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Abstract: Over time, cities have grown, developing various activities and accumulating important
economic assets. Floods are a problem that worry city administrators who seek to make cities more
resilient and safer. This increase in flood events is due to different causes: poor planning, population
increase, aging of networks, etc. However, the two main causes for the increase in urban flooding
are the increment in frequency of extreme rainfall, generated mainly by climate change, and the
increase in urbanized areas in cities, which reduce green areas, decreasing the percentage of water
that seeps naturally into the soil. As a contribution to solve these problems, the work presented shows
a method to rehabilitate drainage networks that contemplates implementing different actions in the
network: renovation of pipes, construction of storm tanks and installation of hydraulic controls. This
work focuses on evaluating the flood risk in economic terms. To achieve this, the expected annual
damage from floods and the annual investments in infrastructure to control floods are estimated.
These two terms are used to form an objective function to be minimized. To evaluate this objective
function, an optimization model is presented that incorporates a genetic algorithm to find the best
solutions to the problem; the hydraulic analysis of the network is performed with the SWMM model.
This work also presents a strategy to reduce computation times by reducing the search space focused
mainly on large networks. This is intended to show a complete and robust methodology that can be
used by managers and administrators of drainage networks in cities.

Keywords: urban drainage networks; flood; optimization models; economic analysis; network rehabilitation

1. Introduction

Urban drainage infrastructure is built at high cost and represents an important asset of
cities that is expected to have a long service life. However, the occurrence of floods in cities
is becoming more and more evident, generating concern for engineers and managers of
city drainage systems. The increase in the frequency of extreme rainfall events is notorious;
many studies have delved into the causes of this increase [1,2] and are able to conclude that
it is due to an increase in rainfall intensity, mainly due to climate change. In addition to
this fact, the growth of cities has decreased the number of green spaces, replacing them
with impervious surfaces that increase runoff, aggravating the flooding problem [3–6].
These conditions have generated frequent floods that generate heavy losses in cities [7–9].
O’Donnell and Thorne [10] mention that, by 2050, 68% of the world’s population will live in
urban areas, so taking measures against flood risk is of primary importance. Rehabilitating
drainage networks is a topic of growing interest for researchers; the use of storm tanks
(STs) to mitigate runoff peaks in extreme rainfall events has proven to be an efficient
alternative [11,12]. For this reason, their use has been considered in the present work in
conjunction with the classical approach of renovating pipes. Furthermore, the inclusion
of hydraulic controls (CHs) to rehabilitate networks is considered. For the optimization
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process of drainage networks, researchers have used different methodologies, highlighting
the use of evolutionary algorithms that give good results in water resource research [13];
of these, genetic algorithms show great performance in the search for the best solutions
due to their adaptation to complex landscapes [14,15]. The pseudo-genetic algorithm
(PGA) used in this work has shown robustness and efficiency in finding solutions, and is
easier to implement in optimization models [16]. However, computation times can be very
long due to the large search space (SS) that the algorithm must explore. To improve the
performance of the algorithms, some strategy must be implemented to optimize the search.
One way to do this is to decrease the SS by identifying the best regions containing the best
solutions and discarding the less attractive ones. Different works have been carried out
with this method [17,18], demonstrating that these strategies can improve the efficiency of
optimization models. In this way, in a previously performed work, Bayas-Jiménez et al. [14]
present a methodology for search space reduction (SSR) focusing on the recursive reduction
of decision variables (DVs) with the use of reduced option lists to identify the best search
regions. In this work, an SSR method based on the method of Bayas-Jiménez et al. [14]
is used, focusing on reducing the SS in large networks to improve the efficiency of the
rehabilitation methodology.

On the other hand, in the work carried out by Bayas-Jiménez et al. [12], the authors
present a methodology to rehabilitate drainage networks and improve the efficiency of
the optimization model. However, one of the drawbacks of this methodology is the joint
evaluation of total investment costs and damage costs for a single rainfall. Although it is a
valid methodology, which shows in monetary amounts the advantages of rehabilitating
the network using the highest intensity rainfall that the drainage system will face, it does
not show us the cost of flood damages with rainfall lower than the return period (T) used.
These lower intensity rains can present significant damages in the study area, as rightly
mentioned by Freni et al. [19]. For this reason, and with the objective of improving the
methodology, this work focuses on determining the annual damage cost that can be caused
by floods and annualizing the cost of the required investment. To determine the annual cost
of flood damage, we have reviewed the work done by Zhou et al. [20] and Olsen et al. [21],
who present models to identify low-cost adaptation measures that mitigate events with
high annual risk. In this way, the cost of flood risk is calculated by integrating the area
under the curve generated by flood damage in the return periods considered. Finally,
a solution is obtained that integrates the annual cost of the flood risk and the annual
investment that would be required to face it. This work also emphasizes the need to
implement a SSR strategy in the methodology so that a method that significantly reduces
calculation times is used. It is important to mention that the optimization model uses the
storm water management model (SWMM) to analyze the network; this model completely
solves the Saint-Venant equations. For the hydraulic analysis with SWMM, the dynamic
wave model is used with the Darcy–Weisbach as the main force equation. The methodology
also assumes that flooding occurs by water stagnation, i.e., that the total volume of runoff
enters the manholes through the gutters of the system. However, this methodology has
certain limitations that must be considered:

