described in case 6 of Table 4.1
always result in an empty stack (⊥). Therefore, if an asterisk constraint is
included in an edge of L, then the second time that this edge is traversed the
same node will be reached again with the same stack (⊥). Therefore, a second
traversal is never done as indicated by line 15 in Algorithm 4.1.

After proving these three lemmas, we have all the needed components to
enunciate and prove Theorem 4.1.

Theorem 4.1 (Termination of slicing). Let P = (N, E) be a CE-PDG and let
nsc ∈ N be a slicing criterion for P . Algorithm 4.1 terminates when it slices P
with respect to nsc.

Proof. The traversal of any sequence of nodes that is not a cycle (i.e., that do not
represent a loop in the program) trivially terminates. Only loops can produce
non-termination in Algorithm 4.1. But all loops are detected by the algorithm
in line 15. According to Lemma 4.1, the traversal of all non-decreasing loops
always terminates. On the other hand, as shown in Lemma 4.2 increasing loops
can produce non-termination. However, all of them are detected by the PDA
in Figure 4.8. When an increasing loop is detected by the algorithm the stack
is emptied.

We know by case 6 in Table 4.1 that including an asterisk constraint in a
path is equivalent to emptying the stack. Therefore, according to Lemma 4.3 it
is not possible to infinitely traverse the increasing loops found in the traversal
made by the algorithm. Hence, Algorithm 4.1 always terminates.

The reader could think that it would be a good idea to identify all increasing
loops at CE-PDG construction time. Unfortunately, finding all loops has an
average complexity O(N2EL), where L is the number of loops. The worst
complexity is exponential O(2N) [71]. Our approach avoids the problem of

80 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

finding all loops, determining whether they are increasing, and processing them.
We treat them on demand, when they are found by the slicing algorithm (i.e.,
we do not search for loops, we just find them during the CE-PDG traversal).
So we only process those loops found in the slicing traversal.

4.4 The CE-SDG
Function calls pose additional problems to the slicing of composite data struc-
tures. A data structure can be decomposed along various function calls so that
the result of a function may depend only on a subexpression of its argument
(and not on the rest). But, even worse, in presence of direct or transitive recur-
sion, it may turn impossible to determine statically what parts of a function’s
argument do influence the result of that function.

ENTER
bar

bar2(X) {A,B,C} = X {B,C}

A B

{0
{1

X

X

X

ENTER
bar2

C

{2
GC2

GC1 → GC2
GC2 → }0 {1
GC2 → }1 {2

ENTER
foo

{A,B} = bar(Arg)

}1}0

Arg

{[C],D} = X

[C] D

{0 {1

[H

X = {[7],A}

[7] A

GC1

foo(Arg) ->
{A,B} = bar(Arg),
X = {[7],A},
{[C],D} = X.

bar(X) ->
bar2(X).

bar2(X) ->
{A,B,C} = X,
{B,C}.

Arg

BA

{0
{1

CB

}0
}1

Control Edge

Flow Edge

Call/Input Edge

Output Edge

Summary Edge

Structural Edge

7

]H

[]

]T

C []

[T

Figure 4.13: The interprocedural CE-SDG

Example 4.8. Consider the code in Figure 4.13, which augments the example
in Figure 4.2 to an interprocedural program. In this figure, tuple {X, Y } in line 2
is replaced by a call to a method bar and arguments X and Y replaced by a single
argument Arg. bar calls bar2, which uses the second and third elements of the
X parameter tuple to compute the value that bar finally returns. Therefore, the
returned value of the call to bar in Figure 4.13 only depends on the second
and third elements of Arg. More important, if the slicing criterion is {A,B} in
foo, then B and C in bar2 should belong to the slice. However, if the slicing
criterion is A in foo, then only B in bar2 should belong to the slice (although
the same edges in bar are traversed). This means that the dependences that are
propagated not only depend on the program, but on the slicing criterion, which
is unknown at the time of constructing the SDG. Clearly, we need a mechanism
that traverses different functions propagating the information required by the

4.4. The CE-SDG 81

slicing criterion for each data structure. This problem remains unsolved in
program slicing.

The problem shown in Example 4.8 can be solved with our stack, which
propagates exactly the required information at slicing time thanks to the la-
belling of the edges introduced at CE-PDG construction time. The information
must be propagated using the input and output edges that connect functions,
and through summary edges, building a CE-SDG. We start by explaining why
summary edges need a special treatment to properly represent whether the re-
turned value of a function only depends on one or some specific parts of the
argument. Then, we describe how summary edges must be labelled when the
source code of the called function is not available; and we also explain the
problem of dealing with recursive function calls.

4.4.1 Summary edges and grammar productions
In the SDG, the existence of a summary edge between a formal-in and a formal-
out nodes means that the value of the formal-in can influence the value of the
formal-out. This is calculated by just checking whether a dependence path exists
between formal-in and formal-out nodes. Summary edges summarise that (or
those) path(s).

However, in the CE-SDG, every dependence path between two nodes is
represented with a stack that stores the sequence of constraints collected along
the path. Therefore, a summary edge in the CE-SDG must indicate all possible
stacks that it is summarising. Each stack represents a different dependence
path between a formal-in and a formal-out.

Example 4.9. Consider again the CE-SDG in Figure 4.13. The summary edge
that represents the backward traversal paths between bar2(X) and X is labelled
with GC2 (Grammar Constraint 2). GC2 represents two possible paths: }0{1
traversing node B and }1{2 traversing node C.

In the rest of this section we explain how to compute the grammar con-
straints of summary edges and how to traverse them at slicing time.

Grammar constraints only appear in summary edges, so they are exclusive
of interprocedural slicing. The grammar used to construct summary edges is
shown in Figure 4.14a, which extends the one in Figure 4.4a with grammar
constraints.

S ::= CO
C ::= }iC |]pC | RC | ∅C | ∗ S | gS | ϵ

R ::= {i R }i | [p R]p | ∅R | ϵ

O ::= {iO | [pO | RO | ∅O | ∗ S | gS | ϵ

(a) Realisable path grammar

S ′ ::= C ′O′

C ′ ::= }iC ′ |]pC ′ | ∗ S ′ | gS ′ | ϵ

O′ ::= {iO′ | [pO′ | ∗ S ′ | gS ′ | ϵ

(b) Stack words

Figure 4.14: Allowed constraints when building summary
edges (p ∈ {H, T} and i ∈ Z)

82 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

In interprocedural slicing, we distinguish two traversal processes: (i) the
traversal performed to build summary edges (at CE-SDG construction time),
and (ii) the traversal used to compute the slice (at slicing time). Although
Grammar 4.14a represents the realisable paths for both processes, asterisk and
grammar constraints are treated differently for each one of them. At summary
construction time, asterisk, grammar, and closing access constraints are always
pushed onto the stack (Grammar 4.14b), while at slice computation time they
are resolved when traversed (Grammar 4.4b).

To create these new stack words, at summary construction time, the cases in
Table 4.1 are extended with the ones in Table 4.2 (the changes are highlighted
in blue italics).

Input Stack Edge Constraint Output Stack
(1) S ∅ S
(2) S {x or [x S{x or S[x
(3) ⊥ }x or]x }x or]x
(4) S{x or S[x }x or]x S
(5) S{x or S[x }y or]y error
(6) S}x or S]x }y or]y S}x}y or S]x]y
(7) S ∗ }x or]x S ∗ }x or S ∗]x
(8) S g }x or]x S g }x or S g]x
(9) S ∗ S ′ ∗ S ∗

(10) S ∗ S ∗
(11) S g S g

Table 4.2: Processing edges’ stacks in the summary construc-
tion phase. x and y are positions (int or H/T). ∅, ∗, and g are
empty, asterisk, and grammar constraints, respectively. S is a

stack, ⊥ the empty stack.

The computation of the summary edges in the CE-SDG is similar to the
standard process (see, e.g., [169]). However, they are equipped with grammar
constraints, whose information must replicate the behaviour of a function for
all possible function calls. To achieve this, there are four main differences in
our approach:

1. the traversal starts from a formal-out node with an empty stack (⊥) that
is updated according to Table 4.2,

2. because edges are labelled with constraints, it is possible to not traverse
an edge (see case 9 in Table 4.2),

3. one node can be processed several times if it is reached with different stack
states, and

4. whenever a formal-in node is reached using a path, the obtained stack is
stored to create one production of the grammar, and the rest of feasible
paths are also explored.

4.4. The CE-SDG 83

Algorithm 4.2 is in charge of equipping the CE-SDG with summary edges
and their grammar constraints. It is based on the summary detection algo-
rithm presented in [169]. All the modifications of the algorithm focus on the
constraints treatment. The algorithm starts with a work list that contains all
states that must be processed. A state contains a pair of nodes, the current
stack, and the last edge traversed to reach that state. At the beginning, the
work list contains all formal-out nodes (Line 2), and it traverses backwards all
edges from the nodes in the work list. Every time we traverse an edge, we pro-
cess its constraint and include the reached node in the work list. If we reach a
formal-in node (Line 7), then we have found a backward dependence path from
the formal-out to the formal-in. Thus, we must add a new grammar production
with the new path (Line 8) and, if there is not a summary edge in each call to
the current procedure, we must include it (Line 9). On the other hand, if the
node reached is not a formal-in node (Line 18), then we process (i.e., we traverse
backwards) all incoming edges of the reached node. There are two situations in
which the incoming edge must be ignored (Line 21):

• When the node reached is an actual-out node, only control and summary
edges must be traversed. This avoids processing call out edges, which must
be ignored to avoid descending into a procedure that has been already
analysed and resumed by the corresponding summary edge.

• As in Algorithm 4.1, when a structural edge has been traversed, flow edges
must be ignored.

The edges and the stack are processed according to Table 4.2 with func-
tion processConstraint, which is similar to the intraprocedural version in Algo-
rithm 4.1. The only modification required is the one performed for asterisk,
grammar, and closing access constraints, which are now always added to the
stack (Lines 35-39).

Algorithm 4.2 Summary detection algorithm for CE-SDGs
Input: The CE-SDG without summary edges.
Output: The CE-SDG equipped with (constrained) summary edges and their associated

grammar.

1: function summaryDetection(CE-SDG)
2: workList ← {⟨n → n,⊥, null⟩ | n ∈ FormalOutNodes(CE-SDG)}
3: processed ← ∅
4: while workList ̸= ∅ do
5: select some state ∈ workList
6: ⟨ns → fout , stack, traversedEdges⟩ ← state
7: if ns ∈ FormalInNodes(CE-SDG) then
8: gConstraint ← addGrammarProduction(ns, fout , stack)
9: for all c ∈ Callers(Proc(ns)) do

10: ain ← correspondingActualIn(c, ns)
11: aout ← correspondingActualOut(c, nfout)
12: if ¬existsSummaryEdge(ain, aout) then
13: sumConstraint ← gConstraint
14: summaryEdge ← addSummaryEdge(ain, aout , sumConstraint)

84 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

15: for all ⟨aout → n, stack ′, traversedEdges′⟩ ∈ processed do
16: newStack ← processConstraint(stack ′, summaryEdge)
17: workList ← workList ∪ {⟨ain → n, newStack, traversedEdges′ ∪ summaryEdge⟩}
18: else
19: for all edge ∈ getIncomingEdges(ns) do
20: ⟨n1 → ns, type, _⟩ ← edge

21: if (getLastEdgeType(traversedEdges)= structural ∧ type = flow) ∨
(ns ∈ ActualOutNodes(CE-SDG) ∧ type ̸∈ {control, summary}) then

22: continue for all
23: newStack ← processConstraint(stack, edge)
24: if newStack ̸= error then
25: workList ← workList ∪ {⟨n1 → fout , newStack, traversedEdges ++ edge⟩}
26: processed ← processed ∪ {state}
27: workList ← workList \ processed

28: function processConstraint(stack, edge)
29: ⟨_, _, constraint⟩ ← edge
30: if isIncreasingLoop(findLoop(traversedEdges),edge) then
31: push(constraint, stack)
32: return stack
33: if constraint = EmptyConstraint then
34: return stack
35: else if constraint ∈ {AsteriskConstraint, GrammarConstraint} then
36: push(constraint, stack)
37: return stack
38: else
39: return processAccess(stack, constraint)

40: function processAccess(stack, constraint = ⟨op, type, position⟩)
41: if stack = ⊥ then
42: return [constraint]
43: lastConstraint ← top(stack)
44: if (op = } ∨ op =]) ∧ isAccessConstraint(lastConstraint) then
45: ⟨lastOp, _, _⟩ ← lastConstraint
46: if lastOp = } ∨ lastOp =] then
47: push(constraint, stack)

48: else if (op = } ∧ lastConstraint = ⟨{, position⟩)
∨ (op =] ∧ lastConstraint = ⟨[, position⟩) then

49: pop(stack)
50: else
51: return error
52: else
53: push(constraint, stack)
54: return stack

Example 4.10. Consider the code and its associated CE-SDG shown in Fig-
ure 4.13. In this CE-SDG, asterisk constraints in control and structural edges,
and empty constraints of flow edges have been omitted for simplicity. The sum-
mary edges of functions bar and bar2 are labelled with the GC1 and GC2 gram-
mar constraints, respectively. They represent the feasible slicing paths computed
by Algorithm 4.2 from the formal-out to the formal-in nodes. We can use the
LR(0) analysis (see Section “Items and the LR(0) Automaton” (pag. 242) in
[3]) to traverse a grammar constraint with a stack. For instance, Figure 4.15

4.4. The CE-SDG 85

shows the LR(0) automaton of the grammar constraint GC1. For clarity, the
states (boxes) that can be reached through edges labelled with non-terminals are
in grey (because they can be ignored).

I0
GC1’ → · GC1
GC1 → · GC2
GC1 → · }0 {1
GC1 → · }1 {2

I1
GC1’ → GC1 ·

I2
GC1 → GC2 ·

I3
GC2 → }0 · {1

I4
GC2 → }1 · {2

GC1

GC2

}0

}1

accept
$

I5
GC2 → }0 {1 ·

I6
GC2 → }1 {2 ·

{1

{2

}0 {1

}1 {2

GC1 → GC2
GC2 →	 }0 {1

→	 }1 {2

Figure 4.15: LR(0) automaton to represent a grammar con-
straint

Each box represents a step of the derivation. The dot written in each gram-
mar production separate the already processed and pending elements of that pro-
duction. In this example, there are only two paths, thus, this grammar constraint
can produce two new stacks. Therefore, traversing the summary edge with the
empty stack ⊥ produces two different stacks: }0{1 and }1{2. Traversing the
summary edge with the stack {0 only produces one stack: {1 because the other
path produces error according to Table 4.2.

4.4.2 Summary constraints for unknown source code func-
tions

When we deal with calls to functions whose code is unavailable (e.g., because
they belong to precompiled libraries), there is no information about the function
being called. Therefore, it remains unknown what part of the argument is
needed to compute the result.

Example 4.11. Consider the code in Figure 4.16, where the code of function
gee is missing. Therefore, it is not possible to analyse how the returned value
{A,B} depends on argument Arg. E.g., if Arg is a tuple, then it is impossible
to know which positions of the tuple influence A or B.

main(Arg) ->
{A,B} = gee(Arg),
A.

Figure 4.16: Erlang program with an call to an unknown func-
tion

When this situation happens (the called function cannot be analysed), we
create a summary edge for every call argument (in this case only one summary

86 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

edge is created, the one for argument Arg) and all of them are labelled with an
asterisk constraint. This ensures completeness because labelling the summary
edges with an asterisk constraint empties the stack when it is traversed, which
means that the whole argument is needed.

4.4.3 Dealing with recursion
Another possible source of non-termination is recursion. Direct or indirect re-
cursion produce recursive CE-SDG grammars, which may lead to infinite deriva-
tions. This situation can be seen in Figure 4.17.

GC1 → 	}1 {2

→ 	}1	{0 {1 GC1

I0
GC1’ → · GC1
GC1 → · }1 {2

GC1 → · }1 {0 {1 GC1

I1
GC1’ → GC1 ·

I3
GC1 → }1 {2 ·

I2
GC1 → }1 · {2
GC1 → }1 · {0 {1 GC1

{2

}1

accept
$

GC1

GC1

I4
GC1 → }1 {0 · {1 GC1

{0 I5
GC1 → }1 {0 {1 · GC1
GC1 → · }1 {2

GC1 → · }1 {0 {1 GC1

I6
GC2 → }1 {0 {1 GC1 ·

{1

}1

{2 ; {0 {2 ; {0 {0 {2 ; …

Figure 4.17: Infinite derivation in a LR(0) automaton

The grammar in the box at the top corresponds to a grammar constraint GC1.
This grammar summarizes two paths, being one of them recursive. The LR-(0)
analysis produces the LR(0) automaton at the bottom. It has seven nodes, but
only those reachable through terminal symbols are relevant (the others are in
grey colour). Clearly, we have a loop formed by the sequence {0{1}1. Therefore,
any input stack that traverses this grammar constraint and can enter infinitely
into the loop will produce an infinite sequence of output stacks. For instance, if
we traverse this grammar constraint with the stack {1, then the output stacks
produced are infinite (see the output of I3). The solution to this problem is
analogous to the one proposed in the intraprocedural counterpart: dealing with
these loops at slicing time with the PDA. The key factor is that, in spite of
grammar constraints are defined as a set of productions during summary gener-
ation, loops can be detected if the edge is stored together with the constraint in
each terminal symbol of the grammar. With this information, increasing loops

4.4. The CE-SDG 87

can be detected also in recursive calls by using the PDA of Figure 4.8. This
process is equivalent to the one defined for the CE-PDG, thus, it ensures slicing
termination.

4.4.4 Slicing the CE-SDG
The interprocedural CE-SDG produced by Algorithm 4.2 is equipped with new
edges and constraints not present in the intraprocedural CE-SDG. These include
input, output, and call edges; and also grammar constraints in summary edges.

In this section, we extend Algorithm 4.1 to deal with interprocedural pro-
grams. Algorithm 4.3 is based on the slicing algorithm proposed in [85]. As
in the original algorithm, there are two different traversal phases and each one
ignores a specific kind of edges (Lines 2-3). The behaviour of each slicing phase
is very similar to the process described in Algorithm 4.1. The algorithm uses a
work list with the states that must be processed, and each state represents the
traversal of an edge (node reached, current stack, and list of traversed edges)
(Line 9). First of all, function getIncomingEdges (Line 10) collects all the
edges that reach the current node. Then, the edges specified by the argument
ignoredEdgeType (output or input edges, depending on the phase) are ignored
as well as the flow edges for which the previous traversed edge was structural
(Line 12). After that, the constraint is processed by the processConstraint
function (Line 14), which is now augmented to resolve grammar constraints.
Grammar constraints summarise all the possible paths from a formal-in to a
formal-out, so the traversal of a summary edge with the same initial stack may
result into a set of different new stacks (one for each possible path). For this
reason, the processConstraint function now returns a list of possible stacks
instead of a single stack. All of them are included in the work list to be pro-
cessed (Line 16) and, finally, the state is added to a list of processed states and
the node is added to the work list.

Function processConstraint also detects traversal loops, modifying the
value of the stack after processing a particular traversal repeated edge (lines
25-26). After that, all the productions of each grammar constraint are pro-
cessed with function processProduction, which processes each production
constraint by constraint, with a call to function processConstraint, allow-
ing the detection of loops even when processing the elements of grammar con-
straints in summary edges. Inside processProduction function, function
call to getEdge returns the information about the edge corresponding to this
constraint, stored in the summary grammar.

Algorithm 4.3 Interprocedural Slicing algorithm for CE-SDGs
Input: A CE-SDG, the slicing criterion node nsc.
Output: The set of nodes that compose the slice.

1: function slicingAlgorithmInter(CE-SDG, nsc)
2: slicePhase1 ← slicingPhase({⟨nsc,⊥, null⟩}, OUTPUT)
3: slicePhase2 ← slicingPhase(slicePhase1 , INPUT)
4: return {node | ⟨node, _, _⟩ ∈ slicePhase2}

88 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

5: function slicingPhase(workList, ignoreEdgeType)
6: processed ← ∅
7: while workList ̸= ∅ do
8: select some state ∈ workList
9: ⟨node, stack, traversedEdges⟩ ← state

10: for all edge ∈ getIncomingEdges(node) do
11: ⟨sourceNode, type, _⟩ ← edge

12: if ignoreEdgeType = type ∨
(getLastEdgeType(traversedEdges) = structural ∧ type = flow) then

13: continue for all
14: stackSet ← processConstraint(stack, edge)
15: for all newStack ∈ stackSet do
16: workList ← workList ∪ {⟨sourceNode, newStack, traversedEdges ++ edge⟩}
17: processed ← processed ∪ {state}
18: workList ← workList \ processed
19: return processed

20: function processConstraint(stack, edge)
21: ⟨_, _, constraint⟩ ← edge
22: if constraint = AsteriskConstraint then
23: return {⊥}
24: else
25: if edge ∈ traversedEdges then
26: if isIncreasingLoop(findLoop(traversedEdges),edge) then return {⊥}
27: if constraint = EmptyConstraint then
28: return {stack}
29: else if constraint = AccessConstraint then
30: newStack ← processAccess(stack, constraint)
31: if newStack = error then
32: return ∅
33: else
34: return {newStack}
35: else
36: productions ← getProductions(constraint)
37: return

⋃
p∈productions

processProduction(stack, p)

38: function processProduction(stack, production = ⟨c1, . . . , cn⟩)
39: stacks ← {stack}
40: for all ci ∈ production do
41: stacks′ ← ∅
42: for all s ∈ stacks do
43: constraintEdge ← getEdge(ci)
44: stacks′ ← stacks′ ∪ processConstraint(s, constraintEdge)
45: stacks ← stacks′

46: return stacks

4.5 Implementation
The changes performed in the PDG/SDG to implement this approach start from
a decomposition in the representation of explicit data structures in Section 4.1
(e.g., lists and tuples in Erlang). For this reason, to implement and evaluate
this approach, we have used an alternative fine-grained program representation

4.6. Experimental Results 89

equivalent to the SDG where the elements inside lists and tuples are unfolded
into a tree of nodes replicating the structure described in this chapter. This rep-
resentation is called Expression Dependence Graph (EDG) and how the graph
is created and how we have implemented a program slicer based on it (e-Knife)
is completely described in Chapter 5. Considering this, we have extended the
implementation of e-Knife (Chapter 5, Section 5.5) with a new package com-
posed by a set of classes representing different program constraints, included in
the edges during the EDG creation. Therefore, we have transformed the EDG
into the CE-EDG. Additionally, we have included the implementation of both
Algorithms 4.1 and 4.3 in the slicing package.

Figure 4.18 represents the architecture of e-Knife after increasing its repre-
sentation with constraints and adding the new slicing algorithm. In the figure,
bolded squares and bolded rounded squares indicate new classes and packages
added to the original e-Knife implementation. The main classes added to the
method are the following:

• ConstrainedAlg. This class implements Algorithms 4.1 and 4.3, also
applicable to the CE-EDG.

• Constraint. This set of classes represent the different types of constraints
described in Section 4.1. There is one class per constraint and some extra
classes to configure the behaviour of each constraint during the slicing
process when using the constrained algorithm (Algorithm 4.3).

After the introduced constraint model, the implementation grew from 9600 to
a total size of 11000 lines of code approximately. 1 package and a total of 21
new Java classes are added, leaving a project with 72 Java classes distributed
in 14 different packages. All the source code is publicly available in https:
//mist.dsic.upv.es/git/program-slicing/e-knife-erlang and a limited
online version to test the tool can be found at https://mist.dsic.upv.es/
e-knife-constrained/.

4.6 Experimental Results
Comparing our implementation against other slicers is not the best way to
assess the proposed stack extension to the PDG, because we would find big
differences in the PDG construction time, slicing time, and slicing precision due
to differences in the libraries used, different treatment for syntax constructs
such as list comprehensions, guards, etc. Therefore, we would not be able to
assess the specific impact of the stack on the slicer’s precision and performance.
The only way to do a fair comparison is to implement a single slicer that is able
to build and slice the PDG/SDG with and without constraints. This is exactly
what we have done.

All the algorithms and ideas described in this chapter have been imple-
mented in a slicer for Erlang called e-Knife. e-Knife can produce slices based
on either the PDG/SDG or their CE-counterparts. Thus, it allows us to know
exactly the additional cost required to build and traverse the constraints, and

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://mist.dsic.upv.es/e-knife-constrained/

90 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

CFGGenerator

ErlangLASTFactory

Erlang
Program

ValueGenerator

LANGUAGE-INDEPENDENT (EDG Module)

EKnife EDGFactory

LASTFactory

LASTBuilder

ControlEdgeGen

InterproceduralEdgeGen

FlowEdgeGen

SummaryEdgeGen

Slicing Algorithm

ConstrainedAlg

ErlangCodeFactory
Erlang
Slice

Method Call
Input/Output Resource

LANGUAGE-DEPENDENT (eKnife Module)

Constraints
Constraints

Constraint

Constraints Package

StandardAlg

Figure 4.18: e-Knife architecture after adding constraints and
the new slicing algorithms

the extra precision obtained by doing so. e-Knife is a Java program with more
than 11000 LOC. It is an open-source project and is publicly available3.

Additionally, anyone can slice a program via a web interface4, without the
need to build the project locally. Large or very complex programs executed
through the web interface may run into memory and time limitations, placed
in this interface to avoid abuse.

To evaluate our technique we have divided our experimentation in two parts:
intraprocedural evaluation (using Algorithm 4.1), and interprocedural evalua-
tion (using Algorithm 4.3. To test the performance of e-Knife, we used Bencher,
a program slicing benchmark suite for Erlang. All the benchmarks were inter-
procedural programs, so, to conduct the intraprocedural evaluation, we have
created a new intraprocedural version of them (by inlining functions). This in-
traprocedural version has been made publicly available5. To evaluate the tech-
niques proposed throughout this work, we have built both graphs (PDG/SDG
and CE-PDG/CE-SDG) for each of the intra and interprocedural programs in
bencher. Then, we sliced both graphs with respect to all possible slicing crite-
ria6, which guarantees that there is no bias in the selection of slicing criteria.

We strictly followed the methodology proposed by Georges et al. [67]. Each
program’s graph was built 1001 times, and the graphs were sliced 1001 times
per criterion. To ensure real independence, the first iteration was always dis-
carded (to avoid influence of dynamically loading libraries to physical memory,
data persisting in the disk cache, etc.). From the 1000 remaining iterations
we retained a window of 10 measurements when steady-state performance was

3https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
4https://mist.dsic.upv.es/e-knife-constrained/
5https://mist.dsic.upv.es/bencher/
6Each variable use or definition in all functions that contain complex data structures.

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://mist.dsic.upv.es/bencher/

4.6. Experimental Results 91

Graph Generation Slice
Program PDG CE-PDG Function #SCs PDG CE-PDG Slowdown Red. Size

bench1A.erl 5468.10ms 5474.38ms

getLast/2 26 82.55µs 392.39µs 4.40± 0.50 14.88± 3.23%
getNext/3 174 308.66µs 1645.44µs 4.94± 0.16 13.06± 1.58%
getStringDate/1 11 30.18µs 93.71µs 3.22± 0.18 8.67± 4.07%
main/1 57 1121.93µs 2869.79µs 2.59± 0.30 38.76± 7.22%

bench3A.erl 49.58ms 49.59ms tuples/2 22 38.39µs 153.21µs 3.69± 0.44 5.46± 2.08%
bench4A.erl 79.70ms 79.76ms main/2 31 89.80µs 376.33µs 4.23± 0.42 20.79± 5.47%
bench5A.erl 48.69ms 48.73ms lists/2 18 60.92µs 265.87µs 3.82± 0.43 6.51± 2.08%

bench6A.erl 403.52ms 403.66ms ft/2 34 82.59µs 333.51µs 3.60± 0.36 12.25± 2.72%
ht/2 16 21.39µs 71.55µs 2.94± 0.29 10.79± 3.81%

bench9A.erl 199.53ms 199.71ms main/2 18 197.94µs 458.68µs 2.25± 0.14 1.38± 1.07%
bench11A.erl 15.49ms 15.52ms lists/2 16 43.09µs 141.87µs 3.30± 0.16 6.47± 2.22%

bench12A.erl 1661.91ms 1663.25ms

add/4 26 104.88µs 454.55µs 4.27± 0.49 15.21± 4.29%
from_ternary/2 9 22.92µs 103.17µs 4.28± 0.44 3.56± 2.76%
main/3 39 103.42µs 408.30µs 4.03± 0.51 8.43± 6.27%
mul/3 21 55.05µs 261.14µs 4.57± 0.35 2.74± 1.31%
to_ternary/2 13 71.93µs 199.70µs 3.05± 0.28 1.02± 1.37%

bench14A.erl 3841.95ms 3842.62ms main/2 81 85.94µs 451.66µs 4.01± 0.40 8.76± 2.56%
bench15A.erl 1948.76ms 1949.37ms main/4 71 246.97µs 609.24µs 2.94± 0.19 2.31± 1.73%
bench16A.erl 276.60ms 276.79ms word_count/5 36 83.79µs 289.83µs 3.96± 0.30 8.91± 2.93%
bench17A.erl 63.47ms 63.60ms mug/3 19 55.44µs 202.33µs 3.78± 0.18 5.59± 3.10%
bench18A.erl 71.38ms 71.50ms mbe/2 19 83.69µs 278.30µs 3.73± 0.31 7.38± 4.71%

Totals and averages for set A 757 218.65µs 814.51µs 3.88± 0.10 11.67±3.02%

Table 4.3: Summary of experimental results, comparing the
PDG (without constraints) to the CE-PDG (with constraints).

reached, i.e., once the coefficient of variation (CoV, the standard deviation di-
vided by the mean) of the 10 iterations falls below a preset threshold of 0.01
or the lowest CoV if no window reached it. It is with these 10 iterations that
we computed the average time taken by each operation (building each graph or
slicing each graph w.r.t. each criterion).

The results of the experiments performed are summarised in Tables 4.3 and
4.4. These tables sum up two experiment sets, one for the intraprocedural
suite (called set A) and other for the interprocedural suite (called set B). The
two columns into the graph generation part of the tables display the average
time required to build each graph. Building the CE-PDG/CE-SDG, as in the
PDG/SDG, is a quadratic operation; and the inclusion of labels in the edges is
a linear operation. Thus, building the constrained graphs is only slightly slower
than its counterpart. The other columns are as follows (average values are w.r.t.
all slicing criteria):

Function (only in Table 4.3): the name of the function where the slicing
criterion is located.

#SCs: the number of slicing criteria in that function.

PDG, CE-PDG, SDG, CE-SDG: the average time required to slice the cor-
responding graph.

Slowdown: the average additional time required (with 95% error margins),
when comparing the CE-PDG/CE-SDG with the corresponding PDG/SDG.
For example, in the first row of Table 4.3, the computation of each slice
is on average 4.40 times slower in the CE-PDG.

Red. Size: the average reduction in the slices sizes (with 95% error margins).
It is computed as (A−B)/A where A is the size (number of AST nodes)
of the slice computed with the standard (field-insensitive) algorithm and

92 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

Graph Generation Slice
Program SDG CE-SDG #SCs SDG CE-SDG Slowdown Red. Size

bench1B.erl 4689.59ms 4695.39ms 273 2375.91µs 52978.07µs 19.04± 1.48 8.47± 2.33%
bench2B.erl 122.07ms 122.10ms 17 100.30µs 160.02µs 2.54± 0.47 0.62± 0.65%
bench3B.erl 53.70ms 53.71ms 18 73.09µs 283.20µs 3.70± 0.42 6.15± 3.65%
bench4B.erl 38.34ms 38.40ms 39 136.43µs 351.29µs 2.98± 0.33 12.03± 3.61%
bench5B.erl 24.67ms 24.72ms 11 83.64µs 316.45µs 3.83± 0.20 6.88± 0.85%
bench6B.erl 89.36ms 89.49ms 44 64.04µs 241.37µs 3.65± 0.39 7.67± 2.07%
bench8B.erl 144.54ms 144.67ms 42 317.21µs 19641.19µs 57.75± 7.30 0.73± 0.68%
bench9B.erl 53.57ms 53.65ms 17 305.20µs 588.48µs 2.02± 0.16 1.38± 1.04%
bench10B.erl 146.72ms 146.98ms 35 415.38µs 7368.92µs 26.06± 5.94 2.48± 1.25%
bench11B.erl 15.10ms 15.15ms 13 69.71µs 248.10µs 3.58± 0.18 8.02± 2.08%
bench12B.erl 526.36ms 527.29ms 88 1445.05µs 7244.07µs 5.15± 1.32 5.10± 2.85%
bench13B.erl 41.00ms 41.05ms 22 212.20µs 307.64µs 1.88± 0.35 8.36± 7.31%
bench14B.erl 257.98ms 258.50ms 52 167.99µs 522.23µs 3.20± 0.40 13.58± 4.50%
bench15B.erl 376.22ms 376.62ms 73 394.71µs 770.11µs 2.39± 0.16 10.08± 2.88%
bench16B.erl 170.25ms 170.42ms 40 200.22µs 3490.60µs 30.73± 6.76 3.70± 1.51%
bench17B.erl 93.42ms 93.55ms 19 248.47µs 442.49µs 1.88± 0.22 4.96± 2.38%
bench18B.erl 102.34ms 102.48ms 19 393.15µs 607.97µs 1.55± 0.15 0.05± 0.10%

Totals and averages for set B 816 1060.16µs 19742.28µs 13.43± 1.18 7.12±2.47%

Table 4.4: Summary of experimental results, comparing the
SDG (without constraints) to the CE-SDG (with constraints).

B is the size (number of AST nodes) of the slice computed with the field-
sensitive algorithm (Algorithms 4.1 and 4.3 for both Tables 4.3 and 4.4,
respectively). This way of measuring the size of the slices is much more
precise and fair. LOC is not proper because it can ignore the removal
of subexpressions. PDG/CE-PDG (respectively SDG/CE-SDG) nodes is
not a good solution because the CE-PDG includes nodes and arcs not
present in their counterparts, therefore they are incomparable.

The averages shown at the bottom of the table are the averages of all slicing
criteria, and not the averages of each function’s average.

The first 13 benchmarks (set A) are benchmarks with complex data struc-
tures sliced using the intraprocedural algorithm, while the rest of benchmarks
(set B) are programs with multiple functions connected by interprocedural
edges. In set A, each slice produced by the CE-PDG is around four times
slower. However, this has little impact, as each slice consumes just hundreds
of milliseconds. As can be seen in each row, generating the graph is at least 3
orders of magnitude slower than slicing it. This increase in time is offset by the
average reduction of the slices, which is 11.67±3.02% at almost no cost (only a
few µs). This increase goes up to 38.76% in function main/1 from bencher1A,
as it contains complex data structures that can be efficiently sliced with the
CE-PDG. The same happens in set B, but due to the overhead included when
resolving grammar constraints, the slowdown is around thirteen times slower.

If we consider interprocedural program slicing, the slowdown is 13.43. In this
case, the technique has more opportunities for improvement because, contrarily
to the intraprocedural CE-PDG, the graph includes the traversal of summary
edges, where it is more common to run a cycle detection process due to the
appearance of summary grammars. Even so, the use of constraints results into
a reduction in the slices size of 7.12± 2.47%.

If we consider both sets, the average reduction of using the CE-PDG/CE-
SDG and their corresponding algorithms results in an average reduction of

4.7. Related Work 93

9.31±2.73%. This is a very good result: for many applications, e.g., debug-
ging, reducing the suspicious code over 9.31% with a cost of increasing the
slicing time by only a few milliseconds is a good trade-off to make.

4.7 Related Work
Transitive data dependence analysis has been extensively studied [167, 187].
Less attention has received, however, the problem of field-sensitive data depen-
dence analysis [108, 123, 163, 186]. The existing approaches can be classified
into two groups: those that treat composite structures as a whole [123, 129, 139,
147], and those that decompose them into small atomic data types [2, 9, 18, 72,
100, 103, 138, 163]. The later approach is often called atomization or scalar re-
placement, and it basically consists of a program transformation that recursively
disassembles composite structures to their primitive components. However, slic-
ing over the decomposed structures usually uses traditional dependence graph
based traversal [9, 72, 103] which limits the accuracy. Other important ap-
proaches for field-sensitive data dependence analysis of this kind are [108, 123,
186]. Litvak et al. [123] proposed a field-sensitive program dependence analysis
that identifies dependences by computing the memory ranges written/read by
definitions/uses. Späth et al. [186] proposed the use of pushdown systems to
encode and solve field accesses and uses. Snelting et al. [183] present an ap-
proach to identify constraints over paths in dependence graphs. Our approach
combines atomization with the addition of constraints checked by pushdown
systems to improve the accuracy of slicing composite data strauctures.

There exist approaches for the field-sensitive slicing of some specific data
structures. If we refer to arrays, some static proposals consider the whole array
as a variable, and each access as a definition or use of that variable [129].
However, this technique produces complete, but unnecessarily large program
slices [18]. The PDG variant of Ottenstein and Ottenstein [147] represents
composite data types providing a node for each one of its subexpressions, and
provides special select and update operators to access the elements of an array.
Other static approaches rely on determining whether two statically unknown
vector accesses can refer to the same memory location during runtime [39, 111].
Some papers [14, 133, 158] propose algorithms that demonstrate the absence of
a flow dependence between array accesses under certain conditions.

Some approaches [33, 37, 72, 112] have been also proposed to accurately rep-
resent the inner structure of objects and the dependences between their data
members. Most object-oriented approaches [72, 118, 202] are based on the same
principle: object variables and their inner data members are unfolded in a tree-
like representation when used at function calls. This allows for the generation
of dependences between data members of a particular object and to accurately
slice off those data members of an object that are not affecting the slicing cri-
terion. Our representation is inspired by this tree-like structure, but with some
differences. In our representation the tree structure is connected with a new
kind of edges (structural edges) instead of control edges. This allows us to
apply a different slicing behaviour for structural edges without interfering in
the traversal restrictions given to control edges in some slicing algorithms [109].

94 Chapter 4. Field-Sensitive Slicing with Constrained Graphs

Additionally, our tree structure is connected not only with structural edges,
but also with flow edges; providing a more realistic representation of the depen-
dences between a composite structure and all its elements.

Severals works have tried to adapt the PDG for functional languages dealing
with tuple structures in the process [25, 32, 108, 198]. Some of them with a
high abstraction level [171], and other ones with a low granularity level. Silva
et al. [180] propose a new graph representation for the sequential part of Er-
lang called the Erlang Dependence Graph. Their graph, despite being built
with the minimum possible granularity (each node in the graph corresponds
to an AST node) and being able to select subelements of a given composite
data structure, does not have a mechanism to preserve the dependence of the
tuple elements when a tuple is collapsed into a variable; i.e., they do not solve
the slicing pattern matching problem (for instance, they cannot solve the pro-
gram in Figure 4.2). In contrast, although our graph is only fine-grained at
composite data structures, we overcome their limitations by introducing an ad-
ditional component to the graph, the constrained edges, which allow us to carry
the dependence information between definition and use even if the composite
structure is collapsed in the process.

95

Chapter 5

Overcoming SDG Limits: The
Expression Dependence Graph

Besides completeness (extracting all the code that affects or is affected by the
slicing criterion), the main goal of program slicing is precision (removing as
much code that does not affect or is not affected by the slicing criterion as possi-
ble). Nevertheless, most implementations of program slicing use the SDG, which
imposes a precision barrier: its granularity level are statements. Currently, the
only statements that are broken down properly in the SDG are objects, blocks,
and procedure calls. By breaking down procedure calls, program slicing can
reason about whether or not the arguments of a specific call should be sliced
off. However, other important situations cannot be handled by the SDG, and
some of them cannot be even correctly handled by industrial refactoring tools
that include program slicing. In this chapter we showcase some of these sit-
uations (Section 5.1) and present a new representation model, the Expression
Dependence Graph (EDG) to solve them. We describe how the EDG is created
and sliced in Sections 5.2 and 5.3. After that, in Section 5.4 we illustrate how
the EDG representation solves the problems presented in Section 5.1. Finally,
we show the implementation and the results of the experimental evaluation of
the model in Sections 5.5 and 5.6.

5.1 Representation problems of the SDG
Along this section we show that the SDG is implicitly limited by its way of
representing complex syntax constructs. We present some problems of the SDG
when representing code of both imperative and functional programs with exam-
ples in Java and Erlang. In general, the problems shown apply to any language
that has similar syntax constructs. For each problem, we compare the slice ob-
tained with the SDG and the slice computed with our graph representation. In
each fragment of code the underlined blue code represents the slicing criterion,
the computed slice is shown in black, and the sliced code is shown in grey.

Problem 5.1 (Extraction of embedded definitions). Figure 5.1 contains a frag-
ment of code extracted from [55]. This code shows the SDG’s lack of accuracy in
assignments with several operands. As the SDG represents the whole assignment
with a single node, the definition of variable b in line 4 cannot be sliced without
including the whole d assignment statement. Note that including the procedure

96 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

calls foo() and baz() in the slice is very imprecise because it triggers a snow-
ball effect, forcing the slice to also include the definition of these functions and
all other functions called from them.
Cause: The SDG represents assignments with multiple definitions as a single
node.
Current solution: A solution to this problem is shown in [97], where the authors
define a new graph representation called the combined C graph, where embedded
definitions with side effects are moved to another graph node to improve slicing
precision. An alternative solution for this problem is to perform an ad-hoc pro-
gram transformation: line 4 can be replaced by: d = a * b * c; b++;. This
transformation, however, can be insufficient in many cases such as: d = a *
b++ * c + b; and, thus, further analysis is needed.

1 a = foo();
2 b = bar();
3 c = baz();
4 d = a * b++ * c;
5 e = b;

(a) SDG slice

1 a = foo();
2 b = bar();
3 c = baz();
4 d = a * b++ * c;
5 e = b;

(b) EDG slice

Figure 5.1: Extract inner assignments

Problem 5.2 (Monolithic code). Consider the simple Java source code frag-
ment of Figure 5.2. Selecting a variable in an expression as the slicing criterion
may force the inclusion in the slice of some variables and expressions that are
not actually needed. In this case, because the condition contains a non-short-
circuit operand, the evaluations of neither x = 0, x = 10, x == 10 nor foo()
are actually needed to reach variable y in line 3. Therefore, in this example it
is not enough to decompose the if-condition into the two boolean subexpressions.
To make the slice precise, the extraction of a single variable is needed.
Cause: The SDG does not decompose expressions, thus it prevents from analysing
the inter-dependences between operations and operands.
Current solution: This lack of precision is often assumed even by commercial
slicers. A solution is to post-process the slice code ad-hoc to determine what
operands could be removed. This often implies a data flow analysis that not
always ensures an improvement in the accuracy.

1 int x = 0, y = 5;
2 x = 10;
3 if (x == 10 | y == foo()) {
4 x = y = 20;
5 }

(a) SDG slice

1 int x = 0, y = 5;
2 x = 10;
3 if (x == 10 | y == foo()) {
4 x = y = 20;
5 }

(b) EDG slice

Figure 5.2: Unnecessary evaluation

Problem 5.3 (try-catch structures). Figure 5.3 shows an important problem
that makes the SDG to produce wrong (incomplete) slices. The only possible

5.1. Representation problems of the SDG 97

executions that reach the slicing criterion are those in which f(a) produces an
exception. However, if f(a) produces an exception, then b is never assigned in
line 4. This means that the value of b in the slicing criterion (a use) comes
from the definition of b in line 2 (this is correctly sliced in the EDG slice). Un-
fortunately, in the SDG, the assignment in line 4 is represented with a node that
includes b and the call to f(a). Thus, both are included in the slice, being the
definition of b in line 4 not only unnecessary, but a source of incompleteness.
Cause: The SDG node raising the exception and the SDG node defining b are
the same. For this reason the last definition of b is always found in this node
whether the exception is raised or not. Thus, this definition of b prevents its
previous definition to be considered.
Current solution: A solution to this problem was proposed by Allen and Hor-
witz [6]. The solution augments the CFG of method calls with two different
paths for smooth and exception executions. This path division moves the defini-
tion of b in line 4 exclusively to a path where the exception is not raised. This
way, when the exception is raised, the last life definition for the use of b in the
catch block, is the one in line 2. Another valid approach would be to use a
pre- and post-processing of the SDG that analyse what parts of the code are not
executed when exceptions are thrown. This analysis should be used at slicing
time to avoid including unfinished assignments, like the one for b in line 4, in
the slice.

1 int b;
2 b = 10;
3 try {
4 b = f(a);
5 } catch (Exception e) {
6 log(b);
7 }

(a) SDG slice

1 int b;
2 b = 10;
3 try {
4 b = f(a);
5 } catch (Exception e) {
6 log(b);
7 }

(b) EDG slice

Figure 5.3: try-catch structures

Problem 5.4 (for loops). Figure 5.4 shows that the SDG by default includes
in the slice the three components of the for-loop’s header (initialisation, con-
dition, and update). If one of the components contains more than one element
then all of them are included in the slice.
Cause: The SDG represents complex program constructs with a single node.
Current solution: A solution was proposed in [132], where a specific represen-
tation in the SDG for the for loop is presented. Roughly, they decompose with
independent nodes the initialisation, the condition, and the update (this is in the
same direction as the EDG) but they fail to further decompose the expressions
inside them.

Problem 5.5 (List comprehensions). Figure 5.5 shows that the SDG lacks of
a representation for many program constructs such as the list comprehension.
In the standard SDG, the whole assignment, including the list comprehension is
part of a single node, which leads to a big source of imprecision (see Figure 5.5a).

98 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

1 it = 0;
2 for (x = 1; x < 10; x += 2, it++) {
3 print(x);
4 }
5 print(it);

(a) SDG slice

1 it = 0;
2 for(x = 1; x < 10; x += 2, it++) {
3 print(x);
4 }
5 print(it);

(b) EDG slice

Figure 5.4: for loop

Some advanced slicers, especially those designed for functional languages such
as SlicErl [181], give an ad-hoc treatment to program comprehension constructs.
But even this special treatment is not enough in many cases such as this. Fig-
ure 5.5b shows the slice produced by SlicErl, which represents every generator
with a single node, thus wrongly including Y in the slice.
Cause: The SDG does not explicitly represent list comprehensions because they
are expressions.
Current solution: Ad-hoc representations in the SDG for different constructs
such as list comprehensions, generators, filters, or just tuples are used in the
Erlang functional language in Silva et al. [181].

[[X,Y] || {X,Y} <- L1, X < 1, Y > 2]

(a) SDG slice

[[X,Y] || {X,Y} <- L1, X < 1, Y > 2]

(b) SlicErl slice

[[X,Y] || {X,Y} <- L1, X < 1, Y > 2]

(c) EDG slice

Figure 5.5: List comprehension

This set of problems show important limitations of the SDG, being the worst
that the minimum granularity level is a statement. The SDG does not allow us
to represent operations, literals, variables, or expressions; nor to select them as
the slicing criterion; nor to remove them from the slice when they are part of a
node that belongs to the slice.

We have observed that similar ad-hoc solutions have been proposed in the
literature once and again to solve the same problem in different contexts. To cite
some examples, the SDG has been extended with additional nodes to represent:
objects [118, 128, 202], exceptions [6, 62], for-loops [132], list comprehensions
[181], composite data structures [72, 108, 123, 186], etc. The need for these
ad-hoc solutions are a clear symptom that the SDG should be generalised to
account for all those problems. We propose a generalisation of the graph that
not only allows us to solve all those problems at once, but also enables the
graph to reason about problems for which the SDG is not suitable, like the
representation of isolated variable declarations as an independent node of the
graph.

Our extension of the SDG is a natural generalisation that makes it more pre-
cise because each single literal (expression) is represented with a node (i.e., each
node represents the minimum programmatic information: an abstract syntax

5.1. Representation problems of the SDG 99

tree (AST) node), for this reason we call this extension the expression depen-
dence graph (EDG). This new representation naturally produces a solution to
most of the above problems. E.g., for-loops and list comprehensions are triv-
ially decomposed and solved; complex data structures such as lists or tuples are
broken down allowing us to distinguish different elements inside them; etc.

The EDG is a fine-grained representation that incorporates several novelties:

• Each EDG node represents the minimum program unit: a program literal.

• The EDG defines a new type of dependence (called value dependence) that
only exists between subexpressions.

• In the EDG, expressions and statements are represented in a different way.

– Expressions have a dual-node representation where one node contains
the value given to the literal it represents, and the other the pres-
ence of the literal in the program. This representation provides more
possibilities to naturally obtain executable well-structured slices in-
cluding compilation dependences.

– Statements have a single-node structure that represents their pres-
ence or absence in the slice.

• The EDG includes another new type of dependence (called declaration
dependence) that is able to include variable declarations (without includ-
ing the initial value if it is not needed) taking profit of the dual-node
representation given to expressions.

• The EDG provides an explicit representation for function returned values,
naturally building “result” nodes for every function definition and function
call.

Because the proposed extension is an SDG generalisation, the new repre-
sentation can behave exactly as a standard SDG (the granularity of the nodes
can be reduced by ignoring some edges, or by treating some subtrees as a single
node). Therefore, all the extensions defined so far for the SDG are still valid
in the EDG. However, they could be reformulated taking advantage of the new
EDG nodes to improve their accuracy.

It is important to remark that we do not propose here a developed solution
to all those slicing problems; but a tool—a new program representation—that
can be used to better solve many slicing problems. For this reason, in order
to evaluate the initial potential of our representation, we have focused our im-
plementation and evaluation in a subset of two programming languages from
different programming paradigms: Java, in representation of the object-oriented
paradigm; and Erlang, in representation of the functional paradigm. It is worth
mentioning that it is not an objective of this work to implement a slicer for
the whole Java and Erlang languages, but only to evaluate the advantages of
our representation in different programming paradigms. Hence, our implemen-
tation nor considers multiple-class Java programs, neither concurrent Erlang
programs; but only considers the imperative subset of Java and the sequential

100 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

part of Erlang programs (as it happens in the problems shown so far in this
section). The implementation of all object-oriented and concurrent programs
based on the EDG would be an interesting future work because the performance
and the accuracy provided by the EDG in the experimental evaluation has been
proved promising.

5.2 From ASTs to EDGs
In this section, we explain how to obtain an EDG from any given AST. Briefly
explained, firstly, the AST is labelled with control flow and a new intra-expression
dependence called value dependence to produce a labelled AST (L-AST). Sec-
ondly, the L-AST is augmented with a dual-node representation for expres-
sions, enhancing the graph expressivity and adjusting the graph for control and
flow dependence generation, producing a transformed labelled AST (TL-AST).
Thirdly, control, flow, and some extra slicing edges are added to generate an
intraprocedural EDG and, finally, as in the SDG, the EDG is augmented with
call, parameter-in, parameter-out, and summary edges to be an interprocedural
EDG. In a nutshell:

AST → L-AST → TL-AST → EDG → EDG
(intra) (inter)

In the following sections, we explain the information a L-AST should contain
and how to transform an L-AST into an interprocedural EDG.

The starting graph of the EDG: labelled ASTs
An AST is a tree representation of a source code written in one specific lan-
guage but, unfortunately, the information provided by its edges (called struc-
tural edges from here on) in not enough to compute program slices. For instance,
it lacks information about control flow, which is needed to construct control and
flow dependences. Therefore, we need the given AST to be equipped with two
resources:

1. The control flow graph (CFG). The CFG is the starting graph needed to
construct the whole PDG of a method; whereas, in the EDG, the CFG
is an additional resource incorporated into the AST indicating in which
order AST nodes are evaluated during the execution. As it happens with
the PDG, the CFG is completely necessary to compute control and flow
dependences.

2. The value edges that represent what we call value dependence. Value de-
pendences are new intra-statement dependences that appear when break-
ing down some PDG nodes. They were already noted by Krinke and
Snelting in [103, 107]. Value dependences indicate where the value of
an expression comes from through its components. They are language-
dependent, represent how the values flow between the components of an
expression, and are essential to keep slices precise when it comes to subex-
pressions.

5.2. From ASTs to EDGs 101

First of all, we need to compute the CFG for each procedure of the program,
defining the order in which the AST nodes are executed. The nodes of the CFG
used in the EDG are AST nodes (instead of statements) and the definition of
this CFG is formalised below.

Definition 5.1 (Control-flow Graph in ASTs). Let G = (N, Es) be the AST of
a procedure where N is the set of nodes of the procedure and Es is the set of
structural edges in the AST of the procedure. Let n1 and n2 be nodes in N . The
CFG of G is a graph CFGG = (N, Ecf) where the set Ecf fulfils the following
conditions:

1. (n1, n2) ∈ Ecf ⇐⇒ n2 can be immediately executed after n1

2. ∃nenter ∈ N | ∀n ∈ N . (nenter, n) ∈ E∗cf
{All procedure nodes can be reached from an initial node Enter by traversing
control-flow edges}

3. ∃nexit ∈ N | ∀n ∈ N . (n, nexit) ∈ E∗cf
{The Exit node can be reached from any procedure node by traversing control-
flow edges}

4. nenter = nexit = root(G)
{The enter and the exit node must be the same node, the root of the AST}

We can now define the new dependence (value dependence) that appears in
a CFG defined over an AST. Given an AST G, we define the set EXP as the
set of nodes in G that represent expressions.

Definition 5.2 (Value Dependence). Let G = (N, Es ∪ Ecf) be an AST with
an inscribed CFG where N is a set of nodes, Es is a set of structural edges, and
Ecf a set of control-flow edges. Given two expression nodes n1, n2 ∈ EXP, n2
is value dependent on a CFG node n1 if and only if:

1. the value of the expression at n1 is needed to compute the value of n2, and

2. ∃n3 ∈ EXP where (n3, n1), (n3, n2) ∈ E∗s , and

3. ∄n4 ∈ N, n4 ̸∈ EXP where

• (n3, n4), (n4, n1) ∈ E∗s , or
• (n3, n4), (n4, n2) ∈ E∗s

Note that value dependence is transitive and it is restricted to expressions.
Condition 2 forces that n1 is a subexpression of n2 (when n3 = n2), or n2 is
a subexpression of n1 (when n3 = n1), or n1 and n2 are subexpressions of a
common expression n3 (when n1 ̸= n2 ̸= n3). Therefore, value dependence is
limited to connect elements within the same statement. Moreover, condition 3
ensures that n1 and n2 share a parent expression n3 without any intermediate
statement n4 between them.

In order to represent value dependence in the AST, we label it with value
edges, which account for value dependence in an intransitive way, exactly as

102 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

flow edges do (i.e., two edges A → B and B → C avoid the creation of A → C,
thus, minimizing the number of edges). Value edges are the transitive reduction
of the value dependence, and they can be computed according to the following
definition:

Definition 5.3 (Value edge). Let G = (N, E) be an AST where N is a set of
nodes and E is a set of edges. There is a value edge from a node n2 ∈ N to a
node n1 ∈ N if and only if:

1. n1 is value dependent on n2,

2. ̸ ∃n3 ∈ N . n1 is value dependent on n3 and n3 is value dependent on n2.