• The hydrologic study and the runoff model are beyond the scope of this work;
• No changes in the network topology are considered. The actions allowed to improve

the network are the replacement of pipes, the installation of storm tanks and the
inclusion of hydraulic control elements in the network;

• The networks in which this methodology can be applied must be gravity-fed. Net-
works with pumping systems are not considered in this study;

• The hydraulic model is considered as a datum; its parameters and initial conditions
are not questioned.

With this work, the authors intend to show a robust methodology that encompasses
solutions to the difficulties that may arise in the rehabilitation of drainage networks,
providing different alternatives to reduce calculation times and ensure that the optimization
criterion satisfies the expectations of network managers.



Water 2022, 14, 2901 3 of 20

2. Materials and Methods

The methodology considered carrying out different actions in the drainage network
to reduce the risk of flooding in the studied area. These actions were: the replacement of
pipes by others of larger diameter; the construction of small STs to replace the existing
wells; and the installation of hydraulic control elements to slow down the flow of water
in the network. To determine where these elements would be implemented and what
characteristics they would have, an optimization model was used. The model used a PGA
as an optimization engine [22]. The hydraulic analysis of the model was performed with
the SWMM model [23] connected to the PGA through a toolkit developed by Martínez-
Solano et al. [24]. This way of rehabilitating drainage networks was presented in a previous
work by Bayas-Jiménez et al. [12], demonstrating its advantages by decreasing the cost of
flood damage. However, this methodology analyzes flood costs for a single design rainfall.
Although it is true that this rainfall event is the one that is going to demand the most from
the system, the methodology does not consider other rain events of lesser intensity that
may occur with greater probability in the design period and could generate floods. To
solve this problem, this work modified the way of quantifying flood damage by focusing
on the analysis of flood risk. Land use and rainfall magnitude are the most important
characteristics in flood risk analysis. The study of these characteristics in urban areas
and the relationship between them has resulted in the so-called damage–depth curves
(Figure 1a) that relate the damage in monetary units or percentage and the depth of flooding.
These curves are intended to represent the vulnerability of cities to flood risk [25].
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density curve (c).

One tool used as an indicator of vulnerability is the expected annual damage (EAD) [26].
This method estimates the average flood damage calculated for a series of events. The
method considers that if the annual exceedance rate can be expressed as the inverse of T
and the damages in monetary units, different values of flood damages can be calculated for
different return periods, thus defining a curve (Figure 1b). In this way, the average annual
flood risk can be calculated by integrating the area under this curve [27]. In the work carried
out by Olsen et al. [21], the authors compared different methods for estimating flood risk in
urban drainage systems. In addition to these comparisons, the authors emphasize that, as
return periods increase, flood damage costs also increase, but the annual exceedance rate
also decreases, as can be seen in the flood risk density curve (Figure 1c).

It was necessary to integrate this way of evaluating flooding into the methodology by
relating it to the annualized infrastructure investment costs. With this objective in mind, an
optimization model was developed that could find the best solution to the raised issue.

2.1. Optimization Model

The optimization model used a PGA as a search engine; this type of algorithm, unlike
traditional genetic algorithms, uses an integer encoding. The PGA was connected to
the SWMM model through a toolkit to perform a series of simulations to find an optimal
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solution to the problem. To achieve this, the PGA evaluated an objective function composed
of two types of cost functions: the annualized costs of infrastructure investment and the
costs of the annual cost of flood risk. This implied that design rainfalls must be defined in
advance for different return periods. The rainfall was constructed by means of a design
hyetograph obtained through the analysis of intensity–duration–frequency (IDF) curves.
These rainfalls were introduced into the network to be analyzed by the model. Figure 2
summarizes the operation of the optimization model. The optimization process was
iterative and required establishing an end point for a process called the convergence
criterion (Gmax). This criterion considers that when the value of the objective function does
not change during a certain number of generations, the objective function has reached
its minimum and the process ends. Gmax is explained in depth in the work presented by
Bayas-Jiménez et al. [14].
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2.1.1. Decision Variables

Since this methodology used a PGA for optimization, the DVs were required to take
values from lists of options with discrete values. In order to perform the network optimiza-
tion, it was necessary to clearly define the DVs used in this methodology. The methodology
considered three types of DVs. The first type of DVs considered was pipe diameter. In
the optimization process, the pipes selected to be optimized could take values from the
existing diameter range NDmax. The previously defined list of options for optimization,
called ∆ND, was composed of a small number of diameters immediately larger than the
analyzed pipe diameter. This decision was taken because pipes in the optimization process
would only take values larger than the current diameter, so defining lists using the whole
range of pipes would only increase the computational effort unnecessarily; with this action,
the size of the problem was considerably decreased.

The second type of DVs considered was the storage capacity of the STs. This work
considered the depth of the STs to be the same as the existing manholes, so the cross
section of the STs was defined as a DV. In the optimization process, the nodes selected to
be optimized ns could take values from a previously defined list of options. As shown in
Section 2.2, the methodology was composed of two stages. In the first stage, a coarse option
list NS0 was used and for the second stage, a refined option list NSmax was used. Finally,
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the third type of DVs considered the head-loss values that the hydraulic control element
installed in the pipes could generate. In the optimization process, the selected pipes vs
could have hydraulic controls with a degree of openness from a previously defined option
list Nθ.

2.1.2. Cost Functions

In order to define the objective function that the optimization model would evaluate,
the first step was to establish the cost functions of the investments in infrastructure and the
cost of the flood risk.

The first infrastructure investment cost function was the replacement of pipes. To
determine this cost, the cost of acquisition and installation of pipes was analyzed for
different diameters.

According to the values obtained, an equation was defined that fits a second-degree
polygonal curve and is presented as Equation (1).

Cp(Di) =
(
αDi

2 + βDi − γ
)

Li. (1)

In the equation, Cp(Di) represents the pipe replacement cost in euros, Di is the pipe
diameter and Li represents the pipe length in meters. The coefficients α, β and γ are
adjustment coefficients corresponding to each project.

The second infrastructure investment cost function was the cost of STs. To define this
function, the cost of building tanks of different sizes was analyzed. With these data, a cost
function composed of two terms was determined and is shown in Equation (2).

CT(Vi) = Cmin + CvarVi
ω (2)

where CT(Vi) represents the cost in euros of the construction of a storm tank. Cmin represents
the minimum cost of building a storm tank. Vi is the flood volume that the tank must store
in cubic meters. Cvar and ω are coefficients corresponding to the analyzed project. The
third structural investment cost function determined for this work was the cost of hydraulic
control. To define this function, the cost of purchasing and installing valves of different
diameters was analyzed. This analysis determined a second-degree polynomial function,
shown in Equation (3).

Cv(Di) = σDi
2 + µDi +ϕ (3)

where Cv(Di) is the cost of the hydraulic control in euros, Di is the diameter of the pipe
where the hydraulic control would be installed, in meters, and σ, µ and ϕ are adjustment
coefficients of the analyzed project.

On the other hand, to account for the reduction in investment in infrastructure, an
annual amortization factor Λ was required that affects each cost function. In this work, the
expression shown by Steiner (2007) was used and is shown in Equation (4).

Λ =
r

1 − (1 + r)−t (4)

In the equation, r is the annual interest and t is the time in years in which the investment
is expected to be recovered.

Determining flood costs is a complicated task, since there are many aspects to be
considered and they are commonly divided into two categories: intangible damages and
tangible damages. Tangible damages are those that can be expressed in monetary terms and
are those that have been widely used in the analysis of flood damages in urban areas. One
of the most widely used techniques for flood damage analysis is to use flood depth or flood
level as a reference. The analysis based on the flood level allows the reduction of flooding
and the cost of flooding, depending on the flood zone. An expression that calculates the
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cost of flood damage as a function of flood depth and land use is the damage–depth curve;
thus, an expression that allows this calculation is presented in Equation (5).

Cy(yi) = Cmax Ai

(
1 − e−λ

yi
ymax

)υ
(5)

In Equation (7), Cy(yi) represents the damage cost in euros and ymax is the maximum
depth at which the flooding reaches the maximum damage in meters. Cmax is the maximum
flood damage cost obtained when ymax is reached, Ai is the flood area of the analyzed
subcatchment in square meters, yi is the reached depth of the analyzed node in meters and
λ and υ are adjustment coefficients based on historical flood damage data.

Once the cost of flooding had been defined, to proceed in analyzing the flood risk, we
started from the work presented by Arnbjerg-Nielsen and Fleischer [28], who proposed a
way of estimating the annual damage by relating the cost of flood damage from rainfall
of various return periods. The authors conclude that the annual damage can be obtained
by integrating the area under the curve obtained from plotting the flood cost (Cy(Di)) as a
function of its annual exceedance rate (p). In a more recent work, Olsen et al. [21] mention
that a good approximation of the curve can be obtained with a log-linear relationship and
that, when integrated, it can show the average annual cost of flood risk; Figure 3 shows
this relationship.