Value dependence is intra-statement and it complements flow-dependence,
which is inter-statement. Both play a similar role, while flow dependence links
definitions and uses of variables between different program statements, value
dependence works at expression level, linking the subexpressions that are inter-
dependent. Together, they form the so-called data dependence. Observe that
value dependence is defined in a language agnostic manner thanks to condition
(1). The semantics of each language defines what nodes of an expression are
needed to compute the value of the other nodes. Example 5.1 contains an illus-
trative example of what value dependence represents and how value edges and
flow edges represent dependences with different origins.

Example 5.1. Consider the code in Figure 5.6 that shows (a) two consecutive
statements of a program and (b) its associated AST, which incorporates the
corresponding value and flow edges.

1 ...
2 x = 1;
3 y = x + 3;
4 ...

…

+y

assign

3x

assign

x 3

Structural Edge
Value Edge

Flow Edge

Figure 5.6: Two consecutive statements of a program and AST
with value and flow dependences

As it can be seen, there is a value edge between the components of each
assignment: (1 99K =), (= 99K x), (+ 99K =), (= 99K y), (x 99K +), and (3 99K
+). But not between the x components of the two different assignments, which
are connected by a flow edge.

5.2. From ASTs to EDGs 103

X = if (Y >0) -> 1;
true -> 2

end.

Figure 5.7: Example of if-then-else structure in Erlang

The definition of value dependence can be adapted to each AST considering
the collection of expressions used in each language, thus, each language defines
its own value dependence. For instance, in Erlang, contrarily to Java, an if-
then-else is an expression. Therefore, in Erlang, the expression in Figure 5.7
induces a value dependence between X and the if-then-else.

Another interesting example is the multiple assignment in line 4 of Fig-
ure 5.2. Value edges represent how variables x and y get their values (e.g., 20
is assigned to y and later assigned to x) during the execution of the assign-
ment. Example 5.2 shows four possible ASTs that represent this assignment.
The example shows how each ASTs can be later labelled with control flow and
value edges in multiple ways, differentiating which ones provide a representation
usable to reach our goal.

Example 5.2 (Possible labelled ASTs for line 4 in Figure 5.2). Consider Fig-
ure 5.8 that contains four possible ASTs for statement x = y = 20;.

Structural Edge

assign

20

x

y

assign

assign

literal

x

y

assign

20

assign

20x y

assign

literalx y

20

Figure 5.8: ASTs for statement x = y = 20;

Note that the ASTs in Figure 5.8 are just possible instances, and that there
can be other ASTs that represent the same statement. ASTs shown in Figure 5.8
allow for having a representation of the source code, but they do not provide any
information about how the source code is executed or how variables get values.
Figure 5.9 shows the same ASTs labelled with some extra edges that provide this
information. These labelled ASTs are called L-ASTs.

Each AST shown in Figure 5.9 can be labelled in multiple ways. Unfortu-
nately, we cannot discuss all of them because of the exponential combination.
Therefore, only some common L-ASTs are shown. In all the L-ASTs, the control
flow edges indicate that the evaluation of 20 comes first, and the assignments
of x and y happen afterwards as well as the order in which they are assigned.
Value edges indicate where the value of an expression comes from and they are
language dependent. For instance, given a specific language, it is needed to de-
fine how if ((x = y = 20) > z) should be evaluated to finally evaluate if

104 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

assign

20x y

Structural Edge
Control Flow Edge
Value Edge

(a)

assign

literalx y

20

(b)

assign

20

x

y

assign

(c)

assign

literal

x

y

assign

20

(d)

Figure 5.9: ASTs of Figure 5.8 labelled with
control flow and value edges

(20 > z). In the four ASTs in Figure 5.9, only 5.9c and 5.9d can be used to
represent the previous if predicate because they provide a value for the (x = y
= 20) expression. In Figure 5.9c, the value edges indicate that 20 is assigned
to y, the value of y is later assigned to x and finally the value of x would be
used in the comparison. In Figure 5.9d, 20 is assigned to y, assigned to x and
would be used in the comparison, but the order in which this happens is not even
imposed (the order can be deduced from the control flow edges).

To construct an EDG, we start from an AST labelled with control flow
and value edges. Control flow edges need to fulfil one important property to
correctly calculate control dependences and, thus, control edges: all nodes in a
labelled AST must be reachable from an initial node (in Figure 5.9 the initial
node is 20). Labelled ASTs are formalised in Definition 5.4.

Definition 5.4 (Labelled AST). A labelled AST (L-AST) is a graph G =
(N, E) where N is a set of nodes in the AST and E = Es ∪Ecf ∪Ev is a set of
edges, in which Es are structural edges, Ecf are the control-flow edges computed
following the rules in Definition 5.1 for all procedures, and Ev are value edges
computed following Definition 5.3.

Moreover, some nodes in the L-AST have to be labelled indicating what kind
of nodes they are. These labels are used to generate the so-called DEC, DEF,
USE, and EXP sets that contain variable-declaration nodes, variable-definition
nodes, variable-use nodes, and expression nodes, respectively. For instance, in
Figure 5.9, all nodes belong to the EXP set, and the x and y nodes also belong
to the DEF set. Any AST labelled with these node sets and with control flow
and value edges is valid to be handled by our technique.

Transforming labelled ASTs for program slicing
L-ASTs are the starting graphs of the EDG and they need to be properly trans-
formed to be suitable for program slicing (Figure 5.10 shows the L-AST trans-
formation of y = 20 expression). The L-AST transformation basically consists

5.2. From ASTs to EDGs 105

in:

1. Add a new “result” node associated with each expression (i.e., each AST
node labelled as EXP). It represents the value the expression is evaluated
to during the execution.

2. All value edges are moved to the corresponding result nodes (e.g., the edge
from assign to y now goes from the result of assign to the result of y).
Furthermore, all outgoing control flow edges are moved to the associated
result node (e.g., the edge from assign to y now goes from the result of
assign to y) except for the enter/exit nodes, where the edges moved to the
corresponding result node are the incoming control flow edges instead the
outgoing ones. This way, the CFG has now two differentiated enter and
exit nodes and control dependence algorithms can be correctly applied.

3. Add value and control flow edges from every expression to its correspond-
ing result node. This value edge makes every result node dependent on
the expression it represents. These three steps also prevent the loops that
happen in other approaches [103, 107]. For instance, the loop between
assign and 20 disappeared.

4. Remove all structural edges between expression nodes. This step re-
moves syntactical intra-statement dependences that are not needed. For
instance, in Figure 5.10, the structural edge between assign and 20 repre-
sents an unnecessary dependence because 20 is not influenced in any way
by assign. Other approaches that keep the structural edges (e.g., [103,
107, 188]) employ them as a false dependence and this compromises the
precision of their slices. In this particular example, they would produce
the slice “= 20” when 20 is the slicing criterion.

20y

assign

…

20

…

assign result

resulty result

Structural Edge Control Flow Edge Value Edge

20

…

assign result

resulty result

Figure 5.10: L-AST transformation for y = 20

This new expression-result structure is useful when traversing the graph
because they divide node’s responsibilities by separating each expression from
its result. For instance, in the right graph of Figure 5.10 obtained from the
transformation, selecting literal 20 does not include any other node in the slice

106 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

because node 20 has no dependences in the graph. Note also that the original
nodes are maintained in the transformation. This allows for selecting any ex-
pression without being interested in its value. For instance, selecting the y node
as the slicing criterion does not include literal 20 in the slice. This is useful to
reason about how the execution reached that point (control dependences needed
to reach a particular point of the program). In contrast, if the value of y were
of interest then its result node should be selected as the slicing criterion and,
in such a case, literal 20 would be reached and included in the slice.

Algorithm 5.1 formalizes the transformation of the labeled AST. The auxil-
iary function R(n) returns the result node of n. If n is not an expression node,
then R(n) returns n.

Algorithm 5.1 L-AST transformation
Input: A L-AST G = (N, E) where E = Es ∪ Ecf ∪ Ev.
Output: A transformed graph G′ = (N ′, E ′) where E ′ = E ′s ∪ E ′cf ∪ E ′v.

▷ Replace each expression node with a expression-result structure
1: N ′ ← N ∪ {R(n) | n ∈ N ∧ n ∈ EXP}

▷ Treat existing value edges Ev and control flow edges Ecf

▷ EE represents the set of enter/exit nodes of all procedures
2: E ′v ← {(R(n), R(n′)) | (n, n′) ∈ Ev}
3: E ′cf ← {(R(n), n′) | (n, n′) ∈ Ecf ∧ n ̸∈ EE}
4: E ′cf ← E ′cf ∪ {(n, n′) | (n, n′) ∈ Ecf ∧ n ∈ EE}
5: E ′cf ← E ′cf ∪ {(R(n), R(n′)) | (n, n′) ∈ E ′cf ∧ n′ ∈ EE}

▷ Add new value and control flow edges between expressions and results
6: E ′v ← E ′v ∪ {(n, R(n)) | n ∈ N ∧ n ∈ EXP}
7: E ′cf ← E ′cf ∪ {(n, R(n)) | n ∈ N ∧ n ∈ EXP}

▷ Remove structural edges in expressions
8: E ′s ← {(n, n′) | (n, n′) ∈ Es ∧ (n ̸∈ EXP ∨ n′ ̸∈ EXP)}

Definition 5.5 (Transformed L-AST). A transformed L-AST (TL-AST) is the
graph obtained as the output of Algorithm 5.1 with a L-AST as input.

Theorem 5.1 (TL-AST completeness). Let G be a L-AST with a node n ∈ G.
Let G′ be its associated TL-AST (obtained by applying Algorithm 5.1 to G). If
the slice s in G with respect to n is complete, then the slice s′ in G′ with respect
to n is also complete.

This theorem states that the TL-AST transformation does not produce any
loss of relevant information, so that slices computed on the TL-AST are still
complete. Note however that s and s′ are not necessarily equal. This means
that irrelevant information could be removed in s′. This will be stated later in
a corollary of this theorem.

Recall that, in our context, a slice is complete if and only if it contains all
the code that affects the values computed at the slicing criterion. Therefore,
if we assume that value edges are correct (recall also that they are provided
by the user), then the slice in G with respect to n is complete because the
L-AST represents a single expression where all inter-dependences among nodes

5.2. From ASTs to EDGs 107

are given by structural (AST) edges (which we can assume correct because they
are provided by the language) and value edges.

In order to prove Theorem 5.1, we need to consider the changes the TL-
AST transformation introduces. These changes only affect expression nodes,
so we build the proof over three independent lemmas according to the kind of
edges implied in the transformation (namely, control flow edges, value edges,
and structural edges). The rest of edges affecting the computation of the slice
(control, flow, summary, etc.) are not affected by the transformation, so we do
not need to consider them in the proof.

In the following lemmas and their corresponding proofs, we consider a L-
AST as a graph G = (N, Ecf , Ev, Es), and its associated TL-AST as a graph
G′ = (N ′, E ′cf , E ′v, E ′s). Therefore, N ⊆ N ′. We also consider the set EXP of
expressions in G, and function R :: N → N ′ where R(n) returns the result node
associated to node n (if the selected node is not an expression it returns the
node itself).

The first lemma states that the TL-AST transformation does not affect the
control flow. Roughly, the path of control flow edges followed in the L-AST
is also followed in the TL-AST (only some result nodes are inserted into the
path).

Lemma 5.1. Control flow preservation. Given a L-AST, its control flow is
preserved in its associated TL-AST: the traversal of the TL-AST nodes through
control flow edges visits all nodes of the L-AST and in the same order as the
traversal of the L-AST.

Proof. First, every node in the L-AST is also present in the TL-AST (N ⊆ N ′).
Second, step (1) of Algorithm 5.1 includes a result node in N ′ for each expression
node in N (N ′ = N ∪{R(n) | n ∈ N ∧n ∈ EXP}). Moreover, in Algorithm 5.1,
due to steps (3) and (7), we have that {∀n, n′ ∈ N, n ∈ EXP, n ̸∈ EE | (n, n′) ∈
Ecf → (n, R(n)) ∈ E ′cf ∧ (R(n), n′) ∈ E ′cf}, where EE is the set of enter/exit
nodes of all procedures. Therefore, all the L-AST expression nodes connected
to another node by a control flow edge are now transitively connected to the
same node by means of their associated result node (except for enter nodes,
which remain connected in the same way). No more connections are added in
E ′cf , so all nodes in the L-AST are traversed in the TL-AST in the same order
when we only follow control flow edges.

The second lemma states that if a node n′ ∈ N is reached from node n via
value edges in G, then, node R(n′) is also reached from node R(n) via value
edges in G′.

Lemma 5.2. Value dependence preservation. ∀n, n′ ∈ N . (n, n′) ∈ E∗v →
(R(n), R(n′)) ∈ E ′∗v , where E∗v (respectively E ′∗v) represents the transitive closure
of Ev (respectively E ′v).

Proof. First, there is a result node in N ′ for each expression node in N (N ′ =
N ∪ {R(n) | n ∈ N ∧ n ∈ EXP}). This is ensured by step (1) of Algorithm 5.1.
Second, in Algorithm 5.1, due to step (2), we have that {∀m, m′ ∈ N, m, m′ ∈
EXP | (m, m′) ∈ Ev → (R(m), R(m′)) ∈ E ′v}. Hence, the nodes directly

108 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

connected in L-AST by value edges are also has they result nodes directly
connected in the associated TL-AST and the lemma trivially holds.

The third lemma shows that structural edges between two expression nodes
are redundant in the slicing phase due to value edges. Thus, removing them
does not affect the completeness of the slices computed.

Lemma 5.3. Unnecessary structural dependence. Let G = (N, Ecf , Ev, Es) be
a L-AST with a node n ∈ G. Let G′ = (N, Ecf , Ev, E ′s) be a modified L-AST
where E ′s = {(n, n′) | (n, n′) ∈ Es ∧ (n ̸∈ EXP ∨ n′ ̸∈ EXP)}. If the slice s in
G with respect to n ∈ N is complete, then the slice s′ in G′ with respect to n is
also complete.

Proof. First, given a node n inside an expression e, the slice with respect to
the slicing criterion n must contain all the nodes in e that may affect the value
computed at n. Therefore, according to Definition 5.2, s and s′ must contain
all nodes that are value dependent on n.

We prove this lemma by induction on the size of e.
(Base case) First, in the case that e only contains one node, then the lemma

holds trivially because there are no structural edges removed, and so G = G′.
In the case that e contains two nodes (n and n′, with (n, n′) ∈ Es), we have two
possibilities:

1. If the structural edge is not removed, then G = G′ and the lemma holds.

2. If the structural edge is removed, then two cases exist:

(a) (n, n′) ∈ Ev: In this case, either if the slicing criterion is n or n′, s′

is complete because the path defined by the removed structural edge
still exists thanks to the value edge.

(b) (n, n′) ̸∈ Ev: In this case, when n′ is the slicing criterion, s′ is still
complete even if n is not included in the slice (so, the structural edge
can be removed) because the value of n is not required to compute
the value of n′ (otherwise, there would exist a value edge between
them). Thus, s′ is complete and the claim holds.

(Induction hypothesis) We assume as the induction that the lemma holds
for an expression formed from i nodes.

(Inductive case) We prove that the lemma holds for any expression with i+1
nodes. Because the L-AST is a tree if we only consider structural edges, then,
the new node m must be only connected to one node in e with a new structural
edge.

Now, we have the following cases:

1. If the new structural edge is not removed, then G = G′ and by the induc-
tion hypothesis the lemma holds.

2. If the structural edge is removed, then let m′ ∈ N be the AST ancestor
of m (i.e., (m′, m) ∈ Es). We only have to prove that m′ is included in s′

when it affects the value of m. Because value edges (Definition 5.3) are

5.2. From ASTs to EDGs 109

the transitive reduction of value dependence (Definition 5.2), if m is value
dependent on m′ then ∃(m′, m) ∈ E∗v , where E∗v represents the transitive
closure of Ev. Therefore, s′ is complete and the lemma holds.

Now we can prove the main theorem.

Proof. (Theorem 5.1). First of all, in order to preserve the execution paths nec-
essary to compute later dependences, it is mandatory to fulfil that {∀(n, n′) ∈
Ecf → (n, n′) ∈ E ′∗cf}, where E ′∗cf represents the transitive closure of E ′cf . This is
ensured by Lemma 5.1, which allows Algorithm 5.2 to compute the same depen-
dences for both G and G′. Second, after the modifications to value dependence
edges performed in Algorithm 5.1, the value dependences defined between the
nodes in G must be preserved in the nodes of G′. The introduction of the result
nodes in step (1), which stand for the value of their associated expressions, del-
egate this dependence to result nodes (R(n)) that are always value dependent
of their associated expression node {∀n ∈ N, n ∈ EXP | (n, R(n)) ∈ E ′v}.
Hence, G′ must fulfil that {∀n, n′ ∈ N . (n′, n) ∈ E∗v → (n′, R(n)) ∈ E ′∗v },
where E ′∗v represents the transitive closure of E ′v. This property is granted by
Lemma 5.2. Finally, the removal of structural edges between expression nodes
in G performed in Algorithm 5.1 must not affect the completeness of the slice
s′ computed over G′. Lemma 5.3 proves that the removal of those edges over
G does not affect the completeness of the slice s with respect to any slicing cri-
terion n. Since structural edges have no effect on any other edge modifications
performed by Algorithm 5.1, their removal can be performed as a pre-processing
of G or, as in Algorithm 5.1, at the end of the TL-AST transformation process.
Either way this transformation does not affect the completeness of s′. Thus,
all the steps of Algorithm 5.1 have been proven to preserve the dependences
between the nodes of G (Lemma 5.1 and Lemma 5.2) and the completeness of
the slice s′ computed over G′ (Lemma 5.3).

Additionally, from the property proved at Lemma 5.3, we can derive the
following corollary.

Corollary 5.1. Precision improvement for the TL-AST. Let s be a slice com-
puted on a L-AST G = (N, E) with the slicing criterion n ∈ N , and let s′ be
the slice computed on the associated TL-AST G′ with the same slicing criterion
n. s′ ⊆ s.

Proof. (Sketch). If the TL-AST transformation does not remove structural
edges from G, then, according to Lemma 5.2 and Lemma 5.3, s = s′. If the
TL-AST transformation does remove structural edges from G, then the removed
edges may produce s′ to be smaller than s, in the case that the nodes connected
with a path of structural edges (including the removed ones) in the L-AST is
not connected also with a path of value edges (see the proof of Lemma 5.3). An
example where s′ ⊂ s can be seen in Figure 5.10 (left and right) if we consider
20 as the slicing criterion.

110 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

Equipping the graph with dependence edges
The TL-AST obtained by applying Algorithm 5.1 is ready to be equipped with
the usual edges of program slicing, i.e., control, flow, call, input, output, and
summary edges. In this section, we first explain how to equip the TL-AST with
control and flow edges and then the resulting graph is adapted to interprocedural
slicing.

The original control dependence definition (Definition 2.7) is still valid in
the EDG because the properties in Definition 5.4 make the control flow edges
in the TL-AST provide the same information as the one in the CFG. The flow
dependence definition (Definition 2.8) considers Definition-Use dependences,
and it is also valid in the EDG. Unfortunately, none of them account for variables
that are declared and later defined. For instance, in the two first lines in the
code of Problem 5.2 there does not exist a dependence between (1,x) and (2,x)
captured by the SDG. Neither data nor control dependence exist because (1,x)
is not a definition, but a declaration.1 Therefore we provide a definition that
considers Declaration-Definition dependences in typed languages.

Definition 5.6 (Declaration Dependence). A node n2 is declaration dependent
on node n1 if n1 declares a variable x, n2 defines x, and there exists a control
flow path from n1 to n2.

Algorithm 5.2 formally defines how the TL-AST is equipped with control,
flow, and declaration edges.

Algorithm 5.2 Equipping TL-ASTs with control, flow, and declaration edges
Input: A TL-AST G = (N, E) where E = Es ∪ Ecf ∪ Ev.
Output: The graph G becomes an intraprocedural EDG.
1: Ec ← compute control dependence normally (Definition 2.7).

▷ FD stands for all pairs of nodes that are flow or declaration dependent. DEF and USE
stand for all nodes that are definitions or uses, respectively

2: Ed ← {(n, n′) | (n, n′) ∈ FD ∧ n′ ∈ DEF}
3: Ef ← {(R(n), R(n′)) | (n, n′) ∈ FD ∧ n′ ∈ USE}

▷ Control flow edges are no longer needed
4: E ← Es ∪ Ev ∪ Ec ∪ Ed ∪ Ef

In line 1, control edges are computed as in the SDG. Lines 2 and 3 compute
declaration edges (Ed) and flow edges (Ef). The declaration edges generated
for Ed leave from n (but not from R(n)), which ensures that the initialisation
of a variable is avoided when only its declaration is needed.

Example 5.3 (Control and declaration edges). An example of control and dec-
laration edges generated by Algorithm 5.2 is shown in Figure 5.11.

In the figure, there are six control edges. The declaration edge at the bottom
is generated from the Ed set in Algorithm 5.2. Because this edge leaves from

1The SDG needs a post-process to identify (and include) the declarations of all variables
included in the slice ((1,x) would be included in that post-process). This post-process solves
the problem of making the slice well-formed (and executable). However, the fact of not
explicitly representing declarations in the SDG prevents SDG-based analyses to handle this
information at slicing time, for instance to properly handle polymorphism.

5.2. From ASTs to EDGs 111

int y = 0;
if (x > 3)

y = 20;
if

20 result

assign result

y result

> resulty result 0 result

assign result

…

3 resultx result

Control Edge

Control Flow Edge

Value Edge

Declaration Edge

Structural Edge

Figure 5.11: Control and declaration edges generated by Al-
gorithm 5.2

the y node instead of from its result node, when the definition of y on the
right is included in the slice, its declaration on the left is also included but its
initialisation ignored.

The intraprocedural EDG obtained by applying Algorithm 5.2 now can be
augmented to treat interprocedural programs. Traditionally (see Section 2.1),
this is accomplished by (i) creating fictitious assignments for argument and pa-
rameter nodes and then (ii) adding call, input, output and summary edges. In
our approach, (i) we naturally (by construction) represent arguments and pa-
rameters in separate nodes without creating fictitious assignments, so the call
graph is enough to match the arguments and the parameters considering their
positions in each call/definition, and (ii) all edges are calculated in the same
way as in the SDG approximation. The main difference between the interpro-
cedural edges construction methods is that we connect result nodes instead of
variable nodes. Therefore, input (respectively output) edges connect the result
of actual-in (respectively formal-out) nodes with the result of formal-in (respec-
tively actual-out) nodes. To handle values returned by functions, the functions
are considered expressions (with their corresponding result node) and an output
edge connects this result node with the result node of the corresponding calls.
Finally, summary edges are added to the graph, connecting the result node of
the necessary parameters to the result node of the call, and slices are obtained
in exactly the same way as in the SDG approximation.

There is an interesting aspect in the TL-AST of Figure 5.11 related to types
that is worth mentioning. Note that in this specific TL-AST there does not
exist a node that explicitly represents the type int. This is not a problem,
it is just a possible AST representation. In fact, because the EDG is multi-
paradigm, it is able to represent typed and untyped languages. This is one
of the advantages of labelling the AST with extra information, including what
nodes are expressions, declarations, definitions, or uses. In this particular case,
the left y node has been labelled as a declaration with its type, and the right
y node has been labelled as a definition; and this is why there is a declaration
edge connecting them.

112 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

An EDG for the interprocedural code in Figure 5.12 is shown in Figure 5.13.
In this EDG, actual-out and formal-out nodes have been added for clarifica-
tion purposes. However, as it occurs in the SDG, they can be omitted if the
underlying variable cannot be modified inside the procedure.

int x = 0, y = 5;
x = 10;
if (foo(x, y)) {

x = y = 20;
}

boolean foo(int a, int b) {
return a == 10 | b == 15;

}

Figure 5.12: An interprocedural version of the code in Figure 5.2

foo(x, y)

boolean foo(int a, int b) {
return a == 10 | b == 15;

}

proc
foo

a result b result a result b result

return

y

…

call
foo

result

resultx result y resultx result

==

| result

result== result

b result 15 resulta result 10 result

Structural Edge
Value Edge

Flow Edge

Call/Input Edge

Output Edge
Summary Edge

result

Figure 5.13: An EDG for the code in Figure 5.12

Now that we have presented the SDG and the EDG, we can state an inter-
esting result: the EDG is a generalisation of the SDG.

Theorem 5.2 (SDG generalisation). Given a SDG, there always exist an equiv-
alent EDG with the same nodes and edges.

Proof. We prove this theorem by showing that an SDG is an instance of an
EDG where all nodes are statements (no expression nodes exist). Let P be a
program, CFGP be the control flow graph of P , and (N, E) be the SDG of P .
First, we can always construct an AST of P , ASTP , where the AST nodes (N ′)
are only the statements in P . Therefore, N = N ′.

5.3. Slicing the EDG 113

Second, the L-AST P is the AST labelled with control flow edges and value
edges. Because N = N ′, no SDG node has been broken down, and thus no
value edge exist because value dependence only appears when breaking down
an SDG node (value edges represent intra-statement dependences).

Third, because N = N ′ and L-AST P is the AST labelled with control
flow edges, then for each procedure p of P , CFGp is equal to L-AST p if we
just ignore the structural edges. Moreover, if we consider all AST nodes as
statements (EXP(N ′) = ∅), then the transformation to TL-AST P would not
contain value edges either because only expressions contain value edges accord-
ing to Algorithm 5.1, and no node would be decomposed. This is true because
only expression nodes are exploded and equipped with additional result nodes.
Therefore, L-AST P = TL-AST P if we ignore the declaration edges. Finally, to
build the EDG from TL-AST P we would need to add:

Control dependence edges: According to Algorithm 5.2, they are the same
in the SDG and the EDG because N = N ′ and CFGP = TL-AST P .

Flow edges: According to Algorithm 5.2, they are equivalent because N = N ′

and, thus, DEF (N) = DEF (N ′) and USE(N) = USE(N ′).

Call / input / output edges: They are equivalent because N = N ′ and they
use the same algorithm to be constructed.

Summary edges: They are equivalent because they use the same algorithm to
be constructed based on the previous three sets of edges, which are equiv-
alent in both graphs. Therefore, the same paths would be summarised.

Because N = N ′ and all edges are equivalent, then SDGP = EDGP .

5.3 Slicing the EDG
The algorithm that slices the EDG is exactly the same as the algorithm that
slices the SDG. The classical Weisser’s algorithm [204], the interprocedural algo-
rithm by Horwitz et al. [85], and later improvements such as [16, 169] are all of
them directly applicable to the EDG. This is the beauty of the EDG: it follows
(and extends) the same principles of the SDG: a backward traversal of the EDG
from the slicing criterion produces a complete well-formed slice. Moreover, all
additional slicing restrictions used to improve the precision of slices for partic-
ular program structures (like the one introduced for the slice of unconditional
jumps [109] or exception handling [62]) can be directly applied to the EDG
in the same way they are to the SDG. Other techniques, nevertheless, need
to define ad-hoc algorithms for their extensions. For instance, the fine-grained
graph representation defined by Krinke and Snelting [103, 107] introduced some
traversal restrictions in the slicing algorithm to avoid including in the slice some
irrelevant subexpressions (e.g., some operands in binary operations —see the
related work section—).

114 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

5.4 Solving SDG limitations
This section shows how the five previously described problems are solved by the
EDG without making any kind of special treatment to any language structure.
In all the figures, the slicing criterion is represented with a bold-border node,
and all the nodes in the slice are represented in grey.

Extraction of embedded definitions
Figure 5.14 shows the EDG of the scenario shown in Problem 5.1. In the EDG,
the assignment in line 4 is represented with 14 different nodes, where only the
2 nodes representing the definition of variable b in b++ are included in the slice,
ignoring the rest of the assignment nodes.

entry

assign result

call
baz

resultc result

call
bar

assign result

resultb result

call
foo

assign result

resulta result

Structural Edge

Value Edge

Flow Edge

1 a = foo();
2 b = bar();
3 c = baz();
4 d = a * b++ * c;
5 e = b;

assign result

b resulte resultassign result

* resultd result

* resulta result

c resultb++ result

Figure 5.14: An EDG for the code in Problem 5.1 and
slice w.r.t. ⟨5, b⟩.

The way value dependences are defined inside the assignment of line 4 allows
the graph to include inner subexpressions (the b++ subexpression) preventing
to include the outer expression (the whole assignment). Additionally, flow de-
pendences include in the slice the previous definition of b, necessary to compute
the new one. This fact leads to the expected slice (Figure 5.1b), shown with
grey nodes in Figure 5.14.

Monolithic code
Figure 5.15 shows the EDG for the code in Figure 5.2 that solves the problem
presented in Problem 5.2. In the EDG, because structural edges are removed
inside expressions, the if node and the other elements of the if predicate are
correctly ignored. Moreover, the declaration and initialisation of variable y in
line 1 are included thanks to the flow edge.

5.4. Solving SDG limitations 115

if

entry

20

assign result

resulty result

assign result

x result

==

| result

result== result

y result call
foo

resultx result 10 result

assign result

10 resultx result

5

assign result

resulty result

0

assign result

resultx result

Control Edge

Structural Edge

Value Edge

Declaration Edge

Flow Edge

1 int x = 0, y = 5;
2 x = 10;
3 if (x == 10 | y == foo()) {
4 x = y = 20;
5 }

Figure 5.15: An EDG for the code in Problem 5.2 and
slice w.r.t. ⟨3, y⟩

try-catch structures
Figure 5.16 contains the EDG of the code given in Problem 5.3. This EDG
shows how a try-catch statement is represented by our graph. The key of our
model is the representation of the assignment in line 4. The right-hand side of
this assignment is the potential source of error that controls the whole catch
block. The structure that represents this statement makes use of variable b
in line 6 exclusively dependent on the definition of b in line 2, excluding the
definition of b in line 4 from the slice. Finally, the declaration edge from the
definition of b in line 2 to the declaration of b includes also line 1 in the slice.

for loops
The EDG also gives a new representation for for loops. Figure 5.17 shows
this new representation. In the EDG, the loop node is structurally connected
to each one of its components, and there are control dependences between the
condition and the body and update blocks. Additionally, each block is divided
into multiple statements which, in turn, are composed of a set of nodes.

In this case, the value of x selected as the slicing criterion, only depends on
the x definitions in the initialisation and update blocks. Since the update block
is represented by different nodes, it is trivial to exclude the it variable and all
its dependences from the slice.

List comprehensions
This EDG in Figure 5.18 shows the representation of a common structure in
functional programming, the list comprehension. In a list comprehension, each
component is control dependent on the previous one because even the pattern

116 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

try

entry

call
f

result

a result

assign result

b result

10

assign result

resultb result

b result

Control Edge

Structural Edge

Value Edge

Declaration Edge

Flow Edge

1 int b;
2 b = 10;
3 try {
4 b = f(a);
5 } catch (Exception e) {
6 log(b);
7 }

catch

resulte call
log

result

b result

Summary Edge

Figure 5.16: An EDG for the code in Problem 5.3 and
slice w.r.t. ⟨6, b⟩

entry

for

1

assign result

resultx result

0

assign result

resultit result

Structural Edge

Value Edge

Flow Edge

1 it = 0;
2 for(x = 1; x < 10; x += 2, it++) {
3 print(x);
4 }
5 print(it);

call
print result

it result
+= result

2 resultx result

call
print result

x result

< result

10 resultx result

it++ result

Control Edge

Figure 5.17: An EDG for the code in Problem 5.4 and
slice w.r.t. ⟨3, x⟩

matching executed as the first element may prevent the evaluation of later
executed components (other generators, filters, and the expression). In this
case, the slicing criterion is located in the generator, so there is no need to
include in the slice components that are executed after it, like filters or the
expression. Additionally, since the slicing criterion is a single element of a tuple
expression, the granularity of the EDG allows us to ignore the rest of elements,
including in the slice only the container expression (the tuple signature) and
the variable that provides the values at the generator (L1).

5.5. Implementation 117

lc

entry

Y result

{} result

X result

Control Edge

Structural Edge

Value Edge

Flow Edge result

L1 result

1 result

> result

X result 2 result

< result

Y result

[] result

[] resultX result

[] resultY result

[[X,Y] || {X,Y} <- L1, X < 1, Y > 2]

gen

Figure 5.18: An EDG for the code in Problem 5.5 and
slice w.r.t. ⟨1, X⟩

5.5 Implementation
All the algorithms described in this paper have been implemented in a pro-
gram slicer called e-Knife. e-Knife is a program slicer that operates over the
sequential part of the Erlang language. e-Knife is implemented in Java and
operates with the EDG as its base representation graph. Given an Erlang pro-
gram and a slicing criterion, e-Knife generates the corresponding EDG and it
slices it with a high level of precision. The e-Knife project is composed of
two different modules: e-Knife and EDG. While the e-Knife module represents
the language-dependent part of the EDG model including parsing, unparsing,
and CFG building, among other processes; the EDG module represents the
language-independent part, including dependences computation and slicing al-
gorithms. Counting both modules, the implementation is composed of more
than 9600 lines of code, divided into 51 Java files classified in 13 different pack-
ages. All the source code is publicly available at https://mist.dsic.upv.es/
git/program-slicing/e-knife-erlang and a limited demo to try the tool
can be found at https://mist.dsic.upv.es/e-knife-constrained/.

Figure 5.19 shows the most relevant modules and classes of e-Knife, and
how they are connected in order to compute a slice from a given Erlang pro-
gram. In the figure, we differentiate two main modules in the implementation
(represented with rounded squares): the module that specifies the language-
dependent part of the slicer (eKnife) and the module that specifies the language-
independent part of the slicer (EDG). Additionally, in Figure 5.19 squares rep-
resent Java classes inside these modules, solid arrows represent calls between
classes (sometimes between different modules), and dashed arrows represent the
input/output resources of the slicer.

Although the implementation contains 51 classes, Figure 5.19 only shows
the communication between the most relevant 13 to give a general idea of the
whole process. Each one of these classes and the functionality they provide is
the following:

• EKnife. This class manages the whole slicing process. It is the class that

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/

118 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

CFGGenerator

ErlangLASTFactory

Erlang
Program

ValueGenerator

LANGUAGE-INDEPENDENT (EDG Module)

EKnife EDGFactory

LASTFactory

LASTBuilder

ControlEdgeGen

InterproceduralEdgeGen

FlowEdgeGen

SummaryEdgeGen
Slicing Algorithm

StandardAlg

ErlangCodeFactory
Erlang
Slice

Method Call
Input/Output Resource

LANGUAGE-DEPENDENT (eKnife Module)

Figure 5.19: e-Knife architecture and communication
between modules

calls to all the other classes passing the results they provide to the next
step of the process (i.e., after creating the LAST, this class passes it to
the EDGFactory class to create the TLAST and the final EDG).

• ErlangLASTFactory. This class is the one that manages the process to
build the LAST. First, the class extracts the AST of the given program
and transforms this AST (usually contained in a recursive sequence of
elements) to an internal graph-like representation by successively calling
methods defined at the LASTFactory class. This class additionally classi-
fies each AST element it processes as declaration, definition, use, and/or
expression to form the so-called DEC,DEF,USE, and EXP sets. Finally,
control flow and value dependences are given to the created AST by
traversing the AST with a call to the CFGGenerator and ValueGenerator
classes respectively, obtaining the LAST.

• LASTFactory. The LASTFactory class is in the language-independent
module that works with generic elements. The idea is for the language-
dependent class (ErlangLastFactory in this case) to extend this Java
class. This class gives a generic treatment to the AST provided by a
specific language. It contains methods that classify an AST element, cre-
ates its associated new nodes in the internal graph representation (through
calls to LASTBuilder), joins these nodes with structural dependences, and
recursively processes the next AST subelement.

• LASTBuilder. This class creates the nodes in the internal graph and
correctly connects them to their corresponding AST parent. Its methods
receive a type of node and any extra information important to store inside
the node for dependence computation, e.g., whether it is a definition or a
use, or whether it is an expression or not.

5.5. Implementation 119

• CFGGenerator. This generator class is responsible for generating a CFG
over the AST previously computed in ErlangLASTFactory. The CFG is
dependent on the language being treated, because the flow of the execution
may change according to certain features of the language, e.g., eager or
lazy evaluation.

• ValueGenerator. This class traverses the AST generated in ErlangLAST-
Factory and includes in the graph the value dependences, which are com-
puted according to the execution and semantics of the programming lan-
guage being treated.

• EDGFactory. The EDGFactory class implements Algorithms 5.1 and 5.2.
To implement Algorithm 5.2 it makes use of four different Java classes:
ControlEdgeGen, FlowEdgeGen, InterproceduralEdgeGen, and Summar-
yEdgeGen.

• ControlEdgeGen. This class receives a LAST and it uses its CFG to
compute control edges using the post-dominator tree algorithm [154].

• FlowEdgeGen. This class receives a LAST and uses the CFG and the DEC,
DEF, and USE sets (information contained inside each LAST node) to
traverse the graph and compute declaration and flow edges.

• InterproceduralEdgeGen. This class receives a LAST and generates the
input and output edges by computing a call graph and linking each method
call to the possible called method definition.

• SummaryEdgeGen. This class computes the summary edges by applying
the intraprocedural slicing algorithm for each method definition that can
be reached in the call graph.

• StandardAlg. This class implements the interprocedural slicing algorithm
proposed by Horwitz (it is shown in Section 2.2 of Chapter 2).

• ErlangCodeFactory. This class is language-dependent and it is responsi-
ble for transforming the resulting sliced EDG back to Erlang code, travers-
ing the EDG and excluding from the code transformation those nodes that
are not part of the slice.

Despite explaining only the main 13 classes, the rest of Java classes are part
of the EDG’s infrastructure and support each process performed by these 13
classes. Some of them represent other implementation requirements like the
inner structure of the graph (Node, Edge, GraphWithRoot, LAST, EDG...), the
representation of key elements like the slicing criterion (SlicingCriterion), or
the visual representation of the graph (DotFactory and PdfFactory), among
other features. The whole project with all the source code implemented can be
found in the Github repository:

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang

120 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

5.6 Empirical evaluation
We conducted experiments to empirically evaluate the precision and perfor-
mance of the new slicing library and program slicer. These experiments provide
a precise and quantitative idea of the performance of the EDG compared to the
SDG.

To establish a goal for the empirical evaluation, we ask two research ques-
tions, comparing the EDG to the SDG:

RQ1. What are the resource requirements required to create a slice with the
EDG compared with the SDG? This includes both generation and slic-
ing time requirements. To compare this values across larger and smaller
benchmarks, we compute the ratio between both graphs (tedg/tsdg) in both
parts of the process.

RQ2. What is the improvement in precision introduced by the EDG? Given
that we are comparing techniques over different graph representations, we
consider that the fairest comparison would be to compare the difference
between the sizes of the computed slices’ ASTs. For this reason use the
formula (A−B)/A where A is the size (number of AST nodes) of the slice
computed over the SDG and B is the size (number of AST nodes) of the
slice computed over the EDG.

Benchmarks and experiment design

In order to compare both implementations we have chosen Bencher [152], a
program slicing benchmark suite for Erlang. It contains 18 Erlang programs,
in which a variety of structures and program constructs can be found.

For each benchmark we run and measured the following steps: (1) generate
the EDG and the SDG, and (2) for every slicing criterion, slice the graph. To
create a fair selection of slicing criteria to adequately compare the EDG and the
SDG, we use as slicing criteria each variable in each line of the program. In the
EDG, this means selecting the result node of that variable; and in the SDG, this
is equivalent to a classic slicing criterion ⟨l, v⟩, which selects the whole statement
as criterion. This procedure is more fair and representative than selecting an
arbitrary slicing criterion because it allows us to answer both research questions
w.r.t. any situation, and thus obtain valid average metrics for each benchmark.
Moreover, this methodology avoids that the arbitrary selection of one slicing
criterion benefits one of the program representations (EDG/SDG).

RQ2 only requires each combination of benchmark and slicing criterion to
be run once, as it compares the resulting slices against the original program and
the slicing process is deterministic. On the other hand, RQ1 requires running
each combination repeatedly, in order to obtain the average consumption of
time and memory.

All experiments were run on a 1.4 GHz Quad-Core Intel Core i5 proces-
sor with 8 GB RAM 2133 MHz LPDDR3 under macOs Version 11.5, while all
other non-critical processes were stopped. We strictly followed the methodology
proposed in [67]. Each operation (building or slicing a graph) was performed

5.6. Empirical evaluation 121

File Graph Generation Slicing
tEDG tSDG # SCs Prec. Inc. (%) tEDG tSDG

bench1.erl 3310.33ms 1823.74ms 284 1.90± 0.95% 2038.09µs 249.21µs
bench2.erl 82.94ms 47.30ms 66 23.47± 6.13% 93.96µs 37.48µs
bench3.erl 34.79ms 18.85ms 25 19.88± 9.32% 40.08µs 16.65µs
bench4.erl 30.72ms 20.19ms 39 36.33± 6.77% 81.53µs 24.18µs
bench5.erl 17.52ms 10.46ms 17 14.71± 8.00% 46.02µs 20.14µs
bench6.erl 60.29ms 33.58ms 54 28.00± 8.00% 40.09µs 17.73µs
bench7.erl 7.03ms 4.12ms 12 11.41± 9.00% 30.54µs 14.61µs
bench8.erl 100.29ms 55.16ms 46 7.92± 1.73% 207.04µs 61.78µs
bench9.erl 37.92ms 22.33ms 26 4.74± 2.94% 132.46µs 33.36µs
bench10.erl 133.62ms 82.04ms 55 5.83± 3.25% 257.03µs 75.40µs
bench11.erl 10.05ms 6.01ms 18 15.48± 6.54% 36.37µs 15.79µs
bench12.erl 515.01ms 365.00ms 142 8.12± 3.30% 700.97µs 228.78µs
bench13.erl 28.55ms 17.08ms 28 3.62± 2.85% 129.21µs 47.47µs
bench14.erl 175.78ms 98.50ms 61 35.83± 7.96% 98.21µs 34.92µs
bench15.erl 276.32ms 158.93ms 77 46.36± 7.29% 216.28µs 71.57µs
bench16.erl 119.00ms 65.18ms 42 19.99± 9.27% 122.55µs 45.19µs
bench17.erl 65.83ms 36.73ms 25 0.26± 0.50% 167.44µs 65.54µs
bench18.erl 74.83ms 43.36ms 29 0.17± 0.34% 271.28µs 103.11µs
Average 282.27ms 161.59ms 1046 14.20±4.12 729.71µs 126.39µs

Table 5.1: Results of the experimental evaluation comparing
the SDG and the EDG

1001 consecutive times (over one million slices in total). To ensure real inde-
pendence, the first iteration was always discarded (to avoid influence of data
and code caches). From the 1000 remaining iterations we retained all windows
of 10 measurements where steady-state performance was reached, i.e., once the
coefficient of variation (CoV, the standard deviation divided by the mean) of
the 10 iterations falls below a preset threshold of 0.01. In all cases we selected
the steady-state performance window whose average was closer to the mean of
the complete sample. In some benchmarks 0.01 was difficult to reach in 1000
iterations; so in those cases, we took the window of 10 iterations with lower
CoV. Then, for each pair benchmark-criterion, we computed the mean of the
10 iterations under steady-state performance. We collected this mean for each
criterion of a benchmark to produce the mean and standard deviation for said
benchmark.

Results

This process was repeated for the 18 benchmarks, totalling 1046 different slicing
criteria. The precision and time measurements collected are shown in Table 5.1.

Each benchmark is identified by columns Benchmark and File. The rest of
the table is divided between the generation and slicing of each graph. In the
generation, there are two columns showing the average time required to build
each benchmark’s EDG and SDG computed with the steady-state performance
window described before. The slicing part of the table shows the number of slic-
ing criteria (#SCs) selected for that benchmark; the average precision increase

122 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

with 95% error margins2 (Prec. Inc.), as described in RQ2; and the average
time (also computed with the steady-state performance window) required to
produce a slice in each graph.

To answer RQ2, we must look at the average precision improvement for
the EDG, which is 14.20%. This means that we can expect EDG slices to
be 14.20% smaller than their SDG counterparts. Regarding RQ1, the EDG
requires 5.77 times more time to produce a slice; which is expected, considering
that the EDG is bigger than the SDG. However, the extra time required for this
improvement is very small considering that times are measured in microseconds:
the average slicing time in the EDG (a linear cost operation) lasts, in average, 0.6
milliseconds more (up to 1.8 milliseconds in the worst case scenario) than doing
so from the equivalent SDG. Constructing the EDG (a quadratic cost operation)
lasts, in average, 121 milliseconds (up to 1500 milliseconds in the worst case
scenario) more than constructing the SDG, but this cost is traditionally less
important, because once a graph has been built, any number of slices can be
extracted from it.

If we look again at the precision improvement, we can observe in the error
high error margins (up to 9.32% in bench3.erl). This is due to the differences
in the slicing criteria selected: some slicing criteria produce the same slice
(thus, the improvement is zero), other slicing criteria, however, produce a big
improvement (e.g., because just some subexpression is needed and the EDG
can just pick it, without including the full statement). This confirms something
expected: the different slicing criteria has a very big impact on the slices.

It is worth mentioning that, error margins of the time required to slice are
big. This can be explained easily: some slicing criteria produced big slices with
its corresponding longer traversal time, while other slicing criteria produced
very small slices (e.g., the slice of the first variable in a function).

5.7 Related Work
The idea of a fine-grained SDG is not new. In fact, it is almost as old as
the PDG itself, since it was already discussed by Ottenstein and Ottenstein in
[147]. However the first fine-grained program slicing technique was proposed
one decade later by Ernst [55]. Ernst proposal, however, was not based on the
PDG/SDG, but on another program representation called the Value Depen-
dence Graph (VDG) [203]. Soon, Kinloch and Munro [97] presented several
ideas about how to do so in the PDG/SDG. They proposed to create extra
graph vertices whenever a sub-expression contains side effects or control flow.
Later on, Sloane and Holdsworth [182] proposed to use annotated ASTs to slice
expressions. Their approach was pioneer and has the same spirit as our work.
The same idea was explored by Steindl [188], who coined the term “expression-
oriented slicing” (in contrast to “statement-oriented slicing”). However, the
technique by Steindl was specifically focussed on object-oriented programs. He

2Recall that the EDG is always as least as precise as the SDG, thus even if the error
margins suggest otherwise, the minimum increase is always zero.

5.7. Related Work 123

described how to solve particular problems of that paradigm (polymorphism,
encapsulation...) but a description of how to annotate the ASTs was missing.

Krinke and Snelting [103, 107] took a step forward in the same direction
and they proposed a general extension of the AST with the introduction of new
dependences: the immediate (control) dependence (in x+y, x and y are imme-
diate dependent on +), a kind of intra-expression data dependence called value
dependence, and the reference dependence to represent variable assignments.
This work is a source of inspiration and is the basis of our work. In fact, our
notion of value dependence comprises their value and reference dependence; and
their immediate dependence is very similar to our structural dependence (both
represent the AST structure). With respect to the slicing algorithm, due to
the existence of dependence loops, they had to modify it: they do not traverse
value dependence edges if the actual node has been reached by an immediate
dependence edge and vice versa. Our work further generalizes this approach
with various extensions, being the most important the introduction of the re-
sult node. Apart from the already explained advantages, result nodes together
with the removal of the structural dependences (the AST structure) in expres-
sions prevent the occurrence of loops, and thus, the necessity of changing the
slicing phase.

One important difference with [107] and [103] is that we explicitly represent
the value flow between expression components. Moreover, in contrast to them,
where only variable nodes can be used as slicing criteria, in our work (and also
previously in [188]), any AST node can be the slicing criterion. This increases
the slicing capabilities and is particularly useful, e.g., for testing program slicers
[152].

Another important advantage of our approach is that it can work for any
AST (it is language-independent), as it has been shown with our EDG instan-
tiations for Java and Erlang (see the appendices). The whole EDG structure
depends on the control flow defined over the AST expressions, but not on the
AST itself, which can have any tree structure. Therefore, if the control flow
is provided all of our dependences can be constructed. We think that this is
the natural extension of the SDG, which also defines its dependences over the
statements control flow.

It is worth mentioning the work by Thomas Reps et al. [167, 169] to increase
the precision of the SDG. Their work relies on a different extension of the
SDG called the IFDS/IDE framework, and it was focussed on making program
slicing context-sensitive [1, 76, 105, 106] and field-sensitive [72, 123]. Their
extensions are based on the original SDG and roughly consist on the labelling
of the edges with information about calling context and about fields in data
structures. Therefore, this work also reduces the granularity of the slices in
the case of composite data structures. Unfortunately, many expressions and
program constructs cannot be handled with the propagation of fields. Their
work is orthogonal to ours, and it could be applied to the EDG. It would be
particularly interesting to apply the IFDS/IDE edges labelling to the EDG’s
intra-statement dependence edges. Both techniques are complementary and
their combination could produce an important synergy.

We believe that the EDG can open a door to the application of slicing

124 Chapter 5. Overcoming SDG Limits: The Expression Dependence Graph

techniques in the declarative paradigm. Program slicing has been traditionally
associated with the imperative paradigm. In fact, practically all slicing-based
techniques have been defined in the context of imperative programs and very
few works exist for declarative languages (notable exceptions are [57, 144, 168]).
However, the SDG has been adapted to other paradigms such as the object-
oriented paradigm [112, 118, 202] or the aspect-oriented paradigm [216].

The main problem when trying to adapt the SDG to a declarative language
is that the SDG is based on statements, while declarative languages are often
based on the composition of expressions. For instance, many Haskell programs
are composed of a single statement formed by the composition of several ex-
pressions:

quicksort (x : xs) = quicksort [a | a <- xs, a <= x]
++ [x] ++ quicksort [a | a <- xs, a > x]

In this Haskell program, no slicing is possible with the PDG/SDG. In con-
trast, the EDG defines flow dependences among the subexpressions that allow
us to extract slices without the need to transform the source code.

There have been previous attempts to define a PDG-like data structure for
functional languages. The first attempt to adapt the PDG to the functional
paradigm was [171] where they introduced the functional dependence graph
(FDG). Unfortunately, the FDGs are useful at a high abstraction level (i.e.,
they raise the granularity level of nodes to functions and, therefore, they can
only slice (complete) modules or functions), but they cannot slice expressions
and thus they are insufficient for, e.g., Haskell or Erlang. Another related ap-
proaches are the term dependence graphs (TDG) [32], the approach in [25] (that
uses the AST of Haskell), and the behavior dependence graphs (BDG) [199].
They are specific for term rewriting systems, Haskell, and Erlang, respectively.
Unfortunatelly, they lack important features of the SDG as other approaches
(e.g., [205, 206]). For instance, most of them lack of summary edges [85], which
prevents them to be precise in the interprocedural case. The most advanced
adaptation of the SDG to a functional language are the Erlang Dependence
Graphs [180]. This is a notable approach that breaks down nodes to represent
every single expression in the program (we were also inspired by this work and
we achieve the same minimal granularity level). Unfortunately, these graphs
are specific for Erlang.

The idea of applying slicing for programs written in different languages is
also present in [143], where PHP programs are linked with flows in embedded
languages like SQL, HTML, and JavaScript. Its novelty is how the different
language entities are linked in a generic way. In [157] the authors build a
dynamic program slicing that benefits from the Microsoft Common Language
Runtime (CLR) to be able to deal with all the .NET framework’s languages. A
relational approach to program slicing is presented in [200]. Their approach is
language-independent among the procedural languages thanks to a generalized
fact extraction. They define a set of common procedural program entities in
order to extract the facts. The EDG is a generalization of this approach because
their ASTs are just one particular case over which the EDG can be constructed.

5.7. Related Work 125

The observation-based slicing (ORBS) [20] is a paradigm-independent slicing
technique that iteratively removes lines from a program and checks whether the
observable behaviour is the desired one. This is checked for a particular set
of test cases. The lines are removed as text, i.e. without the need for any
parsing, which makes this approach applicable to any language without any
special treatment. However, the quality of the tests directly affects to the
quality of the result, in such a way that it can produce incomplete slices if the
test cases do not cover key points of the program. Another important problem
of ORBS and related approaches such as tree ORBS [21] (which deletes nodes—
instead of lines—from the tree representation of the program) is the slicing cost.
In many cases, deleting only one line/node results in a syntax error; and several
lines/nodes must be deleted to make the slice compilable. The combinatorial
explosion of deleting sets of lines/nodes can significantly increase the slicing
time due to its exponential cost [152].

127

Chapter 6

Quasi-Minimal Slicing to
Compare Program Slicers

Being able to compute minimal slices would speed up many software processes.
For instance, compilers use program slicing to remove dead code, and many
analyses use program slicing as a preprocessing stage to detect variable depen-
dences. Therefore, making slicing more accurate would also improve the later
analyses based on it.

Because computing minimal static slices is undecidable [204], almost all
program slicing techniques guarantee that their computed slices are complete
(i.e., they contain all statements that do influence the slicing criterion), but, in
general, they do not guarantee that their computed slices are correct (i.e., they
probably contain statements that do not influence the slicing criterion).

Example 6.1. Consider the following programs:

1 read(z)
2 x = 42;
3 y = 1;
4 x++;
5 if (z > 0) {
6 x--;
7 print(x);
8 }

(a) Original Program

read(z)
x = 42;
y = 1;
x++;
if (z > 0) {

x--;
print(x);

}

(b) Slice

read(z)
x = 42;
y = 1;
x++;
if (z > 0) {

x––;
print(x);

}

(c) Minimal Slice

Figure 6.1: Program with a possible slice and a minimal slice
w.r.t. ⟨7, x⟩

We can define the slicing criterion ⟨7, x⟩ in the original program. This means
that we are interested in all statements that are needed to compute the value of
x in line 7. The original code is a slice of itself, but there exist smaller slices.
For instance, the code in the middle is the slice computed by almost all current
static program slicers (e.g., this is the output of the Indus Java slicer [165] and
CodeSurfer [9]). However, the slice in the middle is not minimal. The minimal
slice of the original program is the code on the right. It would be difficult for
a slicer to compute this slice because line 7 is reachable via a control-flow path
from line 6, and line 6 defines variable x, which is used in line 7. Thus, most
slicers consider that line 6 does influence line 7. This reasoning is transitively
applied to lines 4 and 6. Hence, program slicers produce the code in the middle.

128 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

Example 6.1 illustrates how a tiny program without method calls and even
without loops, cannot be handled precisely by current program slicers. The
fact that computing minimal slices is undecidable in the general case does not,
however, prevent us from defining a procedure to compute minimal slices for a
given concrete program. Nevertheless, normally, even for very small programs,
this procedure would be computationally intractable [20, 212]. Unfortunately,
human intervention is often needed to produce minimal slices, and this is only
practical for small programs.