Water 2022, 14, x FOR PEER REVIEW 6 of 21 
 

 

are those that have been widely used in the analysis of flood damages in urban areas. One 

of the most widely used techniques for flood damage analysis is to use flood depth or 

flood level as a reference. The analysis based on the flood level allows the reduction of 

flooding and the cost of flooding, depending on the flood zone. An expression that calcu-

lates the cost of flood damage as a function of flood depth and land use is the damage–

depth curve; thus, an expression that allows this calculation is presented in Equation (5). 

Cy(yi) =  Cmax Ai  (1 −  e
−λ 

yi
ymax)

υ

 
(5) 

In Equation (7), Cy (yi) represents the damage cost in euros and ymax is the maximum 

depth at which the flooding reaches the maximum damage in meters. Cmax is the maxi-

mum flood damage cost obtained when ymax is reached, Ai is the flood area of the analyzed 

subcatchment in square meters, yi is the reached depth of the analyzed node in meters and 

λ and υ are adjustment coefficients based on historical flood damage data. 

Once the cost of flooding had been defined, to proceed in analyzing the flood risk, 

we started from the work presented by Arnbjerg-Nielsen and Fleischer [28], who pro-

posed a way of estimating the annual damage by relating the cost of flood damage from 

rainfall of various return periods. The authors conclude that the annual damage can be 

obtained by integrating the area under the curve obtained from plotting the flood cost (Cy 

(Di)) as a function of its annual exceedance rate (p). In a more recent work, Olsen et al. [21] 

mention that a good approximation of the curve can be obtained with a log-linear rela-

tionship and that, when integrated, it can show the average annual cost of flood risk; Fig-

ure 3 shows this relationship. 

 

Figure 3. Annual cost of flood risk as the area under the curve in a log-linear relationship. 

The equation of the line obtained from this assumption takes the form of the expres-

sion shown in Equation (6), where a and b are the coefficients of the line. 

Cy(yi) = a ln[p] + b (6) 

To integrate Equation (6), the lower limit 0 was defined as representing the annual 

exceedance rate associated with an event, with an infinite value of T and p0 representing 

the annual exceedance rate for which flood damage begins to occur (Equation (7)). Equa-

tion (8) shows how to calculate the annual flood risk cost CF(p). 

CF(p) = ∫ (a ln[p] + b)
p0

0

 dp 
(7) 

CF(p) = a (p0 ln[p0] − p0) + b p0 (8) 

Finally, with all the costs defined, an objective function that the optimization model 

sought to minimize was proposed. Equation (9) shows the objective function. 

p (year-1)

D
am

ag
e

 c
o

st
 (

€
)

Figure 3. Annual cost of flood risk as the area under the curve in a log-linear relationship.

The equation of the line obtained from this assumption takes the form of the expression
shown in Equation (6), where a and b are the coefficients of the line.

Cy(yi) = a ln[p] + b (6)

To integrate Equation (6), the lower limit 0 was defined as representing the annual
exceedance rate associated with an event, with an infinite value of T and p0 representing the
annual exceedance rate for which flood damage begins to occur (Equation (7)). Equation (8)
shows how to calculate the annual flood risk cost CF(p).

CF(p) =
∫ p0

0
(a ln[p] + b) dp. (7)

CF(p) = a
(
p0 ln

[
p0
]
− p0

)
+ bp0. (8)

Finally, with all the costs defined, an objective function that the optimization model
sought to minimize was proposed. Equation (9) shows the objective function.

OF = Λ
[
Cp(Di) + CT(Vi) + Cv(Di)

]
+ CF(p) (9)
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2.2. Optimization Process
2.2.1. Search Space Reduction

The SS basically depends on two elements: the DVs and each of the values that these
DVs can adopt. When using a PGA, it is mandatory to discretize the SS, i.e., the values that
the DVs take must be chosen from a list of options composed of a finite number of values. In
this way, the discretization must be carried out carefully. Bayas-Jiménez et al. [14] mentions
that an excessive refinement of the SS would greatly increase the SS and would require a
very large computational effort. However, if the discretization is coarse, the precision of
the results is diminished. The authors also propose an expression to determine the size of
the SS, presented in Equation (10).

SS = ms (log ∆ND) + ns (log NS) + vs (log Nθ) (10)

where ∆ND, NS and Nθ represent the options lists used for pipes, STs and HCs, respectively.
Some work has been done with the objective of identifying the areas of the SS that contain
the best solutions. The works focus on two ways to reduce the SS, some focusing on
the change of the search region [18,29], and others focusing on changing the algorithm’s
operation [30,31]. In this work, a method based on the change of the search region was
used. In summary, the method reduced the SS by identifying and eliminating decision
variables that were not part of the optimal search region.

Due to the fact that, in networks of large sizes, the computational effort can be im-
portant and consume significant computational time, the SSR method called clustering is
presented based on the work presented by Bayas et al. [14]. This method allows a reduction
in the search region based on the identification of the most promising regions in a parallel
way in the drainage network.

Drainage networks are generally made up of branches that collect rainwater from
specific areas previously defined in the design stage of the drainage network. The water
carried by these branches is discharged into a main network that collects the water from
all the branches and transports it to treatment plants. Figure 4 shows an example of this
network configuration.
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Figure 4. Drainage network with identification of branches and main network.

It can be said that the network can be viewed as a set of sectors. If these sectors can be
identified, a particular analysis of them can be performed to reduce the number of DVs
within the sector and, consequently, reduce the overall SS. To perform the network analysis,
it was necessary to make changes in the optimization model to analyze each sector that
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made up the drainage network in parallel. Once the sectors were fully defined, a series of
evaluations were performed independently and in parallel with coarse option lists NS0 for
nodes. In the case of pipes, and in order to optimize the process, a ∆ND list of diameters
immediately larger than analyzed pipe was used.

The results obtained were analyzed and the selection criterion proposed by Bayas-
Jiménez et al. [14] was applied. In the same way, a lax Gmax was used because the objective
was to eliminate DVs quickly and not to optimize the network. This process is applied
iteratively until DVs could not be reduced further. Once the best regions of each sector were
defined, a new search was made in the complete network, with the ns and ms selected in
the sectors to finally delimit the optimal search region. It should be noted that the clustering
method required significant computational use, so the method required the use of a cluster
server to take advantage of its characteristics. Thus, despite the fact that several analyses
were carried out, when they were carried out at the same time, and when working with
sectors with fewer DVs, results were achieved in less time.

2.2.2. Final Optimization

Finally, after applying the SSR method, a final optimization was performed to find
the solution closest to the optimum. Hydraulic controls were included in this stage; since
their installation was linked to the installation of an ST, they were not considered in the
SSR process. Likewise, at this stage, each of the DVs that made up the final search region
were required to be explored in depth. Consequently, a refined (or full option) list NSmax
was used for STs. In the case of pipes, the same ∆ND range of diameters immediately
larger than the analyzed pipes was used. Finally, for the HCs, a list of options Nθ was
used that defined the degrees of opening that the element could adopt. At this stage, a
more demanding Gmax was also used to find the closest solution to the optimum. This
is the process that was followed to obtain the solution to the problem analyzed with the
proposed methodology.

2.3. Case Studies
2.3.1. Balloon Network

The Balloon network is part of a drainage network located in a city in northern Italy.
The network covers an area of 40.88 hectares. With a length of 1.85 km, the network is in
a flat area whose highest point has an elevation of 229 m above sea level and the lowest
point of 221 m above sea level. The network is made up of 71 pipes and 70 nodes. A total of
75 drainage sub-basins discharge their waters into the network. Figure 5 shows a schematic
of the Balloon network. The entire network is gravity-fed. One problem with the network
is the low slope of some of the pipes due to the topographical conditions of the area. To
improve network circulation, the network has been designed with deep manholes reaching
depths of more than 10 m. Despite this, the network has frequent flooding problems and
needs to be rehabilitated. With the methodology and parameters used in this work, the
network would present costs associated with the risk of flooding of 733,282 euros per year.

For the analysis of the network, design rainfalls were constructed using the alternating
block method for return periods of 2, 5, 10, 20, 50 and 100 years. The IDF curves for the
return periods studied are shown in Figure 6. Similarly, the land uses and the percentage
they occupy in the study area are shown in Table S3 of the supplementary material of
this work.

2.3.2. ES-N Network

The ES-N network is located in the city of Bogotá, Colombia. The network is made up
of 385 nodes, 385 conduits and 385 hydrological sub-basins covering an area of 123.24 ha
(Figure 7). The network has a total length of 20.11 km. The topography of the area is
relatively flat with an average slope of 0.39%. However, the network has been designed
to operate entirely by gravity, with pipes located more than 4 m deep. The network is
made up of circular pipes with diameters ranging from 0.20 m to 1.40 m. Considering the
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methodology presented in this work, the network would present costs associated with the
risk of flooding of 118,955 euros per year.
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For the case study, two rainfalls were defined, designed with two return periods of 50
and 100 years and calculated by the method of alternating blocks with 10-min intervals.
Rainfall was calculated from previously defined IDF curves. The curves obtained are shown
in Figure 8. On the other hand, for the network study, the percentage of different land uses
in the study area were established. Table S6 of the supplementary material shows these
land uses.
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2.3.3. Investment Costs

To define the coefficients of the cost function, a study was conducted on the prices of
pipes of different commercially available diameters, as well as the cost of their installation.
Figure 9 shows the cost curve of the pipes of the existing diameters per linear meter and
the adjustment of the curve produced by these values. The same graph shows the equation
with the coefficients obtained.
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To determine the cost function of the STs, a study was conducted on the cost of the
construction of these tanks of different sizes, including the excavation and removal of the
excavated material. According to these costs, the curve shown in Figure 9 was determined,
as well as the expression with the coefficients obtained.