In this chapter we propose a method to compute quasi-minimal slices (Sec-
tions 6.1 and 6.2), which, roughly, are minimal slices for a given set of inputs
(this means that quasi-minimal slices may not be sound static slices, i.e., for all
possible sets of inputs). In many cases, we are interested in producing a slice
with respect to a given computation (known as minimal dynamic slice). For
instance, in debugging we are often interested in producing a slice of a program
that produced an error for a particular input because the slice produced is a
reduced version of the program that reproduces the wrong computation (and
that contains the error). In regression testing, after we test a new release of a
program with the regression tests, many different errors can show up. In this
situation, we can be interested in producing a slice for a given set of test cases
(known as minimal simultaneous dynamic slice).

Our method produces minimal dynamic slices and simultaneous dynamic
slices, and it can also produce static minimal slices in many cases. On the one
hand, if the input domain of a program is finite, we automatically produce all
possible input values, thus, producing a minimal static slice. On the other hand,
if the input domain is infinite, we provide an instrumentation based on concolic
testing [127, 176] to produce test cases that explore all possible branches (100%
branch coverage) of the program. This ensures in many cases that the produced
static slice is also minimal.

From the best of our knowledge, there does not exist any public repository
of benchmarks with minimal slices, and this is surprising, because a suite of
minimal slices is very useful for slicer developers. In particular, our group
have implemented several program slicers for different languages, including Petri
nets [125], XQuery [7], Erlang [180], and CSP [124]. Every time a new version of
the slicer was prepared, (e.g., with a new technique or feature, or just to correct
some bug) the same problem repeated: there is no mechanism to measure the
improvement achieved with the performed changes. What the group usually
do is to implement some new benchmarks and compare previous results with
new ones. This gives a measure of improvement. Contrarily, when a new
version is prepared, the ideal scenario would be to start a battery of tests that
automatically compare the new slices produced by our released code with a
gold standard (i.e., the minimal slices). This is exactly what we have done with
Erlang as target language. The elements used to implement the methodology
are shown in Section 6.3 and the suite of benchmarks obtained is described in
Section 6.4. The quasi-minimal program slices computed would allow us not
only to objectively measure the improvement of the new release, but also to
detect possible introduced problems in other parts of the slicer, and, e.g., to
fairly compare our tool with other tools.

6.1. Using ASTs to Improve Granularity 129

As an application of our method to produce quasi-minimal slices, in this work
we have obtained a reliable system to evaluate and compare program slicers.
This system inputs a program slicer and outputs a report about precision and
recall of this slicer with respect to a suite of minimal slices that have been
already computed. The system can also input two slicers and compare them. If
the two slicers are two releases of the same slicer, then the system can measure
the improvement achieved, but also identify errors introduced (or solved) in the
new slicer version.

6.1 Using ASTs to Improve Granularity
Although most program slicers that use dependence graphs use statements as
the unit when measuring slicing quality, there are other approaches where pro-
gram slices are measured in code lines. The reason is that these program slicing
techniques consider lines of code as atomic elements and, thus, they remove
a whole line or nothing [20, 49, 204]. For this reason, most of the work that
compares the precision of different program slicing techniques just compare the
retrieved number of lines (see, e.g., [19, 20]). Unfortunately, this is very sensitive
to the programming style, and moreover, it can be very imprecise, especially in
functional languages.

Example 6.2. Consider the Erlang program in Figure 6.2a and its minimal
slice in Figure 6.2b with respect to the slicing criterion ⟨10, B⟩. Observe that
some expressions have been replaced by _ or by the fresh atom sliced (see [16,
180]). This is needed to make the slice executable. Clearly, all methods based on
lines would not be able to remove the subexpressions that are not needed in lines
1, 2, 3, and 6. For instance, in line 2, C=B can be removed, but the programmer
initialized A, B, and C in a single line, and thus the whole line cannot be removed.
One can argue that a preprocessing phase could be used to refactor the code and
place all statements in different lines whenever it is possible. But this cannot
solve the second problem: sometimes only a subexpression can be removed in a
line. This is the case of variables Z, Y, and C in line 3.

To overcome these limitations, as already done by, e.g., CodeSurfer [9] or
in [180], in our method we propose to use expressions as the slicing criterion
so precision can be increased. We also reason about slices at the AST level,
so that instead of counting lines of code, we can measure the number of AST
nodes that belong to the slices, thus, producing a more precise measure.

In the method proposed in this chapter, besides a program P , a slicing
criterion C, and a set of inputs I, we also associate slices with the AST of P .
This is particularly useful to allow us to reason about the accuracy of slices.
Therefore, we need to adapt the notion of slicing criterion to ASTs. This can
be easily done by redefining a slicing criterion in such a way that the point of
interest is not an expression, but the AST node whose subtree represents that
expression. We define the slicing criterion and the dynamic slicing criterion in
terms of ASTs as follows:

130 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

1 main(X,Y) ->
2 A=1, B=A, C=B,
3 Z=foo(X,{Y,B,C}),
4 Z.
5
6 foo(X,{Y,B,C}) ->
7 case X of
8 123456789 -> Z=X/Y,
9 Z+C;

10 2 -> B;
11 _ -> X/Y
12 end.

(a) Original Program

1 main(X,_) ->
2 A=1, B=A,
3 _=foo(X,{sliced,B,sliced}).
4
5
6 foo(X,{_,B,_}) ->
7 case X of
8
9

10 2 -> B
11
12 end.

(b) Minimal Slice w.r.t ⟨10, B⟩

Figure 6.2: Erlang program and its minimal slice w.r.t ⟨10, B⟩

Definition 6.1 (AST-adapted slicing criterion). Let P be a program and C a
slicing criterion of P . Let AST (P) = (N, E) be an AST of P where N is the
set of nodes and E the set of edges. n is the AST-adapted slicing criterion of C
such that n ∈ N and n is the root of the subtree of AST (P) that represents C.

Definition 6.2 (AST-adapted dynamic slicing criterion). Let P be a program
and ⟨C, I⟩ be a dynamic slicing criterion of P . An AST-adapted dynamic slic-
ing criterion of ⟨C, I⟩ is a tuple ⟨n, I⟩ such that n is the AST-adapted slicing
criterion of C.

6.2 A Method to Produce Quasi-Minimal Slices
Because computing minimal static slices is undecidable, similarly to [20], we can
relax its definition to be minimal with respect to a finite set of inputs. Formally,

Definition 6.3 (Quasi-minimal slice). Let I be a set of possible inputs for a
program P , and C a slicing criterion for P . A quasi-minimal slice (QM-slice)
qm-slice(P, C, I) of P with respect to C and I is a dynamic executable program
slice of P that is minimal for all I ∈ I on a dynamic slicing criterion ⟨C, I⟩.
If I contains all possible inputs of P , then qm-slice(P, C, I) is a minimal slice
of P with respect to C.

Given a program and a slicing criterion, our method computes its QM-slice
following two sequential phases. The first phase produces a static slice of the
original program, which is the input of the second phase. It is worth to remark
that Phase 1 is optional, If we do not have any static program slicer available
to use during this phase it can be omitted. Even so, it is highly recommendable
because Phase 1 can significantly reduce the number of AST nodes that Phase
2 has to work with, which speeds up the process (e.g., in our implementation of
the method, Phase 1 reduces the time of Phase 2 by 64,99%). The second phase
further slices this slice, producing the final QM-slice. Figure 6.3 summarises the
method, which is further detailed in the following sections.

6.2. A Method to Produce Quasi-Minimal Slices 131

Program
Slicer 1

AST-adapted ORBS

Phase 1

Phase 2

Program
Slicer 2

Fix Point Loop

n-ORBS Loop

Test-Case
Generator

Slice 1

Original
program Slice 2

Program
Slicer n

…

Slice
n - 1

Fix point
reached?

Yes

No

Slice n

Original
program

Slice
Phase1

Test
case

Test cases
validated?

No

YesNew
slice

Slice
candidate

Test-Case
Validator

New
candidate?

Yes

Restore
Candidate

Previous
slice

Slice
candidate

No
Quasi

minimal
slice

Slicing
criterion

Slicing
criterion

Slicing
criterion

Slicing
criterion

Slicing
criterion

Slicing
criterion

Slicing
criterion

Figure 6.3: A method to produce quasi-minimal slices

6.2.1 Phase 1: Combining static program slicers
In the first phase, we use a set of static program slicers to repeatedly slice the
original program until a fix point is reached. Different program slicers usually
implement different techniques and optimisations to reduce the size of the slice.
Therefore, we can use any program slicer to produce a first slice that we can
use as the starting point to further reduce its size with another program slicer,
because the slice of a slice is a slice provided that the same slicing criterion is
used.
Theorem 6.1. Let P be a program, and S = sliceX1(P, C) be a program slice.
Then, S ′ = sliceX2(S, C) ∈ SlicesP

C for any P , C, X1, and X2.
Proof. By point 1 in Definition 2.4, we know that S ′ ⊆ S ⊆ P . By point 2 in
Definition 2.4, we know that ∀I : seq(P, C, I) is a prefix of seq(S, C, I) and that
seq(S, C, I) is a prefix of seq(S ′, C, I). Therefore, seq(P, C, I) is also a prefix of
seq(S ′, C, I). Hence, S ′ ∈ SlicesP

C .

Therefore, given a program P and a slicing criterion C, slicer B can use the
slice provided by slicer A as its input and take advantage of the code removed
by A. However, A may also take advantage of the code removed by B and,
thus, remove code it did not remove the first time, which would imply that A
can take further advantage of the new code removed. Therefore, a loop between
all the slicers is needed until none of them can further remove any additional
code, thus reaching a fix point.

One important property of the slicers, which is a requirement of the method,
is that the slices produced by all of them must be complete. Therefore, the
output of Phase 1 is always a complete slice, because the sequential composition
of complete slicers produces a complete slicer.
Theorem 6.2 (Completeness). Let P be a program, and let C be a slicing
criterion for P . Given two complete program slicers X1 and X2, then:

sliceX2(sliceX1(P, C), C) is a complete slice with respect to P and C.

132 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

Proof. First, because X1 is complete, we know that S1 = sliceX1(P, C) is a
complete slice with respect to P and C. We prove the theorem by contradiction
assuming that the slice S2 = sliceX2(sliceX1(P, C), C) is not complete with
respect to P and C. This is only possible if either X2 is not complete, and
thus sliceX2(S1, C) is not a complete slice with respect to S1 and C, or if X2
is complete, but S1 is not complete with respect to P and C. However, both
cases lead to a contradiction because both S1 and X2 are complete. Moreover,
because S1 and S2 are complete, then S2 ⊆ S1 ⊆ P , and thus, S2 is also a
complete slice with respect to P and C.

While it is mathematically correct to say that the slicing criterion C is
common for all program slicers (because C is a reference to a piece of code in
P), in practice C is normally provided in a text mode (e.g., ⟨5, v⟩ meaning line
5, variable v) so it is not a reference anymore. Therefore, if a line before C
(e.g., line 2) is sliced off from P by the first program slicer obtaining S, then
C needs to be updated (e.g., to ⟨4, v⟩) so the subsequent program slicers can
locate the slicing criterion in S. Figure 6.4 shows how the slicing criterion is
updated. The process consists of four steps: first, an AST of the code and of its
slice are obtained; second, a mapping ([166, 190]) over both ASTs is calculated
(dashed lines in the figure); third, the node that represents the slicing criterion
(see Definitions 6.1 and 6.2) is located within the AST of the code; finally, the
mapping is used to find the node in the AST of the slice.

Figure 6.4: Slicing criterion mapper

6.2.2 Phase 2: Increasing precision via an AST-adapted
ORBS algorithm

Phase 2 consists in an iterative process that continuously reduces the slice un-
til a fix point is reached. It comprises three main modules: ORBS, test-case
generation, and test-case validation, which are explained hereafter.

ORBS

We have implemented a variant of observation-based slicing (see Chapter 2,
Section 2.4). Our variant of ORBS iterates over the AST of the program (instead

6.2. A Method to Produce Quasi-Minimal Slices 133

of iterating over its lines). In particular, it iterates over the AST of ‘SliceP hase1’
(see Figure 6.3). Roughly, this variant iteratively tries to remove from the AST
each subtree. Each removal attempt of a subtree produces a ‘Slice candidate’
(see Figure 6.3). For each slice candidate, its behaviour is compared with the
behaviour of the original program according to Definition 6.3. If they show
the same behaviour, then that part is permanently removed from the AST
producing a ‘New slice’ (see Figure 6.3), and ORBS is restarted with this new
slice as input. Otherwise, the ‘Previous slice’ is restored and used in a new
iteration of ORBS. This iterative process is incremental (first, it removes one
node at a time, then, two nodes at a time, and so on) and continues until
no more nodes can be removed. This ORBS-based technique is described in
Algorithm Algorithm 6.1, where we use E∗ to denote the reflexive and transitive
closure of E. Note that the algorithm is parametric with respect to MN , which
denotes the maximum number of nodes that can be removed to produce a slice
candidate.1 Roughly, the algorithm loops currMN from 1 to MN . It proceeds
by removing every combination of currMN nodes and then testing them. E.g.,
first take out each one node (and its subtree), run tests to check whether the
sequences of values at the slicing criterion are preserved. Second, take out
combinations of two nodes (and their subtrees), test those; and so on. Always
building on the previous result.

For this, the algorithm uses function seq(P, C, t), which executes program P
with the test case t and records the sequences of values computed at the slicing
criterion C. The recursive function OrbsAst iterates top-down over the AST
removing subtrees and checking whether the sequences of values computed with
seq for the original program are a prefix of the sequences of values computed
for the new program with the subtrees removed. This is done with a battery
of tests (also called inputs in our context). Function OrbsAst is called until
a fix-point is reached (repeat-until loop), for each number of removed nodes
from 1 to MN (for loop).

This adaptation of ORBS to ASTs works top-down. This is more efficient
because it works in a concretisation fashion, trying to remove first entire func-
tions, clauses, and data structures before trying with their components. If a
bottom-up traversal were used instead, whenever a function could be removed
each of its statements would be removed beforehand. This is probably not a
problem in other contexts, but in our context each time a subtree (e.g., a state-
ment) is removed from the AST all generated test-cases are run to validate
that removal. Clearly, these validations are a waste of time in case the whole
function is going to be removed.

The only functions that must be provided by the user in Algorithm 6.1 are
seq, which computes the sequence of values obtained for a specific execution,
and generateTestCases, which is described in the next subsection.

It is important to remark that our algorithm is a generalisation of ORBS in
two ways. First, because it can slice any expression and not only lines of code. If
we consider that the removed nodes can only be those subtrees that correspond
to lines in the code, then our algorithm is equivalent to ORBS. However, there is
a second generalisation. ORBS uses a window of size δ that represent the lines

1All possible combinations could be checked when MN = |N |.

134 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

Algorithm 6.1 ORBS-based AST pruning algorithm
Input: A program P , an executable program slice S of P , a slicing criterion C

for S, and the maximum number of nodes MN to be removed at a time.
Output: A quasi-minimal slice of P ′.

1: function ComputeQMSlice(P ,S,C)
2: tests ← generateTestCases(S,C)
3: testsSeq ← {t, seq(P , C, t) | t ∈ tests}
4: A← getAST(S)
5: for currMN ∈ 1 . . . MN do
6: repeat
7: A′ ← A
8: A← OrbsAst(A′, 1, currMN , ∅)
9: until A = A′

10: P ′ ← getProgram(A)
11: return P ′

12: function OrbsAst(A, currNode, currMN , treatedNodes)
13: ⟨N, E⟩ ← A
14: remNodes ← {n ∈ N | ∄n′ ∈ treatedNodes . (n′, n) ∈ E∗}
15: while remNodes ̸= ∅ do
16: node ← n ∈ remNodes | ∄n′ ∈ remNodes . (n′, n) ∈ E
17: remNodes ← remNodes \ {node}
18: N ′ ← N \ {n ∈ N | (node, n) ∈ E∗}
19: E ′s ← {(n, n′) ∈ E | n, n′ ∈ N ′}
20: A′ ← (N ′, E ′s)
21: if currNode < currMN then
22: A′′ ← OrbsAst(A′, currNode + 1, currMN , treatedNodes ∪ {node}))
23: if A′ ̸= A′′ then
24: return A′′
25: else
26: if ∀⟨t, seqP ⟩ ∈ testsSeq .

seqP is a prefix of seq(getProgram(A′), C, t) then
27: return A′

28: return A

that can be removed all together. Therefore, ORBS can delete various lines at
a time, but it imposes the restriction that all of them must be together (inside
the window). This means that ORBS cannot produce the minimal slice of
Example 6.1, because lines 4 and 6 must be deleted together without deleting
line 5. Our approach allows for deleting different (not necessarily adjacent)
subtrees of the AST, thus, solving this problem and producing the minimal
slice in Example 6.1.

6.2. A Method to Produce Quasi-Minimal Slices 135

Test-case generation and validation.

The second module used in this phase is in charge of the test-case generation,
which is implemented by function generateTestCases in Algorithm 6.1. The
goal is to generate test cases that execute different paths of the slice and that
evaluate the slicing criterion. Every ‘Slice candidate’ produced by ORBS is
tested by comparing its behaviour with the one of the original program. If
they show the same behaviour, then the missing code in the slice candidate
is definitely removed. Otherwise, it is restored. Clearly, the quality of this
phase depends on the generated test-cases. An important remark is that our
architecture takes advantage of Phase 1 not only to produce the refined slice
‘SliceP hase1’, but also to improve the generation of test cases. In particular, we
can observe in Figure 6.3 that module ‘Test-Case Generator ’ inputs ‘SliceP hase1’
(instead of the ‘Original program’). Generating the test cases from ‘SliceP hase1’
produces better test cases because this avoids generating test cases that explore
removed code in the slice (and, thus, that cannot affect the slicing criterion).
Observe, however, that ‘SliceP hase1’ is not used as input for the module ‘Test-
Case Validator ’ because the output of seq for this slice and for the ‘Original
program’ differ according to property 2 in Definition 2.1. This is explained in
Example 6.3.

Example 6.3. Consider the following sequences of values produced in a slic-
ing criterion SC when executing a concrete input I over the original pro-
gram (Original), the output slice of phase 1 (SliceP hase1) and a slice candidate
(SliceCandidate).

a) seq(Original, I, SC) = [1, 2, 3]

b) seq(SliceP hase1, I, SC) = [1, 2, 3, 5]

c) seq(SliceCandidate, I, SC) = [1, 2, 3, 7]

In this scenario, if we validate (i.e., decide whether it is a valid slice) Slice-
Candidate with respect to Original, then, according to property 2 of Defini-
tion 2.4, SliceCandidate is an executable program slice of Original ((a) is a prefix
of (c)). Nevertheless, if we validate SliceCandidate with respect to SliceP hase1,
then the validation fails because (b) is not a prefix of (c). This happens because
a slice can produce more values than the original program in the slicing crite-
rion. Therefore, module Test-Case Validator inputs Original to prevent these
kind of false negatives.

Figure 6.3 summarises the described phases. In the figure: the phases are
enclosed inside light grey boxes; the slicers and the other processes are repre-
sented with dark grey boxes; the slices and the test cases are represented with
white files; the slice candidates (not validated yet or not valid) are represented
with dashed-border white files; and decision points are represented with dark
rhombuses. The intermediate and output slices of the first phase must be static
executable program slices of the original program (see Definition 2.4) whereas
the intermediate and output slices of the second phase are dynamic executable
program slices (see Definition 2.13).

136 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

Note that this is a general scheme that can be adapted to any language.
For this, we only need to instantiate some of the dark grey components: the
program slicers, the test-case validator, and the test-case generator (the ORBS
technique is already paradigm-independent and works for any language).

6.3 Implementation
We have instantiated the method for Erlang. The method follows the schema
shown in Figure 6.3, where we use: two program slicers in Phase 1 called
Slicerl [180] and e-Knife; CutEr (see Chapter 7, Section 7.1) as a test-case
generator; SecEr [88] as a test-case validator; and Cover [54] as a coverage
meter to decide when to stop generating test cases.

6.3.1 Phase 1: Slicerl and e-Knife
In our setting, we used two slicers: Slicerl [180] and e-Knife. We selected Slicerl
for four reasons: First, because it is based on a data structure called Erlang
Dependence Graph (EDG) whose granularity level is minimal (i.e., tokens).
This allows for removing expressions even inside a line of code. Second, because
it is open-source, and thus, we have been able to access its internal behaviour
and analyses, extend it, and use it in our implementation. Third, because
it implements some novel optimisation techniques that make it very precise.
And fourth, because it is interprocedural. Other slicers such as the Wrangler’s
slicer [117] were discarded because they are only intraprocedural, and thus they
cannot handle with precision any of the benchmarks in the suite.2

The second slicer is called e-Knife. It is a static slicer for Erlang on which
we have been working for the last few years. e-Knife is also based on the EDG
and thus, it has the same granularity level as Slicerl: tokens (every token is
represented in the EDG with a different node that is susceptible of being sliced
off). Moreover, e-Knife incorporates a new technique to precisely slice composite
data structures, which complements the static analyses made by Slicerl.

Example 6.4. Given the following program on the left, with the slicing criterion
⟨3, X⟩, Slicerl produces the slice in the middle, whereas e-Knife produces the slice
on the right:

1 main() ->
2 A = {1,2},
3 {X,Y} = A.

Original Program

main() ->
A = {1,2},
{X,_} = A.

Slicerl’s Slice

main() ->
A = {1,sliced},
{X,_} = A.

e-Knife’s Slice

Note that, even though X depends on A, and A depends on 2, X does not depend
on 2. Only e-Knife is able to detect intransitive data dependences.

2Note that this does not mean that the suite is useless for intraprocedural slicers. It just
means that intraprocedural slicers are less useful to construct the suite.

6.3. Implementation 137

6.3.2 Phase 2: CutEr, Cover, and SecEr
For Phase 2, we explain how we have instantiated for Erlang the test-case
generation and validation tasks needed for ORBS.

Test-case generation

We ensure high quality test cases using concolic testing. We did two sequential
steps to ensure a 100% branch and statement coverage:

• Concolic test-case generation. This technique analyses the branching con-
ditions in the source code and generates constraints that the input must
satisfy to visit all branches. Then, a constraint solver is used to pro-
duce the test cases. We used a concolic testing tool for Erlang called
CutEr [68]. The following example shows that white-box testing can gen-
erate test cases that execute very unusual branches.

Example 6.5. Consider again the program in Figure 6.2a. The case
branch in line 8 will be hardly executed with random test-case genera-
tion. 100% branch coverage can only be achieved if a test case exists with
X=123456789. However, this does not guarantee the evaluation of all ex-
pressions in the branch. 100% statement coverage in the first branch can
only be achieved if a test case exists with X = 123456789, Y ̸= 0.

• Semi-random test-case generation. We complemented our white-box test-
ing with black-box testing. We implemented random generators for all
possible data types in Erlang.
The maximum number of test cases to be generated is a parameter of our
method. This number depends on the concrete code to be processed. The
number also has a direct impact on the runtime and on the precision of
the final slices produced. In the default configuration, our implementation
generates test cases until all the code is tested (i.e., 100% statement and
branch coverage). For this, it generates 10 test cases at a time, accumulat-
ing the test cases produced and measuring at each step the coverage with
a tool called Cover [54]. Cover is a coverage analysis library for Erlang
that can determine the coverage achieved when executing a program with
several invocations (in our setting, test cases) and that can also identify
the uncovered branches. It basically instruments the code so that every
line is augmented with a new function call. Therefore, by counting the
calls performed during the execution of the test cases we can know ex-
actly what lines were executed and how many times. When Cover reports
that 100% statement and branch coverage is reached, the test-case gen-
eration finishes. We want to note that these coverages are only metrics,
but not objectives. 100% coverage does not necessarily imply high slicing
precision.

Example 6.6. Consider again the program in Figure 6.2a. A test case
with input X = 1, Y = 1 does execute all expressions in line 11—100%
branch and statement coverage in this line—, but it does not trigger the

138 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

division-by-zero exception. Finding this situation would require to generate
more test cases (e.g., X = 1, Y= 0).

Test-case validation

Our test-case generation obtains inputs that ensure a 100% statement and
branch coverage. However, in our case, these inputs must be complemented
with very specific outputs to form the test cases: the sequences of values the
slicing criterion is evaluated to. In our case, this is done by another one of our
tools called SecEr [88], which purpose is further described in Chapter 8 (SecEr
implements function seq in Algorithm 6.1). Given a slicing criterion, SecEr in-
struments the source code in such a way that the execution of the instrumented
code obtains as a side effect the sequence of values it is evaluated to.

6.4 Experimental Evaluation and Results
We identified a collection of slicing problems and challenges and applied our
method to obtain 23 benchmarks for Erlang (23 slicing criteria defined over
18 different Erlang programs) that (combined) implement all of the problems.
These benchmarks form a suite that contains triples program–slicing criterion–
minimal slice. The slices produced in our implementation are QM-slices (see
Definition 6.3) and they are fine-grained slices because they have been obtained
working over AST nodes (see Definitions 6.1 and 6.2). In this section, we show
the behaviour of each component of the method.

6.4.1 Phase 1: Behaviour of Slicerl and e-Knife
The fix point of Phase 1 was reached in only one iteration (the slice produced
by e-Knife could not be further reduced by Slicerl). The first slicer (Slicerl)
needed 12820 milliseconds to slice all the benchmarks except for nine of them
whose syntax was not supported. This produces an average of 916 milliseconds
per benchmark. Slicerl was able to remove 619 nodes from ‘Original program’
in total (an average reduction of 31.89%). The second slicer needed 48361
milliseconds to slice all the benchmarks (an average of 2103 milliseconds per
benchmark)3. e-Knife further reduced the slices produced by Slicerl by 59 nodes
in total (an average extra reduction of 2.48% over the original program). If
we also consider those benchmarks that Slicerl cannot handle, then the extra
reduction was 14.67%.

6.4.2 Phase 2: Behaviour of ORBS and CutEr
ORBS

The execution of Algorithm 6.1 with SliceP hase1 and removing one node at a
time (MN = 1) reduced the original program to a 50.08% (as an average).

3e-Knife is a slicer implemented in Java. For this reason, it needs extra time to access
Erlang.

6.4. Experimental Evaluation and Results 139

This is an extra reduction of 15.84% over the result of phase 1. Afterwards,
Algorithm 6.1 was executed again but this time removing two nodes instead of
one. The slice remained unchanged in all cases (0% reduction). Then, three
nodes were removed in each iteration and 0% reduction was achieved again.
Finally, four nodes were removed in each iteration for some benchmarks (ac-
cording to our estimations, the evaluation of the other benchmarks would have
taken months). Again, in all cases, 0% reduction was achieved when four nodes
were removed in each iteration. Due to the combinatorial explosion, we did not
run any of the benchmarks with five nodes, because its run time was estimated
in years.

We compare the four iterations performed with ORBS in Table 6.1. The
columns labelled with i nodes, where i ∈ {1, 2, 3, 4}, represent each of the
iterations of the for loop in Algorithm 6.1 (the first removing 1 node in each
iteration, the second removing 2 nodes in each iteration, etc.). In these columns,
Iter is the number of different iterations performed by the algorithm (i.e., the
number of configurations that were checked, where each configuration is the
result of removing i nodes from the AST), Time is the total time used to check
the configurations, and % is the percentage of nodes that remain from the original
code. Note that the algorithm only removed nodes when trying to remove single
nodes (1 node).

This whole exhaustive process (with MN = 4) took nine days, thirteen
hours, and fifty one minutes. However, the ORBS loop with 2, 3, and 4 nodes
did not produce any reduction (and consumed most of the time). Therefore,
unless one is specially interested in producing minimal slices (as we are) it is
a good design decision to configure ORBS to only remove one node at a time.
This nearly always produces exactly the same results but the time is significantly
reduced. With this configuration (MN = 1), the whole suite of benchmarks was
sliced in 14 minutes and 25 seconds, producing the same results.

Benchmark 1 Node 2 Nodes 3 Nodes 4 Nodes
Iter Time % Iter Time % Iter Time % Iter Time %

b1_s56Year 10430 441.48s. 28.29% 23155 649.08s. 0% 692795 269172.36s. 0% - - -
b2_s38C 253 10.76s. 26.56% 264 6.08s. 0% 1072 23.00s. 0% 2714 53.34s. 0%
b2_s40D 82 3.51s. 29.69% 467 10.49s. 0% 3460 73.66s. 0% 16110 315.32s. 0%
b3_s28C 133 5.50s. 45.28% 136 3.69s. 0% 395 8.76s. 0% 621 15.35s. 0%

b4_s32Abb 193 8.36s. 72.41% 1453 36.41s. 0% 21319 488.77s. 0% 211141 4437.24s. 0%
b5_s30C 42 2.21s. 94.44% 758 18.64s. 0% 7909 165.45s. 0% 54567 1134.96s. 0%
b6_s35C 222 9.07s. 28.57% 414 10.00s. 0% 2923 61.19s. 0% 13063 257.84s. 0%
b6_s36D 126 5.33s. 20.30% 206 4.82s. 0% 836 17.90s. 0% 2039 39.64s. 0%
b7_s27C 18 0.87s. 78.57% 105 3.38s. 0% 234 5.33s. 0% 285 7.54s. 0%

b8_s29Deposits 244 23.14s. 72.50% 1165 51.24s. 0% 15468 540.83s. 0% 140135 4134.79s. 0%
b9_s59A 112 4.96s. 88.14% 799 18.83s. 0% 8039 177.06s. 0% 51658 1353.71s. 0%

b10_s34DB 253 43.48s. 76.43% 4383 225.84s. 0% 123884 4651.84s. 0% 2477094 81536.00s. 0%
b11_s28C 28 1.18s. 80.00% 293 7.00s. 0% 1588 44.10s. 0% 5509 133.16s. 0%

b12_s40BS 138 12.56s. 25.77% 4872 257.64s. 0% 145830 5510.94s. 0% 3085914 102958.79s. 0%
b12_s92A 83 7.17s. 20.70% 3168 166.99s. 0% 74649 2625.25s. 0% 1227042 37374.00s. 0%

b13_s38NewI 41 0.65s. 69.70% 700 29.19s. 0% 6649 208.36s. 0% 39929 1112.95s. 0%
b14_s44V 214 6.78s. 26.32% 983 22.33s. 0% 11418 224.08s. 0% 84958 1689.93s. 0%
b14_s45W 137 156.76s. 23.92% 808 465.78s. 0% 8169 4563.61s. 0% 54519 30204.37s. 0%
b14_s46Z 127 5.35s. 18.18% 357 8.16s. 0% 2402 47.41s. 0% 10629 215.53s. 0%

b15_s65Shown 657 34.97s. 81.33% 13208 384.85s. 0% 661963 16267.98s. 0% 23716885 560087.23s. 0%
b16_s58C 25 1.37s. 27.78% 241 13.07s. 0% 1195 75.92s. 0% 3465 399.11s. 0%
b17_s54X 408 38.39s. 68.35% 848 69.63s. 0% 9230 3263.62s. 0% - - -
b18_s50J 341 41.25s. 48.42% 588 50.01s. 0% 4965 3761.92s. 0% - - -

AVG 622.04 37.61s. 50.08% 2581.35 109.27s. 0% 78538.78 13564.32s. 0% 1356446.83 35976.58s. 0%
MEDIAN 137 7.17s. 45.28% 758 22.33s. 0% 7909 208.36s. 0% 45793.50 1123.95s. 0%
TOTAL 14307 865.09s. 1151.67% 59371 2513.15s. 0% 1806392 311979.34s. 0% 31198277 798490.53s. 0%

Table 6.1: Comparison of the different iterations of ORBS

140 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

CutEr

The coverage achieved by the test cases generated with CutEr for each bench-
mark is listed in column CutEr of Table 6.2. In 14 out of 23 benchmarks CutEr
produced a 100% branch coverage. In 4 out of 23 benchmarks CutEr produced a
branch coverage <100%. In 5 benchmarks (b16_s58C, b12_s40BS, b12_s92A,
b15_s65Shown, b18_s50J), CutEr returned an error or was unable to generate
any test case.

In all those benchmarks where CutEr did not produce a 100% branch and
statement coverage, a second phase of semi-random test-case generation was
activated to reach 100%. Column Random of Table 6.2 shows this second phase
where a 100% statement and branch coverage was achieved in only 0.12 seconds
on average.

6.4.3 Empirical evaluation
Prior to the design and application of our method, we first produced the slices of
the benchmarks with slicerl and with e-Knife, separately. This enables evaluat-
ing how precise QM-slices (obtained with our method) are compared to standard
slices (obtained with two program slicers).

Executable program slices

We sliced all the benchmarks with two Erlang program slicers (Slicerl and e-
Knife) that produced an interesting result: the empirical evaluation of (and a
comparison between) each slicer. Slicerl could not handle nine of the bench-
marks (it crashed due to unhandled syntax constructs). If we omit these bench-
marks, then their precision was similar. As an average, Slicerl reduced the
original programs (X = 31.90%, σ = 21.29%), while e-Knife reduced them
(X = 33.03%, σ = 25.18%). However, because the analyses performed by both
slicers are different, Slicerl was better twice and e-Knife was better thirteen
times. This clearly justifies the combination of program slicers in the first phase
of our method. We also compared the following three slices for all benchmarks:

S1 = sliceSlicerl(slicee−Knife(B, C), C)
S2 = slicee−Knife(sliceSlicerl(B, C), C)

S3 = sliceSlicerl(B, C) ∩ slicee−Knife(B, C)

where B is a benchmark and C is a slicing criterion.4 We discovered that, for
all benchmarks, S1 = S2 ⊆ S3. Hence, (i) the order in which the slicers were
executed was not relevant, and (ii) it is better composing slicers sequentially
(i.e., slicing slices) than composing them in parallel and get the intersection.
The reason is that one slicer can take advantage of the parts removed by the
other slicer. This justifies the need for a fix-point loop in Phase 1 of the method.

4Note that, theoretically, unions and intersections of slices are not necessarily slices [48],
but in practice (e.g., with all our benchmarks), they usually are.

6.4. Experimental Evaluation and Results 141

Quasi-minimal slices

Table 6.2 summarises the empirical evaluation of our particular implementa-
tion of the proposed method. Concretely, it compares the size of the successive
refinements of all the slices, and the time needed by all processes of the two
phases. Each row represents a different benchmark. For each benchmark, col-
umn Nodes represents its number of AST nodes, which corresponds to the size
of the programs/slices. In the case of the slices, we also include the percentage
of nodes that remain in the slice with respect to the original program. Column
Time shows the time expended in each phase measured in seconds (s). Phase 2
is divided into two different processes: test-case generation and ORBS limited
to only one iteration. Finally, column Iterations shows the number of config-
urations checked by ORBS (that is, the number of different nodes removed to
produce slice candidates).

It is important to compare the data of the different rows taking into ac-
count that the columns provide complementary information. For instance, if
we compare the reduction % achieved by Slicerl for benchmarks b5_s30C and
b14_s44V, one can think that the slice produced for b14_s44V is much better
(it was reduced to 37.8%, while b5_s30C was only reduced to 94.44%). How-
ever, if we observe the % in the ORBS column, we can see that the conclusion
could be the opposite: Slicerl produced a minimal slice for b5_s30C, while the
slice produced for b14_s44V was not minimal.

Evaluation conclusions

Our implementation of the proposed method and its empirical evaluation have
answered several research questions in the process:

1. Is Phase 1 really needed? The final slice produced in Phase 2 is the
same with independence of whether Phase 1 is used or not. However, the
use of Phase 1 reduced the time of Phase 2 by 64,99%.

2. Runtime: How long does each process last? The whole suite was
sliced in 1054 s. (Phase 1: 62 s., ORBS: 865 s., test case generation: 127
s.). This provides an idea of the relative costs of the phases.

3. Accuracy: How accurate is each phase (on average)? Phase 1
reduced the original program 34.07%, Phase 2 further reduced it 15.85%
(producing the minimal slice).

4. Concolic vs. random test cases: Is concolic testing enough? No.
Cuter was able to produce the desired coverage 60.87% of the times. In
the other 39.13%, random test case generation was needed.

5. Slicerl vs. e-Knife: Which is better (on average)? When they were
run independently, e-Knife was better in 13/23 benchmarks. Table 6.3
shows the comparison of both slicers.

6. Sequential vs. parallel composition (intersection) of slicers: Which
is better? Sequential composition of slicers provides the best results.

142 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

O
ri

gi
na

l
P

ha
se

1
P

ha
se

2
Sl

ic
er

l
e-

K
ni

fe
T

es
t-

C
as

e
G

en
er

at
io

n
O

R
B

S
(o

ne
no

de
at

a
ti

m
e)

T
ot

al
N

od
es

T
im

e
(s

)
N

od
es

T
im

e
(s

)
N

od
es

C
ut

E
r

R
an

do
m

It
er

at
io

ns
T

im
e

(s
)

N
od

es
T

im
e

(s
)

b1
_

s5
6Y

ea
r

82
0

-
-

3.
21

64
9

(7
9.

15
%

)
10

0%
(4

.9
3s

)
–

10
43

0
44

1.
48

18
1

(2
8.

54
%

)
44

9.
62

b2
_

s3
8C

12
8

0.
87

95
(7

4.
22

%
)

2.
22

95
(7

4.
22

%
)

10
0%

(1
6.

03
s)

–
25

3
10

.7
6

34
(2

6.
56

%
)

29
.8

8
b2

_
s4

0D
12

8
0.

88
98

(7
6.

56
%

)
2.

32
98

(7
6.

56
%

)
10

0%
(1

6.
01

s)
–

82
3.

51
38

(2
9.

69
%

)
22

.7
2

b3
_

s2
8C

53
0.

82
35

(6
6.

04
%

)
2.

12
35

(6
6.

04
%

)
10

0%
(3

.1
5s

)
–

13
3

5.
50

24
(4

5.
28

%
)

11
.5

9
b4

_
s3

2A
bb

87
-

-
2.

19
74

(8
5.

06
%

)
10

0%
(1

0.
45

s)
–

19
3

8.
36

63
(7

2.
41

%
)

21
.0

0
b5

_
s3

0C
54

0.
99

51
(9

4.
44

%
)

2.
17

51
(9

4.
44

%
)

78
%

(5
.0

3s
)

10
0%

(0
.0

2s
)

42
2.

21
51

(9
4.

44
%

)
10

.4
2

b6
_

s3
5C

13
3

1.
02

62
(4

6.
62

%
)

2.
18

57
(4

2.
86

%
)

10
0%

(1
0.

87
s)

–
22

2
9.

07
38

(2
8.

57
%

)
23

.1
4

b6
_

s3
6D

13
3

1.
01

49
(3

6.
84

%
)

2.
16

49
(3

6.
84

%
)

10
0%

(3
.2

9s
)

–
12

6
5.

33
27

(2
0.

30
%

)
11

.8
0

b7
_

s2
7C

28
0.

95
22

(7
8.

57
%

)
2.

12
22

(7
8.

57
%

)
10

0%
(2

.6
1s

)
–

18
0.

87
22

(7
8.

57
%

)
6.

55
b8

_
s2

9D
ep

os
it

s
80

0.
95

78
(9

7.
50

%
)

2.
23

76
(9

5.
00

%
)

86
%

(1
2.

69
s)

10
0%

(0
.0

3s
)

24
4

23
.1

4
58

(7
2.

50
%

)
39

.0
3

b9
_

s5
9A

59
0.

81
57

(9
6.

61
%

)
2.

18
54

(9
1.

53
%

)
10

0%
(1

4.
07

s)
–

11
2

4.
96

52
(8

8.
14

%
)

22
.0

2
b1

0_
s3

4D
B

14
0

-
-

2.
25

11
1

(7
9.

29
%

)
82

%
(4

.9
6s

)
10

0%
(0

.0
2s

)
25

3
43

.4
8

10
7

(7
6.

43
%

)
50

.7
1

b1
1_

s2
8C

40
0.

83
32

(8
0.

00
%

)
2.

15
32

(8
0.

00
%

)
10

0%
(3

.9
6s

)
–

28
1.

18
32

(8
0.

00
%

)
8.

12
b1

2_
s4

0B
S

45
4

-
-

2.
52

11
8

(2
5.

99
%

)
–

10
0%

(0
.0

3s
)

13
8

12
.5

6
11

7
(2

5.
77

%
)

15
.1

1
b1

2_
s9

2A
45

4
-

-
2.

18
94

(2
0.

70
%

)
–

10
0%

(0
.0

3s
)

83
7.

17
94

(2
0.

70
%

)
9.

38
b1

3_
s3

8N
ew

I
66

0.
94

46
(6

9.
70

%
)

2.
15

46
(6

9.
70

%
)

10
0%

(1
.6

5s
)

–
41

0.
65

46
(6

9.
70

%
)

5.
38

b1
4_

s4
4V

20
9

0.
93

79
(3

7.
80

%
)

2.
18

75
(3

5.
89

%
)

10
0%

(1
.6

9s
)

–
21

4
6.

78
55

(2
6.

32
%

)
11

.5
8

b1
4_

s4
5W

20
9

0.
96

89
(4

2.
58

%
)

2.
20

64
(3

0.
62

%
)

67
%

(2
.9

9s
)

10
0%

(0
.8

3s
)

13
7

15
6.

76
49

(2
3.

92
%

)
16

3.
74

b1
4_

s4
6Z

20
9

0.
86

11
7

(5
5.

98
%

)
2.

23
97

(4
6.

41
%

)
10

0%
(4

.5
4s

)
–

12
7

5.
35

38
(1

8.
18

%
)

12
.9

8
b1

5_
s6

5S
ho

w
n

22
5

-
-

2.
40

19
5

(8
6.

67
%

)
–

10
0%

(0
.0

4s
)

65
7

34
.9

7
18

3
(8

1.
33

%
)

37
.4

1
b1

6_
s5

8C
10

8
-

-
1.

67
30

(2
7.

78
%

)
–

10
0%

(0
.0

4s
)

25
1.

37
30

(2
7.

78
%

)
3.

09
b1

7_
s5

4X
79

-
-

1.
01

76
(9

6.
20

%
)

10
0%

(7
.3

8s
)

–
40

8
38

.3
9

54
(6

8.
35

%
)

46
.7

9
b1

8_
s5

0J
95

-
-

1.
02

92
(9

6.
84

%
)

–
10

0%
(0

.0
4s

)
34

1
41

.2
5

46
(4

8.
42

%
)

42
.3

2
A

V
E

R
A

G
E

17
3.

52
0.

56
14

6.
61

(8
0.

59
%

)
2.

13
99

.5
7

(6
5.

93
%

)
95

.1
7%

(5
.4

9s
)

10
0%

(0
.1

2s
)

62
2.

04
37

.6
1

64
.9

1
(5

0.
08

%
)

84
.6

1
M

E
D

IA
N

12
8

0.
93

87
(9

4.
44

%
)

2.
18

75
(7

6.
56

%
)

10
0%

(4
.9

5s
.)

10
0%

(0
.0

3s
.)

13
7

7.
17

24
(4

5.
28

%
)

22
.3

7
T

O
T

A
L

39
91

12
.8

2
33

72
(8

0.
59

%
)

49
.0

8
22

90
(6

5.
93

%
)

(1
26

.3
0)

(1
.0

8s
)

14
30

7
86

5.
09

14
93

(5
0.

08
%

)
21

99
.8

6

Table 6.2: Empirical evaluation of the method instantiated for
Erlang

6.4. Experimental Evaluation and Results 143

Original Slicerl e-Knife

Nodes Time (s) Nodes Time (s) Nodes
b1_s56Year 820 - - 3.21 647 (78.90%)

b2_s38C 128 0.87 95 (74.22%) 2.07 95 (74.22%)
b2_s40D 128 0.88 98 (76.56%) 2.08 98 (76.56%)
b3_s28C 53 0.82 35 (66.04%) 2.08 35 (66.04%)

b4_s32Abb 87 - - 2.19 74 (85.06%)
b5_s30C 54 0.99 51 (94.44%) 2.09 51 (94.44%)
b6_s35C 133 1.02 62 (46.62%) 2.10 72 (54.14%)
b6_s36D 133 1.01 49 (36.84%) 2.09 49 (36.84%)
b7_s27C 28 0.95 22 (78.57%) 2.16 22 (78.57%)

b8_s29Deposits 80 0.95 78 (97.50%) 2.08 76 (95.00%)
b9_s59A 59 0.81 57 (96.61%) 2.06 54 (91.53%)

b10_s34DB 142 - - 2.78 113 (79.58%)
b11_s28C 40 0.83 32 (80.00%) 2.09 32 (80.00%)

b12_s40BS 454 - - 2.52 118 (25.99%)
b12_s92A 454 - - 2.18 94 (20.70%)

b13_s38NewI 66 0.94 46 (69.70%) 2.17 46 (69.70%)
b14_s44V 209 0.93 79 (37.80%) 2.27 99 (47.37%)
b14_s45W 209 0.96 89 (42.58%) 2.28 64 (30.62%)
b14_s46Z 209 0.86 117 (55.98%) 2.28 97 (46.41%)

b15_s65Shown 225 - - 2.39 195 (86.67%)
b16_s58C 108 - - 1.67 30 (27.78%)
b17_s54X 79 - - 1.01 76 (96.20%)
b18_s50J 95 - - 1.02 92 (96.84%)

AVG 173.52 0.92 65 (68.10%) 2.12 101.26 (66.97%)
AVGTotal 173.52 0.56 146.61 (80.59%) 2.12 101.26 (66.97%)

Table 6.3: Empirical evaluation and comparison of
Slicerl and e-Knife

6.4.4 A suite of minimal slices
Following the method presented, we have generated a suite of minimal slices
for Erlang. In Erlang, this suite is especially useful because it presents spe-
cial challenges for program slicing (higher order, anonymous functions, pattern
matching, etc.) and, moreover, in this language no studies evaluating current
program slicers existed yet.

Selection of benchmarks

The suite of benchmarks has been designed to contain small to medium pro-
grams that contain well-known program slicing challenging problems described
in the literature (e.g., dead code, unreachable clauses [175], pattern matching
[180], collapse and expansion of composite data structures [198], etc.). For in-
stance, the suite includes classical slicing programs used in different papers such
as word count, the SCAM mug, the Montréal boat example, the Horwitz et al.
interprocedural slice [84], etc. The objective is to challenge program slicers to
check how many of these programs are they able to slice. In order to test dif-
ferent syntax constructs in Erlang that are also challenging for program slicing
(e.g., list comprehensions, block structures, chars, remote function calls, etc.),
various benchmarks have been taken from the github repository and the rosetta

144 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

code programming chrestomathy website5. For each benchmark, we defined dif-
ferent slicing criteria so that their slices can be used to test slicers that work
at the function, clause, line, or expression level. The suite of benchmarks has
been designed to contain small to medium programs that:

• Require interprocedural techniques. Interprocedural slicing is a challenge
in functional languages. For instance, the program slicer of Wrangler [116],
one of the most advanced Erlang refactoring tools, is still intraprocedural.

• Can be sliced by slicers of different performance. The main goal of the
suite is not performance, but precision. Therefore, we prefer small to
medium programs for which we can systematically produce minimal slices
rather than large programs for which reasoning about minimality is im-
possible due to its prohibitive cost.

• Contain different slicing problems. In fact, each benchmark defines con-
cisely one specific slicing challenge.

This suite can be used to evaluate and compare program slicers, but it
is also particularly useful to develop slicers. To help in this last task, we have
implemented a tool that inputs a program slicer and it slices all the benchmarks
in the suite with this program slicer. Then, the slices the program slicer obtains
are compared with the minimal slices in the suite to calculate the accuracy in
terms of preserved AST nodes (i.e., using the minimum granularity). Finally,
a report indicating the recall, precision, and F1 is provided to the user as well
as the variation of these metrics with respect to the best results the program
slicer has achieved so far. The suite and the tool are publicly available at:

https://mist.dsic.upv.es/bencher/

Structure of the suite

All benchmarks are labelled so that their purposes and properties can be identi-
fied by just looking at their labels. The labels classify the benchmarks depending
on the slicing challenges they include, and on the syntax constructs they use.

Example 6.7. All benchmarks are identified with a code. For instance, bench-
mark b15_s65Shown refers to program 15 with slicing criterion ⟨65, Shown⟩.
The code of program 15 was originally extracted from rosettacode. Then, the
code was augmented and redesigned to include challenging problems for slic-
ing. Finally, this benchmark has been labelled with: IP, LC, AF, Rem. Their
meanings are:

IP: The benchmark requires interprocedural slicing.

LC: The benchmark uses list comprehensions.

AF: The benchmark defines and uses anonymous functions.
5http://rosettacode.org/

https://mist.dsic.upv.es/bencher/

6.5. Related Work 145

Rem: The benchmark contains remote procedure calls to external functions
(non-available code).

All the information about the meaning of the labels and about the classifi-
cation of benchmarks can be found on the public website of the suite.

Minimality

Our method/slicer produces quasi-minimal slices. Ensuring minimality is unde-
cidable because not all possible test cases can be executed (they are potentially
infinite). However, our method palliates this problem with a test-case genera-
tion phase that ensures 100% branch and statement coverage combining white
and black box testing. Thanks to this phase, the quasi-minimal slices produced
are actually minimal in many cases. In particular, we have manually proved
that all 23 quasi-minimal slices generated with our tool (with MN=1 and gener-
ating random test cases until 100% statement and branch coverage is achieved)
are in fact minimal slices. Concretely, we have proven minimality for each single
pair ⟨benchmark, slicing criterion⟩ in the suite, proving that each single node
of the sliced AST is actually needed, and that all required nodes are part of
the slice. Each benchmark of the suite is, thus, accompanied with a proof of
minimality.

6.5 Related Work
One approach similar to ours is dynamic program dicing, proposed by Chen and
Cheung [34] as an alternative to static program dicing, which was originally
proposed by Lyle and Weiser [130]. This approach obtains a program slice
formed by the statements contained in the traces of a set of failed executions
and not in the traces of a set of correct executions. In most cases, the remaining
statements would contain the source of the error. Nevertheless, this approach
presents two differences with respect to our approach: 1) It is incomplete. The
slices produced may not contain the errors that produced the discrepancies. (2)
The slices produced may not be executable, thus, they cannot be used to check
the discrepancies.

In our approach, we use a technique that can be considered a variant of
ORBS [20]. ORBS is a language-independent technique, thus it removes lines
without parsing them. Hence, if two statements are placed in the same line,
they are removed together. Of course, this can also produce compilation errors
if a part of one syntax construct is removed. Instead of removing lines of code,
we use a mechanism to remove expressions or replace them by a fresh constant
sliced, thus, the obtained precision is higher and, moreover, this enables us to
remove expressions with independence of how they were coded. Our proposed
ORBS algorithm is similar to the one proposed in [21] that removes nodes one
by one. Specifically, the algorithm proposed in this work is a generalization of
[21], because we also allow to iteratively remove N nodes (instead of one) by
computing all possible combinations with an efficient top-down pruning algo-
rithm.

146 Chapter 6. Quasi-Minimal Slicing to Compare Program Slicers

Our technique is also similar to Delta Debugging (DD) [42, 212]. DD was
originally defined for debugging, but it can also be used to compute slices. The
way in which DD and our technique compute slices differ. DD relies on the
use of a trace, which is cut in the middle first, in a quarter next, and so on.
This process is too expensive compared to our approach (and also compared
to ORBS). Moreover, DD can produce slices that are not correct, in the sense
that their behaviour differs from the one of the original program. Clearly, this
is useless for our purposes, because we need to ensure that the slices of the suite
are correct.

Another related approach is Critical Slicing [49]. The idea behind Critical
Slicing is the same as ORBS: they both remove lines and check whether the
slice produced removing each line preserves the original behaviour. The differ-
ence is that Critical Slicing removes lines one at a time, while ORBS removes
them incrementally. As a consequence, (i) contrarily to ORBS, Critical Slic-
ing needs a fixed number of compilations (one per line), and (ii) critical slices
can be incorrect because two lines individually removed without changing the
behaviour at the slicing criterion may produce a program with a different be-
haviour when they are removed together. Hence, as DD, Critical Slicing also
produces incorrect slices.

Comparing and evaluating the performance of program slicers and slicing-
based techniques has been traditionally of wide interest. Not only because this
enables developers to select the best slicer or technique for their purposes, but
also because it provides information about how precise the slicer is. For this
reason, many surveys and works exist (see, e.g., [19, 69, 81]) that evaluate and
compare the size of the slices produced by different techniques. Unfortunately,
due to the lack of a standard suite of benchmarks, in most cases the benchmarks
are implemented from scratch to make the experiments [69, 81], they are taken
from different papers and projects [20], or they belong to suites of programs
not specific for slicing [19]. Moreover, often, the benchmarks that are used in
the experiments are not publicly available or accessible (e.g., in [19, 69, 81]),
which makes it impossible to replicate and/or validate the study. Furthermore,
the unavailability of the benchmarks prevents other researchers and developers
from comparing their techniques with the reported results. In consequence,
these reports are just a fixed picture of the state of the art, but they are not
usable to measure and compare future techniques.

A suite of program slicing benchmarks would solve these problems, but we
are not aware of any suite of benchmarks prepared for slicing, i.e., with specific
challenging problems for slicing, and with solutions (minimal slices) for each
benchmark. The construction of this suite is completely novel. Unfortunately,
computing the minimal slices of each benchmark is not trivial at all. In fact,
it is undecidable in the general case, so we had to manually prove minimality.
The techniques used in this system are very related to other existing techniques
and methods. In particular, we use semi-random test-case generation similar
to the one implemented by SmallCheck [172]. We also prevent duplicated test
cases but, contrarily to SmallCheck, our test-case generation is not based on
properties.

147

Part III

Testing & Verification

149

Chapter 7

Preliminary Definitions and
Notation

This chapter presents a set of testing and verification concepts, together with
some tools used along this part of the thesis. The aim of this chapter is to
provide the user an overall idea of the purpose of each tool and technique
explained, to ease the understanding of the following chapters.

7.1 Analysis tools for Erlang
Most of the techniques explained in this part of the thesis are mainly developed
for the Erlang programming language. For this reason, we used different analysis
tools already developed for Erlang as components of our approaches. Here, we
show an overall idea about some Erlang analysis tools, briefly describing the
kind of analysis they perform in Erlang.

7.1.1 Type inference in Erlang: TypEr
Erlang is a strict, dynamically typed functional programming language that
supports communication, concurrency, fault-tolerance and distribution. Erlang
contains a set of basic data types: atoms, numbers (integers and floats), process
identifiers, and compound data types that are represented by lists and tuples.
Additionally, a notation for structured objects is also supported (called records
in Erlang), but their inner representation in Erlang is currently the same as the
one used for tuples. In Erlang, functions are defined as a set of ordered clauses,
which may contain associated guards, and the clause selection process is done
by pattern matching. Despite the lack of static types, explicit pattern match-
ing against clauses with terms or the presence of guards, generally provides
information about the function input and return types.