Similarly, a study was conducted on the cost of gate valves, accessories and comple-
mentary installations necessary for the installation of HCs in pipelines. Figure 9 shows
the costs of different HCs with commercially available diameters. The equation with the
coefficients obtained is also shown.

As for the annual amortization factor, considering the design period and the type of
construction, an interest rate of 3% and an investment return time of 20 years was fixed.

2.3.4. Flood Costs

For the study of flood costs, the damage–depth curves presented by Martínez-Gomariz
et al. [32] were analyzed. The authors present a series of curves for different types of
buildings. Taking these curves as a reference, Equation (7) was used to determine the
flood damage cost for different land uses. The expression adjusted quite well to the values
that the authors present. Table S7 of the Supplementary Material shows the goodness
of fit. Figure 10 shows the damage–depth curves obtained. Thus, all the cost functions
required for the study of risk in economic terms for the developed model were defined.
The coefficients used to define the curves for the different land uses analyzed are shown in
Table S8 of the Supplementary Material.
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3. Results
3.1. Balloon Network

Before applying the SSR method, the sectors that make up the Balloon network and
the size of SS are identified. The total network has a magnitude of SS of 233 and 3 sectors
are identified that discharge their waters to the main network. Table 1 summarizes the
elements that make up each sector, the DVs and the magnitude of SS. Figure 5 shows
the sectors and the main network that make up the Balloon network. First, to each of
the sectors, the parallel SSR method is applied to decrease the number of DVs. Table 1
also shows the reduction in the magnitude of SS in each of the sectors when applying the
clustering method.

Table 1. Elements, magnitude of SS and percentage of reduction of the sectors that make up the
Balloon network.

Sector Number
of Pipes

Number
of Nodes DV SS Reduction of SS in

Clustering Process

Sector 1 11 11 33 36 100%

Sector 2 12 12 36 40 96%

Sector 3 4 4 12 13 100%

Main network 44 43 130 144

Total 71 70 211 233

After the initial reduction by sectors, the SSR method is applied to the network
iteratively until the final search region is defined. Once the SS is reduced, we proceed
to the final optimization, performing a series of simulations to obtain the best possible
solution. Figure 11 shows the stages of the SSR in the Balloon network, the number of
DVs and the magnitude of SS at each stage of the SSR process, as well as the final solution.
Table 2 shows the terms that compose the objective function of the solution found and
the characteristics of the elements to be installed. Figure 12 illustrates the elements to be
installed in the network.
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Figure 11. SSR in Balloon network.

Table 2. Results of the final optimization in the Balloon network.

Terms in Objective
Function Pipes Storm Tank Hydraulic

Control Flood Total

Cost per year 2739 € 19,727 € 153 €

5608 € 28,227 €

Elements C5 C84 C85 C86 N8 N15 N16 N63 C75

Present diameter (m) 0.70 0.70 0.70 0.70

Optimized diameter (m) 1.00 1.10 1.00 1.00

Volume (m3) 2496 4284 5031 594

Head-loss (m) 72.55
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3.2. ES-N Network

The complete network has an SS magnitude of 1271. Analyzing the problem with
the recursive method would demand a very high computational time. For this reason,
the SSR clustering method has been considered for the study of the network. As a first
step, all the sectors that make up the drainage network are defined. Nineteen sectors have
been identified and will be optimized in parallel. Table 3 shows the elements of which
the network is composed, the number of DVs and the magnitude of SS. By analyzing
the network by sectors and in parallel, it is possible to appreciate the decrease in the
magnitude of SS that the algorithm must explore in each scenario. If, in addition to this, it
is considered that, in the SSR process, the coarse option lists are used, the computational
effort is notably reduced.

Table 3. Elements, magnitude of SS and percentage of reduction in the clustering stage of the sectors
that make up the ES-N network.

Sector Number
of Pipes

Number
of Nodes DVs SS Reduction of SS in

Clustering Process

Sector 1 5 5 15 17 100%

Sector 2 2 2 6 7 100%

Sector 3 13 13 39 43 100%

Sector 4 23 23 69 76 98%

Sector 5 24 24 72 79 91%

Sector 6 8 8 24 26 100%

Sector 7 55 55 165 182 99%

Sector 8 8 8 24 26 100%

Sector 9 15 15 45 50 100%

Sector 10 23 23 69 76 100%

Sector 11 25 25 75 83 100%

Sector 12 16 16 48 53 97%

Sector 13 9 9 27 30 100%

Sector 14 5 5 15 17 100%

Sector 15 39 39 117 129 97%

Sector 16 45 45 135 149 97%

Sector 17 4 4 12 13 100%

Sector 18 12 12 36 40 75%

Sector 19 5 5 15 17 100%

Main network 49 49 147 162

Total 385 385 1155 1271

For better visualization, the sectors of the drainage network and the main network are
differentiated in Figure 7. Applying the SSR method to each sector reduces the number of
DVs considerably. The method is applied iteratively until SS cannot be reduced. Table 3
shows the percentage reduction in SS magnitude.