TypEr [122] is a fully automatic type annotator for Erlang programs based
on constraint-based type inference of success typings (a type signature that over-
approximates the set of types for which a function can evaluate to a value [121]).
Given an Erlang function, TypEr is able to automatically compute the sets of
possible input and output types of this function. TypEr’s type annotations are
always conservative over-approximations, i.e., the type annotations produced
by TypEr for a function’s arguments may be more general that the real types
accepted in practice.

150 Chapter 7. Preliminary Definitions and Notation

For example, consider the following Erlang function with two different clauses
that computes the length of a list.

length([]) -> 0;
length([_|T]) -> 1 + length(T).

When we run TypEr to obtain the function possible types we obtain the
following type specification for function length:

-spec length([any()]) -> non_neg_integer().

The specification given by TypEr indicates that the argument must be a list
with elements of any type and the function result will always be a non-negative
integer.

7.1.2 Property-based testing in Erlang: PropEr
Nowadays there are lots of Erlang modules or even complete applications where
each function defines its own type specification (spec). Type declarations and
function specifications are not used to guarantee type safety, because the Erlang
language already provides this guarantee through runtime checks. Instead, they
provide a very valuable information about every function, that can be used for
testing purposes, e.g., property-based testing.

PropEr [151] is an open-source QuickCheck-inspired property-based testing
tool for Erlang. The tool can turn function specifications into simple proper-
ties and test the correspondence between the programmers’ intentions and the
implementation of their functions. For this purpose, it uses types, both module-
local and remote, to generate values of each given type, transforming the static
spec into a set of particular calls that test the type properties defined in the
function signature. PropEr provides an automatic test of functions exclusively
based on their type signature divided in three phases:

(i) generation of valid inputs,

(ii) execution of the function with the generated inputs, and

(iii) check of the correspondence between the actual returned value and the
output expected type.

7.1.3 Concolic testing in Erlang: CutEr
Concolic testing [70, 113, 176] is a testing method for input generation where a
program is simultaneously executed both concretely and symbolically to max-
imise the achieved path coverage. In concolic testing, test inputs are generated
from the execution of the program. The main idea of this testing approach is to
collect, during runtime, symbolic constraints that the program establishes over
certain input values. This way, by solving these sets of symbolic constraints,
we can infer new input values to force the execution of the program to follow a
specific path.

7.2. Design by contract 151

CutEr [68] is a tool that applies the idea of concolic testing to detect bugs
in Erlang applications, especially bugs that are very difficult to find using other
methods. For that purpose, CutEr tries to explore all execution paths to find
those that lead to runtime execution errors. The input of CutEr is a program
and a particular input for this program. CutEr executes this input running
the program concretely and symbolically, and accumulates all the symbolic
constraints it finds during the execution. All the collected symbolic constraints
are later used to generate new input values by solving them with a particular
constraint solver (the Z3 SMT-solver). This process is repeated with the new
program inputs computed, accumulating new sets of symbolic constraints that
appear during each new execution. The process finishes when there is no more
constraint sets to solve and, thus, no more execution paths can be produced.

7.2 Design by contract
The term design-by-contract (DBC) was originally proposed by Bertrand Meyer
[134] to formally define the requirements of software systems. The main idea
is that a module inside a system grants some kind of contract, or obligation,
for the functionality it provides. Consequently, using the module implies the
acceptance of the terms of that contract. The specification of this contract is
built upon Hoare logic, a formal system developed by Tony Hoare for reasoning
about the correctness of programs [80] that allows for the use of composite
predicates to describe complex properties. The fundamental basis of this model
are threefold:

1. Preconditions. They represent requirements that must be met before
calling a function. If the preconditions are not fulfilled, then the associated
function may compute erroneous values or crash during the execution.

2. Postconditions. They represent conditions that must be met after the
execution of the function call. The violation of a postcondition implies
that a function shows a wrong behaviour during its execution and does
not behave as expected.

3. Invariants. They are constraints that must be satisfied during the life-
time of a certain component. The infringement of an invariant defined
over a specific component may lead to scenarios not considered by the
component, resulting into the outbreak of unexpected program results.

The best way to specify the details of a contract is to include it in the module
documentation of the API. Functions should specify any expected precondition
that must be fulfilled before executing a function call as well as any resulting
postconditions that must be satisfied after the function call is completed. Addi-
tionally, the documentation should also specify any invariants that must remain
true during the observable lifetime of each program component, that is, after
construction, before destruction, and before and after each function call.

To show the concept of DBC more concretely, we provide the following
example:

152 Chapter 7. Preliminary Definitions and Notation

Example 7.1. Consider the Java program with the class String in Figure 7.1.
There are two different types of contracts defined as comments in the code. The
first one is an invariant stablished over the objects of class String in Line 2,
which represents that the size of a String (call to method size()) must always
be greater or equal than zero. On the other hand, we also have a postcondition
in Line 10 associated to method append. The postcondition exposes that the
length of the string object being changed must grow by the length of the input
string s (the term @pre.size() is used to represent the length of the string
before the method is called).

1 // A container that operates on sequences of characters.
2 // Invariant: size() >= 0
3
4 class String {
5 ...
6 // Returns the number of characters in this String object
7 public int size(){ ... }
8 ...
9 // Append ’s’ to this String object.

10 // Postcondition: size() == @pre.size() + s.size()
11 public void append(String s){
12 ...
13 }
14 ...
15 }

Figure 7.1: Java program that makes use contracts of DBC
approach

Since it is directly related with the code of the module being tested, the
DBC approach is often considered as unit testing too. In fact, contracts and the
information they provide are used in testing in different ways. Some of these
ways are the use of contracts to built runtime assertions checked during the
execution of the program, or the so called contract-based testing, introduced
by Aichernig [4], that generates tests for the program from the information
provided by contracts.

153

Chapter 8

Software Evolution Control in
Erlang

During its useful lifetime, a program might evolve many times. Each evolution
is often composed of several changes that produce a new release of the soft-
ware. There are multiple ways to control that these changes do not modify
the behaviour of any part of the program that was already correct. Most of
the companies rely on regression testing [162, 210] to assure that a desired be-
haviour of the original program is kept in the new version, but there exist other
alternatives such as the static inference of the impact of changes [95, 115, 137,
184].

Even when a program is perfectly working and it fulfils all its functional
requirements, sometimes we still need to improve parts of it. There are several
reasons why a released program needs to be modified. For instance, improving
the maintainability or efficiency; or for other reasons such as obfuscation, secu-
rity improvement, parallelisation, distribution, platform changes, and hardware
changes, among others. In the context of software maintenance it is common
to change an algorithm several times until certain performance requirements
are met. Often, during each iteration, the code naturally becomes more and
more complex and, thus, more difficult to understand and debug. Although
regression testing should be ideally done after each change, in real projects the
methodology is really different. As reported in [50], only 10% of the companies
do regression testing daily. This means that, when an error is detected, it can
be hidden after a large number of subsequent changes. The authors also claim
that this long-term regression testing is mainly due to the lack of time and
resources.

Programmers that want to check whether the semantics of the original pro-
gram remains unchanged in the new version usually create a test suite. There
are several tools that can help in all this process. For instance, Travis CI can
be easily integrated in a GitHub repository so that each time a pull request
is performed, the test suite is launched. We present here an alternative and
complementary approach that creates an automatic test suite to do regression
testing: (i) An alternative approach because it can work as a standalone pro-
gram without the need of using other techniques. Therefore, our technique can
check the evolution of the code even if no test suite has been defined. (ii) A
complementary approach because it can also be used to complement other tech-
niques, providing a major reliability in the assurance of behaviour preservation.

154 Chapter 8. Software Evolution Control in Erlang

More sophisticated techniques, but with similar purpose, have been recently
announced like the Ubisoft’s system [207] that is able to predict programmer
errors beforehand. It is quite illustrative that a game-developer company was
the first one in presenting a project like this one. The complex algorithms used
to simulate physical environments and AI behaviours need several iterations in
order to improve their performance. It is in one of those iterations where some
regression faults can be introduced.

In the context of debugging, programmers often use breakpoints to observe
the values of an expression during an execution. Unfortunately, this feature
is not currently available in testing, even though it would be useful to easily
focus the test cases on one specific point without modifying the source code
(as it happens when using asserts) or adding more code (as it happens in unit
testing). This work introduces the ability to specify points of interest (POI)
in the context of testing. A POI can be any expression in the code (e.g., a
function call) meaning that we want to check the behaviour of that expression
(the sequence of values it is evaluated to during the execution). Although they
handle similar concepts, our POIs are not exactly like breakpoints, since their
purpose is different. Breakpoints are used to indicate where the computation
should stop, so the user can inspect variable values or control statements. In
contrast, a POI defines an expression whose sequence of evaluations to values
must be recorded, so that we can check the behaviour preservation (by value
comparison) after the execution. In particular, note that placing a breakpoint
inside a unit test is not the same as placing a POI inside it because the goals
are different.

In our technique, (1) the programmer identifies a POI and a set of input
functions whose invocations should evaluate the POI. Then, by using a combi-
nation of random test case generation, mutation testing, and concolic testing,
(2) the tool automatically generates a test suite that tries to cover all possible
paths that reach the POI (trying also to produce execution paths that evaluate
the POI several times). In our setting, each test case is divided in two different
parts: the input of a test case (ITC), which is defined as a tuple ⟨f, a⟩ where f
is the input function to be called in the test case and a a set of specific argu-
ments for the call, and the output, which is the sequence of values the POI is
evaluated to during the execution of the ITC. For the sake of disambiguation,
in the rest of the chapter we use the term traces to refer to these sequences
of values. Next, (3) the test suite is used to automatically check whether any
mismatching trace (also referred as error or unexpected behaviour during this
chapter) is found across both code versions. This is done by passing each in-
dividual test case (which contains calls to the input functions) against the new
version, and checking whether the same traces are produced at the POI. Fi-
nally, (4) the user is provided with a report about the success or failure of these
test cases. Note that, as it is common in regression testing, this approach only
works for deterministic executions. However, this does not mean that it cannot
be used in a program with concurrency or other sources of non-determinism, it
only depends on where the POIs are placed and the input functions used (this
is further explained in Section 8.5).

8.1. A novel approach to Automatic Regression Testing: Point of Interest
Testing 155

We have implemented the approach in a tool named SecEr (Software Evo-
lution Control for Erlang), which is publicly available at: https://github.
com/mistupv/secer. Instead of reinventing the wheel, some of the analyses
performed by our tool are done by other existing tools previously described in
Chapter 7, Section 7.1: TypEr, PropEr, and CutEr. However, all the analyses
performed by SecEr are completely transparent to the user.

Example 8.1. In order to show the idea behind our approach, we provide an
example to compare two versions of a simple Erlang program which has been
well and erroneously refactored. All the versions of this program can be seen in
Figure 8.1.

1 main(X,Y) ->
2 A = X + Y,
3 D = X - Y,
4 A * D.

(a) Initial Version

1 main(X,Y) ->
2 A = add(X,Y),
3 D = dif(X,Y),
4 A * D.
5 add(X,Y) ->
6 X + Y.
7 dif(X,Y) ->
8 X - Y.

(b) Program well refactored

1 main(X,Y) ->
2 A = add(X,Y),
3 D = dif(X,Y),
4 A * D.
5 add(X,Y) ->
6 X + Y.
7 dif(Y,X) ->
8 X - Y.

(c) Program bad refactored

Figure 8.1: Two versions of a simple Erlang program with
good and erroneous refactorings

In this example, the comparison of program versions in Figures 8.1a and 8.1b
reports that the executions of both versions with respect to the selected POIs be-
have identically. On the other hand, if we compare versions in Figures 8.1a
and 8.1c, the approach detects an error introduced in the behaviour of the pro-
gram, since the arguments of the function dif in the bad refactored version are
swapped.

During the rest of the chapter we make a detailed description of the different
processes and transformations that make POI testing possible. We start by
providing an overall view of the whole POI testing methodology (Section 8.1).
Then, we show the process used to trace the execution information to compare
program versions (Section 8.2). After that, we describe how the methodology
is adapted to Erlang (Section 8.3), including the steps needed to enhance the
process to evaluate multiple POIs at once (Section 8.4) and its applicability in
programs with concurrency (Section 8.5). Finally, we present how the idea of
POI testing is implemented in a tool called SecEr (Section 8.6) and show the
comparison of metrics about the tool’s possible configurations (Section 8.7).

8.1 A novel approach to Automatic Regression
Testing: Point of Interest Testing

Our technique is divided into three sequential phases that are summarised in
Figures 8.2, 8.3, and 8.4. In these figures, the big dark grey areas are used
to group several processes with a common objective. Light grey boxes outside

https://github.com/mistupv/secer
https://github.com/mistupv/secer

156 Chapter 8. Software Evolution Control in Erlang

these areas represent inputs and light grey boxes inside these areas represent
processes, white boxes represent intermediate results, and the initial processes
of each phase are represented with a bold border box.

.erl1

Fun

TypEr

AST
Analysis

Types

Clause

Refine

Random
Selection

〈Clause
,Types〉

Clause

TypEr to
PropEr

PropEr
Types

PropEr
Gen

Args CutEr

Args

Test Case Generation

.erl1 Fun

Input

Figure 8.2: Type analysis phase

The first phase, depicted in Figure 8.2, is a type analysis that is in charge
of preparing all inputs of the second phase (Test Case Generation). This phase
starts by locating in the source code the Erlang module (.erl1) and a function
(Fun) specified in the user input1 (for instance, function exp in the math mod-
ule). Then, TypEr is used to obtain the type of the parameters of that function.
It is important to know that, in Erlang, a function is composed of clauses and,
when a function is invoked, an internal algorithm traverses all the clauses in
order to select the one that will be executed. Unfortunately, TypEr does not
provide the individual type of each clause, but a global type for the whole func-
tion. Therefore, we need to first analyze the AST of the module to identify
all the clauses of the input function, and then we refine the types provided by
TypEr to determine the specific type of each clause. All these clause types are
used in the second phase. In this phase, we use PropEr to instantiate only
one of them (e.g., ⟨Number, Integer⟩ can be instantiated to ⟨4.22, 3⟩ or ⟨6, 5⟩).
However, PropEr is unable to understand TypEr types, so we have defined a
translation process from TypEr types to PropEr types. Finally, CutEr is fed
with an initial call (e.g., math:exp(4.22,3)) and it provides a set of possible
arguments (e.g., {⟨1.5, 6⟩, ⟨2, 1⟩, ⟨1.33, 4⟩, . . . }). Finally, this set is combined
with the function to be called to generate the ITCs (e.g., {math:exp(1.5,6),
math:exp(2,1), math:exp(1.33,4), . . . }). All this process is further detailed
later.

The second phase, shown in Figure 8.3, is in charge of generating the test
suite. As an initial step, we instrument the program so that its execution
records (as a side-effect) the sequence of values produced at the POI defined by
the user. Then, we store all ITCs provided by the previous phase into a working
list. Note that it is also possible that the previous phase is unable to provide
any ITC due to the limitations of CutEr. In such a case, or when there are no
more ITCs left, we randomly generate a new one with PropEr and store it on
the working list. Then, each ITC on the working list is processed by invoking
it with the instrumented code. The execution provides the sequences of values
the POI is evaluated to (i.e., the trace). This trace together with the ITC form

1We show here the process for only one function. In case the user defined more than one
input function, the process described here would be repeated for each function.

8.1. A novel approach to Automatic Regression Testing: Point of Interest
Testing 157

〈Clause
,Types〉

Inputs

.erl1

Top

POI1

Clause

Code
Instrumentator

.erl1’

Input
Selector

Input
WL

Empty?

Random
Generator

Execution

Test

Test
DB

New?Mutating
Generator

Random
Input

Limit?

{Clause,
Types}

T

T

T

F

F

F

Comparison

Mutated
Inputs

TraceInput

Figure 8.3: Test case generation phase

a new test case, which is a new output of the phase. Moreover, to increase the
quality of the test cases produced, whenever a non-previously generated trace is
computed, we mutate the ITC that generated that trace to obtain more ITCs.
The reason is that a mutation of this ITC will probably generate more ITCs
that also evaluate the POI but to different values. This process is repeated until
the specified limit of test cases is reached.

Finally, the last phase (shown in Figure 8.4) checks whether the new version
of the code passes the test suite. First, the source code of the new version is
also instrumented to compute the traces produced at its POI. Then, all the
generated test cases are executed and the traces produced are compared with
the expected traces.

Test
DB

Test
Selector

Test Execution

Trace1

.erl2

POI2 Code
Instrumentator

.erl2’

Input
Trace

Comparator

Test
Result

Result
DB

Comparison
Result

T

F
Trace2Empty?

Figure 8.4: Comparison phase

158 Chapter 8. Software Evolution Control in Erlang

8.2 Traced information in POI testing
POI testing uses traces of the POI to check whether its behaviour remains
unchanged across program versions. We represent each element of this trace as
a triplet (POI , value, ai). In this triplet, POI represents the selected point of
interest, value represents the value computed for POI in a specific execution,
and ai is a map that contains extra information about the program context
for this particular execution of POI . Then, any implementation of POI testing
must be able to build these triplets, storing in ai all the desired execution
information (e.g. the arguments of the call when the POI is a function call),
and put all the collected traces together for its usage during the comparison
and the report stages.

The comparison of the traces generated during the execution is a key step
to detect if two versions of a program present any unexpected behaviour. In
many different situations, the information we want to compare between both
executions may not be only the value produced for a POI, but different aspects
of the execution like the execution time of both code versions. For this reason,
POI testing must allow the usage of any customised comparison function. This
feature gives users a complete freedom to configure the testing and/or debugging
process in the best way according to their needs.

Figure 8.5: Comparison function structure

In order to maximise the customisation level of the comparison, users can
define their own comparison functions. Each comparison function is defined
by a set of connected functions that cover the different aspects of the com-
parison. Thus, the input part of the approach includes the definition of two
functions. The connection between these functions is illustrated in Figure 8.5.
The outer black box represents the general comparison function (it receives the
whole traces of both executions as parameters, TO and TN), while the gray and
white boxes represent the mentioned functions, that are used inside the general
comparison to separately treat the elements of the whole execution trace. Their
behaviour is explained below2.

• Value-Extractor Function (VEF): This function works at the trace
element level. Its target is to extract for any trace element only the parts
that the user wants to compare. For example, function:

2All the presented functions are written in pseudocode. In a particular implementation,
all functions should be implemented in the target language.

8.2. Traced information in POI testing 159

VEF(POI, value, ai) ⇒ RETURN (POI, value, ai(args))

extracts from the additional information of a trace element only the value
of the arguments (available only when the POI is placed in a method call)
and ignores the rest of additional information3.

• Trace Element Comparison Function (TECF): In order to allow users
to check mismatching traces found in different ways and not only a plain
equality function, i.e. operator ==, we add a comparison function for each
pair of trace elements. This function iteratively receives pairs of trace
elements contained in the whole traces, and it is the one in charge of
comparing them. In order to compare two trace elements, it uses the VEF
function to extract their values, perform a defined comparison, and, if a
mismatching trace is found, it returns an error type notifying about it.
For example, function:

TECF(TOE, TNE) ⇒
CASE compare(VEF(TOE),VEF(TNE)) OF

gt → RETURN true
eq → RETURN same
lt → RETURN downgrade

ENDCASE

is an example of a TECF, where function compare/2 is used to check
whether a reduction in some performance indicator is obtained. Then,
when it is not obtained, either a same or a downgrade labeled error type
is returned. These labeled errors can trigger a customised error message
defined by the user with the trace information considered relevant.

Additionally, when the comparison function detects a labelled error type,
a specific report can be generated. In order to further define these error mes-
sages, we have added to the approach a way to specify how the POI tester
should react to a particular unexpected behaviour. In this case, we have added
an extra input parameter, a report map (RM) to link error types with error mes-
sages called. This mapping associates each error label to a corresponding error
message written by the user, which can be simply a text message or contain
extra information about the previously traced values. For example, expression
RM(downgrade) may return a function similar to the one shown in Figure 8.6,
where a custom message is shown4 when an unexpected behaviour of this type
is found during the execution.

3We use the notation ai(key) to refer to access some specific information previously stored
in the ai map. In this case ai(args) represent the arguments of a POI placed in a function
call.

4The function presented in Figure 8.6, does not make use of parameters TEO, TEN and
History to define the message content. However, more complex functions that treat the
information stored in these parameters can be defined to obtain more elaborated messages.

160 Chapter 8. Software Evolution Control in Erlang

DOWNGRADE(TEO, TEN, History) ⇒
RETURN "There has been a downgrade in the new version"

Figure 8.6: Example of a function providing a customised error
message

8.2.1 Possible POI testing configurations
There are several ways of using the additional information stored in the trace
elements, and all these modes are defined by the added resources previously
introduced (TECF and VEF). We show three different modes which will be more
useful for users:

1. Not using additional information during the comparison. In this
mode, the traced values are the only data used when comparing the trace
elements. This mode will use a value-extractor function that ignores the
additional information element of the triplet

VEF(POI, V, AI) ⇒ RETURN (POI, V)

According on whether additional information is used for error classification
or error report, we have identified three submodes.

(a) Additional information is only used to define error types.
In this case, additional information is only used to define new types
of error labels. This mode is really useful when the additional in-
formation is not useful by itself during the comparison, but can
be used to classify an unexpected behaviour detected to ease the
bug location. For instance, defining a new type of labelled error
diff_value_same_args for function calls gives the user information
about where the values of two POIs placed at function calls differ,
pointing out that the error is not in the call arguments, but in the
implementation of the function.
Figure 8.7 shows a TECF which distinguishes between those unex-
pected values for call POIs where the arguments are the same and
those where the arguments are different5.

TECF(TOE, TNE) ⇒
IF VEF(TOE) == VEF(TNE) THEN

RETURN true
ELSE

IF get_ai(TOE)(args) == get_ai(TNE)(args) THEN
RETURN diff_value_same_args

ELSE
RETURN diff_value_diff_args

ENDIF
ENDIF

Figure 8.7: TECF which returns different error types

5Function get_ai is defined as get_ai(POI,value,ai) ⇒ RETURN ai.

8.3. POI testing adapted to Erlang 161

(b) Additional information only used in the report stage. If we
consider that the additional information is not representative enough
to categorise new types of errors, we can use its data only in the re-
ports. This is a less intrusive way of using the additional information,
but still a useful way to obtain richer feedback in the final report of
each mismatching trace.

(c) Additional information is used to categorise and report er-
rors. This submode takes the advantages of both previous sub-
modes. It also involves specific trace-element comparison functions
and additions in the mismatching trace reports.

2. Using additional information during the comparison. This mode
is the one that gives a major relevance to the additional information. By
using this mode, the value and the additional information is compared
as a whole. This means that, for instance, even if the compared values
are the same, when any pair of elements of the additional information
differs, the ITC is reported to be generating an unexpected behaviour.
This mode is very convenient to uncover some errors earlier. It can also
be used for performance checking, e.g. the values of the trace elements are
equal but a performance indicator included in the additional information
is revealing some downgrade. This mode uses a VEF function and a TECF
which takes into account all or some parts of the additional information
contained in each trace element.

3. Additional information traced independently. Finally, in this com-
pletely different mode, the additional information is considered as a sep-
arated entity and constitutes a single trace element as the ones that are
generated for the POIs. This mode is very convenient in such cases where
the additional information can be directly used to uncover an unexpected
behaviour, avoiding in this way the comparison of several subcomputa-
tions. For instance, if we place a POI in a call, and the call parameters
are compared before comparing the call result, all intermediate trace ele-
ments are not compared. This mode can be combined in such a way that
other additional information is attached to these special trace elements
forming a hybrid mode suitable for some specific scenarios.

8.3 POI testing adapted to Erlang
Now that we have seen an overview of how POI testing works and the compo-
nents forming the traced information, we describe in more detail some relevant
parts of our approach and how we have adapted POI testing to Erlang.

8.3.1 Initial ITC generation
The process starts from the type inferred by TypEr for the whole input function.
This is the first important step to obtain a significant result, because ITCs are
generated with the types returned by this process, so the more accurate the

162 Chapter 8. Software Evolution Control in Erlang

types are, the more accurate the ITCs will be. The standard output of TypEr
is an Erlang type specification returned as a string, which would need to be
parsed. For this reason, we have hacked the Erlang module that implements
this functionality to obtain the types in a data structure, easier to traverse and
handle. In order to improve the accuracy, we define a type for each clause of the
function ensuring that the later generated ITCs will match it. For this reason,
TypEr types need to be refined to TypEr types per clause.

However, the types returned by TypEr have (in our context) two drawbacks
that need to be corrected since they could yield to ITCs that do not match a
desired input function. These drawbacks are due to the occurrence of repeated
variables and due to the type produced for lists. We explain both drawbacks
with Example 8.2.

Example 8.2. Consider a function with the header f(A,[A,B]) as its only
clause. Consider also the case where, for this function, TypEr returns the fol-
lowing types: f(1 | 2, [1 | 2 | 5 | 6, . . .]) 6.

• Drawback 1. The first drawback is caused by the fact that the value
relation generated by the repeated variable A is lost in the function type. In
particular, the actual type of variable A is diluted in the type of the second
argument. The use of the inferred types could yield to mismatching ITCs,
e.g., f(1,[6,5]).

• Drawback 2. The type of the second parameter of function f/2 indi-
cates that the feasible values for the second parameter are proper lists with
a single constraint: each list has to be formed by numbers from the set
{1,2,5,6}. This introduces a limit about possible values, but it does not
introduce a limit to the number of elements the list must contain (two in
the example). If we use the TypEr inferred types directly, we may generate
ITCs that will not match the function, e.g. f(2,[2,1,6,5]).

As seen in Example 8.2, the types produced by TypEr are too imprecise in
our context, because they may produce test cases that are useless (e.g., non-
executable). These problems are resolved along the ITC generation process.
With the information we have so far, there is a problem that we can already
solve, the problem arisen by Drawback 1, introduced by repeated variables,
such as the A variable in the example. To solve Drawback 1, we traverse the
parameters building a correspondence between each variable and the inferred
TypEr type. Each time a repeated variable name appears, we calculate its type
as the intersection of both the TypEr type and the accumulated type. For
instance, in the previous example we have A = 1 | 2 for the first occurrence,
and A = 1 | 2 | 5 | 6 for the second one, obtaining the new accumulated
type A = 1 | 2.

6Erlang is a dynamically typed language and, for this reason, TypEr uses a success typing
system instead of the usual Hindley-Milner type inference system. Therefore, TypEr’s types
are different from what many programmers would expect (i.e., Integer, String, etc.). Instead,
a TypEr’s type is a set of values such as [1 | 2 | 5 | 6] or an Erlang defined type
(Number, Integer, etc.).

8.3. POI testing adapted to Erlang 163

Once we have our refined TypEr types, we rely on PropEr to obtain the
input for CutEr. PropEr is a property-based testing framework with a lot of
useful underlying functionality. One of them is the term generators, which,
given a PropEr type, are able to randomly generate terms belonging to such
type. Thus, we can use the generators in our framework to generate values for
a given type.

However, TypEr and PropEr use slightly different notations for their types,
something reasonable given that their scopes are completely different. Unfortu-
nately, there is not any available translator from TypEr types to PropEr types.
In our technique, we need such a translator to link the inferred types to the
PropEr generators. Therefore, we have built the translator by ourselves. Then,
during the variable-value generation process, we deal with Drawback 2. In this
case, we make use of the information given by the parameters of the clause in
conjunction with their types. Each time a list is found during the variable-value
generation, we traverse its elements and generate a type for each element on
the list. Thereby, we translate an undefined sized list given by TypEr to a list
with exactly the same number of elements. During this process, the scenario
generated by Drawback 1 is solved by using a dictionary of already generated
variables with pairs variable-value. Each time a repeated variable is found we
use the dictionary to replicate the value instead of generating a new one.

We can feed CutEr with an initial call by using a randomly selected clause
and the values generated by PropEr for this clause. CutEr is a concolic testing
framework that generates a list of arguments that tries to cover all the execution
paths. Unfortunately, this list is only used internally by CutEr, so we have
hacked CutEr to extract all these arguments. Finally, by using this slightly
modified version of CutEr we are able to mix the arguments with the input
function to generate the initial set of ITCs.

8.3.2 Recording the traces of the point of interest
There exist several tools available to trace Erlang executions [45, 51, 53, 194].
However, none of them allows for defining an arbitrary expression of the code.
Being able to trace any possible point of interest requires either a code instru-
mentation, a debugger, or a way to take control of the execution of Erlang.
However, using a debugger (e.g., [51]) has the drawback that it does not pro-
vide a value for the POI when it is inside an expression whose whole evaluation
fails. Therefore, we decided to instrument the code in such a way that, without
modifying the semantics of the code, traces are collected as a side effect when
executing any (sub)expression of the code.

The instrumentation process creates and collects the traces of the POI re-
gardless where the location of the selected expression. To create the traces in
an automatic way, we instrument the expression pointed by the POI. To collect
the traces, there are several options. For instance, it is possible to store the
traces in a file and process it when the execution finishes, but this approach is
inefficient. We follow an alternative approach based on message passing. We
send messages to a server (which we call the tracing server) that is continuously
listening for new traces until a message indicating the end of the evaluation is

164 Chapter 8. Software Evolution Control in Erlang

1 foo(A) ->
2 {B,POI} = {2,A}.

{match,2,
{tuple,2,

[{var,2,‘B’},
{var,2,‘POI’}]

},
{tuple,2,

[{integer,2,2},
{var,2,‘A’},]

}
}

Figure 8.8: Code to be transformed and AST associated to
the pattern matching in line 2

received. This approach is closer to the Erlang’s philosophy. Additionally, it is
more efficient since the messages are sent asynchronously resulting in an imper-
ceptible overhead in the execution. As a result of the instrumenting process,
the transformed code sends to the tracing server the value of the POI each time
it is evaluated, and the tracing server stores the sequence of values.

In the following, we explain in detail how the communication with the server
is placed in the code. This process is divided in steps and each step is applied
to the code in Figure 8.8.

1. We first use the erl_syntax_lib:annotate_bindings/2 function to an-
notate the AST of the code. This function annotates each node with two
lists of variables: those variables that are being bound (bound) and those
that were already bound (free) in its subtree. Additionally, we anno-
tate each node with a unique integer that serves as identifier, so we call
it AST identifier. This annotation is performed in a post-order traver-
sal, resulting, consequently, in an AST where the root has the greatest
number.

{match,2, %{nodeinfo,7,{bound,[‘B’,‘POI’]},{free,[‘A’]}}
{tuple,2, %{nodeinfo,3,{bound,[‘B’,‘POI’]},{free,[]}}

[{var,2,‘B’}, %{nodeinfo,1,{bound,[‘B’]},{free,[]}}
{var,2,‘POI’}] %{nodeinfo,2,{bound,[‘POI’]},{free,[]}}

},
{tuple,2, %{nodeinfo,6,{bound,[]},{free,[‘A’]}}

[{integer,2,2}, %{nodeinfo,4,{bound,[]},{free,[]}}
{var,2,‘A’}] %{nodeinfo,5,{bound,[]},{free,[‘A’]}}

}
}

Figure 8.9: Sets of environment variables and variables being
bound in each expression of the AST in Figure 8.8

2. The next step is to find the POI selected by the user in the code and
obtain the corresponding AST identifier. There are two ways of doing
this depending on how the POI is specified: (i) If the POI is defined with

8.3. POI testing adapted to Erlang 165

the triplet (line, type of expression, occurrence), we locate it with a pre-
order traversal7 of the tree. However, (ii) when the POI is defined with
the initial and final positions, we replace, in the source code, the whole
expression with a fresh term. Then, we build the AST of this new code
and we search for the fresh term in this AST recording the path followed.
This path is replicated in the original AST to obtain the AST identifier
of the POI. Thus, the result of this step is a relation between a POI and
an AST identifier. According to the annotated AST given in Figure 8.9
the result of this step would be ⟨POI,2⟩.

3. Then, we need to extract the path from the AST root to the node with
the AST identifier with a new search process. During this search process,
we store the path followed in the AST with tuples of the form (Node,
ChildIndex), where Node is the AST node and ChildIndex is the index
of the node in its parent’s children array. Obtaining this path is essential
for the next steps since it allows us to recursively update the tree in an
easy and efficient way. When the POI is found, the traversal finishes.
Thus, the output of this step is a path that yields directly from the root
node to the POI. The path computed for POI in Figure 8.8 would be the
following list of tuples:

[{match,1},{tuple,1},{POI,2}]

4. Most of the times, the POI can be easily instrumented by adding a send
command to communicate its value to the tracing server. However, when
the POI is in the pattern of an expression, this expression needs a special
treatment in the instrumentation. This is shown with Example 8.3.

Example 8.3. Consider a POI inside a pattern {1,POI,3} of a match
expression. If the execution tries to match it with {2,2,3} nothing is send
to the tracing server because the POI is never evaluated. Contrarily, if it
tries to match it with {1,2,4} we send the value 2 to the tracing server.
Note that the matching fails in both cases, but due to the evaluation order,
the POI is actually evaluated (and it succeeds) in the second case. There
is an interesting third case, that happens when the POI has a value, e.g.,
3, and the matching with {1,4,4} is tried. In this case, although the
matching at the POI fails, we send the value 4 to the tracing server. We
could also send its actual value, i.e., 3. This is just a design decision,
but we think that including the value that produced the mismatch could be
more useful to find the source of a discrepancy.

We call target expression to those expressions that need a special treat-
ment in the instrumentation as the previously described one. In Erlang,
these target expressions are: pattern-matchings, list comprehensions, and
expressions with clauses (i.e., case, if, functions, . . .). The goal of

7We use this order because it is the one that allows us to find the nodes in the same order
as they are in the source code.

166 Chapter 8. Software Evolution Control in Erlang

this step is to divide the AST path into two sub-paths (PathBefore,
PathAfter). PathBefore yields from the root to the deepest target ex-
pression (included), and PathAfter yields from the first children of the
target expression to the POI node. The division of the path is shown
hereunder, where PathBefore is shown in blue and PathAfter in red.

[{match,1},{tuple,1},{POI,2}]

5. Finally, the last step is the one in charge of performing the actual instru-
mentation. The PathBefore is used to traverse the tree until the deepest
target expression that contains the POI is reached. At this point, five rules
(described below) are used to transform the code by using PathAfter.
Finally, PathBefore is traversed backwards to update the AST of the
targeted function. The five rules are depicted in Figure 8.10. The main
goal of these instrumentation rules is to introduce a send expression into
the code that sends the value of the POI to the previously launched pro-
cess tracer. The difficulty here is to prevent some Erlang features from
affecting this sending like the scenario described before. The first four
rules are mutually exclusive, and when none of them can be applied, the
rule (EXPR) is applied. Rule (LEFT_PM) is fired when the POI is in the
pattern of a pattern-matching expression. Rule (PAT_GEN_LC) is used to
transform a list comprehension when the POI is in the pattern of a gen-
erator. Finally, rules (CLAUSE_PAT)8 and (CLAUSE_GUARD) transform an
expression with clauses when the POI is in the pattern or in the guard of
one of its clauses, respectively.
In the rules, we use the underline symbol (_) to represent a value that is
not used and poiid represents the POI AST identifier (computed during
step 2), which is used to link the traced value and information to a spe-
cific POI. There are several functions used in the rules that need to be
introduced. Function hd(l), tl(l), length(l) and last(l) returns the head,
the tail, the length, and the last element of the list l, respectively. Func-
tion pos(e) returns the child index of an expression e, i.e., its index in the
list of children of its parent. Function is_bound(e) returns true if e is
bounded according to the AST binding annotations (see step 1). Func-
tion clauses(e) and change_clauses(e, clauses) obtains and modifies the
clauses of e, respectively. Function fv() builds a free variable. Function
get_ai(), defined by the user, implements the necessary instrumentation
to extract from the execution the selected additional information associ-
ated to the POI.
Finally, there is a key function named pfv, introduced in Figure 8.11, that
transforms a pattern so that the constraints after the POI do not inhibit
the sending call. This is done by replacing all the terms on the right of the
POI with free variables that are built using fv function. Unbound variables
on the left and also in the POI are replaced by fresh variables to avoid the

8Function clauses need an additional transformation that consists in storing all the pa-
rameters inside a tuple so that they could be used in case expressions.

8.3. POI testing adapted to Erlang 167

(LEFT_PM) p = e⇒ p = begin np = e, tracer!{add, poiid, npoi, get_ai()},
np end

if (p = e, _) = last(PathBefore)
∧ (_ , pos(p)) = hd(PathAfter)

where (_ , npoi, np) = pfv(p, PathAfter)

(PAT_GEN_LC) [e || gg]⇒ [e || ngg]
if ([e || gg], _) = last(PathBefore)
∧ (_ , pos(p_gen)) = hd(tl(PathAfter))
∧ ∃ i. 1 ≤ i ≤ length(gg) s.t. ggi = p_gen <- e_gen

where (_ , npoi, np_gen) = pfv(p_gen, tl(PathAfter))
∧ nggi = p_gen <- begin tracer!{add, poiid, npoi, get_ai()},

[np_gen] end
∧ ngg = gg1 . . . ggi−1, np_gen <- e_gen, nggi, ggi+1 . . . gglength(gg)

(CLAUSE_PAT) e⇒ change_clauses(e, ncls)
if (e, _) = last(PathBefore)
∧ (_ , pos(p_c)) = hd(tl(PathAfter))
∧ ∃ i. 1 ≤ i ≤ length(cls) s.t. clsi = p_c when g_c -> b_c

where cls = clauses(e)
∧ (_ , npoi, np_c) = pfv(p_c, tl(PathAfter))
∧ nb_c = begin tracer!{add, poiid, npoi, get_ai()},

case np_c of cls end end
∧ nclsi = np_c when true -> nb_c
∧ ncls = cls1, . . . , clsi−1, nclsi, clsi+1, . . . , clslength(cls)

(CLAUSE_GUARD) e⇒ change_clauses(e, ncls)
if (e, _) = last(PathBefore)
∧ (_ , pos(g_c)) = hd(tl(PathAfter))
∧ ∃ i. 1 ≤ i ≤ length(cls) s.t. clsi = p_c when g_c -> b_c

where cls = clauses(e)
∧ (poi, _) = last(PathAfter)
∧ nb_c = begin tracer!{add, poiid, poi, get_ai()},

case np_c of cls end end
∧ ncl = p_c when true -> nb_c
∧ ncls = cls1, . . . , clsi−1, ncl, clsi+1, . . . , clslength(cls)

(EXPR) e⇒ begin fv = e, tracer!{add, poiid, fv, get_ai()}, fv end
otherwise

where (e, _) = last(PathAfter) ∧ fv = fv()

Figure 8.10: Instrumentation rules for tracing

shadowing of the original variables. In the pfv function, children(e) and
change_children(e, children) are used to obtain and modify the children
of expression e, respectively. In this function, lists are represented with
the head-tail notation (h : t).

Figure 8.12 shows the application of the rule LEFT_PM to the code in Fig-
ure 8.8. Each fragment of the rule is shown in blue and represented next to

168 Chapter 8. Software Evolution Control in Erlang

pfv(p, path) =

(poi, poi′, p′′) if path = [(poi, pos)]
where poi′ = fv() ∧ p′ = fv_from(pos, p)
∧ p′′ = p′1 . . . p′pos−1, poi′, p′pos+1 . . . p′length(p)

(poi, poi′, p′′′) otherwise
where (_, pos) = hd(path) ∧ p′ = fv_from(pos, p)
∧ (poi, poi′, p′′) = pfv(p′pos, tl(path))
∧ p′′′ = p′1 . . . p′pos−1, p′′, p′pos+1 . . . p′length(p)

fv_from(pos, p) =
p′1 . . . p′pos, fv()pos+1 . . . fv()length(p) where (p′1 . . . p′pos, _) = cv(p1 . . . ppos, [])

cv(list, map) =

([], map) if list = []
((fv : p′t), map′) if list = (ph : pt) ∧ is_var(ph) ∧ ¬ is_bound(ph)

where fv = fv() ∧ (p′t, map′) = cv(pt, map ∪ {ph 7→ fv})
((fvmap : p′t), map′) if list = (ph : pt) ∧ is_var(ph) ∧ ph 7→ fvmap ∈ map

where (p′t, map′) = cv(pt, map)
((p′h : p′t), map′′) otherwise

where (ph : pt) = list ∧ (children′ph
, map′) = cv(children(ph), map)

∧ p′h = change_children(ph, children′ph
)

∧ (p′t, map′′) = cv(pt, map′)

Figure 8.11: Function pfv

the corresponding part of the code. The application of the rule transforms one
pattern matching expression into another one which right-hand side is a block.
This transformation allows the tracing of the POI without modifying the se-
mantics of the program. This is done by temporarily storing the values of the
original right-hand side of the match into free variables, sending this values to
the tracing server (tracer), and returning the free variable’s pattern of the in-
ner matching as the result of the block. It is worth to mention that to construct
the sending message we extract from the annotated AST (Figure 8.9) the AST
identifier of the POI, including it into the message.

{B,POI} = {2,A}

{B,POI} = begin
{FV,FVPOI} = {2,A},
tracer ! {add,2,FVPOI,null},
{FV,FVPOI}

endp = e

p = begin

np = e
tracer!{add, poiid, npoi, get_ai()}

np

end

Figure 8.12: Application of rule LEFT_PM to the POI in line 2
of Figure 8.8

8.3.3 Extraction of additional trace information
The possibility of including in the execution trace some extra information about
the execution environment, gives versatility to the POI testing approach. Al-
though in many cases we may only be interested in the value generated for a
POI without any context information, there are other scenarios where different

8.3. POI testing adapted to Erlang 169

informations become really useful. Additional information can include perfor-
mance checks between versions by including the recordings of execution time
or memory usage, but there are also some program constructs where the infor-
mation of POI-related (sub)expressions can be used to ease the location of the
error when a mismatching trace is found. We show two examples of how to
include in the trace different environment information that may be used when
selecting a POI: (i) the value of the parameters when the POI is placed in a
function call, and (ii) the current call stack each time the POI is evaluated.

Enhanced Method calls

When we place a POI in a call, we are saying that we are interested in comparing
the result of this call, so the standard behaviour of a POI tester is to trace only
these values. Nevertheless, when we detect a mismatching trace it is interesting
to have an enhanced trace where not only the result of the call, but also its
arguments, are traced. Therefore, we need to add to the additional information
mapping a new element whose key is ca and whose value is a list that contains
the call arguments.

In order to obtain the additional information call traces, we have to define
a way for sending, receiving and merging the call result and its call arguments.
The main idea is to send the argument traces before actually performing the
call and the call’s result just after that. Thus, we should define how this ad-
ditional information is added to the POI trace. Figure 8.13a shows how this
instrumentation is done for Erlang.

e(ei)⇒ begin
fvref = make_ref(),
[fvv|fvvi] = [e|ei],
tracer!{add_ci, POI, {fvref, fvv}},
tracer!{add_ci, POI, {fvref, fvi}},
fv = fvv(fvvi),
tracer!{add, POI, {fvref, fv}},
fv

end

(a) Instrumentation rule for call tracing

1 tracer({Stack, Trace}) ->
2 receive
3 {add_ci, POI, AI} ->
4 tracer({[AI | Stack], Trace});
5 {add, POI, {Ref, V}} ->
6 {CalleeArgs, NStack} =
7 remove_same_ref(Ref, Stack),
8 tracer({NStack,
9 [{POI, V, store(ca, CalleeArgs)}

10 | Trace]});
11 {add, POI, V} ->
12 tracer({Stack, [{POI, V} | Trace]})
13 end.

(b) Simplified tracing server

Figure 8.13: Elements of our proposed call tracer enhancement
in Erlang

When the code instrumentation process finds a call, i.e. e(ei), the expression
is then replaced by the block expression (begin-end) on the right-hand side.
This instrumentation (i) creates a set of auxiliary free variables9 to store all
the evaluated context of the call (callee and arguments), (ii) sends to the tracer
of these defined variables, (iii) performs the actual call using the value of the
callee and the arguments, (iv) sends the result of the call to the trace server,

9All free variables used in the rule are represented as fv∗. Each one of these free variables
is unique and different to all the original variables of the module.

170 Chapter 8. Software Evolution Control in Erlang

and (v) returns the result of the call to make the block return the expected
result. This separate process needs to be done this way to avoid the multiple
execution of call arguments, which may produce side-effects in some cases. It
is worth mentioning the first expression of the block, which creates a unique
reference (with function make_ref/0 in Erlang) that serves to identify all the
traces belonging to the same concrete execution of a call. This reference is also
stored in a free variable, (fvref) and is used to link call arguments to call result
at the tracing server.

All the information sent while running the instrumented code is received and
merged by the tracer. In Erlang, the tracer is a server which is continuously
receiving trace elements until the end of the execution or until a timeout is
raised. Figure 8.13b shows a simplification of the Erlang function tracer/1
which is in charge of this tracing process. The server state is a tuple containing:
1) a stack, where the callee and arguments are stored in the order they are
received, and 2) the trace generated so far. Its body is a receive expression
with three clauses: the first one is for the information sent by function calls’
callees and arguments, the second one is for the result of the function call, and
the third one is for the rest of trace elements, i.e. those that do not come
from a function call. When a callee or an argument value is received, it is
simply stacked. When the call result is received, all its arguments, which are at
the top of the stack, are unstacked (function remove_same_ref/2), and stored
in the additional information of the call trace element. Finally, the rest of
trace elements are simply added to the current trace with an empty additional
information structure.

Stack-recording POIs

Stack traces are common elements in error reports due to the valuable informa-
tion they provide to help find the source of an error. In our context, an error
is not a common bug but an unexpected behaviour. However, stack traces can
be also really helpful in this context. Suppose we are performing POI testing
on two programs using a single POI inside a common function that is called
from different parts of the program. When POI testing is run, we can get some
reports informing of some mismatching traces, for instance, that the POI values
are different in a particular execution point. Then, users should start placing
POIs in previous stages of the evaluation in order to find the source of the
discrepancy. However, it is not clear how to proceed in this debugging process,
as there is not enough information about the discrepancy’s source. This dis-
crepancy could happen for several reasons. For example, if we are using as POI
a case expression, we need to explore alternative ways to provide users with
some evaluation context when any mismatching trace is found. By including
the stack trace to the unexpected behaviour reports, users can check whether
both versions have perform the same calls or not, i.e. they have followed parallel
paths. Even when the top of the stack trace is a call with the same arguments,
the produced value can differ simply because some of the elements of the rest
of the stack trace differ. The discrepancy in the followed paths can be, e.g. due
to impure features of the language, like, for instance, the process dictionary in
Erlang. Thus, it is not a simple task to identify these discrepancies. With the

8.3. POI testing adapted to Erlang 171

e(ei) ⇒ begin
[v|vi] = [e|ei],
[v(vi)], [v|vi]

end

(a) Calls

f(pi)→ ei. ⇒ f(pi)→ ei, [f|pi]

(b) Function definitions

ei, call ⇒ begin
fvref = make_ref(),
tracer!{begin, fvref, call},
try

ei−1,
fv = ei,
tracer!{end, fvref},
fv

catch
E : R→ tracer!{end, fvref},

error(E, R)
end

end

(c) Stack trace template

Figure 8.14: Transformation rules to obtain the stack trace

addition of the stack trace information, users can go directly to the function
that start creating the bifurcation on the paths and start a debugging process
there. By using special comparison functions, this enhancement can be useful
even when some renaming or refactoring process has been performed.

In a similar way as we did with function calls, we need to add stack traces to
the each POI evaluation. This again involves modifying sending and reception
of trace elements. However, in this case, the modifications needed are much
simpler. First, the rules used by the instrumentation process need to augment
each message send to the tracer with the stack trace. In Erlang, this is done by
using the catch _:_:ST -> ... catch clause pattern when an exception has
been thrown10. On the other hand, the reception should be adapted accordingly
to process these new trace elements. This involves, modifying the receive’s
clauses. In concrete, we can use a single clause like the one in lines 11-12 of
Figure 8.13b:

{add, POI, V, ST} ->
tracer([{POI, V, store(st, ST)} | Trace]})

However, the most challenging part here is not modifying the POI testing
approach, but getting useful stack traces. Some programming language, like Er-
lang, perform last call optimization (LCO) which solve important performance
issues. However, LCO comes with an important drawback: the stack traces that
are reported in errors can be incomplete. This can be very confusing and an-
noying for users when they use reported stack traces that could be used during
the debugging of a buggy code. Nevertheless, there are ways to inhibit LCO.
Of course, this should be done very carefully, as its impact in the performance
can be disastrous. For instance, a program transformation that changes the
code in a way that the last expression of function bodies is never a call. In this
way, we can get full stack traces by using the standard methods provided by

10This pattern is only allowed in the handler of a try-catch expression. We do not further
describe the instrumentation process used to extract this stack trace for the sake of simplicity.

172 Chapter 8. Software Evolution Control in Erlang

1 stack_tracer(Stack) ->
2 receive
3 {begin, Ref, Call} ->
4 stack_tracer([{Ref, Call} | Stack]);
5 {end, Ref} ->
6 case Stack of
7 [{Ref, _} | T] ->
8 stack_tracer(T);
9 [_ | T] ->

10 NStack =
11 unstack_till(T, Ref)
12 stack_tracer(NStack)
13 end
14 end.

Figure 8.15: Stack tracer

the language. An alternative is to forget these standard methods and manually
build the stack trace during the POI tracing instrumentation. With this ap-
proach, the stack trace is dynamically built and each time a POI trace is sent,
a snapshot of the current stack (which is part of the server’s state) is stored in
the additional information mapping. Finally, there is another alternative which
does not include the stack trace during the testing process. Instead, before UBs
are reported, their correspondent ITCs are rerun sending the stack trace for
only a specific execution of a POI, e.g. the fourth time it is executed.

Both alternatives, LCO inhibition and manual stack trace building, can be
useful tools to get the full stack trace, especially in those cases where the ex-
pected size of the stack traces are not huge. In the case of Erlang, by inhibiting
LCO we get the standard stack trace provided by Erlang, which does not in-
clude all the call arguments, but just the callee. We can improve this in the
manual version. Figure 8.14 shows two transformation rules that can be used to
manually obtain stack traces. This transformation should be done after the POI
instrumentation in order to be correct. Both rules use a template (represented
by ei, call) to create stack traces. The idea behind this template is to send a
begin trace just before starting the call and an end trace just after. This can
be done in the calls (Figure 8.14a) or/and in the function definitions (Figure
8.14b11). By transforming only the calls we can stack all the calls performed
in user-defined code, even calls to external libraries. However, calls to user
function performed from a non-user-defined code, e.g. from a lists:map/2,
would not be stacked. By transforming only function definitions this benefit
and drawback are reversed. Using both at the same time is probably the best
choice. However, this configuration produces duplicated begin-end traces when
a user-defined function is called from user-defined code. This is solved at the
tracer side. Figure 8.15 shows a simplification of a stack tracer whose state is
the current stack, i.e. Stack. The most interesting part is how the end traces
are processed. Clause of lines 7-8 represents the case where the top of the stack

11The rule shows how a clause of a function definition is transformed. A whole function
definition is transformed by applying this rule for each of its clauses.

8.3. POI testing adapted to Erlang 173

coincides with the end trace, i.e. a successfully finished call. On the other hand,
clause of lines 9-12, represents calls where some error has been raised during
their evaluation. Function unstack_till/2 unstack elements of the stack until
the expected reference, i.e. Ref, is found. Errors raised during a call evaluation
are the reason why the call is put inside a try-catch expression in the transfor-
mation rule shown in Figure 8.14a. The handler of this try-catch expression
sends an end trace to inform the tracer that some error has occurred.

8.3.4 Test case generation using ITC mutation
The test case generation phase uses CutEr because its concolic analyses try to
generate 100% branch coverage test cases. However, sometimes these analyses
require too much time and we have to abort its execution. This means that
after executing CutEr, we might have no test cases. Moreover, CutEr is not
exhaustive enough when it evaluates a single branch. Therefore, in our context,
it is insufficient to detect behaviour differences in a concrete branch, e.g. a
wrong operator.

tgen(top, pending, map) =

map if size(map) ≥ top
tgen(top, pending′, map′) if size(map) < top

∧ ∃ input ∈ pending
s.t. trace(input) 7→ _ ̸∈ map

where pending′ = (pending ∪mut(input))\{input}
∧ map′ = map ∪ {trace(input) 7→ {input}}

tgen(top, {proper_gen()}, map′) if size(map) < top
∧ ̸ ∃ input ∈ pending

s.t. trace(input) 7→ _ ̸∈ map
where map′ = map

∪ {trace(inputp) 7→ ({inputp} ∪ inputstp)
| inputp ∈ pending ∧ trace(inputp) 7→ inputstp ∈ map}

Figure 8.16: Test generation function

Therefore, we should produce more test cases to increase the reliability of
the test suite. One option is to use the PropEr generator to randomly synthesize
new test cases, but this would produce many useless test cases (e.g., test cases
that do not execute the POI). Hence, in order to avoid a completely random test
case generation, we use a test mutation technique. The function that generates
the test cases is depicted in Figure 8.16. The result of the function is a map from
the different obtained traces to the set of ITCs that produce them. The first call
to this function is tgen(top, cuter_tests, ∅), where top is a user-defined limit of
the desired number of test cases12 and cuter_tests are the test cases that CutEr
generates. Function tgen uses the auxiliary functions proper_gen, trace, and
mut. The function proper_gen() simply calls PropEr to generate a new test
case, while function trace(input) obtains the corresponding trace when the ITC
input is executed. The size of a map, size(map), is the total amount of elements
stored in all lists that belong to the map. Finally, function mut(input) obtains

12In SecEr, a timeout is also used as a way to stop the test case generation.

174 Chapter 8. Software Evolution Control in Erlang

a set of mutations for the ITC input, where, for each argument in input, a new
test case is generated by replacing the argument with a randomly generated
value (using PropEr) and leaving the rest of arguments unchanged.

8.4 POI testing with multiple POIs
The previous sections introduced a methodology to automatically obtain traces
from a given POI. An extension of this methodology to multiple POIs enables
several new features like a fine-grained testing, or checking multiple functional-
ities at once. However, it introduces new challenges to be overcome.

In order to extend the approach for multiple POIs, we need to perform
some modifications in some of the steps of the single-POI approach. The flow
is exactly the same as the one depicted in Section 8.1, but we need to modify
some of its internals. There is no need for modifications along the process of
the ITC generation described in Section 8.3.1, since this process depends on the
input functions that, in our approach, are shared by all the POIs. On the other
hand, we need to adapt the tracing and mutation processes to work with the
multiple POI approach.