After the application of the SSR in each sector, a new scenario is configured for the
optimization of the network that includes the selected DVs in each sector and in the main
network. Applying the method in this scenario iteratively defines the final search region.
Later, for the final optimization, a refined list of options for the STs is used and the hydraulic
control elements are included in the search. At this stage, a much more demanding stopping
criterion for the algorithm is also used to find the solution close to the optimal value. After
performing a series of simulations, the best possible solution is obtained. Figure 13 shows
the SSR until the final solution is found. Table 4 shows the terms that compose the objective
function of the solution found and the characteristics of the elements to be implemented.
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Figure 14 illustrates the elements to be installed in the network. Finally, the dispersion of
the different results obtained from the objective function in each iteration and the number
of DVs in the case study networks are shown in Figure 15.
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Figure 13. SSR in the ES-N network.

Table 4. Objective function of the best solution found for the ES-N network.

Terms in Objective
Function Pipes Storm Tank Hydraulic

Control Flood Total

Cost per year 2672 € 41,930 € 125 €

27,722 € 72,449 €

Elements
P266 P293 P294 P335 N71 N126 N131 N161 N216 P25

N252 N276 N308 N343

Present diameter (m) 0.40 0.40 0.25 0.30

Optimized diameter (m) 0.70 0.70 0.45 0.50

Volume (m3)
1700 500 750 1950 1950

1100 1250 1050 800

Head-loss (m) 72.55
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4. Discussion

In the optimization process, it is desirable to have a strategy that reduces calculation
times, especially when large networks are analyzed. The SSR method used is applied in
two networks presented as case studies. In the case of the Balloon network, the network
does not have many sectors that make up the drainage network, identifying three sectors.
In the process of reduction by sectors, the SS is reduced by 37%. Then, in the iterative
analysis with the complete network, it is possible to reduce the SS up to 94%. On the other
hand, the ES-N network has the characteristic of being made up of 19 sectors that discharge
water to the main network of the drainage network. In this network, the clustering method
is applied for the parallel reduction of SS in the analysis stage by sectors; SS is reduced by
85%, this being the great advantage of this methodology: that when analyzing in parallel,
a smaller number of DVs are obtained faster. Finally, the SS is reduced to 97.88% in two
subsequent iterations. These results show us that the method is particularly beneficial
when networks composed of several sectors are analyzed, this being a characteristic of
large networks. The process of reducing the SS must prioritize the identification of the
best areas of the SS. Figure 15 shows how, when reducing the search region to the most
prominent areas, the values of the objective function obtained decrease. It can also be
observed how the dispersion of results decreases in each iteration. This can show us that
the procedure meets its objective. The results of the final optimization, in economic terms,
show the cost of the annual investment prorated throughout the design period and the
expected cost that the flood may generate annually. In the Balloon network, losses of
733,282 euros per year are currently generated. When the optimization is carried out, the
expected cost of these damages is reduced to 5608 euros per year. On the other hand, in the
ES-N network, without making any improvements to the network, rains can be expected to
generate damages of 118,955 euros per year. With the implementation of the infrastructure
according to the solution found, these damages can be reduced to 27,722 euros per year. If
it is considered that the required investment in infrastructure is 3% and 38%, respectively,
of the current flood risk costs, it can be said that these investments are relatively low and
allow us to verify the advantages of this type of rehabilitation in drainage networks.

5. Conclusions

There are different methods to improve drainage networks. In this work, a methodol-
ogy based on the substitution of drainage networks combined with the installation of STs
and HCs is proposed. The case studies analyzed show the benefits of the method over the
traditional pipe replacement technique, since when combined with the installation of STs
in line and with the use of HCs, the slowing down of the water is encouraged, reducing the
peak of the water flow. In relation to the use of STs in line, it can be said that they have an
advantage over traditional STs that are designed to contain a larger volume of water and
then require pumping systems to dislodge the water from the tank. With the STs in line,
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what is sought is a temporary storage of the water to reduce the speed of accumulation
downstream. These advantages are explained in detail by Bayas-Jiménez et al. [12]. The use
of genetic algorithms is presented as one of the most suitable alternatives to find solutions
to this type of problem. Although it is true that its use entails a significant use of resources,
there are techniques that can reduce the calculation time. The method presented in this
work was previously presented by Bayas-Jiménez et al. [14]. The results obtained in the
analyzed case studies show us the suitability of this method. Although the method does not
allow a direct reduction of the SS and requires its application in an iterative way, it allows us
to address a problem that, without this reduction, would require enormous computational
efforts. It should be noted that this method allows rapid convergence towards the best
search region. If the results of the first iteration of the SRR process are analyzed, it can be
seen how a large amount of the search space is quickly eliminated.