8.4.1 Code transformation with multiple POIs
The tracing method introduced in Section 8.3.2 needs to be slightly redefined
here. This section defined 5 steps that started from a source code and a POI and
ended in an instrumented version of the source code that is able to communicate
traces. Therefore, the only change needed is that, instead of having only one
POI, we have more than one. In order to deal with this change, we follow
the same 5 steps but change the way in which they are applied. In the single-
POI approach, they are applied sequentially, but here we need to iterate some
of them. In concrete, steps 1 and 2 are done only once in the whole process
while the rest of steps are done once per POI. The result of step 2 is now a
set of POI-AST identifier relations instead of a single one. Then, we iterate
the obtained AST identifiers applying steps 3, 4, and 5 sequentially. Note that,
although the result of step 5 is a new AST, we are still able to find the AST
identifiers of the subsequent POIs since the transformations do not destroy any
node of the original AST, instead they only move them inside a new expression.
This justifies the double search design performed in steps 2 and 3. If we tried to
search for the POI in a modified AST we could be unable to find it. In contrast,
AST identifiers ensure that it can always be found.

In the multiple-POIs approach, there is also a justification of why the iden-
tifiers are numbers and why the identification process is done with a post-order
traversal. First of all, there is one question that should be discussed: is the
order in which the POIs are processed important? The answer is yes, because
the user could define a POI that includes another POI inside, e.g. POI1 is the
whole tuple {X, Y} and POI2 is X. This scenario would be problematic when
the POI-inside-POI case occurs inside a pattern due to the way we instrument
the code. If we instrumented first POI1, its trace would be sent before the one
of POI2. Note that this is not correct since POI2 is evaluated first, therefore it

8.4. POI testing with multiple POIs 175

should be traced first. This justifies the use of a post-order traversal, where the
identifier of a node is maximal in its subtree. Thus, as the AST identifiers are
numbers, and their order is convenient in our context, we can order the AST
identifiers obtained from the POIs before starting the transformation loop.

The test case generation phase is also affected by the inclusion of multiple
POIs. In the original definition the traces were a sequence of values, therefore it
was easy to check whether a trace had appeared in a previously executed test.
However, with multiple POIs the trace is not such a simple sequence, since the
same POI in one program version can be associated to more than one POIs on
the other version of the code. Therefore, we need a more sophisticated way to
determine the equality of the traces.

8.4.2 Differences in trace equality
Several alternatives can be considered when comparing traces that contain val-
ues from multiple POIs. In concrete, we propose the three different comparison
functions provided to deal with this situation in Erlang.

A trace of a POI is defined as the sequence of values (together with some
context information) that the POI is evaluated to during an execution. It has
been represented with trace(input), which obtains the corresponding trace when
the ITC is executed. In the case of multiple-POI approach, the whole trace will
contain a sequence of tuples of the form (POI, value, AI) traced for all the
POIs defined by the user, preserving their execution order. Since the POIs can
be executed in any order, we need a way to compare this unsorted list of traces.
Therefore, we additionally need to define a relation between POIs. This relation,
that we represent with RP OIs, is automatically built from the input provided
by the user. It is a set that contains tuples of the form (POIold, POInew). Once
we have defined these components, we can compare traces in different ways
according to our comparison goal:

1. The first of the three mentioned comparison approaches is the one that
uses a simple equality function to compare two traces obtained from dif-
ferent versions of a program which equality function is defined as follows:

equal(traceold, tracenew, RP OIs) =

true if traceold = [] ∧ tracenew = []
equal(trace′old, trace′new, RP OIs)

if traceold = (elemold : trace′old)
∧ tracenew = (elemnew : trace′new)
∧ TECF(elemold = elemnew)
∧ elemold = (POIold, _, _)
∧ elemnew = (POInew, _, _)
∧ (POIold, POInew) ∈ RP OIs

false otherwise

Note that the standard equality function is perfectly valid for comparing
traces during the test case generation phase, because all of them come
from the same source code. However, it is no longer valid for comparing

176 Chapter 8. Software Evolution Control in Erlang

program versions since POIs can differ in the original program and the
modified one. This equality function is useful when the user is interested
in comparing the traces interleaved (i.e., when their interleaved execution
is relevant). However, in some scenarios the user can be interested in
relaxing the interleaving constraint and compare the traces independently.

2. The application of a relaxed comparison yields to the second comparison
approach, which consists in building a mapping from POIs to sequences
of POI traces in the following way:

trace(input, POI) = [VEF((POI, v, ai)) | (POI, v, ai) ∈ trace(input)]

The order is assumed to be preserved in the produced sequences. Using
this sequences we can define an alternative equality function as follows:

equal(traceold, tracenew, RP OIs) =
∧

(P OIold,P OInew)∈RP OIs

CFUN (trace(input, POIold), trace(input, POInew))

This kind of comparison is suitable when the cardinality of the POI rela-
tion is 1-to-1 and there is no connexion between the selected POIs, i.e.,
the order they are executed is completely irrelevant.

3. There is a third equality relation that could be useful in certain cases. Sup-
pose that we detect some duplicated code, so we build a new version of
the code where all the repeated code has been refactored to a single code.
If we want to test if the behaviour is kept, we need to define a relation
where multiple POIs in the old version are associated with a single POI in
the new version. This is represented in our approach adding to the RP OIs

several tuples of the form (POIold1 , POInew), (POIold2 , POInew), etc. A
similar scenario can happen when a functionality of the original code is
split in several parts in the new code. In both cases, a special treatment
is needed for this type of relations. In order to do this, we define a gen-
eralisation of the previous equal function where this kind of relations is
taken into account. The first step is to extract all the POIs in RP OIs.

pois(RPOIs) = {POI 1 | (POI 1, POI 2) ∈ RPOIs} ∪ {POI 2 | (POI 1, POI 2) ∈ RPOIs}

Then, we can define the set of POIs related with a given POI in RP OIs.

rel(POI , RPOIs) = {POI ′ | (POI , POI ′) ∈ RPOIs} ∪ {POI ′ | (POI ′, POI) ∈ RPOIs}

Finally, we need a new trace function that returns a single trace of values
that are obtained from all the POIs related with a POI in RP OIs.

8.5. POI testing in concurrent environments 177

trace_rel(input, POI, RP OIs) =

[VEF((POI ′, v, ai)) | (POI ′, v, ai) ∈ trace(input) ∧ POI ′ ∈ rel(POI , RPOIs)]

We can now define an equality function that is able to deal with replicated
POIs.

equal(traceold, tracenew, RP OIs) =
∧

P OI∈pois(RP OIs)
CFUN (trace(input, POI), trace_rel(input, POI , RPOIs))

In these approaches, the “equality” function does not operate completely
with the “=” operator. Thanks to the flexibility given to the user during the
comparison, two traces are considered “equal” when they fit the conditions
defined in the comparison function CFUN, which is provided by the user.

Equality functions constitute a new parameter of the approach that deter-
mines how the traces should be compared. For the comparison of versions using
multiple POIs, it is mandatory to provide such a function, while for the test
case generation phase depicted in Section 8.3.4 it can be optional. In the test
case generation scenario, the user could be interested in obtaining more sophis-
ticated test cases by providing their own equality function. In order to enable
this option, an additional parameter can be added to the tgen function to pro-
vide a customised equality function that should be used when checking whether
a trace has been previously computed.

8.5 POI testing in concurrent environments
Non-deterministic computations are one of the main obstacles for regression
testing. In fact, they prevent us from comparing the results of a test case exe-
cuted in different versions because the discrepancies found can be well produced
by sources of non-determinism such as concurrency. In some specific situations,
however, we can still use POI testing to report whether the behaviour of a
concurrent program is preserved. For instance, consider the client-server model
depicted in Figure 8.17. In this simple example, a POI should not be placed
in Server, because we cannot know a priori whether req1 is going to be served
before or after req2, and this could have an impact on the traces obtained from
that POI. However, we could place a POI in any of the clients, as long as the
request is not affected by the state of the server. This is acceptable for many
kinds of server, but it is still a quite annoying limitation for many others.

However, in Erlang, as it is common in other languages, there is a high-level
way to define a server. In particular, real Erlang programmers tend to use the
Erlang-OTP’s behaviour named gen_server. By implementing this behaviour,
the programmer is only defining the concrete behaviours of a server, leaving all
the low-level aspects to the internals of the gen_server implementation. These
concrete behaviours include how the server’s state is initialized, how a concrete
request should be served, or what to do when the server is stopped. When using

178 Chapter 8. Software Evolution Control in Erlang

Server

Client1 Client2

req1

ans1

req2

ans2

Figure 8.17: A simple client-server model

gen_server, programmers could use the functions implementing these concrete
behaviours as input functions of POI testing. In this way, they can check, for
instance, that a server is going to reply the user and leave the server’s state in
the same way across different versions of the program.

8.6 Implementation
We have implemented the POI Testing approach in a tool named SecEr (Soft-
ware Evolution Control for Erlang), publicly available at: https://github.
com/mistupv/secer. SecEr is a tool for Erlang able to automatically generate
a test suite that checks the behaviour of a point of interest. It can be used
for regression testing, by generating a test suite for a future comparison or by
automatically comparing two releases of an Erlang module. SecEr implements
the POI testing approach in Erlang. The comparison performed by the tool
focuses on a set of program points specified by the user. The tool automatically
generates a test suite that checks the behaviour of those program points. These
test cases try to maximise the branch coverage, covering a large quantity of
different possible execution, and the tool notifies the user of any unexpected
result. SecEr is implemented in Erlang and the implementation contains more
than 4600 lines of code divided into 11 different Erlang modules with a high
level of communication. SecEr is open source and publicly available at:

https://github.com/mistupv/secer

Figure 8.18 contains a scheme with the architecture of SecEr. In this fig-
ure, rounded squares stand for specific tasks (written in bold inside them) of
the POI testing approach, solid squares stand for Erlang modules implemented
from scratch, and dashed squares stand for external Erlang modules from exist-
ing tools used during the process. Solid arrows represent explicit module calls,
dotted arrows new Erlang node creations, and dashed arrows thread creations.
The tool is formed by 11 different modules strongly communicated. Each mod-
ule performs a particular functionality dividing the responsibilities of the POI
testing process:

• SecEr. This module is the entrance module when we call SecEr. The
module receives and processes the arguments, creates the Erlang nodes
where both code versions will be executed in parallel, and create threads

https://github. com/mistupv/secer
https://github. com/mistupv/secer
https://github.com/mistupv/secer

8.6. Implementation 179

Main module

Input Generation and Execution

Instrumentation

cc_server

criterion_
manager

fv_server

Report Formatting

report_constructor

input_gensecer

Global Trace Recording

apiim_server

Erlang Node
for Version 2

trace

Erlang Node
for Version 1

trace

Run CutEr

cuter trace

Module Call
Erlang Node Creation
Thread Creation

External Module

Figure 8.18: SecEr modules and the communicate between
them to perform POI testing

of two modules: im_server and input_gen. Finally, it is also in charge of
generating the output by performing a call to the report_constructor
module.

• im_server. This module represents the “input manager” server. The
server of this module receive different messages from input_gen process,
and is the module in charge of comparing the traces produced by the two
program version executions. The state of this server includes the POI
correspondence given by the user, the comparison function defined by the
user (a default comparison function extracted from the api module if
no function is given), and the traces generated so far classified in three
different groups: traces considered different by the comparison function,
traces considered equal by the comparison function, and the cases where
one (or both) program executions resulted in a timeout before generating
any trace value.

• input_gen. This module is in charge of the input generation, and is the
most interconnected module of the tool. First of all it connects the tool
with CutEr, obtaining a set of initial inputs (thanks to the trace module)
with a high branch coverage over programs. Then, it is in charge of the
instrumentation of both code versions, where it needs to create threads
of the fv_server and the cc_server processes. After that, the module
creates a trace thread (one in each Erlang node) for each program version.

180 Chapter 8. Software Evolution Control in Erlang

Finally, if the desired coverage or the time limit have not been reached yet,
the module spend the rest of the time generating more random inputs,
executing them, and managing the traces generated by both programs.

• trace. The trace module records the sequence of values the POI is eval-
uated to during the execution of a program. During the CutEr execution,
this process stores the “hidden” inputs used by the CutEr tool. Contrar-
ily, in the rest of cases it stores the sequence of values (trace) generated by
the execution of a program with a particular input. The trace is stored as
a tuple that contains the POI, the value, and a map with the additional
information specified by the user.

• fv_server. This module is the one in charge of feeding the instrumen-
tation process with the “free variables” (variables that are not defined in
the current scope) needed to make the transformation of the code. These
variables are used by the rules defined in Figure 8.10.

• cc_server. The “conversion container” server module represents a server
that stores map with information of the program being instrumented. It
provides information about the last id used in the AST node labelling, the
POI information given by the user to find them at the AST, and a map
with the correspondence between each POI and the corresponding AST
id.

• criterion_manager. This module is the one that performs the real in-
strumentation. It locates the path from the AST node to the POI and
divide this path in two like described in Section 8.3.2. Finally, the mod-
ule applies the rules in Figure 8.10 to transform the code. It is worth
mentioning that, during the process, the module makes use of the ser-
vices provided by threads fv_server and the cc_server to obtain the
instrumented AST.

• report_constructor. This module is called at the end of the process
when either the desired coverage of the generated test cases or the time-
out are reached. This module expands all the information packaged in
the im_server process, counting and classifying the detected errors, and
summarises all this information in a report with the information specified
by the user.

• api. The api module mainly contains different forms of configuration
that can be used by SecEr. These configurations include VEF, TECF,
and most of the configuration modes explained in Section 8.2.1. Some
of these functions are used by the default SecEr configuration, but all of
them can be used by the user when defining her own configuration file.

Additionally, SecEr includes a couple of extra modules that work at meta-
programming level: smerl and typer_mod. smerl extracts the AST of the
Erlang program given, while typer_mod is a modification of the TypEr module
that extracts Erlang types as a result instead of printing them in the standard
output.

8.7. Experimental Evaluation 181

8.7 Experimental Evaluation
In this section we study the performance and the scalability of SecEr. In par-
ticular, we compare different configurations and study their impact on the per-
formance. First, we collected examples from commits where some regression is
fixed. Most of the considered programs were extracted from EDD [26]13 because
this repository contains programs with two code versions: one version of the
code with a bug and a second version of the same code with the expected be-
haviour, i.e. where the bug is fixed. In order to obtain representative measures,
the experiments were designed in such a way that each program was executed
21 times with a timeout of 15 seconds each. The first execution was discarded
in all cases (because it loads libraries, caches data, etc.). The average computed
for the other 20 executions produced one single data. We have repeated this
process enabling and disabling the two most relevant features of SecEr: (i) the
use of CutEr and (ii) the use of mutation during the ITC generation. The goal of
this study is to evaluate how these features affect the accuracy and performance
of the tool. To compare the configurations we computed three statistics for each
experiment: the average amount of generated tests, the average amount of mis-
matching tests, and the average percentage of mismatching tests with respect
to the generated ones.

CUTER+MUTATION NO CUTER NO MUTATION

Generated Mismatching % Generated Mismatching % Generated Mismatching %
ackermann 13.9 12.9 93.274% 21.8 21.8 100.0% 12.85 11.65 91.27%

caesar 37765.94 1615.1 4.2714% 103072.0 4534.95 4.3997% 38830.55 1702.7 4.3865%
complex_number 69420.2 67236.55 96.8549% 89670.2 86891.75 96.9015% 67451.75 65349.95 96.8825%

erlson1 14780.05 1.55 0.0105% 14966.2 2.65 0.0177% 14872.5 1.9 0.0127%
erlson2 15494.5 0.95 0.0059% 16758.59 0.8 0.0047% 15553.8 0.95 0.0061%

mergesort 29718.35 25634.45 86.2585% 34315.1 29622.9 86.3259% 29994.3 25884.2 86.299%
rfib 28.05 28.05 100.0% 29.0 29.0 100.0% 28.4 28.4 100.0%

roman 513.79 101.95 19.8415% 535.35 108.05 20.1801% 512.2 101.7 19.8461%
sum_digits 426.3 422.3 99.0615% 534.0 534.0 100.0% 434.0 430.0 99.078%

ternary 85.9 28.05 29.4187% 1005.4 323.25 32.2485% 130.0 39.7 27.8311%
turing 41828.65 28268.95 67.5825% 77247.45 52651.5 68.1595% 41573.1 28150.95 67.7135%

vigenere 115.55 2.1 1.269% 308.7 4.59 1.1849% 114.9 1.95 1.4849%

Table 8.1: Experimental evaluation of three SecEr configura-
tions with a timeout of 15 seconds

Table 8.1 summarizes the experiments14, where the best result for each pro-
gram has been highlighted in bold. These results show that our mutation tech-
nique is able to produce better test cases than random test generation. Clearly,
the configuration that does not use CutEr (the one in the middle) is almost
always the best: it generates in all cases the highest amount of test cases, and
it also generates more mismatching test cases (except for the erlson2 program).
The interpretation of these data is the following: CutEr invests much time to
obtain the initial set of inputs, but the concolic test cases it produces do not
improve enough the quality of the suite. This means that in general it is better
to invest that time in generating random test cases, which on average produce
more mismatching test cases. There are two exceptions: erlson2 and vigenere.

13https://github.com/tamarit/edd/tree/master/examples
14All data and programs used in this experiment are available online at https://github.

com/mistupv/secer/tree/master/benchmarks

https://github.com/tamarit/edd/tree/master/examples
https://github.com/mistupv/secer/tree/master/benchmarks
https://github.com/mistupv/secer/tree/master/benchmarks

182 Chapter 8. Software Evolution Control in Erlang

In erlson2 the error is related to a very particular type of input (less than 0.02%
of the generated tests report this error), and CutEr directs the test generation
to mismatching tests in a more effective way. With respect to the second pro-
gram (vigenere), although the configuration that does not run CutEr generates
more mismatching tests than the rest, the tests generated by CutEr allow the
tool to reach a mismatching trace faster. This is the reason for the slight im-
provement in the mismatching ratio. The common factor in both programs is
that the mismatching ratio is rather low. This is a clear indication that CutEr
can be useful when some corner cases are involved in the regression.

We can conclude that the results obtained by the tool are strongly related
to the location of the error, and on the type of error. If it is located in an
infrequently executed code or it is a corner case, the most suitable configuration
is the one running CutEr. In contrast, if the error is located in a usually executed
code, we can increase the mismatching tests generation by disabling CutEr.
Because we do not know beforehand what is the error and where it is, the most
effective way of using the tool is the following: First, run SecEr without CutEr,
trying to maximize the mismatching test cases. If no discrepancy is reported,
then enable CutEr to increase the reliability of the generated test cases.

We have also evaluated the growth rate of the generated test cases and
of the percentage of mismatching ITCs. For this experiment we selected the
program turing because it produces a considerable amount of tests in the three
configurations, and also because the mismatching ratio is similar in all of them
and not too close to 100%. We ran the three configuration of SecEr with this
program with a timeout ranging between 4 and 20 seconds with increments of
2 seconds.

0

20000

40000

60000

80000

100000

120000

4 6 8 10 12 14 16 18 20

CUTER+MUTATION MUTATION CUTER

(a) Number of tests generated for Turing

65,00%

65,50%

66,00%

66,50%

67,00%

67,50%

68,00%

68,50%

69,00%

4 6 8 10 12 14 16 18 20

CUTER+MUTATION MUTATION CUTER

(b) Mismatching ratio produced for Turing

The results of the experiment are shown in Figures 8.19a and 8.19b. In
Figure 8.19a, the X axis represents SecEr timeouts (in seconds), and the Y axis
represents the number of test cases generated. In all cases, the configuration
that does not run CutEr generates the highest number of tests. This configu-
ration has a linear growth. On the other hand, the configurations using CutEr
show a slow onset. They need at least twelve seconds to reach a considerable
increase in the number of generated tests. There is not a significative differ-
ence between the configurations using CutEr. This means that the mutation
technique does not slow down the test generation. In Figure 8.19b, the X axis

8.8. Related Work 183

represents SecEr timeouts (in seconds), and the Y axis represents the percent-
age of mismatching tests over the total amount of tests generated. Clearly, in
the three configurations, the quality of the generated test cases increases over
time (i.e., the mismatching tests ratio increases over time). The configuration
that does not run CutEr presents the highest percentage. In this case, the two
approaches using CutEr produce different results. With smaller timeouts, it is
preferable to enable mutation.

8.8 Related Work
First of all, it would be interesting to classify our approach inside the categories
defined by previous researches in the test generation context. In the bibliog-
raphy, there are some surveys and papers about test case generation, like the
orchestrated survey of methodologies for automated software test case genera-
tion ([8]), or the survey of test amplification [47]. On the one hand, [8] identifies
five techniques to automatically generate test cases. In this work, our approach
could be included in the class of adaptive random technique as a variant of
random testing. Inside this class, the authors identify five approaches. Our
mutation of test inputs shares some similarities with some of these approaches
like selection of best candidate as next test case or exclusion. On the other
hand, [47] identifies four categories that classify all the work done in the field.
Our work could be included in the category named amplification by synthesising
(new tests with respect to changes). Inside this category, our technique falls on
the "other approaches" subcategory.

Automated behavioural testing techniques like Soares et al. [184] and Mon-
giovi [137] are similar to our approach, but they are restricted in the kind of
changes that can be analysed (they only focus on refactoring). In contrast, our
approach is independent of the kind (or the cause) of the changes, being able
to analyse the effects of any change in the code regardless of its structure.

There are several works focused on the regression test case generation. Diff-
Gen [191] instruments programs to add branches in order to find the differences
in the behaviour between two versions of the program, then, it explores the
branches in both versions, and finally it synthesises test cases that show the de-
tected differences. An improvement of this approach is implemented in the tool
eXpress [192] where the irrelevant branches are pruned in order to improve the
efficiency. Our technique, in contrast, is not directed by the computation paths,
but it is directed by the POIs (i.e., what the user wants to observe). Another
related approach is model-based testing for regression testing. This approach
studies the changes made in a model, e.g., UML [142] or EFSM models based
on dependence analysis [35], and test cases are generated from them. We do not
require any input model neither infer it, so although some ideas are similar, the
way to implement them is completely different. Finally, there are works that
use symbolic execution focused on the regression test generation, like [159] and
[27]. All these works are directed to maximise the coverage of the generated
test suites. Moreover, they need an existing regression test case suite to start
with. There exists alternatives, but with the same foundations, like [214] where
a tree-based approach is proposed to achieve high coverage. Our approach is

184 Chapter 8. Software Evolution Control in Erlang

not directed by coverage, but instead by the POIs, and we do not require any
regression test as input.

Automated regression test case generation techniques like Korel and Al-Yami
[98] are also very similar to our approach, but the user can only select output
parameters of a function to check the behaviour preservation. Then, their ap-
proach simply runs that specific function and checks whether the produced
values are equal for both versions of the program. Therefore, their approach
helps to discover errors in a concrete function, but they cannot generate inputs
for one function and compare the outputs of another function. This limits, e.g.,
the observation of recursion. In contrast, we allow to select any input function
and place the POIs in any other function of the program. Additionally, their
test input generation relies on white-box techniques that are not directed by the
changes. Our approach, however, uses a black-box test input generation which
is directed by changes.

Yu et al. [211] presented an approach that combines coverage analysis and
delta debugging to locate the sources of the regression faults introduced during
some software evolution. Their approach is based on the extraction and analysis
of traces. Our approach is also based on traces although not only the goals but
also the inputs of this process are slightly different. In particular, we do not
require the existence of a test suite (it is automatically generated), while they
look for the error sources using a previously defined test suite. Similarly, Zhang
et al. [213] use mutation injection and classification to identify commits that
introduce faults.

The Darwin approach [160] starts from the older version of the program, a
program that it is known to be buggy, and an input test case that reveals the
bug. With all this information, it generates new inputs that fail on the buggy
program, and then run them using dynamic symbolic execution and storing
the produced trace (in their context, a trace contains the visited statements).
Finally, the traces from the buggy version and from the old version are compared
to locate the source of the discrepancy. Although the approach could seem
similar to ours, the goals are different. We try to find discrepancies, while they
start from an already-found discrepancy.

Our technique for mutation of inputs share some similarities with RAN-
DOOP [149]. In their approach, they start from test cases that do not reveal
any failure, and randomly construct more complex test cases. The particularity
of their approach is that the random test generation is feedback-directed, in the
sense that each generated test case is analyzed to take the next decision in the
generation. We do something similar, although our feed-back is directed by the
POIs selected by the user.

DSpot [15] is a test augmentation technique for Java projects that creates
new tests by introducing modifications in the existing ones. The number of
variants that will be generated is known beforehand and determined by param-
eters like the number of operations or the number of statements. In order to
define the output of a test case, they introduce a concept called observation
point, which is similar to our POIs. The difference is that they define and se-
lect their observation points (in particular, attribute getters, the toString()
method, and the methods inside an assertion) while in our approach is the user

8.8. Related Work 185

who defines them. Additionally, our approach does not need an already existent
test suite.

Sieve [164] is a tool that automatically detects variations across different
program versions. They run a particular test and store a trace that in their
context is a list of memory operations over variables. The generated traces are
later studied in order to determine what have changed in the behaviour and
why it has changed. Although their goal is not the same as ours, their approach
shares various similarities with ours, in particular code instrumentation and
trace comparison.

Mirzaaghaei [135] presented a work called Automatic Test Suite Evolution
where the idea is to repair an existing test suite according to common patterns
followed by the practitioners when they repair a test suite. A repair pattern can
be something like the introduction of an overloaded method. A modification of
our technique could be used to achieve a similar goal, by not only producing test
case input, but also repair patterns in order to check whether they are effective
repairing an outdated test suite.

There are other approaches that use traces to compare program versions, like
the ones based on program spectra [170]. Different program spectra have been
proposed (branch, execution trace or data dependence spectra), but value spec-
tra [208] is the most similar to our additional information used to trace method
calls. In particular, value trace spectra record the sequence of the user-function
executions traversed as a program executes. After the spectra recording, spec-
tra comparison techniques are used to find value spectra differences that expose
internal behavioural deviations inside the black box. However, the spectrum is
generated for all the user-defined functions while in our approach users decide
which functions should be compared. Additionally, POI testing allows a more
flexible use of these call traces. Finally, the motivation and also some techniques
of the call traces are similar to the ones of algorithmic debugging [177]. In fact,
this approach has been successfully applied to Erlang [26].

Most of the efforts in regression testing research have been put in the regres-
sion testing minimisation, selection, and prioritisation [210], although among
practitioners it does not seem to be the most important issue [50]. In fact, in
the particular case of the Erlang language, most of the works in the area are
focused on this specific task [24, 193, 197, 199]. We can find other works in
Erlang that share similar goals but more focused on checking whether applying
a refactoring rule will yield to a semantics-preserving new code [95, 115].

With respect to tracing, there are multiple approximations similar to ours.
In Erlang’s standard libraries, there are implemented two tracing modules. Both
are able to trace the function calls and the process related events (spawn, send,
receive, etc.). One of these modules is oriented to trace the processes of a single
Erlang node [51], allowing for the definition of filters to function calls, e.g., with
names of the function to be traced. The second module is oriented to distributed
system tracing [53] and the output trace of all the nodes can be formatted in
many different ways. Cronqvist [45] presented a tool named redbug where a call
stack trace is added to the function call tracing, making possible to trace both
the result and the call stack. Till [194] implemented erlyberly, a debugging tool
with a Java GUI able to trace the previously defined features (calls, messages,

186 Chapter 8. Software Evolution Control in Erlang

etc.) but also giving the possibility to add breakpoints and trace other features
such as exceptions thrown or incomplete calls. All these tools are accurate to
trace specific features of the program, but none of them is able to trace the
value of an arbitrary point of the program. In our approach, we can trace both
the already defined features and also a point of the program regardless of its
position.

187

Chapter 9

Design-by-contract verification
in Erlang

Defensive programming is a way to eliminate unexpected behaviours, e.g., di-
vision by zero, by checking the validity of arguments before operations are
attempted. However, in mainstream programming this style is not a recom-
mendable practice for various reasons, such as the need to add boiler-plate code
which obscures the program logic, and because of the execution time overhead
caused by such checks. In fact, the language considered in this chapter, Erlang,
is infamous for its stance that defensive programming is to be avoided – “let it
crash”.

Erlang programming has a number of interesting and innovative mechanisms
for error detection and recovery,1 but these features are supposed to be used
only for errors that are hard to avoid (i.e., because static type systems are not
strong enough to characterise full program behaviour). Unfortunately, not all
the errors fall in this category. Some errors are rather easy to detect, and should
ideally be detected at “compile time” instead of being detected and corrected
when a software is operational. Erlang, as Python or JavaScript, is a dynamic
programming language. This means that the program compiler, if it even exists,
does relatively few checks during compilation to help prevent errors when the
program is later run. For this reason, static analysis techniques, popularised
primarily by the Dialyzer tool [120], have been successfully and widely adopted
by Erlang practitioners. Dialyzer can analyse the code and report some errors
without requiring annotating program code in any way. However, the capability
of Dialyzer to detect program bugs can be considerably improved by the use of
type contracts [94]. Note that such contracts are not used only by Dialyzer to
implement static type checking, but also serve to document the developed code,
which improves the maintainability of the resulting software.

Even when the Dialyzer tool is used, and when programmers provide e.g. EU-
nit test cases (an Erlang testing tool) to further check program behaviour, pro-
gram bugs can still remain. In this work, we propose a mechanism to further
structure and strengthen such “defensive” programming tasks, i.e., the Erlang
Design-By-Contract (EDBC) system, a runtime verification framework based
on the Design-By-Contract [134] philosophy. The EDBC system is available as
free and open-source software at https://github.com/serperu/edbc.

1For example, process links help structure fault detection and fault recovery in complex
applications.

https://github.com/serperu/edbc

188 Chapter 9. Design-by-contract verification in Erlang

In typical design-by-contract frameworks there are different types of con-
tracts, with most of them being related to program functions or methods. The
most common contracts are pre- and postconditions (see Chapter 7, Section 7.2).
In addition to these, the EDBC system includes contracts to control other as-
pects of functions and methods: type contracts, to check the correct dynamic
typing given by Erlang, decreasing-argument contracts to help analyse program
termination, execution-time contracts to document bounds for the execution
time of functions, and purity contracts which prohibit side effects such as Er-
lang process-to-process communication. All these contracts can be used in any
Erlang program, regardless of whether the program is purely functional, or
structured as a concurrent system, composed of a number of concurrent pro-
cesses. To avoid the traditional execution overhead associated with the use of
contracts, normally they are checked only during software production and main-
tenance. Consequently, the EDBC library provides a mechanism to disable such
checks for running product code.

The rest of the chapter illustrates with examples how to use both sequential
and concurrent contracts in the implemented approach (Section 9.1). Finally,
the architecture and some implementation details are described (Section 9.2),
such as the transformation processes used to correctly check the defined con-
tracts in the correct order.

9.1 Contracts in Erlang
In this section, we introduce the contracts provided by the EDBC system and
show how they can be used to check program behaviour at runtime with exam-
ples. The contracts proposed in EDBC are divided into two groups: contracts
applicable in sequential Erlang, and contracts only applicable to concurrent
Erlang. It is worth mentioning that, as an implementation decision, we have
chosen to use Erlang macros to represent the syntax of all contracts. The reason
is that similar tools like EUnit also uses macros for assert definitions.

9.1.1 Contracts for sequential Erlang
First of all, it is important to remark that the contracts described here are
not only applicable in sequential Erlang programs, but they can be used in
both sequential and concurrent programming. The contracts for sequential
Erlang code provide additional information about Erlang functions. They can
be used to document the way an Erlang function may be called or to delimit the
behaviour that can be expected when calling it (i.e., concerning the computed
result, side effects, termination properties, and so on).

1. Precondition contracts. With the macro ?PRE/1 we can define a pre-
condition that a function should hold. The macro should be placed before
the first clause of the annotated function. The single argument of this
macro is a function without parameters, e.g. fun pre/0 or an anony-
mous function fun() -> . . . end, that we call precondition function. A
precondition function is a plain Erlang function. Its only particularity is

9.1. Contracts in Erlang 189

that it includes references to the function parameters. In Erlang, a func-
tion can have more than one clause, so referring the parameter using the
user-defined names can be confusing for both EDBC and for the user. In
order to avoid these problems, in EDBC we refer to the parameters by
their position. Additionally, the parameters are rarely single variables but
can be more complex terms like a list or a tuple (since Erlang permits pat-
tern matching). For these reasons we use the EDBC’s macro ?P/1 to refer
to the parameters. The argument of this macro should be a number that
ranges from 1 to the arity of the annotated function. For instance, ?P(2)
refers to the second parameter of the function. A precondition function
should return a boolean value which indicates whether the precondition of
the annotated function holds or not. The precondition is checked during
runtime before actually performing the call. If the precondition function
evaluates to false, the call is not preformed and a runtime exception is
raised.

Example 9.1. Consider a function find(L,K) that searches for the po-
sition of a value K in a list L, and returns -1 if the value is not found.
Figure 9.1a shows the usage of a precondition contract which expresses
that the first parameter list should not be empty.

1 ?PRE(fun() -> length(?P(1)) > 0 end).
2 find(L, K) -> ...

(a) Erlang function find/2 annotated with contracts

** exception error: {"Precondition does not hold.
Call find([], 3), the list is empty."}

(b) Precondition contract violation

Figure 9.1: Precondition Contract

In case the precondition is violated, an Erlang exception is raised. For
instance, if we attempt the function call find([], 3), which fails the
precondition check because the length of the list argument is 0, the resulting
error message is shown in Figure 9.1b.

2. Postcondition contracts. Similar to preconditions, the macro ?POST/1
is used to define a postcondition that a function should satisfy. The macro
should be placed after the last clause of the annotated function. Its ar-
gument is a function without parameters, which we call the postcondition
function. In order to check postconditions, a way to refer to the result
of the function is essential. For this reason, we have defined the macro
?R, that refers to the result of the function call. Additionally, as in the
?PRE/1 precondition function, the ?P/1 macros can be used to refer to the
actual parameters of the annotated function. The result of a postcondi-
tion function is also a boolean value. Postcondition functions are checked
after a call terminates, and a runtime error is raised if the postcondition
function evaluates to false.

190 Chapter 9. Design-by-contract verification in Erlang

Example 9.2. Figure 9.2a shows an example of a postcondition contract
associated with the function find/2. In this contract, an error is raised
if the index returned by find/2 is greater that the length of the list.

1 find(L, K) -> ...
2 ?POST(fun() -> ?R < 0 orelse
3 ?R < length(?P(1)) end).

(a) Erlang function find/2 with contract annotations

** exception error: {"Postcondition does not hold.
Call find([1,2,3], 3), returned value 5."}

(b) Postcondition contract violation

Figure 9.2: Postcondition Contract

Suppose an implementation of find/2 returns the value 5 to the call
find([1,2,3],3). In this case, the execution would raise the error shown
in Figure 9.2b.

3. Decreasing-argument contracts. These contracts are meant to be
used in recursive functions, and check that (some) arguments are always
decreasing in nested calls2. There are two types of macros to define these
contracts: ?DECREASE/1 and ?SDECREASE/1. They both operate exactly in
the same way with the exception that the ?SDECREASE/1 macro indicates
that the argument should be strictly smaller in each nested call, while the
?DECREASE/1 macro also permits the argument to be equal. The argument
of both macros can be either a single ?P/1 macro or a list containing
several ?P/1 macros. These contracts should be placed before the first
clause of the function. Decreasing-argument contracts are checked each
time a recursive function call is made, by comparing the arguments of the
current call with the nested call just before performing the actual nested
recursive call. In case the argument expected to decrease is not actually
decreasing, a runtime error is raised and the call is not performed.

Example 9.3. The functionality of this contract is shown in Figure 9.3.
We use a wrong implementation of the Erlang program calculating the
Fibonacci numbers shown (Figure 9.3a). When executing the function
call fib(2), the error message in Figure 9.3b is shown.

4. Execution-time contracts. EDBC introduces two macros that allow
users to define contracts concerning execution times: ?EXPECTED_TIME/1
and ?TIMEOUT/1. The macros should be placed before the first clause
of the annotated function. The argument of these macros is a function
without parameters called the execution-time function. An execution-
time function should evaluate to an integer which defines the expected
execution time in milliseconds. Within the body of an execution-time

2Note that decreasing contracts only guarantee termination if the sequence is strictly
decreasing and well founded, i.e. values cannot go below a certain limit.

9.1. Contracts in Erlang 191

1 ?SDECREASES(?P(1)).
2 -spec fib(integer()) -> integer().
3 fib(0) -> 0;
4 fib(1) -> 1;
5 fib(N) -> fib(N - 1) + fib(N + 2).

(a) Erlang function fib/1 annotated

** exception error: {"Decreasing condition does
not hold. Previous call: fib(2).
Current call: fib(4).", [{ex,fib,1,[]},...

(b) Decrease contract violation

Figure 9.3: Decrease Argument Contract

function we can use ?P/1 macros to refer to the arguments. Permitting
the execution-time function to refer to arguments is particularly useful
when dealing with lists or similar structures where the expected exe-
cution time of the function is related to the sizes of arguments. Both
macros have a similar semantics, the only difference is that with macro
?EXPECTED_TIME/1 the EDBC system waits till the evaluation of the call
finishes to check whether the call takes the expected time, while with
macro ?TIMEOUT/1 EDBC raises an exception if the function call does
not terminate before the timeout limit is reached. As an example of time
contracts, we consider a function which performs a list of tasks. Each task
has its type (even or odd), and the allowed execution time is defined by
this type (100 and 200 ms., respectively).
Example 9.4. Figure 9.4a shows the function and its associated time
contract. Supposing we change the execution-time function to, for in-
stance, fun() -> 20 + (length(?P(1)) * 100) end, we would obtain
the contract-violation report shown in Figure 9.4b.

1 ?EXPECTED_TIME(fun() ->
2 20 + lists:sum([case (I rem 2) of
3 0 -> 100; 1 -> 200 end || I <- ?P(1)]) end)
4 f_time(L) -> [f_time_run(E) || E <- L].
5 f_time_run(N) when (N rem 2) == 0 -> timer:sleep(100);
6 f_time_run(N) when (N rem 2) /= 0 -> timer:sleep(200).

(a) Function with Execution-time contracts

** exception error: {"The execution of
ex:f_time2([1,2,3,4,5,6,7,8,9,10]) took too
much time. Real: 1509.913 ms.
Expected: 1020 ms. Difference: 489.913 ms)

(b) Execution-time contract violation

Figure 9.4: Execution-time Contract

5. Purity contracts. When we say that a function is pure we mean that
its execution does not cause any side effects, i.e., it does not perform I/O

192 Chapter 9. Design-by-contract verification in Erlang

operations, nor does it send messages, etc. That a function is “pure”
can be declared by using the macro ?PURE/0 before its first clause. The
purity checking process is performed in two steps. First, before a call to
an function declared to be pure is performed, a tracing process is started.
Then, once the evaluation of the annotated function call finishes, the trace
is inspected. If a call to an impure function or operation has been made,
a runtime exception is raised. Note that due to the use of tracing we can
provide exact purity checks, ensuring that there are neither false positives
nor false negative reports. Note that purity checking is not compatible
with execution-time contracts, since checking execution times do require
performing impure actions.

Example 9.5. In order to illustrate the checking of purity contracts we
take a simple example used to present PURITY [155], i.e., an analysis that
statically decides whether a function is pure or not. The example the
authors presented is depicted in Figure 9.5a. We only added the con-
tract ?PURE in the test case g4/0, because the other test case, i.e. g3/0,
performs the impure operation erlang:put/2. When g4/0 is run, no
contract violation is reported as expected.

1 fold1(Fun, Acc, Lst) -> lists:fold(Fun, Acc, Lst).
2 fold2(Lst, Fun) -> fold1(Fun, 1, Lst).
3 g3() -> fold1(fun erlang:put/2, ok,
4 [computer, error]).
5 ?PURE.
6 g4() -> fold2([2, 3, 7], fun erlang:’*’/2).

(a) Example taken from PURITY [155]

** exception error: {"The function is not pure.
Last call: ex:g3().
It has call the impure BIF erlang:put/2
when evaluating g3().",[{ex,g3,0,[]}]}

(b) Pure contract violation

Figure 9.5: Purity Contract

On the other hand, in case we add the contract ?PURE to g3/0, then the
execution will fail showing the error report in Figure 9.5b.

6. Type contracts. Erlang has a dynamic type system, i.e., types are not
checked during compilation but rather at runtime. However, the language
still permits to specify type contracts (represented by spec attributes)
which serves both as code documentation, and as aid to static analysers
like Dialyzer [120]. However, such type contracts are not checked at
runtime by the Erlang interpreter, because of the potential associated cost
at execution time. However, for programs still in production, checking
such type contracts during runtime can be helpful to detect unexpected
behaviours. For this reason, before a function is evaluated, EDBC checks
the type contract of its parameters (if any), while its result is checked

9.1. Contracts in Erlang 193

after its evaluation. If a type error is detected, a runtime exception error
is raised. Note that EDBC does not use any special macro to check type
contracts, the standard spec attributes are used instead. Figure 9.6 shows
an error that would be shown in case of calling fib(a) for the program
defined in Figure 9.3b.

** exception error: {"The spec precondition does not hold.
Last call: ex:fib(a).
The value a is not of type integer().", ...}

Figure 9.6: spec contract-violation report

Note that the EDBC system can be used to define quite advanced con-
tracts. As a comparison point, the Dafny tool [114], which was an inspi-
ration for EDBC, permits the use of quantifiers to define conditions for
input lists. Figure 9.7a shows as an example of how quantifiers are used
in Dafny to characterise the function Find/2.

1 method Find(a: array<int>, key: int)
2 returns (index: int)
3 requires a != null
4 ensures 0 <= index ==> index < a.Length &&
5 a[index] == key
6 ensures index < 0 ==> forall k ::
7 0 <= k < a.Length ==> a[k] != key
8 {...}

(a) Function Find/2 annotated in Dafny

1 ?PRE(fun() -> length(?P(1)) > 0 end).
2 ?SDECREASES(?P(1))
3 find(L, K) -> ...
4 ?POST(fun() -> ?R < 0 orelse
5 (?R < length(?P(1))
6 andalso lists:nth(?R, ?P(1)) == ?P(2))
7 end).
8 ?POST(fun() -> ?R > 0 orelse
9 lists:all(fun(K) -> K /= ?P(2) end,

10 ?P(1))
11 end).

(b) Function find/2 annotated in
Erlang/EDBC.

Figure 9.7: Contracts for function find/2 annotated in
Dafny and Erlang

Such contracts with quantifiers can be represented in EDBC too. In-
stead of using a special syntax as in Dafny, we can check conditions with
quantifiers using a common Erlang function such as lists:all/2, which
checks whether a given predicate is true for all the elements of a given
list. Figure 9.7b shows how the contracts in Figure 9.7a are represented
in EDBC. If we implemented this function as a recursive one, the list

194 Chapter 9. Design-by-contract verification in Erlang

would be decreasing between calls. Then, we could also add the contract
?SDECREASE(?P(1)) to the function.

Contracts added by users can also be used to generate documentation. Er-
lang OTP includes the tool EDoc [52] which generates documentation for mod-
ules in HTML format.

Figure 9.8: EDoc for the annotated function find/2.

We have modified the generation of HTML documents to also include in-
formation concerning EDBC contracts. As an example, the EDoc-generated
documentation for the function find/2, with information of its contracts (some
in Figure 9.7b and some new), and its type specification, is depicted in Fig-
ure 9.8. Finally, it is important to note that the contract checking performed
by EDBC does not cause incompatibilities with other Erlang analysis tools. For
instance, users can both define EDBC contracts, and include EUnit [28] test
case assertions, in the same function.

9.1.2 Contracts for concurrent Erlang
The scenarios given in concurrent Erlang code are slightly different from the
ones given in sequential Erlang. Normally, concurrent Erlang code is already
highly structured. Most Erlang programmers do not write concurrent code
from scratch, but rather rely heavily on proven concurrent Erlang behaviours
(which can be considered a form of design patterns) present in the Erlang/OTP
standard library.

The Erlang behaviours are formalisations of common programming patterns.
The idea is to divide the code for a process in a generic part (a behaviour Er-
lang module), which is never changed, and a specific part (a callback Erlang
module), which is used to tailor the process for the particular application being
implemented. Thus, the behaviour module forms part of the Erlang/OTP stan-
dard library, and the callback module is implemented by the programmer. Such
behaviours provide standard mechanisms to implement concurrent behaviours:
the generic part provides a proven implementation of an often complex concur-
rent coordination task, which allows programmers to focus on the easier task
on how to adapt this generic behaviour to the particular application at hand.

9.1. Contracts in Erlang 195

Thus, the definition and use of such behaviours, can be seen as a form of
parametric software contract. The generic part of the contract guarantees the
general conduct of the behaviour, which to be able to operate correctly, requires
the specific part of the contract, i.e., that callback functions work correctly (e.g.
are computationally efficient, and terminate normally).

The concurrent part of EDBC focus on an Erlang behaviour, which is heavily
used in industrial applications, the gen_server behaviour. This behaviour is
used to implement client-server architectures. In practice, the behaviour has a
number of shortcomings which are addressed in EDBC by extending it to handle
client requests which arrive when the server is not capable of servicing them,
a common situation in asynchronous concurrent systems. A programmer using
the normal gen_server behaviour must manually handle such asynchronous
requests by implementing a queuing policy in the specific behaviour part. In
EDBC, a modified gen_server is provided instead, where the generic behaviour
part handles such asynchronous requests according to a simple rule, and which
implements a flexible queuing policy, thus providing a concurrent contract which
is considerably easier to use.

Before describing the concurrent contracts of EDBC, there is another type
of contract in EDBC that does not consider the concurrency scenarios but
is strictly related to concurrent environments, since it apples restrictions at
process level. These contracts are the invariant contracts. Invariants are meant
to be used in Erlang behaviours which has an internal state. An invariant
contract is defined by using the macro ?INVARIANT/1. This macro can be
placed anywhere inside the module implementing the behaviour. The argument
of the ?INVARIANT/1 macro is a function, named invariant function, with only
one parameter that represents the current state of the behaviour. Then, an
invariant function should evaluate to a boolean value which indicates whether
the given state satisfies the invariant or not. The invariant function is used to
check the invariant contract each time a call to a function which is permitted
to change the state finishes, e.g., when a call by the gen_server behaviour to
the handle_call/3 callback function finishes. Note that invariant contracts
can be used to check for the absence of problems in concurrent systems such as
e.g. starvation. Examples of invariant contracts and their associated violation
report are presented later in Figures 9.12 and 9.13.

The gen_server behaviour with contracts

One of the more commonly used Erlang behaviours is the gen_server, which
provides a standard way to implement a client–server architecture. A callback
module for this behaviour needs to define the specific parts of the server (pro-
cess), e.g., what is the initial state of the server (e.g., implementing the Erlang
function init/0), and handling specific client requests (e.g., implementing the
Erlang functions handle_call/3 for blocking client calls, and handle_cast/2
for non-blocking client calls), etc.

Given the highly regular nature of specific parts of this behaviour, the use
of some contracts is highly useful. For instance, invariants (?INVARIANT/1 con-
tracts) constrain the (persistent) state of the underlying server process. More-
over, for the server to function correctly, the generic parts of the service require

196 Chapter 9. Design-by-contract verification in Erlang

the specific parts of the behaviour to satisfy a number of properties expressible
as contracts: calls to handle_call/3 (or handle_cast) must normally be side
effect free (as the generic part handles replying to server requests) as expressed
by the ?PURE/0 contract, and the code implementing handle_call/3 should be
efficient as expressed by the ?EXPECTED_TIME/1 contract.

We have also extended the gen_server behaviour to handle asynchronous
client requests to the server. This extension provides a mechanism for the
server to postpone requests which it is not yet ready to serve, but which should
be served in the future when the server state changes. Concretely we add a
new callback function that the behaviour specific part may implement: cpre/3.
This function should return a boolean value indicating whether the server is
ready or not to serve a given request. The rest of the gen_server callbacks
are not modified. The three parameters of the callback function cpre/3 are
(i) the request, (ii) the from of the request3, and (iii) the current server state.
The function cpre/3 should evaluate to a tuple with two elements. The first
element of the tuple is a boolean value which indicates if the given request can
be served. The second element is the new server state.

The gen_server_cpre behaviour behaves in the same way as the gen_server
behaviour except with a significant difference. Each time the server receives a
client request, it calls to cpre/3 callback before calling the actual gen_server
callback, i.e., handle_call/3. Then, according to the value of the first element
of the tuple that cpre/3 returns, either the request is actually performed (when
the value is true) or it is queued to be served later (when the value is false).
In both cases, the server state is updated with the value returned in the second
element of the tuple.

EDBC includes two implementations of the gen_server_cpre behaviour,
each one treats the queued requests in a different way. The least complicated
implementation resends to itself a client request that cannot be served in the
current server state, i.e., a request for which function cpre/3 returns {false,
...}). Since mailboxes in Erlang are ordered according to the arrival time of
messages (i.e., in FIFO order), the postponed request will be the last request in
the queue of incoming requests. This can be considered unfair, because, when
once in the future the state of the server has changed thus potentially permitting
the postponed client request to be served, the server could instead serve serve
new client requests that have arrived later than the postponed client request.

The EDBC framework also provides a different version (which is fairer) of the
gen_server_cpre behaviour. In this version, three queues are used to ensure
that older requests are served first: queuecurrent, queueold, and queuenew. Each
time the server is ready to listen for new requests, the queuecurrent is inspected.
If it is empty, then the server proceeds as usual, i.e., by receiving a request from
its mailbox. Otherwise, if it is not empty, a request from queuecurrent is served.
Consequently, the served request is removed from queuecurrent. The queues are
also modified by adding requests to queueold and queuenew. This is done when
function cpre/3 returns {false, ...}. Depending on the origin of the request

3The from of the request has the same form as in the handle_call/3 callback, i.e., a tuple
{Pid,Tag}, where Pid is the process identifier of the client issuing the request, and Tag is an
unique tag.

9.1. Contracts in Erlang 197

it is added to queueold (when it comes from queuecurrent) or to queuenew (when
it comes from the mailbox). Finally, each time a request is completely served,
the server state could have been modified. A modification in the server state
can enable postponed requests to be served. Therefore, each time the server
state is modified, queuecurrent is rebuilt as follows:

queueold + queuecurrent + queuenew

Real scenarios to use gen_server_cpre behaviour

We show two real examples where gen_server_cpre has been proved useful.
Those examples are the selective receives scenario and the readers-writers prob-
lem.

• Selective receives. In public forums such as stackoverflow4 and the
erlang-questions mailing list5, where Erlang programming is discussed,
there have been a number of questions regarding the limitations of the
standard gen_server implementation. Most of them concern how to im-
plement a server which has the ability to delay some requests. For exam-
ple, one question posted in stackoverflow.com6 asks whether it is possible
to implement a server which performs a selective receive while using a
gen_server behaviour. None of the provided answers is giving an easy
solution. Some of them suggest that the questioner should not use a
gen_server for this, and directly implement a low-level selective receive.
Other answers propose to use gen_server but delay the requests man-
ually. This solution involves storing the request in the server state and
returning a no_reply in the handle_call/3. Then, the request should be
revised continually, until it can be served and use gen_server:reply/2
to inform the client of the result. Our solution is closer to the last one,
but all the management of the delayed requests is completely transparent
to the user.

1 handle_call(test, _From, _State) ->
2 List = [0,1,2,3,4,5,6,7,8,9],
3 lists:map(fun(N) -> spawn(fun() ->
4 gen_server:call(?MODULE, {result, N}) end)
5 end, lists:reverse(List)),
6 {reply, ok, List};
7 handle_call({result, N}, _From, [N|R]) ->
8 io:format("result: " ++ integer_to_list(N) ++ "~n"),
9 {reply, ok, R}.

Figure 9.9: handle_call/2 for selective receive

Figure 9.9 shows the function handle_call/2 of the gen_server that
the questioner provided to exemplify the problem. When the request

4https://stackoverflow.com
5http://erlang.org/mailman/listinfo/erlang-questions
6https://stackoverflow.com/questions/1290427/how-do-you-do-selective-receives-in-gen-servers

https://stackoverflow.com
http://erlang.org/mailman/listinfo/erlang-questions
https://stackoverflow.com/questions/1290427/how-do-you-do-selective-receives-in-gen-servers

198 Chapter 9. Design-by-contract verification in Erlang

test is served, it builds ten processes, each one performing a {result,
N} request, with N ranging from 0 to 9. Additionally, the server state is
defined as a list which also ranges from 0 to 9 (Figure 9.9, lines 2 and
6). The interesting part of the problem is how the {result, N} requests
need to be served. The idea of the questioner is that the server should
process the requests in the order defined by the state. For instance, the
request {result, 0} can only be served when the head of the state’s list
is also 0. However, there is a problem in this approach. The questioner
explains it with the sentence: when none of the callback function clauses
match a message, rather than putting the message back in the mailbox, it
errors out. Although this is the normal and the expected behaviour of
a gen_server, the questioner thinks that some easy alternative should
exists. However, as explained above, the solutions proposed in the thread
are not satisfactory enough.

1 cpre(test, _, State) -> {true, State};
2 cpre({result, N}, _, [N|R]) -> {true, [N|R]};
3 cpre({result, N}, _, State) -> {false, State}.

Figure 9.10: cpre/3 for selective receive

With the enhanced versions of the gen_server behaviour we propose in
this work, users can define conditions for each request by using func-
tion cpre/3. Figure 9.10 depicts a definition of the function cpre/3
that solves the questioner’s problem without needing to redefine func-
tion handle_call/3 of Figure 9.9. The first clause indicates to the
gen_server_cpre server that the request test can be served always. In
contrast, {result, N} requests only can be served when N coincides with
the first element of the server’s state.

• Readers-writers. In this example we define a simple server that imple-
ments the readers-writers problem, as a second example of the use of the
extended gen_server_cpre contract. We start by introducing an imple-
mentation of the problem using the standard gen_server behaviour. The
server state is a record defined as:

-record(state, {readers = 0, writer = false}).

The requests that it can handle are four: request_read, request_write,
finish_read, and finish_write. The first two requests are blocking
(because clients need to wait for a confirmation) while the latter two
do not block the client (clients do not need confirmation). Figure 9.11
shows the handlers for these requests. They basically increase/decrease
the counter readers or switch on/off the flag writer.
Having defined all these components, we can already run the readers-
writer server. It will start serving requests successfully without any no-
ticeable issue. However, the result in the shared resource is a mess,

9.1. Contracts in Erlang 199

1 handle_call(request_read, _, State) ->
2 NState = State#state{readers = State#state.readers + 1},
3 {reply, pass, NState};
4 handle_call(request_write, _, State) ->
5 NState = State#state{writer = true}},
6 {reply, pass, NState}.
7
8 handle_cast(finish_read, State) ->
9 NState = State#state{readers = State#state.readers - 1},

10 {noreply, NState};
11 handle_cast(finish_write, State) ->
12 NState = State#state{writer = false},
13 {noreply, NState}.

Figure 9.11: Readers-writers request handlers

mainly because we are forgetting an important problem: its invariant,
i.e. ¬writer ∨ readers = 0.

1 ?INVARIANT(fun invariant/1).
2
3 invariant(#state{ readers = Readers, writer = Writer}) ->
4 is_integer(Readers) andalso Readers >= 0
5 andalso is_boolean(Writer)
6 andalso ((not Writer) orelse Readers == 0).

Figure 9.12: Readers-writers invariant definition

We can define an invariant for the readers-writers server by using the
macro ?INVARIANT/1. Figure 9.12 shows how the macro is used and the
helper function which actually checks the invariant. Apart from the stan-
dard invariant (line 6 in Figure 9.12), the function also checks that the
state field readers is a positive integer and that the state field writer is
a boolean value (lines 4 and 5).
If we run the server with the invariant defined, we obtain feedback on
whether the server is behaving as expected. In this case, the server is
clearly not a correct implementation of the problem. Therefore, an error
should be raised due to the violation of the invariant. An example of the
errors is shown in Figure 9.13.
The error is indicating that the server state was {state,0,true} when the
server processed a request_read which led to the new state {state,1,
true} which clearly violates the defined invariant. The information pro-
vided by the error report can be improved by returning a tuple {false,
Reason} in the invariant function, where Reason is a string to be shown
in this contract-violation report after the generic message.
In order to correctly implement this feature, we use the function cpre/3
to control when a request can be served or not. Figure 9.14 shows a
function cpre/3 which makes the server’s behaviour correct and avoids

200 Chapter 9. Design-by-contract verification in Erlang

=ERROR REPORT====
** Generic server readers_writers terminating
** Last message in was request_read
** When Server state == {state,0,true}
** Reason for termination ==
** {{"The invariant does not hold.",Last call: readers_writers:handle_call(

request_read, ..., {state,0,true}). Result: {reply, pass,{state,1,true}}
",

[{readers_writers,handle_call,3,...},...]}, ...}

Figure 9.13: Failing invariant report

violations of the invariant. It enables request_read requests as long as
the flag writer is switched off. Similarly, request_write requests also
require the flag writer to be switched off and the counter readers to be
0. If we rerun now the server, no invariant violation errors will be raised.

1 cpre(request_read, _, State = #state{writer = false}) ->
2 {true, State};
3 cpre(request_read, _, State) ->
4 {false, State};
5 cpre(request_write, _,
6 State = #state{writer = false, readers = 0}) ->
7 {true, State};
8 cpre(request_write, _, State) ->
9 {false, State}.

Figure 9.14: Readers-writers cpre/3 definition

Although this implementation is already correct, it is unfair for writers
as they have less chances to access the shared resource. The EDBC code
repository7 includes a number of implementations of the example, which
implement various fairness criteria.

9.2 Implementation
EDBC is an Erlang library composed of a set of 8 Erlang modules and 4 shell
scripts with more than 4300 lines of code. EDBC allows users to include con-
tracts in their Erlang programs. In this section we describe the architecture of
EDBC: the modules it is formed by, the scripts contained in EDBC, the tasks
they perform, and the relationships between them. Additionally, we explain
how the code is instrumented to support contract checking at runtime. EDBC
is implemented in Erlang and is open source and publicly available in:

https://github.com/serperu/edbc
7https://github.com/serperu/edbc/tree/master/examples/readers_writers

https://github.com/serperu/edbc
https://github.com/serperu/edbc/tree/master/examples/readers_writers

9.2. Implementation 201

9.2.1 Architecture
Figure 9.15 shows how the modules of EDBC are classified according to their
functionality. In the figure, rounded squares stand for different parts of the
EDBC library (written in bold inside them), and solid squares stand for Erlang
modules and scripts implemented from scratch. Solid arrows represent explicit
module calls, dashed arrows represent input/output Erlang files, and dotted
arrows represent behaviour usages.

edbc_free_vars_
server

edbc_lib

edbc_parse_transform

error_logger_mod

gen_mod
gen_server_qcpregen_server_cpre

proc_lib_mod

Erlang
Module

with
Contracts

Erlang
Transformed

Module

Erlang Program with
gen_server behaviour

Contract Library Concurrent Library

Scripts

edbc_erlc edbc_erlcp

edbc_erl edbc_edoc
Module Call
Input/Output Resource
Behaviour Usage

Erlang module
documentation
with contracts

Figure 9.15: Architecture of EDBC classified by functionality

• edbc_parse_transform. This module is the one that implements the in-
strumentation of contracts. It finds the macros defining contracts inside
the given modules and expands them with new functions that verify each
contract without changing the semantics of the program. This module
creates a thread of running the edbc_free_vars_server module to ex-
tract free variables during the instrumentation process, and include in the
transformed program successive calls to edbc_lib, which will evaluate the
contracts during execution.

• edbc_lib. This module implements the generic evaluation of all kind con-
tracts. Each function is in charge of evaluating a particular type contract.
The inputs of these functions are, in turn, other high order functions
that are called inside their body to obtain the results needed to grant the
condition in the contract or to report any error found.

• edbc_free_vars_server. This module creates a server that generates
variable names which are not used in the module being analysed. Each
new variable name is formed by adding an identifier character (which
is iteratively increased) at the end of the longest-named variable of the
original program.

• gen_server_cpre. This module defines an enhanced Erlang behaviour
based in the gen_server behaviour. This module defines an extra callback

202 Chapter 9. Design-by-contract verification in Erlang

called cpre that represents the condition that needs to be fulfilled by the
server to serve a particular request. When the request cannot be served,
the message is resent to the server mail list to retry its processing later.

• gen_server_qcpre. This module further enhances the gen_server_cpre
Erlang behaviour. Apart from including the cpre callback into gen_server,
it also includes a queue as a parameter, allowing the customisation of the
server requests that cannot be served. This queue can be used to give
priority to specific requests types when they are received by the server.

• gen_mod. This module is a snapshot of a particular version of the gen mod-
ule of Erlang/OTP that ensures the correct working of gen_server_cpre
and gen_server_qcpre. This module isolates the functionality of this
Erlang version and avoids the incompatibility due to changes in the im-
plementation or exportations of the methods in the gen module. In the
module, all the calls to proc_lib module are replaced to calls to the
proc_lib_mod module8.

• proc_lib_mod. This module is a snapshot of a particular Erlang/OTP
module called proc_lib with some differences. The proc_lib_mod mod-
ule changes the return values of some methods and replaces all the calls
to error_logger module by calls to error_logger_mod.

• error_logger_mod. This module is a snapshot of a particular version of
the error_logger module in Erlang, which is called from the proc_lib_mod
module.

• edbc_erlc. This script is equivalent to the erlc command used to com-
pile Erlang code from the terminal. The script replaces the Erlang/OTP
default parser module with the edbc_parse_transform module imple-
mented in EDBC, which parses the contracts ad hoc when translating the
source code for execution.

• edbc_erlcp. This script compiles Erlang code from the terminal as the
edbc_erlc script does. Contrarily to edbc_erlc, the compilation of the
code with this script allow the appearance of contracts, but disables con-
tract checking.

• edbc_erl. This script launches an Erlang shell including the set of mod-
ules contained in a given directory. Additionally, if indicated, the shell
can execute a particular given method after launching, e.g., a set of test
cases referring to a contracted function.

• edbc_edoc. This script generates the documentation of all the functions
of a particular module. The documentation includes, for each contracted

8To incorporate improvements introduced in the gen module of the Erlang/OTP library,
all gen_mod, proc_lib_mod, and error_logger_mod modules must be replaced by their ho-
mologous (without the _mod suffix) modules in the Erlang/OTP library and adapted to work
with EDBC by adding the _mod to the corresponding method calls and modifying the returned
value of some functions.

9.2. Implementation 203

function, the information the defined contracts, providing information
about the input, output, or functionality expected for the function.

9.2.2 Instrumentation
Note that the code produced by the instrumentation process is standard Erlang
code, which can be executed by any standard Erlang runtime system in a com-
pletely normal fashion. Technically, the instrumentation is performed using so
called Erlang “parse transforms”, which permits defining syntactic transforma-
tions on Erlang code.

Consider a module with a number of annotated functions. The instrumen-
tation process replaces such annotated functions with a copy of the (possibly
modified) original function, together with a number of helper functions that
are synthesised from the contracts. The instrumentation is performed in three
steps:

1. First, if a function has an associated contract, then an instrumentation
to store the relevant information regarding function calls (function name,
arguments and stack trace) is performed. This creates a new function
which becomes the function entry point, and the original function is re-
named. When the new function is called, it stores the call information,
and proceeds to call the original function.

2. Then, contracts of type ?DECREASES/1 (including ?SDECREASES/1) are
processed. This instrumentation creates a function which checks if the
size of its parameters have decreased between recursive calls. If they
are decreased, delayed calls are executed, and if they are not, a contract
violation exception is raised. During the instrumentation the original
function is also modified by replacing all the recursive calls to calls to
the new created function. Note that, due to this instrumentation and the
previous one, we have changed the call cycle of a recursive call:

fori → fori ⇒ fsi → fori → fdc → fsi

where fori is the original function, fsi is the function that stores the
call information, and fdc is the function that checks the decreasing of
arguments.

3. The remaining contract types are processed distinguishing between con-
tracts of type ?PRE, and contracts of type ?POST. All contracts except
?DECREASE can in fact be generalised to one of of these two types of
contract. Of course, each contract has its particularities, however, these
particularities do not have any effect in the instrumentation process. The
chain of calls becomes

fsi → fpre/post∗ → fori

where fpre/post∗ are a number of functions (maybe none) introduced by
?PRE/?POST contracts. In the case of a recursive function which defines a

204 Chapter 9. Design-by-contract verification in Erlang

?DECREASE contract, the call chain would be

fsi → fpre/post∗ → fori → fdc → fsi

Further note that most of the helper functions have a call as its last expres-
sion enabling, in this way, so called last call optimisations to reduce the
runtime cost of instrumenting code. The only exception is the functions
generated for postconditions, which needs to be stacked until internal calls
are completely evaluated.

In the rest of the section we explain the particularities of each contract type.
Contracts of type ?DECREASE/1, ?PRE/1 and ?POST/1 have not any particularity,
i.e. they work as explained in the instrumentation process. The rest of contract
types are implemented as described in the following.

• Execution-time contracts. These contracts are instrumented as ?PRE/1
contracts because the result, i.e. the parameter of the condition-checker
functions of ?POST/1 contracts, is not needed. In fact, the evaluation of
the condition-checker function does not return a boolean, but a number
which represents the expected time. Then, the delayed call is run in the
same process (?EXPECTED_TIME/1) or in a separate one (?TIMEOUT/1).
Finally, according to the time needed to run the call, either the result is
returned or a contract-violation error is raised (stopping also the evalua-
tion in the case of ?TIMEOUT/1).

• Purity contracts. They are also implemented as ?PRE/1 contracts for
the same reason as execution-time contracts. In this case, there is not any
condition-checker function, so a dummy one is used. In order to check
these contracts, we trace all the calls performed during the evaluation of
the delayed call as well as receive/send events. The tracing process is
performed using the BIF erlang:trace/3. A function call is considered
impure if during its evaluation is performed a send, a receive or a call to
an impure BIF (checked using the function erl_bifs:is_pure/3).

• Invariant contracts. These types of contracts are internally translated
to ?POST/1 contracts and attached to functions which can change the state
of an Erlang behaviour, e.g. code_change/3, handle_call/3, init/1,
etc. Instead of the function result, the behaviour state is used to check
whether the synthetized postcondition holds.

• Type contracts. For checking the validity of the values according to
the expected types we use the Sheriff [82] type checker. Sheriff is
run by calling the function sheriff:check/2 which checks whether a
given value belongs to a given type. We have gone a step forward mak-
ing the type checking completely transparent for users and reusing their
already-defined type contracts, i.e. their specs. A spec implicitly defines
a condition for the parameters and a condition for the result. Therefore,
a spec is translated to both a ?PRE/1 and a ?POST/1 contract which in-
ternally call to Sheriff and decide form its result whether to continue

9.3. Related Work 205

the evaluation or to raise a contract-violation error with attached details
about the violator value and its expected type.

Finally, contract checking can be easily disabled or enabled using a special
compilation flag, thus e.g. permitting production code to be compiled and run
without instrumentation.

9.3 Related Work
Our contracts are similar to the ones defined in [10], where the function speci-
fications are written in the same language, i.e., Curry, so they are executable.
Being executable enables their usage as prototypes when the real implementa-
tion is not provided. Their contracts are functions in the source code instead of
macros, so it is not clear whether they could be removed in the final release. One
of the authors extended this work in [77], where static analysis performed by an
SMT solver at compile time was used to check the contracts. This analysis dis-
charged the overhead produced by the dynamic verification of these contracts.
In these works, there is not any mention about whether their contracts are inte-
grated with a documentation tool like our contracts are with EDoc. Moreover,
they only allow to define basic precondition and postcondition contracts, while
we are providing alternative ones like purity or time contracts. Finally, Curry
is a pure functional logic language not targeting concurrent computations. For
that reason, contracts for purity checking or concurrency behaviours would not
be very useful in a language like Curry.

The work in [155] presents a static analysis which infers whether a function
is pure or not. Since the focus on the article is on static analysis whereas ours
is on dynamic analysis, the purity checking is performed in completely different
ways in each work. However, we can benefit from their results by, for instance,
avoiding to execute functions that are already known to be impure, reporting
earlier to the user a purity-contract violation. In the same way, our system can
be used in their approach to check the validity of statically-inferred results.

The type contract language for Erlang [94] allows to specify the intended
behaviour of functions. Their usage is twofold: i) as a documentation in the
source code which is also used to generate EDoc, and ii) to refine static analyses
provided by tools such as Dialyzer. The contract language allows for singleton
types, unions of existing types and the definition of new types. However, these
types and function specifications do not guarantee type safety. This guarantee
comes with Erlang which incorporates strong runtime typing with type errors
detected and reported at runtime. Although such a static analysis is quite ca-
pable in detecting typing violations, strong typing usually detects unexpected
behaviour too far from its source. Therefore, when debugging a program, pro-
viding the feature to detect violations of such type contracts at runtime can be
a useful aid to provide more precise error location.

The contracts proposed for the concurrent environments follow the same
philosophy as the specifications defined in [59, 78]. Indeed, our function cpre/3
takes its name from these works. Although these works were more focused on
enabling the use of formal methods, or testing techniques, to verify nontrivial

206 Chapter 9. Design-by-contract verification in Erlang

properties of realistic systems, in this work we demonstrate that they can be
used to concisely program server applications which are forced to deal with
asynchronous requests that must be delayed, and moreover are also useful for
runtime verification.

Dafny [114] is a verification-aware programming language that allows us to
define invariants and contracts in their programs. The main difference between
their approach and ours is that their contracts are not checked during runtime,
but statically. Once you define a contract in Dafny, the system checks whether it
is fulfilled in every program compilation as your program grows. This continuous
verification is very powerful and consider all the scenarios explicitly in the code,
but comes with a higher computational effort. Contrarily, EDBC provides the
same type of contracts for Erlang, but checked during runtime. Unfortunately,
being runtime checked is double-edged: the compilation is a verification-free
process that consumes less resources, but an incorrect use of functions is not
noticed until the program is run and the contract is violated during the testing
phase. Additionally, as Dafny implements its own programming language, the
programmer needs to define complex contracts in a different language that the
one used in her implementation. Contrarily, in EDBC, contracts are defined
using resources of the native Erlang language, which makes its integration easier
for programmers.

The aspect-oriented approach for Erlang (eAOP) presented in [29] shares
some similarities with our work. eAOP allows the instrumentation of a pro-
gram with a user-defined tracing protocol (at an expression level). This is able
to report events to a monitor (asynchronous) as well as to force some part of the
code to block waiting for information from the monitor (synchronicity). Our
system could be used to a similar purpose but only at the function level. Ad-
ditionally, thanks to the functionality freedom allowed in our contracts, EDBC
enables the definition of synchronisation operations at the user-defined con-
tracts. More complex modifications of our system, such as the ones done in
[126], can transform our work into a complete aspect-oriented system.

Also in Erlang, the work [43] defines a runtime monitoring tool which helps
to detect messages which do not match a given specification. These specifi-
cations are defined through an automaton, which requires an extra knowledge
from the user concerning both the syntax of the specification, and in the whole
system operation. We propose a clear and easy way to define the conditions for
when to accept a request without needing any user input.

Finally, JErlang [156] enables so called joins in Erlang. This is achieved by
modifying the syntax of Erlang receive patterns to permit expressing matching
of multiple subsequent messages. Although our goal and theirs are different,
both approaches can simplify the way programmers solve similar kinds of prob-
lems. Indeed, we could simulate joins by adding a forth parameter to the
function cpre/3. This additional parameter would represent the still unserved
pending requests. When the last request of a user-defined sequence (join) is
received, the pending requests should be examined to check whether the re-
quired join can be served. A similar modification is needed to the callback
handle_call/3 interface so that the pending requests could be served using
the gen_server:reply/2 call.

207

Part IV

Developed Tools

209

Chapter 10

Developed Tools and User
Guides

In this chapter we show where to find, and how to install and use the tools
presented along this thesis. These tools include two program slicers, a regression
testing tool, and a library for doing DBC verification in Erlang. The description
of each tool is divided in four parts: (i) how to find download and install the
tool, (ii) a description about the options and commands to configure and run
the tool, and (iii) use cases of configuration and execution of the tool with the
description of the result/report produced by the tool.

10.1 JavaSlicer
JavaSlicer is a program slicer for Java implemented in Java that uses the JSysDG
as the starting graph. JavaSlicer implements the representation described in
Chapter 3 including in the JSysDG the newly defined object-flow and object-
reference dependences. The tool gives the user the possibility of selecting any
object variable of the program as slicing criterion, obtaining an slice that in-
cludes all the necessary statements to compute the value of the object variable
itself, including the object it points to (its reference) and the value of all its
data members. All the source code of JavaSlicer is publicly available at:

https://github.com/mistupv/JavaSlicer

and a resource-limited web version of the tool can be found at:

https://mist.dsic.upv.es/JavaSlicer/demo

10.1.1 Installation and first steps
To install JavaSlicer in your computer, it is necessary to download the JavaSlicer
project from git:

~$ git clone https://github.com/mistupv/JavaSlicer

https://github.com/mistupv/JavaSlicer
https://mist.dsic.upv.es/JavaSlicer/demo

210 Chapter 10. Developed Tools and User Guides

Generate Docker testing environment

To build a docker environment for easily testing the tool, enter the folder where
the project has been downloaded (ensures that there is a file called Dockerfile
inside it) and run these two commands:

~$ docker build -t javasdg .
~$ docker run --name javasdg_container -it javasdg bash

We will now find ourselves into a new shell where the tool and all its de-
pendences have already been installed. Then, the slicer can be run (see First
steps subsection) using the example programs contained in the examples folder
or creating new java programs via vim text editor.

Manual Installation

JavaSlicer manages its dependencies through maven, so you need to have the
JDK (≥ 11) and Maven installed, then run:

~$ mvn package -Dmaven.test.skip

A fat jar containing all the project’s dependencies can be then located at:

./sdg-cli/target/sdg-cli-{version}-jar-with-dependencies.jar

From now on, for the sake of simplicity, we assume that this jar file has been
renamed to JavaSlicer.jar.

First steps

JavaSlicer is a program slicer executed from the command line. In order to run
the slicer, the user needs to specify a slicing criterion. JavaSlicer is run from
the .jar file previously generated with the following command:

~$ java -jar JavaSlicer.jar -c file#line:var

In the JavaSlicer command, there are two different methods to specify the
slicing criterion. The simplest method is with the flag -c file#line:var,
where file, line, and var must be specified by the user. If the variable appears
multiple times in the given line, all of them will be selected.

The tool can be further configured by using different flags. Executing the
jar file with the option -h (or --help) shows the flags accepted by JavaSlicer,
which are described hereunder:

• -f,--file <CriterionFile.java>. The file that contains the slicing
criterion.

• -l,--line <line-number>. The line that contains the statement of the
slicing criterion.

10.1. JavaSlicer 211

• -v,--var <variable-name>. The name of the variable of the slicing
criterion. Not setting this option is equivalent to selecting no variable in
the given line number. In case no variable is selected, the slicer will return
the slice considering a reachability analysis to the selected statement.

• -c,--criterion <file#line[:var]>. The slicing criterion, in the for-
mat "file#line:var". The variable is optional. This option may be replaced
by -f, -l, and -v. If this argument is set, it overrides the individual ones.

• -h,--help. Shows the text containing the information about the com-
mand and all the options it accepts.

• -i,--include <directory[,directory,...]>. This command is used
to include the implementation of classes that are located in other files or
directories different from where the slicing criterion is. It includes all the
.java files in the directories listed here as part of the dependence graph,
letting the analysis and generation of summary edges for all the methods
contained in these files. Methods that are not included here or part of the
JRE, including third party libraries will not be analysed, resulting in less
precise slices.

• -o,--output <output-dir>. The directory where the sliced source code
should be placed. By default, it is placed at the path ./slice.

• -cp,--classpath <jarFile[:jarFile:...]>. The jar files of all the
libraries that need to be included to compile the code to be sliced.

Example 10.1 (Running JavaSlicer). Consider the Java program shown in
Figure 10.1, stored in a file called Example1.java located in a folder called
./examples in the base directory of the cloned repository. The slice of this

1 public class Example1 {
2 public static void main(String[] args) {
3 int sum = 0;
4 int prod = 0;
5 int i;
6 int n = 10;
7 for (i = 0; i < 10; i++) {
8 sum += 1;
9 prod += n;

10 }
11 System.out.println(sum);
12 System.out.println(prod);
13 }
14 }

Figure 10.1: Java program to be sliced

program with respect to variable sum in line 11, would be obtained by following
command:

~$ java -jar JavaSlicer.jar -c ./examples/Example1.java#11:sum

212 Chapter 10. Developed Tools and User Guides

Since no -o option has been specified, the slice is stored in the folder ./slice.
This folder contains a file with the same name (Example1.java) that contains
the corresponding slice, denoted with black code in Figure 10.2.

1 public class Example1 {
2 public static void main(String[] args) {
3 int sum = 0;
4 int prod = 0;
5 int i;
6 int n = 10;
7 for (i = 0; i < 10; i++) {
8 sum += 1;
9 prod += n;

10 }
11 System.out.println(sum);
12 System.out.println(prod);
13 }
14 }

Figure 10.2: Slice for the slicing criterion ⟨11, sum⟩ of the Java
code in Figure 10.1

10.1.2 Use case
This section shows an additional example of how JavaSlicer is used via command
line with a set of files distributed in different directories. Consider the Java code
in Figure 10.3, which contains three different Java classes that make use of some
hierarchy properties and are part of the regression test suite used to verify the
slicer performance each time a change in introduced1. The program creates
two different objects of different types and makes a sequence of method calls
using these objects as scope. Consider the slicing criterion ⟨8, b1 ⟩, where we are
interested in the object variable b1 after the call to method getA() in line 8.
In order to slice this program, we run the following command:

~$ java -jar JavaSlicer.jar -i ./examples/Example2/ -c
./examples/Example2/Example2.java#8:b1 -o ./examples/Example2Output

The result of this command is the creation of a new folder in the path
specified by the -o flag (./examples/Example2Output), where the output of
JavaSlicer is saved. The output results in a set of files with the same name
than the original ones and with the corresponding program slice, shown in
Figure 10.4.

In Figure 10.4, all the code related to variable a1 is completely removed,
together with the methods in class A that are not called from class B. The con-
structor of class A remains in the slices because it is called from the constructor
of class B with the corresponding super(...) call. The same occurs to method

1This use case can be found both in ./examples/Example2 or in the regression test
suite at: https://github.com/mistupv/JavaSlicer/tree/develop/sdg-core/src/test/
res/regression

https://github.com/mistupv/JavaSlicer/tree/develop/sdg-core/src/test/res/regression
https://github.com/mistupv/JavaSlicer/tree/develop/sdg-core/src/test/res/regression

10.2. e-Knife (a CE-EDG Slicer for Erlang) 213

1 public class Example2 {
2 public static void main(String[] args){
3 A a1 = new A(1);
4 B b1 = new B(5.6);
5 a1.printA();
6 b1.printA();
7 b1.updateA(5);
8 int z = b1.getA();
9 System.out.print(z);

10 }
11 }
12 public class A {
13 int a = 0;
14 public A(int val) { a = val; }
15 public int getA() { return a; }
16 public void setA(int val) { a = val; }
17 public void printA() {
18 System.out.print(a);
19 }
20 public void updateA(int v) { a++; }
21 }

22 public class B extends A {
23 int b = 5;
24 public B(double val){
25 super((int) val);
26 }
27 public void updateB(B b){
28 b.setB(10);
29 }
30 public int getB() { return b; }
31 public void setB(int val) { b = val; }
32 public void printA() {
33 System.out.print("Useless");
34 }
35 public void updateA(int v) {
36 super.updateA(v);
37 a += v;
38 }
39 }

Figure 10.3: Three classes used in the use case Example2

1 public class Example2 {
2 public static void main(String[] args){
3 A a1 = new A(1);
4 B b1 = new B(5.6);
5 a1.printA();
6 b1.printA();
7 b1.updateA(5);
8 int z = b1.getA();
9 System.out.print(z);

10 }
11 }
12 public class A {
13 int a = 0;
14 public A(int val) { a = val; }
15 public int getA() { return a; }
16 public void setA(int val) { a = val; }
17 public void printA() {
18 System.out.print(a);
19 }
20 public void updateA(int v) { a++; }
21 }

22 public class B extends A {
23 int b = 5;
24 public B(double val){
25 super((int) val);
26 }
27 public void updateB(B b) {
28 b.setB(10);
29 }
30 public int getB() { return b; }
31 public void setB(int val) { b = val; }
32 public void printA() {
33 System.out.print("Useless");
34 }
35 public void updateA(int v) {
36 super.updateA(v);
37 a += v;
38 }
39 }

Figure 10.4: Slice w.r.t. ⟨8, b1 ⟩ of the code in Figure 10.3

updateA() in class A, which is called by its homologous in class B). The execu-
tion of method updateA() in class A has a side effect over data member a and,
for this reason, needs to be included in the slice. Additionally, method getA()
must be also included since we are interested in b1 after the method call and
so it needs to be executed. Finally, it is worth to mention that both a and
b data members are part of the slice thanks to the corresponding object-flow
dependences included by the underlying model.

10.2 e-Knife (a CE-EDG Slicer for Erlang)
e-Knife is a program slicer that operates over the sequential part of the Erlang
language. e-Knife is implemented in Java and operates with the EDG as base

214 Chapter 10. Developed Tools and User Guides

representation graph. Additionally, the slicer allows for field-sensitive slicing
by implementing the constrained-edges approach described in Chapter 4, which
supports an accurate management of composite data structures like lists or
tuples in Erlang programs. Given an Erlang program and a slicing criterion,
e-Knife generates the corresponding CE-EDG and slice it with a high level of
precision. All the source code of e-Knife is publicly available at:

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang

and a resource-limited web version of the tool can be found at:

https://mist.dsic.upv.es/e-knife-constrained/

10.2.1 Installation and first steps
To install e-Knife in your computer, it is necessary to download the e-Knife
project from git.

~$ git clone https://kaz.dsic.upv.es/git/program-slicing/e-knife-erlang.git

Generate Docker testing environment

If you want to generate a docker environment to test the tool, enter the folder
where the project has been cloned (ensures that there is a file called Dockerfile
inside it) and run these two commands:

~$ docker build -t eknife .
~$ docker run --name eKnife_container -it eknife bash

After running these two commands, the terminal will enter the docker shell,
where the tool and all its dependences have already been installed. The user can
now run the tool (see First steps subsection) with the benchmarks contained in
the “examples” folder, or write and save her own programs via vim text editor.

Manual installation

There are some program dependences that need to be considered to install e-
Knife in your computer. e-Knife manages its dependences using maven so you
need to have the JDK (≥ 11) and Maven installed in your computer. Addi-
tionally, during its execution, the tool make successive calls to Erlang modules,
so you need to have an Erlang/OTP distribution installed in your computer to
execute e-Knife2. Finally, a makefile is used to build the project, thus you need
to have Make also installed in your computer3. When all these dependences are
fulfilled, you can now build e-Knife. The whole installation process can be done
with the following sequence of commands:

2The tool has been developed and tested with the Erlang/OTP 24 version.
3The user that has problems installing the tool should visit the Troubleshooting section in

https://kaz.dsic.upv.es/git/program-slicing/e-knife-erlang for further installation
details. This section provides solutions to several communication problems generated by the
jinterface Erlang library needed to run e-Knife.

https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://kaz.dsic.upv.es/git/program-slicing/e-knife-erlang

10.2. e-Knife (a CE-EDG Slicer for Erlang) 215

~$ cd e-knife-erlang
~$ make release

The make release command generates a zip file called e-knife-{version}.zip
with the executable version of the slicer. Additionally, an unzipped folder (called
dist) is generated with a version of the slicer ready to be run.

First steps

The release version of e-Knife contains a jar file and a folder (ebin) with addi-
tional resources used to run the slicer. It is important to keep these resources in
the same directory. e-Knife does not provide a GUI, it is run from the command
line instead. The used can run the jar file with the --help option (or without
any argument) to obtain a list and description of the accepted slicer options.
The list of options usable when running e-Knife is the following:

• -i,--input <file/folder>. The file/folder where the source code is
located.

• -f,--file <file>. The file (relative to -i) that contains the slicing cri-
terion.

• -l,--line <num>. The line of the slicing criterion inside its file.

• -v,--var <name>. The variable being sliced inside the given line.

• -n,--occurrence <num>. The occurrence of the slicing criterion in the
specified line.

• -o,--output <file/folder>. The file/folder where the slice will be
stored.

• -G,--print-graph <file.dot>. Generates a dot file that contains the
generated and sliced EDG.

• -G,--print-graph <file.pdf>. Generates a pdf file that contains the
generated and sliced EDG.

• --help. Shows the text containing the information about the options
accepted by the command.

Example 10.2. Consider the Erlang program shown in Figure 10.5, stored in
a file called example.erl. This program is a translation to Erlang of the Java
program shown in Figure 10.1.

The e-Knife slice of this program with respect to variable Sum in line 6, would
be obtained with the following command:

~$ java -jar e-knife.jar -i example.erl -f example.erl
-l 6 -v Sum -o slice.txt

216 Chapter 10. Developed Tools and User Guides

1 -module(example).
2 -export([main/0]).
3
4 main() ->
5 {Sum,Prod} = sum_prod(10,10,0,0),
6 io:format("~p",[Sum]),
7 io:format("~p",[Prod]).
8
9 sum_prod(N,0,S,P) -> {S,P};

10 sum_prod(N,L,S,P) ->
11 S1 = S + 1,
12 P1 = P + N,
13 sum_prod(N,L-1,S1,P1).

Figure 10.5: Erlang program to be sliced

This command generates the slice with respect to ⟨6, Sum⟩ in the slice.txt
file. It is worth to mention that the slices computed over the CE-EDG may
remove from the slice only some elements (subexpressions) of another expression
in the code. For this reason, to maintain the computed slice structurally correct
(e-Knife generates executable slices), these removed elements are replaced with
the Erlang atom “sliced” in case of expressions and with _ in case of patterns.
These replacements are shown in the code with green code. For instance, in
the slice of method sum_prod some parameters are not needed (replaced with _)
to compute the value of the slicing criterion, and the corresponding arguments
in the sum_prod call are replaced by the atom slice just to keep the method
signature.

1 -module(example).
2 -export([main/0]).
3
4 main() ->
5 {Sum,_} = sum_prod(sliced,10,0,sliced),
6 io:format(" p",[Sum]),
7 io:format(" p",[Prod]).
8
9 sum_prod(_, 0, S,_) -> {S,sliced};

10 sum_prod(_, L, S,_) ->
11 S1 = S + 1,
12 P1 = P + N,
13 sum_prod(sliced,L - 1,S1,sliced).

Figure 10.6: Slice for the slicing criterion ⟨6, Sum⟩ of the Er-
lang code in Figure 10.5

10.2.2 Use case
This section shows an additional example of how e-Knife is used via command
line with a set of files distributed in different directories. Consider the Erlang
code in Figure 10.7, which is part of Bencher (Chapter 6, Section 6.4.4), our
interprocedural benchmark suite for program slicing.

10.2. e-Knife (a CE-EDG Slicer for Erlang) 217

1 -module(bench14).
2 -export([main/2]).
3
4 main(X,Y) ->
5 Z = case X of
6 terminate -> "the end";
7 {A,B} -> {[A + B,B - A],3};
8 {3,C} -> g(C);
9 _ -> {20 * 3,8}

10 end,
11 T = 2,
12 V = f(T) + h(2) + h(3),
13 W = g([X,Y,{X,Y}]),
14 Tuple = {Z,W,V},
15 Tuple.
16
17 g(X) ->
18 [_,_,{R,S}] = X,
19 case R of
20 [1,3] -> 21;
21 [A,B] -> (A * B) / 9;
22 T -> T;
23 _ -> f(4)
24 end.

25 f(7) ->
26 L = 2 + 9,
27 F = L * 3,
28 F + L;
29 f(4) -> 9;
30 f(2) -> 7;
31 f(X) -> X.
32
33 h(X) ->
34 case X of
35 2 -> j({2,4});
36 3 -> k([4,8]);
37 1 -> l(107)
38 end.
39
40 j(A) ->
41 {X,_} = A,
42 X.
43
44 k(B) ->
45 [H|T] = B,
46 H.
47
48 l(C) -> C - 1.

Figure 10.7: Program called bench14.erl of the interproce-
dural Bencher suite for Erlang

The module contains 7 different methods called from different program
points and used to compute the value of three different variables: V, W, and Z.
Each one of these variables is computed by using a different set of these meth-
ods according to a couple of input parameters received by the main method.
Consider the variable Z in line 14 as the slicing criterion (⟨14, Z ⟩). In order to
compute this slice, we run e-Knife with the following command:

~$ java -jar e-knife.jar -i bench14.erl -f bench14.erl
-l 14 -v Z -o bench14Slice.erl

The result of this command is the creation of a new file in the directory
specified in the -o flag (./ in this case), where the output file generated by run-
ning e-Knife is saved with the selected name (bench14Slice.erl). The output
results in a file with the corresponding program slice, shown in Figure 10.8.

As it can be seen in Figure 10.8, the computation of both variables V and W is
never included in the slice, since Z is not dependent on them. This fact includes
the removal of methods h, j, k, and l which are only used in the computation
of variable V. Additionally, as it can be seen, e-Knife also excludes from the
slice method f because, despite being called in line 23 inside method g, the
analysis performed when creating the CE-EDG detects that this case clause
is unreachable: the previous pattern T corresponds to an unbound variable
and would match any possible value of the case expression R. Finally, besides
removing from the slice all the code in grey, there are two expressions that are
also replaced by the _ symbol to make the slice executable: variable Y at line 4

218 Chapter 10. Developed Tools and User Guides

1 -module(bench14).
2 -export([main/2]).
3
4 main(X,_) ->
5 Z = case X of
6 terminate -> "the end";
7 {A,B} -> {[A + B,B - A],3};
8 {3,C} -> g(C);
9 _ -> {20 * 3,8}

10 end,
11 T = 2,
12 V = f(T) + h(2) + h(3),
13 W = g([X,Y,{X,Y}]),
14 Tuple = {Z,W,V},
15 Tuple.
16
17 g(X) ->
18 [_,_,{R,_}] = X,
19 case R of
20 [1,3] -> 21;
21 [A,B] -> (A * B) / 9;
22 T -> T;
23 _ -> f(4)
24 end.

25 f(7) ->
26 L = 2 + 9,
27 F = L * 3,
28 F + L;
29 f(4) -> 9;
30 f(2) -> 7;
31 f(X) -> X.
32
33 h(X) ->
34 case X of
35 2 -> j({2,4});
36 3 -> k([4,8]);
37 1 -> l(107)
38 end.
39
40 j(A) ->
41 {X,_} = A,
42 X.
43
44 k(B) ->
45 [H|T] = B,
46 H.
47
48 l(C) -> C - 1.

Figure 10.8: Slice w.r.t. ⟨14, Z ⟩ obtained after running e-Knife
for the code in Figure 10.7

and variable S at line 18, which are not used to compute the value of the slicing
criterion Z.

10.3 SecEr
SecEr (Software Evolution Control for Erlang) is an implementation of the POI
Testing approach described in Chapter 8. SecEr is a tool for Erlang able to
automatically generate a test suite to check the behaviour of a point of interest.
It can be used for regression testing in two different ways: (i) generating a test
suite for a future comparison or (ii) by automatically comparing two releases
of an Erlang program. The comparison performed by SecEr focuses on a set of
program points specified by the user. The tool automatically generates a test
suite that checks the behaviour of those program points. These test cases try to
maximise the branch coverage, covering a large quantity of different executions,
and the tool notifies the user about any unexpected result. SecEr is open source
and is publicly available at:

https://github.com/mistupv/secer

10.3.1 Installation and first steps
SecEr makes use of the Erlang tools TypEr, PropEr, and CutEr. SecEr includes
a version of these tools to ease its installation process. In the case of this tool,

https://github.com/mistupv/secer

10.3. SecEr 219

the way of cloning the repository differs if we generate the docker environment
or perform a manual installation.

Generate Docker testing environment

In this case, the docker environment can be generated by the following four
commands:

~$ git clone https://github.com/mistupv/secer.git
~$ cd secer
~$ docker build -t secer .
~$ docker run --name secer_container -it secer bash

After running the docker image in the container, a new shell environment
is entered, where the secer command (explained in the following sections) can
be used from any directory.

Manual installation

To manually install SecEr, all CutEr external dependencies need to be also ful-
filled (https://github.com/cuter-testing/cuter). Additionally, the repos-
itory must be compiled with the ––recursive option. The source code of the
SecEr tool, together with a set of benchmarks and examples to start using
the tool can be found and downloaded from the mistupv github repository by
following these commands:

~$ git clone --recursive https://github.com/mistupv/secer.git
~$ cd secer
~$ make
~$ export PATH=$PATH:/path/to/secer/

First Steps

In this section, we describe SecEr and how to use it to automatically compare
two program versions or obtain test cases from a source code. First, we show
an example of a configuration file describing the different parts it contains.
SecEr provides an API that internally implements different configuration modes,
leaving to the user the definition of comparison functions. Then, we illustrate
how SecEr is called from the command line, and finally we show some use cases
that illustrate how SecEr is used.

Configuration file for POI testing

To explain the SecEr configuration process easier, we use a particular example of
two programs versions that solve the happy numbers problem (Figure 10.9). A
happy number can be defined as a number which will yield 1 when it is replaced
by the sum of the square of its digits repeatedly. If this process results in an
endless cycle of numbers containing 4, then the number is called an unhappy
number. For instance, number 10 would be a happy number (10→ 12 + 02 = 1)
while number 11 would be an unhappy number (11 → 12 + 12 = 2 → 22 = 4).

https://github.com/cuter-testing/cuter

220 Chapter 10. Developed Tools and User Guides

1 -module(happy1).
2 -export[main/2].
3
4 -spec main(pos_integer(),pos_integer()) ->
5 [pos_integer()].
6 main(N, M) ->
7 happy_list(N, M, []).
8
9 happy_list(_, N, L) when length(L) =:= N ->

10 lists:reverse(L);
11 happy_list(X, N, L) ->
12 Happy = is_happy(X),
13 if Happy ->
14 happy_list(X + 1, N, [X|L]);
15 true ->
16 happy_list(X + 1, N, L)
17 end.
18
19 is_happy(1) -> true;
20 is_happy(4) -> false;
21 is_happy(N) when N > 0 ->
22 N_As_Digits =
23 [Y - 48 ||
24 Y <- integer_to_list(N)],
25 is_happy(
26 lists:foldl(
27 fun(X, Sum) ->
28 (X * X) + Sum
29 end,
30 0,
31 N_As_Digits));
32 is_happy(_) -> false.

(a) happy1.erl

1 -module(happy2).
2 -export[main/2].
3
4 is_happy(X, XS) ->
5 if
6 X == 1 -> true;
7 X < 1 -> false;
8 true ->
9 case member(X, XS) of

10 true -> false;
11 false ->
12 is_happy(sum(map(fun(Z) -> Z*Z end,
13 [Y - 48
14 || Y <- integer_to_list(X)])),
15 [X|XS])
16 end
17 end.
18
19 happy(X, Top, XS) ->
20 if
21 length(XS) == Top -> sort(XS);
22 true ->
23 case is_happy(X,[]) of
24 true -> happy(X + 1, Top, [X|XS]);
25 false -> happy(X + 1,Top, XS)
26 end
27 end.
28
29 -spec main(pos_integer(),pos_integer()) ->
30 [pos_integer()].
31 main(N, M) ->
32 happy(N, M, []).

(b) happy2.erl

Figure 10.9: Two different versions of a program to compute
happy numbers in Erlang

Both program versions solve the problem to find the next M happy numbers
starting from a particular positive integer N .

SecEr permits to use configuration files that can be reused in different invo-
cations. A configuration file is an Erlang program formed by a set of functions
that can be invoked from the SecEr command. For instance, the configuration
module test_happy of Figure 10.10 allows the use of functions relResult/0,
relIsHappy/0, funs/0, and config/0 when calling SecEr from the command
line. In this figure, we can see that POIs can be specified in two differ-
ent ways: (i) with a tuple with the format {‘FileName’, Line, Expression4,
Occurrence} as shown in Figure 10.10 line 6, and (ii) with a tuple {‘FileName’,
{InitialLine, InitialColumn}, {FinalLine, FinalColumn}}5 representing the
initial and final line and column in the corresponding program file. This nota-
tion is shown in line 8.

To ease the definition of comparison functions in the configuration file, Se-
cEr provides an API (module secer_api) that implements different utilities

4Expressions with an specific name, e.g. variables, are denoted by a tuple
{var,‘VarName’}. Note that expressions denoted by reserved Erlang words (case, if...)
must be specified in single quotation marks.

5POIs of this type are internally translated to POIs of the first type.

10.3. SecEr 221

1 -module(test_happy).
2 -export([relResult/0,relIsHappy/0,
3 funs/0,config/0,]).
4
5 poiResult1() ->
6 {‘happy1.erl’,7,call,1}.
7 poiResult2() ->
8 {‘happy2.erl’,{32,2},{32,16}}.
9

10 poiIsHappy1() ->
11 {‘happy1.erl’,12,call,1}.
12 poiIsHappy2() ->
13 {‘happy2.erl’,23,call,1}.
14
15 relResult() ->
16 [{poiResult1(),poiResult2()}].
17
18 relIsHappy() ->
19 [{poiIsHappy1(),poiIsHappy2()}].

20 funs() ->
21 "[main/2]".
22
23 config() ->
24 secer_api:nuai_tr_config(mytecf(),myubrm()).
25
26 mytecf() ->
27 fun(T1E,T2E) ->
28 if (vef()(T1E)) == vef()(T2E)) -> true;
29 (secer_api:get_ca(T1E) ==
30 secer_api:get_ca(T2E)) ->
31 diff_value_same_args;
32 true -> diff_value_diff_args
33 end.
34
35 myubrm() ->
36 [{diff_value_same_args,[val,ca]},
37 {diff_value_diff_args,[val,ca]}].
38
39 vef() -> secer_api:vef_value_only().

Figure 10.10: Configuration file to test happy modules

like the comparison modes described in Section 8.2.1. For instance, in Fig-
ure 10.10, line 24 defines a configuration for tracing function calls by using
function secer_api:nuai_tr_config/2, which represents the configuration 1c
shown in Section 8.2.1. This configuration requires a comparison function and
a customised report for each defined error type. In this case it uses mytecf/0
to compare trace elements, which uses the value of the arguments at the call
(lines 29 and 30) to classify errors. Finally, the error message is customised by
myubrm/0, which indicates the part of the additional information to be shown
when a particular error (the ones defined in mytecf/0 function) is detected. In
myubrm/0 code in Figure 10.10, val stands for the POI value and ca for the
arguments of the function calls selected as POI.

Calling SecEr

In this section we describe how, given two versions of the same program, SecEr
can be used to check behavioural changes in the code. First, we show how
to call SecEr from the command line, then, we show how the tool is run with
the configuration described in Figure 10.10 to analyse the differences of both
implementations of the happy numbers programs given in Figure 10.9. Finally,
we show how SecEr can be also used to obtain a set of test cases given just one
version of a program.

First of all, we need to show the SecEr command and the arguments it
requires. The structure of the command is shown in Figure 10.11.

$ secer -pois "PAIRS_OF_POIS"
[-suite "POI"]
[-funs "INPUT_FUNS"]
-to TIMEOUT

[-config "CONFIG_FUN"]

Figure 10.11: SecEr command format

222 Chapter 10. Developed Tools and User Guides

SecEr receives four arguments, but those arguments in brackets are optional.

• -pois "PAIRS_OF_POIS". This argument contains a list with the pairs
of POIs that must be compared during the execution. It must be a string
("") and can contain the explicit reference to the file, line and occurrence
of each POI, or a call to a function containing this information in the
configuration file, but must be always expressed by means of Erlang code.

• -suite "POI". This argument contains a POI defined over a particular
program version. The idea of this flag is to store in a separate file all
the test cases generated for every input function when trying to evalu-
ate the POI. These test cases are stored in the suite folder inside SecEr
main directory, where the user can extract all the input calls generated to
maximise the branch coverage of the given Erlang program.

• -funs "INPUT_FUNS". This argument contains a list of functions in the
form function_name/arity. Like the previous argument, it must be a
string containing the corresponding Erlang code and can also be a call to
a function to the configuration file. If no list of functions is given, SecEr
selects the set of exported functions in the module as input functions.

• -to TIMEOUT. This argument is an integer that represents the amount
of time (in seconds) that SecEr can use to generate test cases for each
function given in the -fun argument.

• -config "CONFIG_FUN". This argument contains the configuration se-
lected to run SecEr. This configuration defines how POIs are compared
according to their computed values, to the value of some part of the ad-
ditional information, or to any kind of customised criteria defined by the
user. An example of this configuration is the config function defined in
Figure 10.10. If no argument is provided, SecEr considers only the equal-
ity between the values computed for both POI traces as described in the
comparison approach 1 of Section 8.4.2. As the two first arguments, this
argument must contain a string with Erlang code.

By default, the traces of the POIs are compared using the standard equality
and in the order they appear during the program execution, as it is defined by
the first comparison function in Section 8.4.2. Alternatively, we can customise
our comparison by isolating the traces of different POIs. This customisation
is specially useful to test multiple unrelated POIs in a single run. Among the
functions provided in the secer_api module, we provide different configuration
modes like, for instance, the mode that compares the traces independently
(secer_api:cf_independent) as it is described in comparison approaches 2
and 3 in Section 8.4.2. The difference between both comparison modes is shown
in Example 10.3.

Example 10.3. Consider two POIs, POI1 and POI2 in the original code, and
their counterparts POI ′1 and POI ′2 in the new code. If an execution executes
the POIs in the following order:

10.3. SecEr 223

Original code: POI1 = 42 ... POI1 = 43 ... POI1 = 50 ... POI2 = 0
New code: POI ′1 = 42 ... POI ′1 = 43 ... POI ′2 = 0 ... POI ′1 = 50

If we use the cf_independent configuration option, SecEr would record the
traces

Trace POI1 = [42,43,50] Trace POI ′1 = [42,43,50]
Trace POI2 = [0] Trace POI ′2 = [0]

and will report that there are no discrepancies between the POIs. In contrast,
if no configuration is specified, SecEr will consider the execution order of the
POIs, and will alert that this order has changed.

Note that, in the implementation, the limit used to stop generating test
cases is a timeout, while the formalization of the technique uses a number
to specify the amount of test cases that must be generated (see variable top
in Section 8.3.4). This is not a limitation, but a design decision to increase
the usability of the tool. The user cannot know a priory how much time it
could take to generate an arbitrary number of test cases. Hence, to make the
tool predictable and give the user control over the computation time, we use
a timeout. Thus, SecEr generates as many test cases as the specified timeout
permits.

Finally, SecEr can also be used to generate and store a suite of tests given a
program an a set of POIs. If we want to run the command to only generate a
test suite, we need to provide a list of POIs (LIST_OF_POIS) contained in double
quotes, a list of initial functions (INPUT_FUNCTIONS), and a timeout (TIMEOUT).
An example of SecEr invocation with two POIs is the following:

$ secer -suite "test_happy:poiResult1()" -funs "test_happy:funs()"
-to 10

SecEr report

When SecEr is called from the command line to compare two program versions,
a report is always generated at the end of its execution. There are two possibil-
ities: both versions of the code present the same behaviour for all the generated
test cases, or n test cases failed during the comparison phase of the execution of
both versions. Depending on the scenario the message SecEr provides is com-
pletely different. When comparison phase goes smoothly, a simple notification
message is given to the user, providing the number of executed test cases and
the positive result obtained.

$ secer -pois "test_happy:relResult()" -funs "test_happy:funs()"
-to 10 -config "test_happy:config()"

Figure 10.12: SecEr command to compare the happy number
programs of Figure 10.9

224 Chapter 10. Developed Tools and User Guides

Example 10.4. Consider the comparison of both implementations of the happy
numbers problem given in Figure 10.9. Then consider the SecEr command in
Figure 10.12 which makes use of the configuration file defined in Figure 10.10.
When we run this command, SecEr returns the result in Figure 10.13.

$ secer -pois "test_happy:relResult()" -funs "test_happy:funs()"
-to 10 -config "test_happy:config()"

Function: main/2

Generated test cases: 1142
Both versions of the program generate the expected result for the
defined POIs

Figure 10.13: Result of calling SecEr with the configuration
file defined in Figure 10.10

The message shows that, with the provided comparison configuration, the val-
ues of each pair of POIs have been the same for 1142 different test cases. These
1142 test cases have been generated by SecEr for the input function main/2 se-
lected in the test_happy configuration file during the 10 seconds’ timeout given
in the -to argument.

On the other hand, when any test case fails SecEr provides a report with
more information in order to ease the location of the error source. This report
can be augmented if any unexpected behaviour report message (function myubrm
previously seen in some configuration files) is provided by the user for the kind
of error given.

Example 10.5. In order to see the output of the tool when the behaviours
of the two compared programs differ, we have introduced an error inside the
is_happy/2 function of happy2 module in Figure 10.9b. The error is introduced
by replacing the whole line 7:

X < 1 -> false; ⇒ X < 10 -> false;

With this change, the behaviour of both programs differs. When the user
reruns SecEr using the new program, it reports the error message shown in
Figure 10.14.

This message contains much more information than the previous report. In
this case, it contains the number of generated test cases but also the amount of
them that generate different execution values for the given POIs. These mis-
matching test cases are classified by the kind of error they generated (in this case
all the errors were of the type: different_value_same_args) and an example
of the test case that generated this kind of error is given as extra information
(call to input function main(5,8) in the example). Then the given report is
further augmented with the computed trace and any extra information extracted
to the additional information by the configuration given to this particular type
of error. In the example, since both POIs were method calls, the report shows

10.3. SecEr 225

$ secer -pois "test_happy:relResult()" -funs "test_happy:funs()"
-to 10 -config "test_happy:config()"

Function: main/2

Generated test cases: 1143
Mismatching test cases: 45 (3.93%)

Error Types:
+ different_value_same_args => 45 Errors

Example call: main(5,8)

------ Detected Error ------
Call: main(5,8)
Error Type: different_value_same_args
- - - - - - - - - - - - - -
POI: {‘happy1.erl’,7,call,1}

Trace:
[[7,10,13,19,23,28,31,32]]

Call POI Info:
Callee: happy_list
Args: [5,8,[]]

POI: {‘happy2.erl’,32,call,1}
Trace:

[[10,13,19,23,28,31,32,44]]
Call POI Info:

Callee: happy
Args: [5,8,[]]

Figure 10.14: Example of SecEr error message when an unex-
pected behaviour is found

the trace values and the callee and the list of arguments of the call, which may
be handy to detect the source of the error.

10.3.2 Use cases
In this section, we show how POI testing can be used to find the location
of a difference introduced during the software development phase. For this
purpose, we apply POI testing iteratively. First of all, we select the POIs
we want to compare, and we move the POI across the program in different
executions to exclude possible error causes. We repeat this process until we
find the instruction that generates the unexpected behaviour.

Calling traces

This use case illustrates how the call tracing is used to find out the source of
a discrepancy. In particular, we compare two versions of an Erlang program
that aligns columns of a string with multiple lines. The code of both versions
is shown in Figure 10.15. There is only one difference between both code ver-
sions. While align_columns_ok.erl version code is implemented with line 31
of Figure 10.15, align_columns.erl version replace that line of code with line

226 Chapter 10. Developed Tools and User Guides

32. Both program versions are part of the benchmarks used in EDD (Erlang
Declarative Debugger) [26].

1 -module (align_columns_ok). / -module (align_columns).
2 -export([align_left/0, align_right/0, align_center/0]).
3
4 align_left()-> align_columns(left).
5 align_right()-> align_columns(right).
6 align_center()-> align_columns(centre).
7 align_columns(Alignment) ->
8 Lines =
9 ["Givenatext$file$of$many$lines$where$fields$within$a$line$",

10 "are$delineated$byasingle$’dollar’$character,$write$a$program",
11 "that$aligns$each$column$of$fields"],
12 Words = [string:tokens(Line, "$") || Line <- Lines],
13 Words_length = lists:foldl(fun max_length/2, [], Words),
14 [prepare_line(Words_line, Words_length, Alignment)
15 || Words_line <- Words].
16
17 max_length(Words_of_a_line, Acc_maxlength) ->
18 Line_lengths = [length(W) || W <- Words_of_a_line],
19 Max_nb_of_length = lists:max([length(Acc_maxlength), length(Line_lengths)]),
20 Line_lengths_prepared = adjust_list(Line_lengths, Max_nb_of_length, 0),
21 Acc_maxlength_prepared = adjust_list(Acc_maxlength, Max_nb_of_length, 0),
22 Two_lengths =lists:zip(Line_lengths_prepared, Acc_maxlength_prepared),
23 [lists:max([A, B]) || {A, B} <- Two_lengths].
24
25 adjust_list(L, Desired_length, Elem) ->
26 L++lists:duplicate(Desired_length - length(L), Elem).
27
28 prepare_line(Words_line, Words_length, Alignment) ->
29 All_words = adjust_list(Words_line, length(Words_length), ""),
30 Zipped = lists:zip(All_words, Words_length),
31 [apply(string, Alignment, [Word, Length + 1, $\s]) %align_columns_ok
32 [apply(string, Alignment, [Word, Length - 1, $\s]) %align_columns
33 || {Word, Length} <- Zipped].