The analysis of the problem focused on evaluating the problem in economic terms,
quantifying the cost that the flood would produce in the cities. The analysis fundamentally
depends on the volume of flood water that is generated. Analyzing the problem using a
design rainfall for the return period used for the design of the network may, at first sight,
be the best alternative to the problem. By using this design rainfall, the situation that makes
the greatest demands on the operation of the network can be analyzed. However, this
form of analysis does not analyze other minor rains that may appear during the period of
operation of the network and that can generate floods in the network that, although minor,
are not accounted for in the analyzed objective function. The approach used in this work
has tried to solve this problem. By analyzing the costs on an annualized basis based on
an annual estimate of the damage, it is possible to have a clearer idea of the cost of the
damages that the risk of flooding implies. In any case, it must be taken into account that
this method is approximate, and that the results will depend greatly on the number of
storms analyzed. It is noteworthy to mention that this work does not contemplate in its
objectives the realization of projections of increased rainfall due to the effects of climate
change. However, if you wanted to analyze a network under this scenario, the methodology
could be applied without problems.

On the other hand, identifying different land uses in the studied areas allows for a
better optimization of the networks compared to the use of an average curve for the entire
study area, as has been done in previous works; this is undoubtedly an improvement
that this work presents to the developed methodology. However, this additional action
demands longer calculation times, so the use of an SSR method becomes unavoidable.

Finally, distinguishing different zones within the study area and the cost that a flood
would entail in that place allows greater protection to be given to particularly sensitive
zones or strategies in the functioning of the city. In contrast, in areas where a flood would
not cause serious problems, for example, in green areas, a greater volume of flooding can be
allowed. This would allow linking the present study to the joint analysis with low-impact
developments (LIDs) techniques in specific areas of the cities in which these techniques can
be included. This study is proposed as a future development in this line of research.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/w14182901/s1, Figure S1: Representation of Balloon drainage
network; Figure S2: Representation of ES-N drainage network. Table S1: Data for nodes and
subcatchments of Balloon network; Table S2: Data for conduits in the network used as a case study;
Table S3: Land uses in the study area of Balloon network; Table S4: Data for nodes and subcatchments
in the ES-N network; Table S5: Data for pipes in the ES-N network; Table S6: Land uses in the
study area of ES-N network; Table S7: Goodness of fit for the different land uses with Equation (5);
Table S8: Coefficients of Equation (5) for different land uses.
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Abbreviations
The following abbreviations are used in this manuscript:
DV Decision Variable
EAD Estimated Annual Damage
IDF Intensity–Duration–Frequency
LID Low-Impact Development
OF Objective Function
PGA Pseudo-Genetic Algorithm
SS Search Space
SSR Search Space Reduction
SWMM Storm Water Management Model
Nomenclature
a coefficient of the line of the flood cost
Ai flood area
b coefficient of the line of the flood cost
Cmax maximum flood damage cost
Cmin minimum cost of building a storm tank
CP (Di) cost of pipe replacement
CT (Vi) cost of building a storm tank
Cv (Di) cost of installing hydraulic controls
Cvar adjustment coefficient for calculating the cost of storm tank
Cy (yi) flood damage cost
Di pipe diameter
Gmax convergence criterion
Li pipe length
ms pipes selected to be optimized
NDmax diameter range available
ns nodes selected to be optimized
NS list of options used for nodes
NSmax refined option list for nodes
NS0 coarse option list for nodes
Nθ option list for hydraulic controls
p annual exceedance rate
p0 annual exceedance rate for which flood damage begins to occur
r annual interest
t years to recover the investment
T return period
Vi flood volume at the node
vs pipes selected to install hydraulic controls in the optimization process
yi flood depth at node
ymax maximum depth at which the maximum cost of flood damage is reached
α adjustment coefficient for calculating the cost of replacing pipes
β adjustment coefficient for calculating the cost of replacing pipes
γ adjustment coefficient for calculating the cost of replacing pipes
∆ND range of diameters immediately larger than the analyzed pipe
Λ annual amortization factor
λ adjustment coefficient for calculation of flood damage
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µ adjustment coefficient for calculating the cost of installing hydraulic controls
σ adjustment coefficient for calculating the cost of installing hydraulic controls
υ adjustment coefficient for calculation of flood damage
ϕ adjustment coefficient for calculating the cost of installing hydraulic controls
ω adjustment constant for the calculation of the cost of the construction of storm tanks
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