Figure 10.15: Align columns program versions

They can be found at: https://github.com/tamarit/edd/tree/master/
examples/align_columns. These programs only export three functions with
zero parameters. Thus, they can be considered unit cases. We could use any
or all of these functions as starting point for the behaviour comparison process,
but, for simplicity, we will focus on just one of these three functions. The
SecEr’s configuration file (Figure 10.16), defines that the function selected as
input function is align_left/0 (Figure 10.16, line 10).

In order to test the behaviour preservation between both versions with Se-
cEr, it is a common practice to start by selecting as POI the last expression
of each input function. Therefore, we select the POIs defined in line 3, which
are paired by the relation defined in function rel1() in line 7 of Figure 10.16.
The execution of SecEr shown in Figure 10.17 reveals an unexpected behaviour
found in the execution of align_left/0.The current POI is a static call, for
this reason we do not define any specific configuration for this run, we only
compare the result of both method calls. In this case, the misbehaviour given
can only be generated by the implementation of the function called. Then, we
should look for the error source inside the function align_columns/1 (line 7,
Figure 10.15).

Therefore, in order to find the error source, we move the POI to the last ex-
pression of function align_columns/1, concretely to the call to prepare_line/3

https://github.com/tamarit/edd/tree/master/examples/align_columns
https://github.com/tamarit/edd/tree/master/examples/align_columns

10.3. SecEr 227

1 -module (test_align).
2 -compile(export_all).
3 poi1Old() -> {‘align_columns_ok.erl’, 4, call}. poi1New() -> {‘align_columns.erl’, 4, call}.
4 poi2Old() -> {‘align_columns_ok.erl’, 14, call}. poi2New() -> {‘align_columns.erl’, 14, call}.
5 poi3Old() -> {‘align_columns_ok.erl’, 31, call}. poi3New() -> {‘align_columns.erl’, 32, call}.
6
7 rel1() -> [{poi1Old(),poi1New()}].
8 rel2() -> [{poi2Old(),poi2New()}].
9 rel3() -> [{poi3Old(),poi3New()}].

10 funs() -> "[align_left/0]".
11
12 config() -> secer_api:nuai_tr_config(mytecf(),ubrm()).
13 mytecf() ->
14 fun(TO,TN) -> VEF = secer_api:vef_value_only(),
15 case VEF(TO) == VEF(TN) of
16 true -> true;
17 false ->
18 case secer_api:get_te_args(TO) == secer_api:get_te_args(TN) of
19 true -> different_value_same_args;
20 false -> different_value_different_args
21 end
22 end
23 end.
24 ubrm() -> [{different_value_same_args,[val,ca]},{different_value_different_args,[val,ca]}].

Figure 10.16: Align columns configuration file

inside the list comprehension. Now, since this call is not static, we take profit of
the additional information provided by using the configuration defined by func-
tion config/0 (line 12 of Figure 10.16). This function uses the enhanced call
information to classify and report new types of errors. Another unexpected be-
haviour is reported by SecEr for this pair of POIs. However, as we can observe
in Figure 10.18, this result has been extended with specific call information.
The reported error is different_value_same_args. Thus, it indicates that
both versions performed exactly the same call. Therefore, according to this
report, the error source must be inside the function prepare_line/3 (line 28,
Figure 10.15).

Then, we define a new POI inside the prepare_line code. Instead of se-
lecting as POI its last expression, i.e. the list comprehension, which we already
know that behaves different, we select the expression inside this list compre-
hension, i.e., the call to function apply/3 (line 31/32, Figure 10.15). Being this
expression a function call, we can reuse the previous configuration. Figure 10.19
shows the report provided by SecEr with this configuration. Note that the re-
ported misbehaviour is different_value_different_args now. This means
that there is a discrepancy in one of the arguments between the versions. Fi-
nally, we can easily find out what argument is the error source by looking at
the reported example provided by SecEr.

Stack traces

This use case demonstrates how the stack trace can help us when looking for an
unexpected behaviour source. Suppose that we are comparing the behaviour of
two different versions of an Erlang program that implement the mergesort algo-
rithm. The code of both versions is shown in Figure 10.20, where there is just
one difference between both code versions. While merge_ok.erl version code is
implemented with line 23 of Figure 10.20, merge.erl version replaces this line

228 Chapter 10. Developed Tools and User Guides

$ secer -pois "test_align:rel1()" -funs "test_align:funs()" -to 5

Function: align_left/0

Generated test cases: 1
Mismatching test cases: 1 (100.0%)

Error Types:
+ different_value => 1 Errors

Example call: align_left()

------ Detected Error ------
Call: align_left()
Error Type: different_value
- - - - - - - - - - - - - -
POI: {’align_columns_ok.erl’,4,call,1}

Trace:
[[["Given ","a ","text ","file ","of ","many ",

"lines ","where ","fields ","within ","a ","line "],
["are ","delineated ","by ","a ","single ","’dollar’ ",
"character, ","write ","a ","program "," "," "],

["that ","aligns ","each ","column ","of ","fields ",
" "," "," "," "," "," "]]]

POI: {’align_columns.erl’,4,call,1}
Trace:

[[["Give","a ","tex","file ","of ","many ","lines ","wher",
"field","within",[],"lin"],

["are ","delineate","by ","a ","singl","’dollar","character","writ",
"a ","progra",[]," "],

["that","aligns ","eac","colum","of ","fields "," "," ",
" "," ",[]," "]]]

Figure 10.17: SecEr report for the function call in line 14 as
POI

of code with line 24. Both program versions are part of the benchmarks used
in EDD (Erlang Declarative Debugger) [26]. They can be found at: https:
//github.com/tamarit/edd/tree/master/examples/mergesort. Both pro-
grams export the function mergesortcomp/1, which has only one parameter,
i.e., a list of integers. Therefore, this function is defined as input function in
the configuration file (line 7 of Figure 10.21).

In this case, we are not defining a custom TECF as we did in the previous
use case. Instead, we are just adding stack trace information to the final report
of the detected errors. For this purpose, we take profit of the defined func-
tion secer_api:nuai_r_config/1 (line 9, Figure 10.21), which represents the
scenario 1b in Section 8.2.1, including information about the stack trace when
reporting the error.

The difference between these two versions is one of the recursive clauses of
function merge/3. Therefore, it makes sense to select as POI the call to this
function in line 17 of the Figure 10.20. Figure 10.22 shows the report given by
running SecEr with this configuration. This report indicates that there is an
unexpected behaviour. Using the report, we can notice that the forth evaluation

https://github.com/tamarit/edd/tree/master/examples/mergesort
https://github.com/tamarit/edd/tree/master/examples/mergesort

10.3. SecEr 229

$ secer -pois "test_align:rel2()" -funs "test_align:funs()"
-to 5 -config "test_align:config()"

Function: align_left/0

Generated test cases: 1
Mismatching test cases: 1 (100.0%)

Error Types:
+ different_value_same_args => 1 Errors

Example call: align_left()
------ Detected Error ------
Call: align_left()
Error Type: different_value_same_args
- - - - - - - - - - - - - -
POI: {‘align_columns_ok.erl’,14,call,1}

Trace:
[["Given ","a ","text ","file ","of ","many ",

"lines ","where ","fields ","within ","a ","line "]]
Call POI Info:

Callee: prepare_line
Args: [["Given","a","text","file","of","many","lines",

"where","fields","within","a","line"],
[5,10,4,6,6,8,10,5,6,7,1,4],left]

POI: {‘align_columns.erl’,14,call,1}
Trace:

[["Give","a ","tex","file ","of ","many ","lines ","wher",
"field","within",[],"lin"]]

Call POI Info:
Callee: prepare_line
Args: [["Given","a","text","file","of","many","lines",

"where","fields","within","a","line"],
[5,10,4,6,6,8,10,5,6,7,1,4],left]

Figure 10.18: SecEr reports UB from call to prepare_line in
line 14 as POI

of the POI differs between both versions, while their stack is the same.
Therefore, in order to know whether the error is in the arguments of the

call or in the called function, we run SecEr with a configuration such as the
one used in the previous use case. For clarity, we omit the details of this step
here. The unexpected behaviour report indicates that the problem is inside the
called function.

Then, the next step is to place a POI inside the function merge/3 (line 18,
Figure 10.20). We choose the clause that contains the recursive calls (line 21,
Figure 10.20) because it is the most visited clause during the evaluation. In
particular, we place the POI in the case expression in line 22 of Figure 10.20.
When we rerun SecEr, we obtain the report shown in Figure 10.23. This re-
port provides some interesting information about both POIs. The behaviour
discrepancy has been detected in the values computed in the fifth evaluation
of the POI. Additionally, both stack traces differ. In the stack trace produced
by the old version there are two stacked calls to function merge/2 while in the
stack trace of the new one there is only one. This means that the old version
is performing an extra recursive call before reaching the base case. Then, the

230 Chapter 10. Developed Tools and User Guides

$ secer -pois "test_align:rel2()" -funs "test_align:funs()"
-to 5 -config "test_align:config2()"

Function: align_left/0

Generated test cases: 1
Mismatching test cases: 1 (100.0%)

Error Types:
+ different_value_different_args => 1 Errors

Example call: align_left()

------ Detected Error ------
Call: align_left()
Error Type: different_value_different_args
- - - - - - - - - - - - - -
POI: {‘align_columns_ok.erl’,31,call,1}

Trace:
["Given "]

Call POI Info:
Callee: apply
Args: [string,left,["Given",11,32]]

POI: {‘align_columns.erl’,32,call,1}
Trace:

["Given "]
Call POI Info:

Callee: apply
Args: [string,left,["Given",9,32]]

Figure 10.19: SecEr reports UB from call to apply in lines
31/32 as POI

1 -module (merge_ok)./-module (merge).
2 -export([mergesortcomp/1]).
3
4 -spec mergesortcomp([integer()]) ->
5 any().
6 mergesortcomp(List) ->
7 mergesort(List, fun comp/2).
8
9 mergesort([], _Comp) -> [];

10 mergesort([X], _Comp) -> [X];
11 mergesort(L, Comp) ->
12 Half = length(L) div 2,
13 L1 = take(Half, L),
14 L2 = last(length(L) - Half, L),
15 LOrd1 = mergesort(L1, Comp),
16 LOrd2 = mergesort(L2, Comp),
17 merge(LOrd1, LOrd2, Comp).

18 merge([], [], _Comp) -> [];
19 merge([], S2, _Comp) -> S2;
20 merge(S1, [], _Comp) -> S1;
21 merge([H1 | T1], [H2 | T2], Comp) ->
22 case Comp(H1,H2) of
23 false -> [H2 | merge([H1 | T1], T2, Comp)]; % merge_ok
24 false -> [H2 | merge(T1 ++ [H1], T2, Comp)]; % merge
25 true -> [H1 | merge(T1, [H2 | T2], Comp)]
26 end.
27
28 comp(X,Y) -> X < Y.
29
30 take(0,_) -> [];
31 take(1,[H|_])-> [H];
32 take(_,[])-> [];
33 take(N,[H|T])-> [H | take(N-1, T)].
34
35 last(N, List) ->
36 lists:reverse(take(N, lists:reverse(List))).

Figure 10.20: Mergesort program versions

final step is to place a POI in each recursive call observing the values of their
arguments as in the previous case. With the report provided by SecEr when
using this configuration, users can easily spot the error source.

10.3. SecEr 231

1 -module (test_mergesort).
2 poi1Old() -> {‘merge_ok.erl’, 17, call, 1}. poi1New() -> {‘merge.erl’,17, call, 1}.
3 poi2Old() -> {‘merge_ok.erl’, 22, ‘case’, 1}. poi2New() -> {‘merge.erl’, 22, ‘case’, 1}.
4
5 rel1() -> [{poi1Old(),poi1New()}].
6 rel2() -> [{poi2Old(),poi2New()}].
7 funs() -> "[mergesortcomp/1]".
8
9 config() -> secer_api:nuai_r_config([{different_value,[val,st]}]).

Figure 10.21: Mergesort configuration file

$ secer -pois "test_mergesort:rel1()" -funs "test_mergesort:funs()"
-to 5 -config "test_mergesort:config()"

Function: mergesortcomp/1

Generated test cases: 5692
Mismatching test cases: 3369 (59.18%)

Error Types:
+ different_value => 3369 Errors

Example call: mergesortcomp([0,-1,1,2,-3])

------ Detected Error ------
Call: mergesortcomp([0,-1,1,2,-3])
Error Type: different_value
- - - - - - - - - - - - - -
POI: {‘merge_ok.erl’,17,call,1}

Trace:
[[-1,0],[-3,2],[-3,1,2],[-3,-1,0,1,2]]

Stack
{merge_ok,mergesort,2,{line,17}}

POI: {‘merge.erl’,17,call,1}
Trace:

[[-1,0],[-3,2],[-3,1,2],[-3,0,-1,1,2]]
Stack

{merge,mergesort,2,{line,17}}

Figure 10.22: SecEr reports UB from call to merge in line 17
of Figure 10.20 as POI

Concurrent Environments

In this use case, we see how SecEr proves to be useful also in concurrent pro-
grams. Consider the code in Figure 10.24, which shows a fragment of the
gen_server defined in:

https://github.com/hcvst/erlang-otp-tutorial#otp-gen_server

The server’s state is simply a counter that tracks the number of requests served
so far. The server defines three types of requests through the functions handle_call
and handle_cast:

1. The synchronous request (i.e., a request where the client waits for a reply)
get_count, which returns the current server’s state.

https://github.com/hcvst/erlang-otp-tutorial#otp-gen_server

232 Chapter 10. Developed Tools and User Guides

$ secer -pois "test_mergesort:rel2()" -funs "test_mergesort:funs()"
-to 5 -config "test_mergesort:config()"

Function: mergesortcomp/1

Generated test cases: 4878
Mismatching test cases: 2885 (59.14%)

Error Types:
+ different_value => 2885 Errors

Example call: mergesortcomp([5,-6,-6,2,3])

------ Detected Error ------
Call: mergesortcomp([5,-6,-6,2,3])
Error Type: different_value
- - - - - - - - - - - - - -
POI: {‘merge_ok.erl’,22,‘case’,1}

Trace:
[[-6,5],[2,3],[-6,2,3],[3,5],[2,3,5]]

Stack
{merge_ok,merge,3,{line,25}}
{merge_ok,merge,3,{line,23}}

POI: {‘merge.erl’,22,‘case’,1}
Trace:

[[-6,5],[2,3],[-6,2,3],[3,5],[-6,3,5]]
Stack

{merge,merge,3,{line,24}}

Figure 10.23: SecEr report when using case expression in line
22 of Figure 10.20 as POI

2. The asynchronous request (i.e., a request where the client does not wait
for a reply) stop, which stops the server.

3. The asynchronous request say_hello, which makes the server print hello
in the standard output.

The first and the third requests modify the server’s state by adding one to
the total number of requests served so far. The second one does not modify
the state but rather it returns a special term that makes the gen_server stop
itself.

To illustrate how SecEr can detect an unexpected behaviour change between
two versions of the code, consider that the current (buggy) version is the one
depicted in Figure 10.24, while the (correct) original version of the code contains
line 34 instead of line 35.

Then, we can define a configuration file like the one in Figure 10.25 and run
SecEr to see whether the behaviour is preserved or not. This configuration file
uses two input functions (handle_call and handle_cast), and a POI relation
that defines three POIs, one for each request output. If we run SecEr using this
configuration we obtain the output showed at Figure 10.26. In the output we
can see that no errors are reported for function handle_call, which means that
the request get_count is served in the same way in both versions. In contrast,

10.4. EDBC 233

1 -module(hello_server).
2 -behavior(gen_server).
3 -record(state, {count}).
4
5 -export([
6 init/1,
7 terminate/2,
8 handle_call/3,
9 handle_cast/2]).

10
11 init([]) ->
12 {ok, #state{count=0}}.
13
14 terminate(_Reason, _State) ->
15 error_logger:
16 info_msg("terminating~n"),
17 ok.

18 -spec handle_call(get_count, any(), {state,integer()}) ->
19 {reply, integer(), {state, integer()}}.
20
21 handle_call(get_count, _From, #state{count=Count}) ->
22 {reply, Count, #state{count=Count+1} }.
23
24 -spec handle_cast(stop | say_hello, {state,integer()}) ->
25 {stop, any(), {state, integer()}}
26 | {noreply, {state, integer()}}.
27
28 handle_cast(stop, State) ->
29 {stop, normal, State};
30
31 handle_cast(say_hello, State) ->
32 io:format("Hello~n"),
33 {noreply,
34 % #state{count = State#state.count+1} % RIGHT
35 #state{count = State#state.count-1} % WRONG
36 }.

Figure 10.24: hello_server.erl

1 -module(test_hello_server).
2 -export([rel/0, funs/0]).
3 poi1Old() -> {‘hello_server.erl’, 22, tuple, 1}.
4 poi2Old() -> {‘hello_server.erl’, 29, tuple, 1}.
5 poi3Old() -> {‘hello_server.erl’, 33, tuple, 1}.
6 poi1New() -> {‘hello_server_wrong.erl’, 22, tuple, 1}.
7 poi2New() -> {‘hello_server_wrong.erl’, 29, tuple, 1}.
8 poi3New() -> {‘hello_server_wrong.erl’, 33, tuple, 1}.
9

10 funs() ->
11 "[handle_call/3, handle_cast/2]".
12
13 rel() ->
14 [{poi1Old(),poi1New()},{poi2Old(),poi2New()},{poi3Old(),poi3New()}].

Figure 10.25: Configuration file of hello_server programs

an error is reported in function handle_cast, pointing to the POI defined in
line 5 of Figure 10.25. This means that for the request say_hello the behaviour
has not been preserved, while for the request stop it has been preserved. In
particular, the error found reveals that there is a discrepancy between the new
server’s state returned by each version of the program.

This simple example shown how SecEr can be used to check behaviour
preservation even in concurrent context. The key is that there is no need to run
an execution with real concurrency, instead we can study directly the relevant
functions that are used during the concurrent execution, like handle_call or
handle_cast in the example.

10.4 EDBC
Erlang design-by-contract (EDBC) is a library composed by a set of Erlang
modules that allow users to include in their programs verification contracts like
preconditions or postconditions to detect runtime incoherences. Compiling and

234 Chapter 10. Developed Tools and User Guides

$ secer -pois "test_hello_server:rel()" -funs "test_hello_server:funs()"
-to 15

Function: handle_call/3

Generated test cases: 19083
Both versions of the program generate the expected result for the defined
POIs

Function: handle_cast/2

Generated test cases: 42
Mismatching test cases: 21 (50.0%)

Error Types:
+ different_value => 21 Errors

Example call: handle_cast(say_hello,{state,4})

------ Detected Error ------
Call: handle_cast(say_hello,{state,4})
Error Type: different_value
- - - - - - - - - - - - - -
Error Type: Unexpected trace value
POI: ({‘hello_server.erl’,33,tuple,1})

Trace:
[{noreply,{state,5}}]

POI: ({‘hello_server_wrong.erl’,33,tuple,1})
Trace:

[{noreply,{state,3}}]

Figure 10.26: SecEr reports discrepancies in the functions
implementing the requests

executing the code using EDBC results in a code transformation that explicitly
include in the code the set of conditions defined by the included contracts.
During runtime all the contracts are evaluated for each contracted function call,
providing a normal execution without notification or raising an error message in
case a particular call violates any of the contracts. EDBC also include two new
Erlang behaviours that enhance the gen_server Erlang behaviour functionality.
These behaviours gives the user the capacity of automatically delaying those
incoming requests that are incompatible with the server’s state instead of just
ignoring them.

https://github.com/serperu/edbc

10.4.1 Installation and first steps
To build and use EDBC in your computer, it is necessary to download the
EDBC project from git.

https://github.com/serperu/edbc

10.4. EDBC 235

Generate Docker testing environment

Once the git project has been downloaded, a docker container can be built by
running the following commands from the edbc folder:

~$ docker build -t edbc .
~$ docker run --name edbc_container -it edbc bash

After running the second command, a new shell environment will be entered,
and we can start using the tool by following the command guide explained in
the following subsections.

Manual installation

When manually installing the tool, it is important to consider that all the
Erlang/OTP dependences are already included in the modules of EDBC. For
this reason, one of the requirements to correctly run EDBC is to have an Erlang
distribution installed in your computer. Finally, a makefile is used to build the
project, thus you need to have Make also installed in your computer.

~$ git clone https://github.com/serperu/edbc.git
~$ cd edbc
~$ make

First steps

The release version of EDBC contains a set of folders with Erlang files with
their associated binary folders (ebin). It is important to keep these resources in
the directory they have been generated, because the scripts follow this structure
when charging Erlang modules. EDBC does not provide a GUI, it operates with
a set of scripts launched from the terminal. EDBC is formed by four different
scripts with their associated arguments, located in the scripts folder:

~$ edbc_erlc FILE [OUTPUT_DIR]
~$ edbc_erlcp FILE [OUTPUT_DIR]
~$ edbc_erl EBIN_DIR [CALL]
~$ edbc_edoc FILE EDOC_DIR

• edbc_erlc/edbc_erlcp

– FILE. Represents the Erlang file (which usually includes contracts)
that needs to be compiled with EDBC for the testing of some meth-
ods.

– OUTPUT_DIR. Contains the (optional) output path where the .beam
files generated when compiling the file of the first parameter will be
stored.

• edbc_erl

– EBIN_DIR. Indicates the directory where the .beam files that must
be loaded when launching the Erlang terminal. Most times, this
directory is the output directory of the edbc_erlc command, which
contains the modules to be tested.

236 Chapter 10. Developed Tools and User Guides

– CALL. Contains a particular call to a loaded module that usually tests
the contracted function. This parameter usually contains a function
with a set of calls to contracted functions, which tries to discover
potential inputs that violate any of the imposed contracts. If this
argument is present, when the evaluation of the given call concludes
the Erlang process is stopped. On the other hand, if the argument
is missing, the Erlang process reamains open until it is manually
stopped.

• edbc_edoc

– FILE. Designate the Erlang file with contracted functions which doc-
umentation must be automatically obtained.

– EDOC_DIR. Includes the output path where the documentation files
(a set of .html files) must be saved.

In order to use EDBC to execute a module with defined contracts, we need
to run two of these scripts. First of all, we need to compile the module using
the edbc_erlc script, and then run edbc_erl to initiate an Erlang node that
automatically loads the previously compiled module.

Example 10.6. Consider the Erlang module in Figure 10.27 called simple,
located in the path ./examples/src/simple.erl. Module simple includes a
function f/1 with two contracts, a precondition contract and a postcondition
contract. When we want to run different calls to this contracted function, first
we need to compile it by executing the edbc_erlc script. Then, we can open an
Erlang terminal with the edbc_erl script. The execution of the two mentioned
scripts would be the following:
~$./scripts/edbc_erlc ./examples/src/simple.erl ./examples/ebin
~$./scripts/edbc_erl ./examples/ebin

The result opens an Erlang terminal where the simple module has been
already loaded. Now, all its functions can be freely called from this terminal.
When we call function f, if any contract is violated during f’s execution, it will
show an error message. For instance, the call f(6) violates the postcondition
contract and generates the error shown in Figure 10.28.

The commands used to run Example 10.6 has been coded in the Makefile
of EDBC. This particular example can be run by executing in the terminal the
command: ~$ make run_simple. Many other example cases, which are useful
to understand how EDBC is used, have been also coded inside Makefile. In
the next Section, we also use an example that can be also found there.

10.4.2 Use cases
Consider the Erlang module sel_recv shown in Figure 10.29, which imple-

ments the problem of selective receives explained in Section 9.1.2 of Chapter 9
with the gen_server_cpre behaviour implemented in EDBC. The program in
this file, prints a message every time a request is delayed (line 27). Consider

10.4. EDBC 237

1 -module(simple).
2 -export([f/1]).
3
4 -include_lib("edbc.hrl").
5
6 ?PRE(fun pre_f/0).
7 f(0) -> 10;
8 f(N) ->
9 Prev = f(N-1),

10 Prev - 1.
11 ?POST(fun post_f/0).
12
13 pre_f() ->
14 case ?P(1) >= 0 of
15 true ->
16 true;
17 false ->
18 { false,
19 "The first parameter should be "
20 "greater than or equal to 0."}
21 end.
22
23 post_f() ->
24 io:format("f(~p) = ~p\n", [?P(1), ?R]),
25 ?R >= ?P(1).

Figure 10.27: Module simple with pre- and post-condition
contracts

> simple:f(6).
f(0) = 10
f(1) = 9
f(2) = 8
f(3) = 7
f(4) = 6
f(5) = 5
f(6) = 4
** exception error: "The postcondition does not hold. Last call: simple:f(6). Result: 4"

in function edbc_lib:show_post_report/3 (src/edbc_lib.erl, line 185)
in call from simple:f/1
in call from simple:f1610/1
in call from edbc_lib:post/2 (src/edbc_lib.erl, line 135)
in call from simple:f/1
in call from simple:f1610/1
in call from edbc_lib:post/2 (src/edbc_lib.erl, line 135)
in call from simple:f/1

Figure 10.28: Contract violation returned from call
simple:f(6)

also the module sel_recv_test in Figure 10.30, that implements a simple test
for the server. The test starts the server, calls to the test method of the server,
and then stops it (note that the stop method contains a timer:sleep/1 call
to let the user observe how messages are delayed and served before halting the
Erlang process).

In the sel_recv, the server implements a precondition to serve any syn-
chronous request. This precondition is specified by the cpre function. Method
cpre always returns a tuple of two elements, where the first element indicates

238 Chapter 10. Developed Tools and User Guides

1 -module(sel_recv).
2 -behaviour(gen_server_cpre).
3 -include_lib("edbc.hrl").
4 -export([start_link/0, stop/0]).
5 -export([init/1, handle_call/3, handle_cast/2,
6 handle_info/2, cpre/3, terminate/2,
7 code_change/3]).
8 -export([test/0]).
9

10 start_link() ->
11 gen_server_cpre:start_link({local, ?MODULE},
12 ?MODULE, [], []).
13
14 stop() ->
15 timer:sleep(100),
16 gen_server_cpre:stop(?MODULE).
17
18 test() ->
19 gen_server_cpre:call(?MODULE, test).
20
21 init([]) ->
22 {ok, 0}.
23
24 cpre({result, N}, _, State = [N|R]) ->
25 {true, State};
26 cpre({result, N}, _, State) ->
27 io:format("Message ~p delayed",[N]),
28 {false, State};

29 cpre(test, _, State) ->
30 {true, State}.
31
32 handle_call(test, _From, _State) ->
33 List = [1,2,3,4,5,6,7,8,9],
34 lists:map(
35 fun(N) ->
36 spawn(fun() ->
37 gen_server_cpre:call(?MODULE,
38 {result, N})
39 end)
40 end,
41 lists:reverse(List)),
42 {reply, ok, List};
43 handle_call({result, N}, _From, [N|R]) ->
44 io:format("served: " ++
45 integer_to_list(N) ++ "\n"),
46 {reply, ok, R}.
47
48 handle_cast(_Request, State) ->
49 {noreply, State}.
50
51 handle_info(_Info, State) ->
52 {noreply, State}.
53
54 terminate(_Reason, _State) ->
55 ok.
56
57 code_change(_OldVsn, State, _Extra) ->
58 {ok, State}.

Figure 10.29: Server of the problem of the selective receives
in Section 9.1.2 of Chapter 9

-module(sel_recv_test).
-export([test/0]).

test() ->
sel_recv:start_link(),
sel_recv:test(),
sel_recv:stop(),
ok.

Figure 10.30: Test for the problem presented with the
sel_recv server of Figure 10.29

whether the request can be served or not, and the second one indicates the state
of the server. In this case, according to the pattern matching of the cpre clause
in line 24, the {result,N} request can only be served when N coincides with
the first element of the list that indicates the state of the server ([N|R]). When
this match is not given, the request is returned to the end of the server mailbox
queue, for trying to solve it later.

To test this implementation, we execute these two commands:
~$./scripts/edbc_erlc "examples/sel_recv/gen_server_qcpre/src/*.erl"

examples/sel_recv/ebin
~$./scripts/edbc_erl examples/sel_recv/gen_server_qcpre/ebin

"sel_recv_test:test()"

This particular example can be run using the Makefile in the edbc root folder
by executing the command: ~$ make test_sel_recv_q in the terminal. The

10.4. EDBC 239

use of "*.erl" in the first command compiles all the modules in the specified
folder, and the second one runs the test function of the sel_recv_test module.
The result of this execution is shown in Figure 10.31, where it can be appreciated
that some messages need to be delayed (sometimes several times) before being
processed by a specific server state.

Message 9 delayed
Message 8 delayed
Message 7 delayed
Message 6 delayed
Message 5 delayed
Message 4 delayed
Message 3 delayed
Message 2 delayed
served: 1
Message 9 delayed
Message 8 delayed
Message 7 delayed
Message 6 delayed
Message 5 delayed
Message 4 delayed

Message 3 delayed
served: 2
Message 9 delayed
Message 8 delayed
Message 7 delayed
Message 6 delayed
Message 5 delayed
Message 4 delayed
served: 3
Message 9 delayed
Message 8 delayed
Message 7 delayed
Message 6 delayed
Message 5 delayed
served: 4

Message 9 delayed
Message 8 delayed
Message 7 delayed
Message 6 delayed
served: 5
Message 9 delayed
Message 8 delayed
Message 7 delayed
served: 6
Message 9 delayed
Message 8 delayed
served: 7
Message 9 delayed
served: 8
served: 9

Figure 10.31: Result of running sel_recv_test:test()

To sum up, while the gen_server behaviour does not allow the delay of
requests received by a server, the use of gen_server_cpre gives the user an
extra tool to serve all the requests, delaying those requests that cannot be
served in a specific moment due to the state of the server. In the example,
the result shows that all the messages are served in the expected order despite
being sent in the inverse order (order selected by the map function of lines 34–41).
This example and many other ones implementing the readers-writers problem,
a semaphore problem, and some others can be found in the github repository:
https://github.com/serperu/edbc.

https://github.com/serperu/edbc

241

Part V

Conclusions and Future
Research

243

Chapter 11

Conclusions

The process of software maintenance starts from the moment our code is ready
to be tested. In any real project, each fragment of code added to a software
under construction is always followed by long testing and debugging sessions.
These sessions go from the unitary tests used by the programmer during the
development to the execution of structured test suites to assess the impact of
every code change in the whole system. Additionally, the continuous changes in
the system requirements sometimes introduce drastic code updates that require
the application of new testing and debugging methods. Thus, in order to ensure
the quality of the software, it is essential to include in the software production
cycle effective and efficient debugging and testing mechanisms.

During the maintenance stage of any software project, corrective mainte-
nance attracts significant attention since it is the one focused in fixing dis-
covered problems and bringing software to an operational state for end users.
Thus, this kind of maintenance usually has priority over other types of work
[11]. Corrective maintenance completely depends on the detection of bugs with
the use of complete testing methods, and on the location of these bug locations
by means of advanced debugging methods.

Nowadays, many different types of testing techniques are used during soft-
ware development and maintenance like model-based testing [46], fuzz test-
ing [58, 119], concolic testing [113], or regression testing [185] among many oth-
ers. Additionally, there exist different automatic or semi-automatic debugging
techniques that guide the programmer during the search for the bug location in
the code, e.g., abstract debugging [23], algorithmic debugging [178], or program
slicing [204] to mention some of them.

In this thesis, we have addressed current state of the art problems present in
some of these testing and debugging techniques, concretely program slicing, re-
gression testing, and runtime verification. We highlight the main contributions
of this thesis below.

• In Chapter 3, we specialised the definition of flow dependence in object-
oriented (OO) programming [66]. First of all, considering the graph repre-
sentation of the JSysDG, we have detected a problem in the representation
of OO programs when object variables were selected as slicing criterion
yielding the slicing process, in some cases, to incomplete slices. Then, after
studying the nature of the error, we have defined a set of exclusive prop-
erties of object variables like partial and total definition, which prevent
this kind of variables to be completely represented with the classic flow

244 Chapter 11. Conclusions

dependence definition. In consequence, after considering this set of prop-
erties, we have defined two new program dependences called object-flow
dependence and object-reference dependence that accurately represent the
connection between each object variable and both its data members and
memory position, respectively. Additionally, we have proposed a new
slicing algorithm that ensures the use of these dependences to guarantee
completeness and improves precision keeping the linear-time performance
of the standard slicing algorithm. The result of these contributions have
increased the robustness of the JSysDG, improving the quality of the
generated slices and solving the slice’s completeness problem. Finally,
we have implemented a new slicer for Java with the JSysDG in its basis
(JavaSlicer) which includes object-flow and object-reference dependences.
Our experimental evaluation has shown that incompleteness situations are
frequently given in our benchmarks, generating an average slice increase
of 26.69% (with an slowdown of approximately 1 millisecond) to achieve
completeness in programs with more than one hundred nodes.

• In Chapter 4 we proposed a new approach for the representation and
slicing of composite data structures, the Constrained-Edges Program De-
pendence Graph (CE-PDG) [61]. First of all, we augmented the PDG rep-
resentation for explicit composite data structures by adding AST nodes
representing inner components. Then, we added the new flow dependences
between those components that appeared due to the decomposition of the
data structures. After that, every edge was given a label containing a
constraint used during the slicing process. Additionally, we defined a new
slicing algorithm that takes profit of these constraints, limiting the ac-
cess to some subcomponents of the data structures when traversing the
graph, and enhancing the precision of the computed slices. This method
is extended to interprocedural slicing by including in the process the gen-
eration of input, output, and summary edges and enhancing the CE-
PDG to the CE-SDG. Finally, the representation model and the slicing
algorithms have been implemented in a program slicer for Erlang called
e-Knife, defined in Chapter 5. We have evaluated the impact of the pro-
posed methodology in two different experiments: one for intraprocedural
slicing and another for interprocedural slicing. In both experiments, the
CE-SDG has shown a positive impact over the slice precision, reducing
the size of the SDG slice in a 9.31% on average. We evaluate the results
as positive, since the necessary overhead of achieving this considerable
reduction is only a few milliseconds.

• Chapter 5 presented an alternative graph representation for programs,
the Expression Dependence Graph (EDG), which can be used by any pro-
gramming paradigm and language [63]. The EDG provides a fine-grained
program representation, where each node corresponds with an AST node
of the program instead of representing a program statement. As shown
during this chapter, the EDG naturally represents the structure of many
program statements that need special ad hoc transformations when being
represented by the PDG. The decision of breaking down statements into

Chapter 11. Conclusions 245

multiple nodes as the AST representation suggests entails a new problem:
the lack of a dependence connection between statement elements. To
solve this problem, a new type of dependence called value dependence is
defined between the components (expressions) inside a statement. Value
dependence is language-dependent and determines whether an expression
inside a statement is required to compute the value of another expression
inside the same statement.
The key idea of the EDG is that all expressions are represented with two
different nodes: the first one represents the syntactical representation of
the expression in the program, and the second one represents the value of
this expression. The chapter presented the process to build the EDG from
the AST and compared the time to generate and slice both the PDG and
EDG and the difference in precision of slicing both graphs. Finally, a pro-
gram slicer based on the EDG model called e-Knife has been implemented
for Erlang. The empirical evaluation performed comparing the behaviour
of the SDG and the EDG when slicing Erlang programs (we used the pro-
gram slicing benchmark suite Bencher, described in Chapter 6) has shown
that, on average, the EDG is capable of reducing the slices computed by
the SDG in a 14.20%.

• Chapter 6 exposed a methodology to compute quasi-minimal slices, which
are minimal slices for a specific set of program inputs [152]. The chapter
described a model that produces quasi-minimal slices by (optionally) using
a group of static program slicers, and implementing the tree-ORBS slicing
algorithm and a set of automatically generated test cases that attempt to
maximise branch coverage. The contribution of this chapter is two-folded:
first, the modelling and implementation of a minimal slice generator for
Erlang, and second, the generation of Bencher, the first suite of Erlang
programs with challenging slicing situations and their associated minimal
slices, which are invaluable to measure the quality of any program slicer for
Erlang. Finally, we have evaluated the performance of the methodology
when generating the Bencher slicing suite. The application of tree-ORBS
has been proved to be way more accurate that modern program slicers
that work at AST level, like Slicerl and e-Knife, further reducing the re-
sult given by their combination in a 15.84% size of the original program
on average. The experience obtained in our experimental evaluation sug-
gests two relevant facts: the use of programs slicers in the first phase is
not mandatory but improves the performance of the process; and, in the
general case, the removal of only one node per iteration in tree-ORBS is
enough to reach the minimal slice from a pair program-slicing criterion.

• In Chapter 8, we proposed a new testing approach, the Point Of Interest
(POI) testing [87, 89, 153]. POI testing is used to compare the behaviour
of an arbitrary program point in different program versions. In this ap-
proach, implemented for the Erlang programming language in a tool called
SecEr, the user defines pairs of POIs from both different versions that are
supposed to compute the same values. Given a list of POIs and a set of
input functions, the program analyses these functions to generate a suite

246 Chapter 11. Conclusions

of test cases to automatically compare the pairs of POIs. Then, a set of
transformation rules are applied over both programs to extract the values
of the POIs as a side-effect when running each program. The cases where
a pair of POIs generate mismatching results are detected and the user is
provided with a report. Our tool SecEr, implemented in Erlang for Erlang
is the first tool that implements this novel approach and, for this reason,
it cannot be compared with any other tools based on POI testing. Thus,
our experimental evaluation compared which of the different SecEr con-
figurations used during the test case generation phase provides the best
performance/time ratio. The results showed that, by far, the best gen-
eration process for most selected programs was the standalone test case
mutation (where new test cases are obtained only recalculating some pa-
rameters of some previous test cases), improving the results obtained by
concolic and random testing.

• Finally, Chapter 9 presented an implementation of the design-by-contract
verification approach for Erlang [60]. This verification approach is imple-
mented in a library for Erlang called EDBC. With the use of this library,
the user can define contracts using a notation represented with Erlang
macros. The library offers a set of seven different contracts (precondition,
postcondition, invariants, time, purity...) for sequential and concurrent
Erlang programs. All the defined contracts are evaluated during runtime,
aborting the execution and reporting the user with an error message when
any of them is violated. Additionally, EDBC defined new behaviours
(gen_server_cpre and gen_server_qcpre) to resolve some specific sit-
uations in concurrent environments that use the gen_server behaviour
in Erlang. The behaviours implement the possibility of delaying requests
in a server considering the server inner state, annotating and classifying
these requests with different priorities when needed. The EDBC library
is implemented in Erlang for Erlang and all its contracts has been proved
helpful in several practical situations described in this thesis.

In the field of static analysis, different analysis techniques rely on graphs to
represent the whole set of dependences that exist between program statements.
It is the case of most program slicing proposals, where a well-formed graph
representation of the program is a key factor. Unfortunately, due to the contin-
uous evolution of current programming languages, not all program statements
can be trivially represented. In fact, although different programming languages
contain similar constructions, they frequently need to be represented differently.
This continued evolution is responsible for the permanent refinement of the ex-
isting graph representations, specially those used in program slicing. Despite
that in some program slicing techniques it is acceptable to compute incom-
plete slices (e.g., those techniques where the slice needs to be computed for a
particular set of inputs), in the general case, program slicers prioritise com-
pleteness over correctness. To this end, program slicers adopt a conservative
position when dealing with difficult program structures, including in the slice
the whole structure instead of making an elaborated dependence analysis over
their components. In this thesis, we have proposed complementary and novel

Chapter 11. Conclusions 247

techniques to enhance the representation of some program structures used in
different paradigms, in some cases detecting and solving completeness problems
(proposing a set of missing graph dependences such as object-flow and object-
reference dependences), and in others increasing the accuracy of the computed
slices by improving the graph representation (with the proposal of the CE-SDG
and the EDG graph representations).

Since it was proposed by Weiser in 1981, the area of program slicing has
been highly explored topic, especially before the early 2000’s. Nowadays, the
interest on other trending topics, like artificial intelligence or big data among
many others, has significantly reduced the proposals exclusively focused on
program slicing. In most cases, these researches related to program slicing use
some of the powerful dependence analysis used in program slicing (such as flow
dependence or control dependence analyses) as a support tool to reach other
goals. Program slicing has been studied for different paradigms and languages.
On the one hand, most of the studies done in program slicing are conducted
for imperative programming where different program slicers have been devel-
oped. Unfortunately, the amount of program slicers implemented for imperative
programming (mostly for OO languages like Java or C++) is limited. Most pro-
gram slicers publicly available are commonly academic prototypes stuck in past
language versions (it is hardly possible to use them due to the evolution of the
host language) or modules integrated into higher refactoring tools with strict
installation requirements that difficult their use. There are also other private
program slicers for imperative languages like CodeSurfer or CodeSonar, but
their implementation is not accessible so we can only speculate about their
internal models and architecture. On the other hand, if we look at the declar-
ative paradigm, few are the program slicers proposed for logic and functional
languages. In this case, the modelling of features used in declarative program-
ming (pattern matching, high order, anonymous functions...) or the use of data
structures considered as raw data types (lists and tuples) are hardly explored.
Some proposals to represent these features and structures are proposed in the
literature for declarative languages like Erlang or Haskell, but the dependence
analysis and program modelling in these languages is an interesting study niche
still unexplored.

In general, many program slicing papers draw overall ideas to deal with cer-
tain language features without describing them in detail. This is the case of
how to represent some classic Java features like enums and generic classes, or
some other features added to Java a few years ago, like anonymous functions or
lambda expressions. This is reinforced when we deal with structures typically
used in declarative programming, like list comprehensions, pattern matching,
or higher order functions, where most lack an explicit representation proposal.
The same happens with the static dependence analysis of complex scenarios like
concurrency, where only a few papers that model the memory-shared concur-
rency scenario have been published.

Today, program slicing is commonly considered as part of other complex
static analyses rather than a technique used in a standalone way for program
analysis. To increase its application during the debugging process, it would be
interesting to apply it to specific parts of the code like certain program methods

248 Chapter 11. Conclusions

or modules (instead of computing the whole model of a complete software sys-
tem, which is highly time-consuming for large systems). To this end, it would
be positive to propose models that accurately represent all the constructions of
programming languages (considering languages of all programming paradigms)
that are not specifically considered in the current graph representations. This
is precisely what we did in this thesis, the proposals to represent different lan-
guage features in Java and Erlang programs make the progress of our research
to follow this line. As a result of our research we have defined new types of
program dependences and new representations for several mentioned language
structures. There is still much work left in the program slicing area and we
are convinced that, if the research continues in this direction, we will incur in
new program dependences yet unconsidered, which will enrich the current graph
proposals and the program slicing applicability.

On the other side, in the area of testing and verification, this thesis contains
two valuable contributions. The first one is the proposal of a new methodology
called POI testing to detect software evolution bugs. The methodology can
be used both to generate a suite of tests given a program and a function to
be used as entry point and to compare two arbitrary points of two different
code versions, which is the main novelty with respect to other approaches. The
technique is promising, but the detection of behaviour differences depends on
the generated suite of test cases, so the key factor to obtain a good result is
the quality of the input generators. The computation of good inputs becomes
more difficult when an input represents a complex data structure (e.g., a map
or a sequence of nestled lists and tuples). Another current limitation is that the
POIs need to be manually identified by the programmer, and this is sometimes
difficult when a massive refactoring is performed over the code. POI testing is
still in its first stages of development and, in its current state, its use is more
suitable for detecting code behaviour changes in isolated functions or modules.
There is still much work to do to make it suitable for being automatically
used in large industrial projects with complex data types. The second proposal
is an implementation for Erlang of the design-by-contract verification, giving
support for precondition, postcondition and many other types of contracts to
Erlang programmers. POI testing and contracts can be used in a symbiotic way
to test critical functions by generating a suite of tests with the first one, and
running the corresponding contracted function with the second one. This way,
any contract violation would be detected during the execution of the tests and
the error can be corrected before publishing a new release.

249

Chapter 12

Future Lines of Research

In this section, we discuss possible directions for future research along the lines
of our work. We split the discussion in two categories corresponding to the main
topics covered in this thesis.

12.1 Program Slicing
Although different program slicing situations have been analysed during this
thesis, there are numerous related language features that have not been ad-
dressed yet in our approaches:

• Object-Oriented Program Slicing. There are some features related
to Java OO programs which representation have not been modelled yet.
Some of them are: the representation of inheritance and data members
of enum types in Java, the dependence connection between static fields
and static blocks inside the representation of a ClDG (initialised at run-
time during the first reference to a class), the modelling of inner classes
with their own data members and methods with limited visibility, or the
representation of dynamic objects that locally override certain class meth-
ods, among many others. The modelling and implementation of some of
the mentioned scenarios would result into a very interesting contribu-
tion for the area of static analysis and, in particular, for program slicing.
Our implementation should also be improved by introducing a point-to
analysis implementation, entering in a new discussion about the viability
of context-sensitive vs context-insensitive point-to analysis. A suitable
point-to analysis, together with the introduction of the object-flow and
object-reference dependences would result in an immediate improvement
of the computed slices, by providing an accurate detection of all object
variables pointing to the same object when considering the definition and
use sets.

• Field-Sensitive Program Slicing. With respect to the field-sensitive
model proposed in the thesis, some scenarios are still to be considered.
For example, the particular application of the proposed model to other
potentially recursive data structures such as records or objects is not de-
fined yet. The model has potential to represent data members of these
constructs, but the technique used for it needs to be modified because
their elements are commonly implicit when they are used in programs.

250 Chapter 12. Future Lines of Research

A mix between the constrained model and the OO approach used for
Java in the JSysDG may be useful to represent these data structures, but
the viability of this representation and the disadvantages it may suppose
need to be explored yet. Another unsolved scenario is the appearance of
structural dependences due to pattern matching. For instance, the tuple
patterns in list comprehension generators requires the elements of the list
to fulfil a particular data structure for the pattern matching to succeed.
We are currently studying this apparently new concept of dependence and
how to solve it by using the constrained model. Finally, we are currently
implementing some ideas that would make the slicer generate some parts
of the representation (e.g., the summary edges) only on demand.

• Expression Dependence Graph. Our implementation of the EDG is
an initial prototype that has been proved to be viable to accurately rep-
resent programs of different languages. There exist endless possibilities
to enhance the EDG: implementing the model for different programming
languages, adapting it to work with the object-oriented representation
models, implementing the exception-sensitive mechanisms, increasing the
EDG with new complex data structures like records, or enhancing the
EDG with many other techniques already proposed in the literature would
significantly increase the potential of program slicing. Additionally, test-
ing the potential of the EDG to model large systems with hundreds of
modules would also be of great interest.

• Quasi-minimal slicing. QM-slicing is another area that can be poten-
tially enhanced. Even though the technique is language-independent (it
could be implemented to work in any programming language), our imple-
mentation is specific for Erlang. A language-independent implementation
would be able to generate different program slicing suites to test and
compare program slicers for different languages. Additionally, new slic-
ing benchmarks could be added to the Bencher suite to deal with other
complex structures like records or dictionaries.

• Other program slicing fields. Despite they are not addressed in this
thesis, some other complex situations are worth to be studied in the area
of program slicing. This is the case, e.g., of a definition of a static model to
represent concurrency. Unfortunately, the study of concurrency has been
less investigated. Some papers have identified a new kind of dependence
called interference dependence.

As it can be appreciated, the field of program slicing grows in parallel with
the computer science field. Every time a new programming language appears, a
new representation model is necessary to statically analyse this language. The
evolution of programming languages implies the development of new program
representation techniques, that are closely related to the program slicing area.
For this reason, the work in the area of program slicing is far from being closed
soon.

12.2. Testing and Verification 251

12.2 Testing and Verification
In the testing and verification fields, our proposals are far from being finished.
Different enhancements are yet to be theoretically and practically developed in
both researches:

• POI testing. POI testing is an upcoming idea proposed in this thesis
and it can be enhanced in several directions. Currently, the approach is
only defined for Erlang, i.e., the transformation rules are applicable to Er-
lang. The first addition would be to generalise those rules to be applicable
for a generic language instead of being restricted to Erlang. This process
would require the definition of language-agnostic transformation rules and
models where the analysis tools should be replaced depending on the pro-
gramming language. This process may result in a set of rules like the ones
defined in Section 8.3.2 for the same statements depending on language-
related properties. Other directions for future development would be to
automatise POI testing. This would involve the design of a process to
automatically detect potential POIs using a diff analysis, together with
the ability of automatically re-running the process by moving the POIs
to certain alternative expressions when an unexpected behaviour is de-
tected, automatically delimiting the source code where the error source
is. Additionally, another interesting inclusion would be the use of other
analysis techniques combined with POI testing (like program slicing) to
reduce the amount of code being inspected when an unexpected behaviour
is detected, preventing irrelevant parts of the code to be selected as POIs.

• Erlang contracts. The contracts library implemented for Erlang may
include other types of contracts for functions such as those that ensure
that a function that always ends raising an error, e.g., with the purpose
to control those functions that are designed to fail. There are also some
contracts with limited input possibilities that may be augmented. For
instance, decreasing contracts can only compare if an integer argument
decreases in successive recursive calls, but it cannot define a decreasing
property over a non-integer argument itself, for example, EDBC cannot
measure if the size of a list successively decreases between calls. EDBC
can also be further enhanced with new types of contracts that may not
work only at function level but at expression level. For instance, contracts
to control that a receive expression in Erlang is always provided with
messages that follow certain patterns, raising exceptions in case any un-
expected pattern is received. Another interesting addition would be to
include a contract capable of accessing parameters of previous recursive
calls to verify any property that must be kept during the whole recursive
process (e.g., when an element is removed from a list, it must never be
found again inside that list).

POI testing and the Erlang design-by-contract models are currently usable
in a controlled environment, but still have a lot of work to do to become mature
tools applicable in industry. Some features should be included to make them

252 Chapter 12. Future Lines of Research

more robust and give the programmer more instruments to control the quality
of its development. In conclusion, POI testing is a novel powerful approach that
has just been born with a large margin of improvement, and EDBC contains
also a lot of unimplemented ideas that may result in very interesting approaches
for runtime control of sequential and concurrent Erlang programs.

253

Bibliography

[1] Gagan Agrawal and Liang Guo. “Evaluating explicitly context-sensitive
program slicing”. In: Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
workshop on Program analysis for software tools and engineering. 2001,
pp. 6–12.

[2] Hiralal Agrawal, Richard A. DeMillo, and Eugene H. Spafford. “Dynamic
slicing in the presence of unconstrained pointers”. In: Proceedings of the
symposium on Testing, Analysis, and Verification. 1991, pp. 60–73.

[3] Alfred V. Aho et al. Compilers: Principles, Techniques, and Tools (2nd
Edition). USA: Addison-Wesley Longman Publishing Co., Inc., 2006.
isbn: 0321486811.

[4] Bernhard K. Aichernig. “Contract-based testing”. In: Formal Methods at
the Crossroads. From Panacea to Foundational Support. Springer, 2003,
pp. 34–48.

[5] Frances E. Allen. “Control Flow Analysis”. In: SIGPLAN Not. 5.7 (1970),
pp. 1–19. issn: 0362-1340.

[6] Matthew Allen and Susan Horwitz. “Slicing Java Programs That Throw
and Catch Exceptions”. In: SIGPLAN Not. 38.10 (2003), pp. 44–54. issn:
0362-1340.

[7] Jesus M. Almendros-Jimenez, Josep Silva, and Salvador Tamarit. “XQue-
ry Optimization Based on Program Slicing”. In: Proceedings of the 20th
ACM International Conference on Information and Knowledge Manage-
ment. CIKM ’11. Glasgow, Scotland, UK: ACM, 2011, pp. 1525–1534.
isbn: 978-1-4503-0717-8.

[8] Saswat Anand et al. “An orchestrated survey of methodologies for auto-
mated software test case generation”. In: Journal of Systems and Soft-
ware 86.8 (2013), pp. 1978–2001.

[9] Paul Anderson, Thomas Reps, and Tim Teitelbaum. “Design and Imple-
mentation of a Fine-Grained Software Inspection Tool”. In: IEEE Trans.
Softw. Eng. 29.8 (2003), pp. 721–733. issn: 0098-5589.

[10] Sergio Antoy and Michael Hanus. “Contracts and Specifications for Func-
tional Logic Programming”. In: Practical Aspects of Declarative Lan-
guages - 14th International Symposium, PADL 2012, Philadelphia, PA,
USA, January 23-24, 2012. Proceedings. Ed. by Claudio V. Russo and
Neng-Fa Zhou. Vol. 7149. Lecture Notes in Computer Science. Springer,
2012, pp. 33–47.

254 Bibliography

[11] Alain April and Alain Abran. “A software maintenance maturity model
(S3M): Measurement practices at maturity levels 3 and 4”. In: Electronic
Notes in Theoretical Computer Science 233 (2009), pp. 73–87.

[12] Ken Arnold, James Gosling, and David Holmes. The Java programming
language. Addison Wesley Professional, 2005.

[13] Thomas Ball and Susan Horwitz. “Slicing Programs with Arbitrary Cont-
rol-flow”. In: Proceedings of the First International Workshop on Auto-
mated and Algorithmic Debugging. AADEBUG ’93. London, UK, UK:
Springer-Verlag, 1993, pp. 206–222. isbn: 3-540-57417-4.

[14] Utpal K. Banerjee. Dependence Analysis for Supercomputing. Vol. 60.
USA: Springer US, 1988.

[15] Benoit Baudry et al. “DSpot: Test Amplification for Automatic Assess-
ment of Computational Diversity”. In: CoRR abs/1503.05807 (2015).

[16] David Binkley. “Precise Executable Interprocedural Slices”. In: ACM
Letters on Programming Languages and Systems 2.1-4 (1993), pp. 31–
45. issn: 1057-4514.

[17] David Binkley. “Slicing in the Presence of Parameter Aliasing”. In: In
Software Engineering Research Forum. Orlando, FL, 1993, pp. 261–268.

[18] David Binkley and Keith B. Gallagher. “Program Slicing”. In: Advances
in Computers 43.2 (1996), pp. 1–50.

[19] David Binkley, Nicolas Gold, and Mark Harman. “An Empirical Study
of Static Program Slice Size”. In: ACM Trans. Softw. Eng. Methodol.
16.2 (2007), p. 8. issn: 1049-331X.

[20] David Binkley et al. “ORBS: Language-Independent Program Slicing”.
In: Proceedings of the 22nd ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE 2014. Hong Kong, China:
ACM, 2014, pp. 109–120. isbn: 978-1-4503-3056-5.

[21] David Binkley et al. “Tree-Oriented vs. Line-Oriented Observation-Based
Slicing”. In: 2017 IEEE 17th International Working Conference on Source
Code Analysis and Manipulation (SCAM). 2017, pp. 21–30.

[22] Barry W. Boehm. “A spiral model of software development and enhance-
ment”. In: Computer 21 (1988), pp. 61–72.

[23] François Bourdoncle. “Abstract Debugging of Higher-Order Imperative
Languages”. In: ACM SIGPLAN Notices 28.6 (1993), pp. 46–55. issn:
0362-1340.

[24] István Bozó et al. “Selecting Erlang test cases using impact analysis”.
In: AIP Conference Proceedings. Vol. 1389. 1. AIP. 2011, pp. 802–805.

[25] Christopher M. Brown. “Tool Support for Refactoring Haskell Programs”.
PhD thesis. School of Computing, University of Kent, Canterbury, Kent,
UK, 2008.

Bibliography 255

[26] Rafael Caballero et al. “EDD: A Declarative Debugger for Sequential
Erlang Programs”. In: 20th International Conference Tools and Algo-
rithms for the Construction and Analysis of Systems (TACAS 2014).
Ed. by Erika Ábrahám and Klaus Havelund. Vol. 8413. Lecture Notes in
Computer Science. Springer, 2014, pp. 581–586.

[27] Cristian Cadar, Daniel Dunbar, and Dawson R. Engler. “KLEE: Unas-
sisted and Automatic Generation of High-Coverage Tests for Complex
Systems Programs”. In: Proceedings of the 8th USENIX Symposium on
Operating Systems Design and Implementation, (OSDI 2008). Ed. by
Richard Draves and Robbert van Renesse. USENIX Association, 2008,
pp. 209–224.

[28] Richard Carlsson and Mickaël Rémond. “EUnit: a lightweight unit test-
ing framework for Erlang”. In: Proceedings of the 2006 ACM SIGPLAN
Workshop on Erlang, Portland, Oregon, USA, September 16, 2006. Ed.
by Marc Feeley and Philip W. Trinder. ACM, 2006, p. 1.

[29] Ian Cassar et al. “eAOP: an aspect oriented programming framework
for Erlang”. In: Proceedings of the 16th ACM SIGPLAN International
Workshop on Erlang, Oxford, United Kingdom, September 3-9, 2017. Ed.
by Natalia Chechina and Scott Lystig Fritchie. ACM, 2017, pp. 20–30.

[30] Adnan Causevic, Daniel Sundmark, and Sasikumar Punnekkat. “An in-
dustrial survey on contemporary aspects of software testing”. In: 2010
Third International Conference on Software Testing, Verification and
Validation. IEEE. 2010, pp. 393–401.

[31] Ned Chapin et al. “Types of software evolution and software mainte-
nance”. In: Journal of software maintenance and evolution: Research and
Practice 13.1 (2001), pp. 3–30.

[32] Diego Cheda, Josep Silva, and Germán Vidal. “Static Slicing of Rewrite
Systems”. In: Proceedings of the 15th International Workshop on Func-
tional and (Constraint) Logic Programming. Elsevier ENTCS 177, 2007,
pp. 123–136.

[33] Jiun-Liang Chen, Feng-Jian Wang, and Yung-Lin Chen. “Slicing object-
oriented programs”. In: Proceedings of Joint 4th International Computer
Science Conference and 4th Asia Pacific Software Engineering Confer-
ence. IEEE. 1997, pp. 395–404.

[34] Tsong Y. Chen and Y. Y. Cheung. “Dynamic program dicing”. In: 1993
Conference on Software Maintenance. 1993, pp. 378–385.

[35] Yanping Chen, Robert L. Probert, and Hasan Ural. “Model-based regres-
sion test suite generation using dependence analysis”. In: Proceedings of
the 3rd Workshop on Advances in Model Based Testing, A-MOST 2007,
co-located with the ISSTA 2007 International Symposium on Software
Testing and Analysis, London, United Kingdom, July 9-12. ACM, 2007,
pp. 54–62.

[36] Zhenqiang Chen and Baowen Xu. “Slicing Concurrent Java Programs”.
In: SIGPLAN Not. 36.4 (Apr. 2001), pp. 41–47. issn: 0362-1340.

256 Bibliography

[37] Zhenqiang Chen and Baowen Xu. “Slicing Object-Oriented Java Pro-
grams”. In: SIGPLAN Not. 36.4 (Apr. 2001), pp. 33–40. issn: 0362-1340.

[38] Pavan K. Chittimalli and Mary J. Harrold. “Recomputing coverage infor-
mation to assist regression testing”. In: IEEE Transactions on Software
Engineering 35.4 (2009), pp. 452–469.

[39] Jong-Deok Choi, Michael Burke, and Paul Carini. “Efficient flow-sensitive
interprocedural computation of pointer-induced aliases and side effects”.
In: Proceedings of the 20th ACM SIGPLAN-SIGACT symposium on
Principles of programming languages. 1993, pp. 232–245.

[40] Edmund M. Clarke, Ernest A. Emerson, and Aravinda P. Sistla. “Auto-
matic verification of finite-state concurrent systems using temporal logic
specifications”. In: ACM Transactions on Programming Languages and
Systems (TOPLAS) 8.2 (1986), pp. 244–263.

[41] Edmund M. Clarke et al. “Program slicing for VHDL”. In: International
Journal on Software Tools for Technology Transfer 4.1 (2002), pp. 125–
137.

[42] Holger Cleve and Andreas Zeller. “Finding Failure Causes through Au-
tomated Testing”. In: Proceedings of the Fourth International Workshop
on Automated Debugging. Munich, Germany, 2000.

[43] Christian Colombo, Adrian Francalanza, and Rudolph Gatt. “Elarva: A
Monitoring Tool for Erlang”. In: Runtime Verification - Second Interna-
tional Conference, RV 2011, San Francisco, CA, USA, September 27-30,
2011, Revised Selected Papers. Ed. by Sarfraz Khurshid and Koushik Sen.
Vol. 7186. Lecture Notes in Computer Science. Springer, 2011, pp. 370–
374.

[44] Patrick Cousot and Radhia Cousot. “Inductive definitions, semantics and
abstract interpretations”. In: Proceedings of the 19th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages. 1992, pp. 83–
94.

[45] Mats Cronqvist. redbug. Available at: https://github.com/massemanet/
redbug. 2017.

[46] Siddhartha R. Dalal et al. “Model-based testing in practice”. In: Proceed-
ings of the 21st international conference on Software engineering. 1999,
pp. 285–294.

[47] Benjamin Danglot et al. “The Emerging Field of Test Amplification: A
Survey”. In: CoRR abs/1705.10692 (2017).

[48] Andrea De Lucia et al. “Unions of Slices Are Not Slices”. In: Proceed-
ings of the Seventh European Conference on Software Maintenance and
Reengineering. CSMR ’03. Washington, DC, USA: IEEE Computer So-
ciety, 2003, pp. 363–. isbn: 0-7695-1902-4.

[49] Richard A. DeMillo, Hsin Pan, and Eugene H. Spafford. “Critical Slicing
for Software Fault Localization”. In: SIGSOFT Softw. Eng. Notes 21.3
(1996), pp. 121–134. issn: 0163-5948.

https://github.com/massemanet/redbug
https://github.com/massemanet/redbug

Bibliography 257

[50] Emelie Engström and Per Runeson. “A Qualitative Survey of Regression
Testing Practices”. In: Product-Focused Software Process Improvement,
11th International Conference, PROFES 2010, Limerick, Ireland, June
21-23, 2010. Proceedings. Ed. by Muhammad Ali Babar, Matias Vieri-
maa, and Markku Oivo. Vol. 6156. Lecture Notes in Business Information
Processing. Springer, 2010, pp. 3–16. isbn: 978-3-642-13791-4.

[51] Ericsson AB. dbg. Available at: http://erlang.org/doc/man/dbg.
html. 2017.

[52] Ericsson AB. EDoc. Available at: http://erlang.org/doc/apps/edoc/
chapter.html. 2018.

[53] Ericsson AB. Trace Tool Builder. Available at: http://erlang.org/
doc/apps/observer/ttb_ug.html. 2017.

[54] Erlang-Cover. Available at: http://www.erlang.org/doc/apps/tools/
cover_chapter.html. 1997.

[55] Michael D. Ernst. Practical fine-grained static slicing of optimized code.
Tech. rep. Technical Report MSRTR-94-14, Microsoft Research, Red-
mond, WA, 1994.

[56] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. “The Program
Dependence Graph and Its Use in Optimization”. In: ACM Transactions
on Programming Languages and Systems 9.3 (1987), pp. 319–349.

[57] John Field, Ganesan Ramalingam, and Frank Tip. “Parametric Program
Slicing”. In: Proceedings of the 22nd ACM SIGPLAN-SIGACT sympo-
sium on Principles of programming languages (POPL ’95). San Fran-
cisco, California, United States: ACM, 1995, pp. 379–392. isbn: 0-89791-
692-1.

[58] Daniel S. Fowler et al. “Fuzz testing for automotive cyber-security”. In:
2018 48th Annual IEEE/IFIP International Conference on Dependable
Systems and Networks Workshops (DSN-W). IEEE. 2018, pp. 239–246.

[59] Lars-Åke Fredlund et al. “A testing-based approach to ensure the safety
of shared resource concurrent systems”. In: Proceedings of the Institution
of Mechanical Engineers, Part O: Journal of Risk and Reliability 230.5
(2016), pp. 457–472.

[60] Lars-Åke Fredlund et al. “Runtime Verification in Erlang by Using Con-
tracts”. In: Functional and Constraint Logic Programming. Ed. by Josep
Silva. Cham: Springer International Publishing, 2019, pp. 56–73. isbn:
978-3-030-16202-3.

[61] Carlos Galindo, Jens Krinke, and Sergio Pérez. “Field-Sensitive Pro-
gram Slicing”. In: Software Engineering and Formal Methods: 20th Inter-
national Conference, SEFM 2022, Berlin, Germany, September 26–30,
2022, Proceedings. Vol. 13550. Springer Nature. 2022, pp. 74–90.

[62] Carlos Galindo, Sergio Pérez, and Josep Silva. “Conditional Control De-
pendence to Represent Catch Statements in the System Dependence
Graph”. In: PROLE2021. SISTEDES, 2021.

http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/man/dbg.html
http://erlang.org/doc/apps/edoc/chapter.html
http://erlang.org/doc/apps/edoc/chapter.html
http://erlang.org/doc/apps/observer/ttb_ug.html
http://erlang.org/doc/apps/observer/ttb_ug.html
http://www.erlang.org/doc/apps/tools/cover_chapter.html
http://www.erlang.org/doc/apps/tools/cover_chapter.html

258 Bibliography

[63] Carlos Galindo, Sergio Pérez, and Josep Silva. “Fine-grained Graph Rep-
resentation for Program Slicing (work in progress)”. In: PROLE2022.
SISTEDES, 2022.

[64] Carlos Galindo, Sergio Pérez, and Josep Silva. “Program Slicing with Ex-
ception Handling”. In: 11th Workshop on Tools for Automatic Program
Analysis. 2020.

[65] Carlos Galindo, Sergio Pérez, and Josep Silva. “Slicing Unconditional
Jumps with Unnecessary Control Dependencies”. In: Logic-Based Pro-
gram Synthesis and Transformation. Vol. 12561. Lecture Notes in Com-
puter Science. Cham: Springer International Publishing, 2021, pp. 293–
308. isbn: 978-3-030-68446-4.

[66] Carlos Galindo, Sergio Pérez, and Josep Silva. “Program slicing of Java
programs”. In: Journal of Logical and Algebraic Methods in Programming
130 (2022), p. 100826. issn: 2352-2208.

[67] Andy Georges, Dries Buytaert, and Lieven Eeckhout. “Statistically Rig-
orous Java Performance Evaluation”. In: SIGPLAN Not. 42.10 (2007),
pp. 57–76. issn: 0362-1340.

[68] Aggelos Giantsios, Nikolaos Papaspyrou, and Konstantinos Sagonas. “Con-
colic Testing for Functional Languages”. In: Proceedings of the 17th In-
ternational Symposium on Principles and Practice of Declarative Pro-
gramming (PPDP ’15). New York, NY, USA: ACM, 2015, pp. 137–148.
isbn: 978-1-4503-3516-4.

[69] Dennis Giffhorn and Christian Hammer. “An Evaluation of Slicing Algo-
rithms for Concurrent Programs”. In: Proceedings of the 7th IEEE Work-
ing Conference on Source Code Analysis and Manipulation (SCAM’07).
Maison Internationale, Paris: IEEE, 2007, pp. 17–26.

[70] Patrice Godefroid, Nils Klarlund, and Koushik Sen. “DART: Directed
automated random testing”. In: Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation. 2005,
pp. 213–223.

[71] Xiaoyan Gongye et al. “A simple detection and generation algorithm
for simple circuits in directed graph based on depth-first traversal”. In:
Evolutionary Intelligence (2020). issn: 1864-5917.

[72] Jurgen Graf. “Speeding Up Context-, Object- and Field-Sensitive SDG
Generation”. In: 2010 10th IEEE Working Conference on Source Code
Analysis and Manipulation. 2010, pp. 105–114.

[73] Penny Grubb and Armstrong A. Takang. Software maintenance: con-
cepts and practice. World Scientific, 2003.

[74] Ákos Hajnal and István Forgács. “A Demand-Driven Approach to Slicing
Legacy COBOL Systems”. In: Journal of Software Maintenance 24.1
(2012), pp. 67–82.

[75] Christian Hammer and Gregor Snelting. “An improved slicer for Java”.
In: Proceedings of the 5th ACM SIGPLAN-SIGSOFT workshop on Pro-
gram analysis for software tools and engineering. 2004, pp. 17–22.

Bibliography 259

[76] Christian Hammer and Gregor Snelting. “Flow-sensitive, context-sensiti-
ve, and object-sensitive information flow control based on program de-
pendence graphs”. In: International Journal of Information Security 8.6
(2009), pp. 399–422.

[77] Michael Hanus. “Combining Static and Dynamic Contract Checking for
Curry”. In: Proceedings of the 27th International Symposium on Logic-
Based Program Synthesis and Transformation. Vol. 10855. Lecture Notes
in Computer Science. Springer, 2017, pp. 323–340.

[78] Ángel Herranz et al. “Modeling Concurrent Systems with Shared Re-
sources”. In: Formal Methods for Industrial Critical Systems, 14th In-
ternational Workshop. Vol. 5825. Lecture Notes in Computer Science.
Springer, 2009, pp. 102–116.

[79] Carl Hewitt, Peter Bishop, and Richard Steiger. “A universal modular
actor formalism for artificial intelligence”. In: Proceedings of the 3rd in-
ternational joint conference on Artificial intelligence. 1973, pp. 235–245.

[80] Charles A. R. Hoare. “An axiomatic basis for computer programming”.
In: Communications of the ACM 12.10 (1969), pp. 576–580.

[81] Tommy Hoffner. Evaluation and Comparison of Program Slicing Tools.
Tech. rep. Sweden: LiTH-IDA-R-95-01 Department of Computer and
Information Science, University of Kent, Linkping University: Sweden,
1995.

[82] Loïc Hoguin and William Dang. Sheriff. Available at: https://github.
com/extend/sheriff. 2013.

[83] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural Slic-
ing Using Dependence Graphs”. In: Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementa-
tion. PLDI ’88. Atlanta, Georgia, USA: ACM, 1988, pp. 35–46. isbn:
0-89791-269-1.

[84] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural Slic-
ing Using Dependence Graphs”. In: Proceedings of the ACM SIGPLAN
1988 Conference on Programming Language Design and Implementa-
tion. PLDI ’88. Atlanta, Georgia, USA: ACM, 1988, pp. 35–46. isbn:
0-89791-269-1.

[85] Susan Horwitz, Thomas Reps, and David Binkley. “Interprocedural Slic-
ing Using Dependence Graphs”. In: ACM Transactions Programming
Languages and Systems 12.1 (1990), pp. 26–60. issn: 0164-0925.

[86] “IEEE Standard for Software Test Documentation”. In: IEEE Std 829-
1998 (1998), pp. 1–64.

[87] David Insa et al. “Behaviour Preservation across Code Versions in Er-
lang”. In: Scientific Programming vol. 2018, Article ID 9251762 (2018),
pp. 1–42.

[88] David Insa et al. “Erlang Code Evolution Control”. In: Proceedings of
the 27th International Symposium on Logic-based Program Synthesis and
Transformation (LOPSTR 2017). 2017.

https://github.com/extend/sheriff
https://github.com/extend/sheriff

260 Bibliography

[89] David Insa et al. “Erlang Code Evolution Control”. In: Logic-Based Pro-
gram Synthesis and Transformation (LOPSTR 2017). Lecture Notes in
Computer Science 10855 (2018), pp. 128–144.

[90] ISO. ISO/IEC 14764 IEEE Std 14764-2006 Software Engineering - Soft-
ware Life Cycle Processes - Maintenance. Vol. 14764-2006. New York,
NY, USA, 2006.

[91] Sonam Jain and Sandeep Poonia. “A New approach of program slicing:
Mixed SD (static & dynamic) slicing”. In: International Journal of Ad-
vanced Research in Computer and Communication Engineering Vol 2
(2013).

[92] Shujuan Jiang et al. “Improving the Preciseness of Dependence Analysis
Using Exception Analysis”. In: 2006 15th International Conference on
Computing. IEEE, 2006, pp. 277–282.

[93] Hao Jie, Jiang Shu-juan, and Hao Jie. “An approach of slicing for Object-
Oriented language with exception handling”. In: 2011 International Con-
ference on Mechatronic Science, Electric Engineering and Computer.
2011, pp. 883–886.

[94] Miguel Jimenez, Tobias Lindahl, and Konstantinos Sagonas. “A language
for specifying type contracts in Erlang and its interaction with success
typings”. In: Proceedings of the 2007 ACM SIGPLAN Workshop on Er-
lang, Freiburg, Germany, October 5, 2007. Ed. by Simon J. Thompson
and Lars-Åke Fredlund. ACM, 2007, pp. 11–17.

[95] Elroy Jumpertz. Using QuickCheck and semantic analysis to verify cor-
rectness of Erlang refactoring transformations; Master’s thesis, Radboud
University Nijmegen. 2010.

[96] Yu Kashima, Takashi Ishio, and Katsuro Inoue. “Comparison of back-
ward slicing techniques for java”. In: IEICE TRANSACTIONS on In-
formation and Systems 98.1 (2015), pp. 119–130.

[97] David A. Kinloch and Malcolm Munro. “Understanding C programs us-
ing the Combined C Graph representation”. In: Proceedings 1994 Inter-
national Conference on Software Maintenance. 1994, pp. 172–180.

[98] Bogdan Korel and Ali M. Al-Yami. “Automated regression test gen-
eration”. In: ACM SIGSOFT Software Engineering Notes 23.2 (1998),
pp. 143–152.

[99] Bogdan Korel and Janusz Laski. “Dynamic program slicing”. In: Infor-
mation Processing Letters 29.3 (1988), pp. 155 –163. issn: 0020-0190.

[100] Bogdan Korel and Janusz Laski. “Dynamic slicing of computer pro-
grams”. In: Journal of Systems and Software 13.3 (1990), pp. 187–195.
issn: 0164-1212.

[101] Gyula Kovács, Ferenc Magyar, and Tibor Gyimóthy. Static Slicing of
JAVA Programs. Tech. rep. 96-108. Hungary: RGAI, Hungarian Academy
of Sciences, Joesf Attila University, 1996.

Bibliography 261

[102] Herb Krasner. “The cost of poor software quality in the US: A 2020
report”. In: Proc. Consortium Inf. Softw. QualityTM (CISQTM). 2021.

[103] Jens Krinke. “Advanced Slicing of Sequential and Concurrent Programs”.
PhD thesis. Universität Passau, 2003.

[104] Jens Krinke. “Context-Sensitive Slicing of Concurrent Programs”. In:
Proceedings of the 9th European Software Engineering Conference Held
Jointly with 11th ACM SIGSOFT International Symposium on Founda-
tions of Software Engineering. 2003, 178–187.

[105] Jens Krinke. “Effects of context on program slicing”. In: Journal of Sys-
tems and Software 79.9 (2006), pp. 1249–1260.

[106] Jens Krinke. “Evaluating context-sensitive slicing and chopping”. In:
International Conference on Software Maintenance, 2002. Proceedings.
IEEE. 2002, pp. 22–31.

[107] Jens Krinke and Gregor Snelting. “Validation of measurement software
as an application of slicing and constraint solving”. In: Information and
Software Technology 40.11 (1998), pp. 661 –675. issn: 0950-5849.

[108] Prasanna Kumar et al. “A Static Slicing Method for Functional Pro-
grams and Its Incremental Version”. In: Proceedings of the 28th Inter-
national Conference on Compiler Construction. CC 2019. Washington,
DC, USA: Association for Computing Machinery, 2019, 53–64. isbn:
9781450362771.

[109] Sumit Kumar and Susan Horwitz. “Better Slicing of Programs with
Jumps and Switches”. In: Proceedings of the 5th International Confer-
ence on Fundamental Approaches to Software Engineering (FASE 2002).
Vol. 2306. Lecture Notes in Computer Science. Springer, 2002, pp. 96–
112. isbn: 3-540-43353-8.

[110] Arun Lakhotia. Improved Interprocedural Slicing Algorithm. Tech. rep.
CACS TR-92-5-8. Lafayette, LA 70504, USA: The Center for Advanced
Computer Studies, University of Southwestern Louisiana, 1992.

[111] William Landi and Barbara G. Ryder. “A safe approximate algorithm
for interprocedural aliasing”. In: ACM SIGPLAN Notices 27.7 (1992),
pp. 235–248.

[112] Loren Larsen and Mary J. Harrold. “Slicing Object-Oriented Software”.
In: Proceedings of the 18th international conference on Software en-
gineering. ICSE ’96. Berlin, Germany: IEEE Computer Society, 1996,
pp. 495–505. isbn: 0-8186-7246-3.

[113] Eric Larson and Todd Austin. “High Coverage Detection of {Input-
Related} Security Faults”. In: 12th USENIX Security Symposium. 2003.

[114] K. Rustan M. Leino. “Dafny: An Automatic Program Verifier for Func-
tional Correctness”. In: Logic for Programming, Artificial Intelligence,
and Reasoning - 16th International Conference, LPAR-16. Vol. 6355.
Lecture Notes in Computer Science. Springer, 2010, pp. 348–370.

262 Bibliography

[115] Huiqing Li and Simon Thompson. “Testing Erlang refactorings with
QuickCheck”. In: Symposium on Implementation and Application of Func-
tional Languages. Springer. 2007, pp. 19–36.

[116] Huiqing Li et al. “Refactoring Erlang Programs”. In: Proceedings of the
12th International Erlang/OTP User Conference. 2006.

[117] Huiqing Li et al. “Refactoring with Wrangler, Updated: Data and Process
Refactorings, and Integration with Eclipse”. In: Proceedings of the 7th
ACM SIGPLAN Workshop on ERLANG. ERLANG ’08. Victoria, BC,
Canada: ACM, 2008, pp. 61–72. isbn: 978-1-60558-065-4.

[118] Donglin Liang and Mary J. Harrold. “Slicing Objects Using System De-
pendence Graphs”. In: Proceedings of the International Conference on
Software Maintenance. ICSM ’98. Washington, DC, USA: IEEE Com-
puter Society, 1998, pp. 358–367. isbn: 0-8186-8779-7.

[119] Jie Liang et al. “Fuzz testing in practice: Obstacles and solutions”. In:
2018 IEEE 25th International Conference on Software Analysis, Evolu-
tion and Reengineering (SANER). IEEE. 2018, pp. 562–566.

[120] Tobias Lindahl and Konstantinos Sagonas. “Detecting Software Defects
in Telecom Applications Through Lightweight Static Analysis: A War
Story”. In: Programming Languages and Systems: Second Asian Sympo-
sium, APLAS 2004, Taipei, Taiwan, November 4-6, 2004. Proceedings.
Vol. 3302. Lecture Notes in Computer Science. Springer, 2004, pp. 91–
106. isbn: 3-540-23724-0.

[121] Tobias Lindahl and Konstantinos Sagonas. “Practical type inference bas-
ed on success typings”. In: Proceedings of the 8th ACM SIGPLAN in-
ternational conference on Principles and practice of declarative program-
ming. 2006, pp. 167–178.

[122] Tobias Lindahl and Konstantinos Sagonas. “TypEr: a type annotator of
Erlang code”. In: Proceedings of the 2005 ACM SIGPLAN Workshop on
Erlang, Tallinn, Estonia, September 26-28, 2005. Ed. by Konstantinos
Sagonas and Joe Armstrong. ACM, 2005, pp. 17–25.

[123] Shay Litvak et al. “Field-Sensitive Program Dependence Analysis”. In:
Proceedings of the Eighteenth ACM SIGSOFT International Symposium
on Foundations of Software Engineering. FSE ’10. Santa Fe, New Mex-
ico, USA: Association for Computing Machinery, 2010, 287–296. isbn:
9781605587912.

[124] Marisa Llorens et al. “Dynamic Slicing of Concurrent Specification Lan-
guages”. In: Parallel Computing 53 (2016), pp. 1–22. issn: 0167-8191.

[125] Marisa Llorens et al. “Dynamic Slicing Techniques for Petri Nets”. In:
Electronic Notes in Theoretical Computer Science 223 (2006), pp. 153–
165.

[126] David H. Lorenz and Therapon Skotiniotis. “Extending Design by Con-
tract for Aspect-Oriented Programming”. In: CoRR abs/cs/0501070 (2005).

Bibliography 263

[127] Kasper Luckow et al. “JDart: A Dynamic Symbolic Analysis Frame-
work”. In: Tools and Algorithms for the Construction and Analysis of
Systems. Ed. by Marsha Chechik and Jean-François Raskin. Berlin, Hei-
delberg: Springer Berlin Heidelberg, 2016, pp. 442–459. isbn: 978-3-662-
49674-9.

[128] Wang Lulu, Li Bixin, and Kong Xianglong. “Type slicing: An accurate
object oriented slicing based on sub-statement level dependence graph”.
In: Information and Software Technology 127 (2020), p. 106369. issn:
0950-5849.

[129] James R. Lyle. “Evaluating Variations on Program Slicing for Debugging
(Data-Flow, Ada)”. PhD thesis. USA, 1984.

[130] James R. Lyle and Mark Weiser. “Automatic Program Bug Location
by Program Slicing”. In: Proceedings of 2nd International Conference,
Computers and Applications. Vol. 2. Peking, China, 1987, pp. 877–883.

[131] Anirban Majumdar, Stephen J. Drape, and Clark D. Thomborson. “Slic-
ing Obfuscations: Design, Correctness, and Evaluation”. In: Proceedings
of the 2007 ACM Workshop on Digital Rights Management. DRM ’07.
Alexandria, Virginia, USA: ACM, 2007, pp. 70–81. isbn: 978-1-59593-
884-8.

[132] Victor J. Marin and Carlos R. Rivero. “Towards a Framework for Gener-
ating Program Dependence Graphs from Source Code”. In: Proceedings
of the 4th ACM SIGSOFT International Workshop on Software Analyt-
ics. SWAN 2018. Lake Buena Vista, FL, USA: Association for Computing
Machinery, 2018, pp. 30–36. isbn: 9781450360562.

[133] Dror Maydan, John Hennessy, and Monica Lam. “Efficient and Exact
Data Dependence Analysis”. In: vol. 26. June 1991, pp. 1–14.

[134] Bertrand Meyer. “Applying "Design by Contract"”. In: IEEE Computer
25.10 (1992), pp. 40–51.

[135] Mehdi Mirzaaghaei. “Automatic test suite evolution”. In: SIGSOFT-
/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Soft-
ware Engineering (FSE-19) and ESEC’11: 13th European Software Engi-
neering Conference (ESEC-13), Szeged, Hungary, September 5-9, 2011.
Ed. by Tibor Gyimóthy and Andreas Zeller. ACM, 2011, pp. 396–399.

[136] Durga P. Mohapatra, Rajib Mall, and Rajeev Kumar. “An Overview of
Slicing Techniques for Object-Oriented Programs”. In: Informatica 30.2
(2006), pp. 253–277.

[137] Melina Mongiovi. “Safira: A tool for evaluating behavior preservation”.
In: Proceedings of the ACM international conference companion on Ob-
ject oriented programming systems languages and applications compan-
ion. ACM. 2011, pp. 213–214.

[138] Steven S. Muchnick. Advanced Compiler Design and Implementation,
chapter 12.2. Morgan Kaufmann, 1997.

[139] Steven S. Muchnick. Advanced Compiler Design and Implementation,
chapter 8.12. Morgan Kaufmann, 1997.

264 Bibliography

[140] Steven S. Muchnick and Neil D. Jones. Program flow analysis: Theory
and applications. Vol. 196. Prentice-Hall Englewood Cliffs, 1981.

[141] Glenford J. Myers, Corey Sandler, and Tom Badgett. The art of software
testing. John Wiley & Sons, 2011.

[142] Leila Naslavsky, Hadar Ziv, and Debra J. Richardson. “MbSRT2: Model-
Based Selective Regression Testing with Traceability”. In: Third Inter-
national Conference on Software Testing, Verification and Validation,
ICST 2010, Paris, France, April 7-9, 2010. IEEE Computer Society,
2010, pp. 89–98.

[143] Hung V. Nguyen, Christian Kästner, and Tien N. Nguyen. “Cross-langua-
ge program slicing for dynamic web applications”. In: Proceedings of the
2015 10th Joint Meeting on Foundations of Software Engineering. ACM.
2015, pp. 369–380.

[144] Claudio Ochoa, Josep Silva, and Germán Vidal. “Dynamic Slicing Based
on Redex Trails”. In: Proceedings of the 2004 ACM SIGPLAN symposium
on Partial evaluation and semantics-based program manipulation (PEPM
’04). Verona, Italy: ACM, 2004, pp. 123–134. isbn: 1-58113-835-0.

[145] Claudio Ochoa, Josep Silva, and Germán Vidal. “Lightweight Program
Specialization via Dynamic Slicing”. In: Proceedings of the 2005 ACM
SIGPLAN Workshop on Curry and Functional Logic Programming. New
York, NY, USA: ACM, 2005, pp. 1–7. isbn: 1-59593-069-8.

[146] Alessandro Orso, Saurabh Sinha, and Mary J. Harrold. “Effects of point-
ers on data dependences”. In: Proceedings 9th International Workshop on
Program Comprehension. IWPC 2001. IEEE. 2001, pp. 39–49.

[147] Karl J. Ottenstein and Linda M. Ottenstein. “The Program Dependence
Graph in a Software Development Environment”. In: SIGSOFT Software
Engineering Notes 9.3 (1984), pp. 177–184. issn: 0163-5948.

[148] Stack Overflow. Stack Overflow Developer Survey 2021. url: https://
insights.stackoverflow.com/survey/2021/ (visited on 04/11/2022).

[149] Carlos Pacheco et al. “Feedback-Directed Random Test Generation”. In:
29th International Conference on Software Engineering (ICSE 2007),
Minneapolis, MN, USA, May 20-26, 2007. IEEE Computer Society, 2007,
pp. 75–84. isbn: 0-7695-2828-7.

[150] Santosh K. Pani, Priya Arundhati, and Mahamaya Mohanty. “An Effec-
tive Methodology for Slicing C++ Programs”. In: International Journal
of Computer Engineering and Technology 1 (2010), pp. 72–82.

[151] Manolis Papadakis and Konstantinos Sagonas. “A PropEr integration
of types and function specifications with property-based testing”. In:
Proceedings of the 10th ACM SIGPLAN workshop on Erlang, Tokyo,
Japan, September 23, 2011. Ed. by Kenji Rikitake and Erik Stenman.
ACM, 2011, pp. 39–50.

[152] Sergio Pérez, Josep Silva, and Salvador Tamarit. “Automatic Testing
of Program Slicers”. In: Scientific Programming vol. 2019, Article ID
(2019), pp. 1–15.

https://insights.stackoverflow.com/survey/2021/
https://insights.stackoverflow.com/survey/2021/

Bibliography 265

[153] Sergio Pérez and Salvador Tamarit. “Enhancing POI Testing Through
the Use of Additional Information”. In: Functional and Constraint Logic
Programming. Ed. by Josep Silva. Cham: Springer International Pub-
lishing, 2019, pp. 74–90. isbn: 978-3-030-16202-3.

[154] Keshav Pingali and Gianfranco Bilardi. “Optimal control dependence
computation and the Roman chariots problem”. In: ACM Transactions
on Programming Languages and Systems (TOPLAS) 19.3 (1997), pp. 462–
491.

[155] Mihalis Pitidis and Konstantinos Sagonas. “Purity in Erlang”. In: Imple-
mentation and Application of Functional Languages - 22nd International
Symposium, IFL 2010, Alphen aan den Rijn, The Netherlands, Septem-
ber 1-3, 2010, Revised Selected Papers. Ed. by Jurriaan Hage and Marco
T. Morazán. Vol. 6647. Lecture Notes in Computer Science. Springer,
2010, pp. 137–152.

[156] Hubert Plociniczak and Susan Eisenbach. “JErlang: Erlang with Joins”.
In: Coordination Models and Languages, 12th International Conference,
COORDINATION 2010, Amsterdam, The Netherlands, June 7-9, 2010.
Proceedings. Ed. by Dave Clarke and Gul A. Agha. Vol. 6116. Lecture
Notes in Computer Science. Springer, 2010, pp. 61–75.

[157] Krisztián Pócza, Mihály Biczó, and Zoltán Porkoláb. “Cross-language
program slicing in the .NET framework”. In: Proc. of the 3rd .NET
Technologies Conference. 2005, pp. 141–150.

[158] William Pugh and David Wonnacott. “Eliminating False Data Depen-
dences using the Omega Test.” In: vol. 27. July 1992, pp. 140–151.

[159] Dawei Qi, Abhik Roychoudhury, and Zhenkai Liang. “Test generation to
expose changes in evolving programs”. In: ASE 2010, 25th IEEE/ACM
International Conference on Automated Software Engineering, Antwerp,
Belgium, September 20-24, 2010. Ed. by Charles Pecheur, Jamie An-
drews, and Elisabetta Di Nitto. ACM, 2010, pp. 397–406.

[160] Dawei Qi et al. “DARWIN: An approach to debugging evolving pro-
grams”. In: ACM Trans. Softw. Eng. Methodol. 21.3 (2012), 19:1–19:29.

[161] Jean-Pierre Queille and Joseph Sifakis. “Specification and verification
of concurrent systems in CESAR”. In: International Symposium on pro-
gramming. Springer. 1982, pp. 337–351.

[162] Jaspreet S. Rajal and Shivani Sharma. “Article: A Review on Various
Techniques for Regression Testing and Test Case Prioritization”. In: In-
ternational Journal of Computer Applications 116.16 (2015), pp. 8–13.

[163] Ganesan Ramalingam, John Field, and Frank Tip. “Aggregate Structure
Identification and Its Application to Program Analysis”. In: Proceedings
of the 26th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages. POPL ’99. San Antonio, Texas, USA: Association
for Computing Machinery, 1999, 119–132. isbn: 1581130953.

266 Bibliography

[164] Murali K. Ramanathan, Ananth Grama, and Suresh Jagannathan. “Sieve:
A Tool for Automatically Detecting Variations Across Program Ver-
sions”. In: 21st IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE 2006), 18-22 September 2006, Tokyo, Japan.
IEEE Computer Society, 2006, pp. 241–252. isbn: 0-7695-2579-2.

[165] Venkatesh-Prasad Ranganath. Indus, a toolkit to customize and adapt
Java programs. Available at: http://indus.projects.cis.ksu.edu.

[166] Davi de Castro Reis et al. “Automatic Web News Extraction Using Tree
Edit Distance”. In: Proceedings of the 13th International Conference
on World Wide Web (WWW’04). New York, NY, USA: ACM, 2004,
pp. 502–511. isbn: 1-58113-844-X.

[167] Thomas Reps, Susan Horwitz, and Mooly Sagiv. “Precise Interprocedu-
ral Dataflow Analysis via Graph Reachability”. In: Proceedings of the
22nd ACM SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages. POPL ’95. San Francisco, California, USA: Association
for Computing Machinery, 1995, 49–61. isbn: 0897916921.

[168] Thomas Reps and Todd Turnidge. “Program Specialization Via Program
Slicing”. In: Proceedings of the Dagstuhl Seminar on Partial Evaluation.
Vol. 1110. Lecture Notes in Computer Science. Springer-Verlag, 1996,
pp. 409–429.

[169] Thomas Reps et al. “Speeding Up Slicing”. In: SIGSOFT Softw. Eng.
Notes 19.5 (1994), pp. 11–20.

[170] Thomas Reps et al. “The Use of Program Profiling for Software Main-
tenance with Applications to the Year 2000 Problem”. In: Software En-
gineering - ESEC/FSE ’97, 6th European Software Engineering Confer-
ence Held Jointly with the 5th ACM SIGSOFT Symposium on Foun-
dations of Software Engineering, Zurich, Switzerland, September 22-25,
1997, Proceedings. Ed. by Mehdi Jazayeri and Helmut Schauer. Vol. 1301.
Lecture Notes in Computer Science. Springer, 1997, pp. 432–449.

[171] Nuno F. Rodrigues and Luís S. Barbosa. “Component Identification
Through Program Slicing”. In: In Proc. of Formal Aspects of Compo-
nent Software (FACS 2005). Elsevier ENTCS. Elsevier, 2005, pp. 291–
304.

[172] Colin Runciman, Matthew Naylor, and Fredrik Lindblad. “Smallcheck
and Lazy Smallcheck: Automatic Exhaustive Testing for Small Values”.
In: SIGPLAN Not. 44.2 (2008), pp. 37–48. issn: 0362-1340.

[173] Per Runeson. “A Survey of Unit Testing Practices”. In: IEEE Software
23 (July 2006).

[174] Per Runeson, Carina Andersson, and Martin Höst. “Test processes in
software product evolution: A qualitative survey on the state of practice”.
In: Journal of Software Maintenance 15 (Jan. 2003), pp. 41–59.

http://indus.projects.cis.ksu.edu

Bibliography 267

[175] Konstantinos Sagonas, Josep Silva, and Salvador Tamarit. “Precise Ex-
planation of Success Typing Errors”. In: Proceedings of the ACM SIG-
PLAN 2013 Workshop on Partial Evaluation and Program Manipulation.
PEPM ’13. Rome, Italy: ACM, 2013, pp. 33–42. isbn: 978-1-4503-1842-6.

[176] Koushik Sen, Darko Marinov, and Gul Agha. “CUTE: A concolic unit
testing engine for C”. In: ACM SIGSOFT Software Engineering Notes
30.5 (2005), pp. 263–272.

[177] Ehud Y. Shapiro. Algorithmic program debugging. MIT Press, 1982.
[178] Josep Silva. “A Survey on Algorithmic Debugging Strategies”. In: Ad-

vances in Engineering Software 42.11 (2011), pp. 976–991. issn: 0965-
9978.

[179] Josep Silva. “A Vocabulary of Program Slicing-Based Techniques”. In:
ACM Computing Surveys 44.3 (2012).

[180] Josep Silva, Salvador Tamarit, and César Tomás. “System Dependence
Graphs in Sequential Erlang”. In: Proceedings of the 15th International
Conference on Fundamental Approaches to Software Engineering (FASE
2012). Vol. 7212. Lecture Notes in Computer Science. Springer, 2012,
pp. 486–500. isbn: 978-3-642-28871-5.

[181] Josep Silva et al. Slicerl. 2011. url: http://kaz.dsic.upv.es/slicerl.
[182] Anthony M. Sloane and Jason Holdsworth. “Beyond traditional program

slicing”. In: ACM SIGSOFT Software Engineering Notes. Vol. 21. 3.
ACM. 1996, pp. 180–186.

[183] Gregor Snelting, Torsten Robschink, and Jens Krinke. “Efficient Path
Conditions in Dependence Graphs for Software Safety Analysis”. In:
ACM Trans. Softw. Eng. Methodol. 15.4 (Oct. 2006), 410–457. issn:
1049-331X.

[184] Gustavo Soares, Rohit Gheyi, and Tiago Massoni. “Automated behav-
ioral testing of refactoring engines”. In: IEEE Transactions on Software
Engineering 39.2 (2013), pp. 147–162.

[185] Software and Committee Systems. “IEEE Standard for Software and
System Test Documentation”. In: IEEE Std 829-2008 (July 2008), pp. 1
–118.

[186] Johannes Späth, Karim Ali, and Eric Bodden. “Context-, Flow-, and
Field-Sensitive Data-Flow Analysis Using Synchronized Pushdown Sys-
tems”. In: Proc. ACM Program. Lang. 3.POPL (Jan. 2019).

[187] Manu Sridharan, Stephen J. Fink, and Rastislav Bodik. “Thin Slicing”.
In: Proceedings of the 28th ACM SIGPLAN Conference on Programming
Language Design and Implementation. PLDI ’07. San Diego, Califor-
nia, USA: Association for Computing Machinery, 2007, 112–122. isbn:
9781595936332.

[188] Christoph Steindl. “Intermodular slicing of object-oriented programs”.
In: Compiler Construction. Ed. by Kai Koskimies. Berlin, Heidelberg:
Springer Berlin Heidelberg, 1998, pp. 264–278. isbn: 978-3-540-69724-4.

http://kaz.dsic.upv.es/slicerl

268 Bibliography

[189] E. Burton Swanson. “The Dimensions of Maintenance”. In: Proceedings
of the 2nd International Conference on Software Engineering. ICSE ’76.
San Francisco, California, USA: IEEE Computer Society Press, 1976,
492–497.

[190] Kuo C. Tai. “The Tree-to-Tree Correction Problem”. In: Journal of the
ACM 26.3 (1979), pp. 422–433. issn: 0004-5411.

[191] Kunal Taneja and Tao Xie. “DiffGen: Automated Regression Unit-Test
Generation”. In: 23rd IEEE/ACM International Conference on Auto-
mated Software Engineering (ASE 2008), 15-19 September 2008, L’Aquila,
Italy. IEEE Computer Society, 2008, pp. 407–410.

[192] Kunal Taneja et al. “eXpress: guided path exploration for efficient re-
gression test generation”. In: Proceedings of the 20th International Sym-
posium on Software Testing and Analysis, ISSTA 2011, Toronto, ON,
Canada, July 17-21, 2011. Ed. by Matthew B. Dwyer and Frank Tip.
ACM, 2011, pp. 1–11.

[193] Ramsay Taylor et al. “Using behaviour inference to optimise regression
test sets”. In: IFIP International Conference on Testing Software and
Systems. Springer. 2012, pp. 184–199.

[194] Andy Till. erlyberly. Available at: https://github.com/andytill/
erlyberly. 2017.

[195] Frank Tip. “A Survey of Program Slicing Techniques”. In: Journal of
Programming Languages 3.3 (1995), pp. 121–189.

[196] Paolo Tonella et al. “Flow insensitive C++ pointers and polymorphism
analysis and its application to slicing”. In: Proceedings of the 19th inter-
national conference on Software engineering. 1997, pp. 433–443.

[197] Melinda Tóth and Zoltán Horváth. “Reduction of regression tests for
Erlang based on impact analysis”. In: (2013).

[198] Melinda Tóth et al. “Impact analysis of erlang programs using behaviour
dependency graphs”. In: Proceedings of the Third summer school con-
ference on Central European functional programming school. CEFP’09.
Budapest, Hungary: Springer-Verlag, 2010, pp. 372–390. isbn: 3-642-
17684-4, 978-3-642-17684-5. url: http://dl.acm.org/citation.cfm?
id=1939128.1939139.

[199] Melinda Tóth et al. “Impact analysis of Erlang programs using be-
haviour dependency graphs”. In: Central European Functional Program-
ming School. Springer, 2010, pp. 372–390.

[200] Ivan Vankov. “Relational approach to program slicing”. In: Master’s the-
sis, University of Amsterdam (2005).

[201] Robert Virding, Claes Wikström, and Mike Williams. Concurrent pro-
gramming in ERLANG. Prentice Hall International (UK) Ltd., 1996.

[202] Neil Walkinshaw, Marc Roper, and Murray Wood. “The Java system
dependence graph”. In: Proceedings Third IEEE International Workshop
on Source Code Analysis and Manipulation. 2003, pp. 55–64.

https://github.com/andytill/erlyberly
https://github.com/andytill/erlyberly
http://dl.acm.org/citation.cfm?id=1939128.1939139
http://dl.acm.org/citation.cfm?id=1939128.1939139

Bibliography 269

[203] Daniel Weise et al. “Value Dependence Graphs: Representation without
Taxation”. In: Proceedings of the 21st ACM SIGPLAN-SIGACT Sym-
posium on Principles of Programming Languages. POPL ’94. Portland,
Oregon, USA: Association for Computing Machinery, 1994, pp. 297–310.
isbn: 0897916360.

[204] Mark Weiser. “Program Slicing”. In: Proceedings of the 5th international
conference on Software engineering (ICSE ’81). San Diego, California,
United States: IEEE Press, 1981, pp. 439–449. isbn: 0-89791-146-6.

[205] Manfred Widera. “Flow graphs for testing sequential erlang programs”.
In: Proceedings of the 2004 ACM SIGPLAN workshop on Erlang. ER-
LANG ’04. Snowbird, Utah, USA: ACM, 2004, pp. 48–53. isbn: 1-58113-
918-7.

[206] Manfred Widera and Fachbereich Informatik. “Concurrent Erlang flow
graphs”. In: In Proceedings of the Erlang/OTP User Conference 2005.
2005.

[207] wired.co.uk. Ubisoft is using AI to catch bugs in games before devs make
them. Available at: https://www.wired.co.uk/article/ubisoft-
commit-assist-ai. 2018.

[208] Tao Xie and David Notkin. “Checking Inside the Black Box: Regression
Testing by Comparing Value Spectra”. In: IEEE Trans. Software Eng.
31.10 (2005), pp. 869–883.

[209] Zhaogui Xu et al. “Static Slicing for Python First-Class Objects”. In:
2013 13th International Conference on Quality Software. 2013, pp. 117–
124.

[210] Shin Yoo and Mark Harman. “Regression Testing Minimization, Selec-
tion and Prioritization: A Survey”. In: Softw. Test. Verif. Reliab. 22.2
(2012), pp. 67–120. issn: 0960-0833.

[211] Kai Yu et al. “Practical isolation of failure-inducing changes for debug-
ging regression faults”. In: Proceedings of the 27th IEEE/ACM Int. Con-
ference on Automated Software Engineering. ACM. 2012, pp. 20–29.

[212] Andreas Zeller and Ralf Hildebrandt. “Simplifying and Isolating Failure-
Inducing Input”. In: IEEE Trans. Softw. Eng. 28.2 (2002), pp. 183–200.
issn: 0098-5589.

[213] Lingming Zhang, Lu Zhang, and Sarfraz Khurshid. “Injecting mechan-
ical faults to localize developer faults for evolving software”. In: ACM
SIGPLAN Notices. Vol. 48. 10. ACM. 2013, pp. 765–784.

[214] Zhihao Zhang et al. “Regression Test Generation Approach Based on
Tree-Structured Analysis”. In: Prodeedings of the 2010 International
Conference on Computational Science and Its Applications, ICCSA 2010,
Fukuoka, Japan, March 23-26, 2010. Ed. by Bernady O. Apduhan et al.
IEEE Computer Society, 2010, pp. 244–249.

[215] Jianjun Zhao. “Applying Program Dependence Analysis To Java Soft-
ware”. In: Proceedings of Workshop on Software Engineering and Databa-
se Systems. Dec. 1998, pp. 162–169.

https://www.wired.co.uk/article/ubisoft-commit-assist-ai
https://www.wired.co.uk/article/ubisoft-commit-assist-ai

270 Bibliography

[216] Jianjun Zhao. “Slicing Aspect-Oriented Software”. In: Proceedings of the
10th International Workshop on Program Comprehension. IWPC ’02.
Washington, DC, USA: IEEE Computer Society, 2002, pp. 251–260.
isbn: 0-7695-1495-2.

271

Part VI

Appendices

273

Appendix A

Scientific Contributions

This appendix summarises all the contributions related to this thesis where the
author has actively participated. The personal contributions of the author in
all the mentioned research papers are the following: the author actively par-
ticipated in the brainstorming sessions where the models and algorithms were
defined, collaborated in the definition and proof of formal aspects like theo-
rems and lemmas, and was an active part in the implementation and empirical
evaluation of all the tools described in every paper.

A.1 Conference papers
• Carlos Galindo, Jens Krinke, Sergio Pérez, Josep Silva. A program slicer

for Java (tool paper). 20th International Conference on Software Engi-
neering and Formal Methods (SEFM 2022). Springer LNCS 13550, pages
146-151, 2022.

• Carlos Galindo, Jens Krinke, Sergio Pérez, Josep Silva. Field-Sensitive
Program Slicing. 20th International Conference on Software Engineering
and Formal Methods (SEFM 2022). Springer LNCS 13550, pages 74-90,
2022.

• Lars-Åke Fredlund, Julio Mariño, Sergio Pérez and Salvador Tamarit.
Runtime verification in Erlang by using contracts. 26th International
Workshop on Functional and Logic Programming (WFLP 2018). Springer
LNCS 11285, pages 56-73, 2018.

• Sergio Pérez, Josep Silva, Salvador Tamarit. Enhancing POI testing ap-
proach through the use of additional information. 26th International
Workshop on Functional and Logic Programming (WFLP 2018). Springer
LNCS 11285, pages 74-90, 2018.

• David Insa, Sergio Pérez, Josep Silva, Salvador Tamarit. Erlang Code
Evolution Control. 27th International Symposium on Logic-based Pro-
gram Synthesis and Transformation (LOPSTR 2017). Springer LNCS
10855, pages 128-144, 2018.

• David Insa, Sergio Pérez, Josep Silva. Computing super reduced program
slices by composing slicing techniques. International ACM Symposium on
Applied Computing (SAC 2017). ACM 2017: 1631-1633.

274 Appendix A. Scientific Contributions

• Carlos Galindo, Sergio Pérez, Josep Silva. XX Jornadas de Programación
y Lenguajes (PROLE 2021). Object Variable Dependencies in Object-
Oriented Programs. Digital library SISTEDES, 2021.

• David Insa, Sergio Pérez, Josep Silva, Salvador Tamarit. XVIII Jornadas
de Programación y Lenguajes (PROLE 2018). Behaviour Preservation
across Code Versions in Erlang. Digital library SISTEDES, 2018.

• David Insa, Sergio Pérez, Josep Silva. How to Construct a Suite of Pro-
gram Slices. Proceedings of XVI Jornadas sobre Programación y Lengua-
jes (PROLE 2016). Proceedings of PROLE 2016: 200-215.

A.2 Journal Publications
• Carlos Galindo, Sergio Pérez, Josep Silva. Program Slicing of Java Pro-

grams. Journal of Logical and Algebraic Methods in Programming Vol.
130: 1-18, 2022.

• Sergio Pérez, Josep Silva, Salvador Tamarit. Automatic Testing of Pro-
gram Slicers. Scientific Programming 4108652:1-15, 2019.

• David Insa, Sergio Pérez, Josep Silva, Salvador Tamarit. Behaviour Preser-
vation across Code Versions in Erlang. Scientific Programming 9251762:1-
42, 2018.

A.3 List of derived artifacts

Resource Name Type URL
Bencher Web page https://mist.dsic.upv.es/bencher/

JavaSlicer Tool repository https://github.com/mistupv/JavaSlicer
Online version https://mist.dsic.upv.es/JavaSlicer/demo

e-Knife Tool repository https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
Online version https://mist.dsic.upv.es/e-knife-constrained/

SecEr Tool repository https://github.com/mistupv/secer
EDBC Tool repository https://github.com/serperu/edbc

https://mist.dsic.upv.es/bencher/
https://github.com/mistupv/JavaSlicer
https://mist.dsic.upv.es/JavaSlicer/demo
https://mist.dsic.upv.es/git/program-slicing/e-knife-erlang
https://mist.dsic.upv.es/e-knife-constrained/
https://github.com/mistupv/secer
https://github.com/serperu/edbc

	Abstract
	Resumen
	Resum
	I Introduction
	Preamble
	Motivation
	Analysis Techniques
	Contributions and Main Goals
	Structure of this thesis

	II Program Slicing
	Preliminary Definitions and Notation
	Program Slicing with System Dependence Graphs
	Program Slicing Algorithm
	Program Slicing of Object-Oriented Programs
	Language-Independent Program Slicing: Observation-Based Slicing

	Flow Dependence for Java Object-Oriented Programs
	Limitations of the JSysDG
	A novel definition of flow dependence
	Implementation
	Experimental Results
	Related Work

	Field-Sensitive Slicing with Constrained Graphs
	The CE-PDG
	Dealing with recursive data structures
	Slicing the CE-PDG
	The CE-SDG
	Summary edges and grammar productions
	Summary constraints for unknown source code functions
	Dealing with recursion
	Slicing the CE-SDG

	Implementation
	Experimental Results
	Related Work

	Overcoming SDG Limits: The Expression Dependence Graph
	Representation problems of the SDG
	From ASTs to EDGs
	Slicing the EDG
	Solving SDG limitations
	Implementation
	Empirical evaluation
	Related Work

	Quasi-Minimal Slicing to Compare Program Slicers
	Using ASTs to Improve Granularity
	A Method to Produce Quasi-Minimal Slices
	Phase 1: Combining static program slicers
	Phase 2: Increasing precision via an AST-adapted ORBS algorithm

	Implementation
	Phase 1: Slicerl and e-Knife
	Phase 2: CutEr, Cover, and SecEr

	Experimental Evaluation and Results
	Phase 1: Behaviour of Slicerl and e-Knife
	Phase 2: Behaviour of ORBS and CutEr
	Empirical evaluation
	A suite of minimal slices

	Related Work

	III Testing & Verification
	Preliminary Definitions and Notation
	Analysis tools for Erlang
	Type inference in Erlang: TypEr
	Property-based testing in Erlang: PropEr
	Concolic testing in Erlang: CutEr

	Design by contract

	Software Evolution Control in Erlang
	A novel approach to Automatic Regression Testing: Point of Interest Testing
	Traced information in POI testing
	Possible POI testing configurations

	POI testing adapted to Erlang
	Initial ITC generation
	Recording the traces of the point of interest
	Extraction of additional trace information
	Test case generation using ITC mutation

	POI testing with multiple POIs
	Code transformation with multiple POIs
	Differences in trace equality

	POI testing in concurrent environments
	Implementation
	Experimental Evaluation
	Related Work

	Design-by-contract verification in Erlang
	Contracts in Erlang
	Contracts for sequential Erlang
	Contracts for concurrent Erlang

	Implementation
	Architecture
	Instrumentation

	Related Work

	IV Developed Tools
	Developed Tools and User Guides
	JavaSlicer
	Installation and first steps
	Use case

	e-Knife (a CE-EDG Slicer for Erlang)
	Installation and first steps
	Use case

	SecEr
	Installation and first steps
	Use cases

	EDBC
	Installation and first steps
	Use cases

	V Conclusions and Future Research
	Conclusions
	Future Lines of Research
	Program Slicing
	Testing and Verification

	Bibliography

	VI Appendices
	Scientific Contributions
	Conference papers
	Journal Publications
	List of derived artifacts

